JP2020165337A - Piston of internal combustion engine - Google Patents

Piston of internal combustion engine Download PDF

Info

Publication number
JP2020165337A
JP2020165337A JP2019064350A JP2019064350A JP2020165337A JP 2020165337 A JP2020165337 A JP 2020165337A JP 2019064350 A JP2019064350 A JP 2019064350A JP 2019064350 A JP2019064350 A JP 2019064350A JP 2020165337 A JP2020165337 A JP 2020165337A
Authority
JP
Japan
Prior art keywords
air
fuel mixture
intake
ridge line
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019064350A
Other languages
Japanese (ja)
Other versions
JP7303002B2 (en
Inventor
志典 黒木
Yukinori Kuroki
志典 黒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2019064350A priority Critical patent/JP7303002B2/en
Publication of JP2020165337A publication Critical patent/JP2020165337A/en
Application granted granted Critical
Publication of JP7303002B2 publication Critical patent/JP7303002B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

To provide a piston capable of realizing uniform combustion by preventing a phenomenon that an air-fuel mixture locally stays in a compression stroke.SOLUTION: A piston 9 used in a pent roof-type internal combustion engine is provided with an intake-side recess 12 at its top face for releasing an intake valve 6 at an initial period of an intake stroke. The intake-side recess 12 is held by an outer ridge line 14 and an inner ridge line 16, and at least the inner ridge line 16 is rounded with a radius of curvature of 3 mm or more. When an air-fuel mixture flows from an outer peripheral side to an exhaust side in a compression stroke, the air-fuel mixture smoothly flows along the inner ridge line 16. Accordingly, a phenomenon that eddy current generates on a part of the inner ridge line 16, and the air-fuel mixture stays, does not occur, and diffusibility of the air-fuel mixture can be improved. As this can be easily applied to an existing piston 9, and only small change not affecting a compression ratio and the like, is needed, versatility is improved with excellent reality.SELECTED DRAWING: Figure 4

Description

本願発明は内燃機関のピストンに関するものであり、特に、ペントルーフ型燃焼室を有する内燃機関のピストンを好適な対象にしている。 The present invention relates to a piston of an internal combustion engine, and particularly preferably a piston of an internal combustion engine having a pent roof type combustion chamber.

火花点火式の内燃機関において、シリンダボアに吸入した吸気にタンブル流を付与すると、燃料と空気との混合性が高まって出力向上や排気ガスの成分悪化防止に貢献できる。そこで、強いタンブル流を生成するために多くの改良策が提案されているが、この改良策は、吸気ポートに関する改良とピストンに関する改良とに分けられる。 In a spark-ignition type internal combustion engine, if a tumble flow is applied to the intake air sucked into the cylinder bore, the mixture of fuel and air is enhanced, which can contribute to the improvement of output and the prevention of deterioration of the exhaust gas component. Therefore, many improvements have been proposed to generate a strong tumble flow, which can be divided into improvements for the intake port and improvements for the piston.

ピストンに関する改良策では、混合気の流れをスムーズ化することに主眼が置かれることが多いが、ピストンの頂面に、吸気行程初期において吸気バルブを逃がすための吸気側リセスと、排気行程終期において排気バルブを逃がすための排気側リセスが形成されている場合、これらのリセスが混合気のスムーズな流れを阻害することが有り得る。 Improvements to the piston often focus on smoothing the flow of the air-fuel mixture, but at the top of the piston there is an intake side recess to allow the intake valve to escape at the beginning of the intake stroke and at the end of the exhaust stroke. If exhaust side recesses are formed to allow the exhaust valve to escape, these recesses can impede the smooth flow of the air-fuel mixture.

そこで特許文献1には、吸気行程での混合気の流れをスムーズ化することを目的として、リセスを挟んで外周側と軸心側とに位置した稜線にそれぞれ丸みを付けると共に、外周側の稜線の丸みの曲率半径を軸心側の稜線の丸みの曲率半径よりも小さくすることが開示されている。 Therefore, in Patent Document 1, for the purpose of smoothing the flow of the air-fuel mixture in the intake stroke, the ridgelines located on the outer peripheral side and the axial center side with the recess in between are rounded and the ridgeline on the outer peripheral side is rounded. It is disclosed that the radius of curvature of the roundness of is smaller than the radius of curvature of the roundness of the ridgeline on the axial side.

特開2014−122589号公報Japanese Unexamined Patent Publication No. 2014-122589

さて、ペントルーフ型燃焼室を有する内燃機関において、吸気行程及び圧縮行程初期に生成したタンブル流は、圧縮行程では吸気側から排気側に向かうように流れ方向が変化して、圧縮が進むに従って流れが潰されて多数の小さな流れに分解していき、最終的には微細な渦の集まりになり、その結果、火炎伝播速度を速めて均一な燃焼を実現できる。 By the way, in an internal combustion engine having a pent roof type combustion chamber, the flow direction of the tumble flow generated at the beginning of the intake stroke and the compression stroke changes from the intake side to the exhaust side in the compression stroke, and the flow flows as the compression progresses. It is crushed and decomposed into a large number of small streams, eventually forming a collection of fine vortices, and as a result, the flame propagation speed can be increased and uniform combustion can be achieved.

従って、タンブル流の効果を十分に享受するためには、吸気行程において強いタンブル流を生成させるのみでなく、圧縮行程において流れを均等に潰して微細化することが必要であり、そのためには、混合気がピストンの頂面に沿ってスムーズに流れることが必要である。 Therefore, in order to fully enjoy the effect of the tumble flow, it is necessary not only to generate a strong tumble flow in the intake stroke, but also to crush the flow evenly in the compression stroke to make it finer. The air-fuel mixture needs to flow smoothly along the top surface of the piston.

しかし、本願発明者が解析したところ、頂面にリセスが形成されていると、圧縮行程において混合気がリセスの稜線を越えるときに、圧力変化によると思われる渦流(淀み)の発生現象が見られ、結果として、混合気の混ざり合いが抑制されて燃焼の均一化が不十分になったり、混合気が部分的に滞留してノッキングを引き起こしたりするおそれがあった。 However, as analyzed by the inventor of the present application, when a recess is formed on the top surface, a phenomenon of vortex (stagnation), which is thought to be due to a pressure change, is observed when the air-fuel mixture crosses the ridgeline of the recess in the compression stroke. As a result, there is a risk that the mixing of the air-fuel mixture will be suppressed and the uniformity of combustion will be insufficient, or that the air-fuel mixture will partially stay and cause knocking.

他方、特許文献1には、稜線に丸みを設けて混合気の流れをスムーズ化することが開示されてはいるが、これは圧縮行程での混合気の挙動を分析したものではなく、圧縮行程での混合性向上の構成は示唆していないと云える。 On the other hand, Patent Document 1 discloses that the ridgeline is rounded to smooth the flow of the air-fuel mixture, but this is not an analysis of the behavior of the air-fuel mixture in the compression stroke, but the compression stroke. It can be said that it does not suggest the composition of improving the mixing property in.

本願発明はこのような現状を契機に成されたものであり、吸気行程で形成されたタンブル流を圧縮行程において均等に分散化させる構成を実現しようとするものである。 The present invention has been made in the wake of such a situation, and is intended to realize a configuration in which the tumble flow formed in the intake stroke is evenly dispersed in the compression stroke.

本願発明のピストンは、
「シリンダヘッドと対向した頂面に、吸気バルブを逃がすための吸気側リセスと排気バルブを逃がすための排気側リセスとが形成されており、このため、前記リセスは、外周側に位置した外側稜線と軸心側に位置した内側稜線とで挟まれている」
という基本構成において、
「少なくとも前記吸気側リセスの内側稜線に、圧縮行程において混合気が軸心側から外周を通って流れるにおいて渦流の発生を防止し得る3mm以上の曲率半径の丸みを形成している」
という特徴を有している。
The piston of the present invention
"On the top surface facing the cylinder head, an intake side recess for letting the intake valve escape and an exhaust side recess for letting the exhaust valve escape are formed. Therefore, the recess is an outer ridge line located on the outer peripheral side. It is sandwiched between the inner ridge line located on the axis side. "
In the basic configuration
"At least on the inner ridge of the intake side recess, a roundness with a radius of curvature of 3 mm or more is formed that can prevent the generation of a vortex when the air-fuel mixture flows from the axial center side through the outer circumference in the compression stroke."
It has the feature.

さて、ペントルーフ型内燃機関では、圧縮行程において、混合気は、軸心から外周部に向かい、外周部を通って排気側に戻るように流れる傾向を呈するが、バルブを逃がすためのリセスは、排気側よりも吸気側が深くなっており、稜線のエッジが立っていた従来技術では、圧縮行程において、深さが深い吸気側リセスから混合気が排気側に流れていくにおいて、内側稜線を越えるときに圧力変化が生じて渦流が発生しやすくなっていたと推測される。圧縮行程では加圧されているため、流速が速くなって渦流ができやすくなっていることも考えられる。 By the way, in the pent roof type internal combustion engine, in the compression stroke, the air-fuel mixture tends to flow from the axis toward the outer peripheral portion and returns to the exhaust side through the outer peripheral portion, but the recess for releasing the valve is exhaust. In the conventional technique in which the intake side is deeper than the side and the edge of the ridge line stands, when the air-fuel mixture flows from the deep intake side recess to the exhaust side in the compression stroke, when the air-fuel mixture crosses the inner ridge line. It is presumed that the pressure change occurred and the vortex flow was likely to occur. Since it is pressurized in the compression stroke, it is possible that the flow velocity becomes faster and eddy currents are more likely to occur.

しかし、本願発明のように、少なくも吸気側リセスの内側稜線に曲率半径が3mm以上の丸みを付けていると、混合気は内側稜線を舐めるようにしてスムーズに流れていき、圧力変化は生じない。従って、稜線の箇所での渦流(淀み)の発生を防止して、燃焼空間全体での混合気の均一化を向上できる。その結果、燃焼空間全体で燃焼を均一化して出力と燃費の向上に貢献できると共に、ノッキング防止にも貢献できる。 However, if the inner ridge of the recess on the intake side is rounded with a radius of curvature of 3 mm or more as in the present invention, the air-fuel mixture flows smoothly as if licking the inner ridge, and a pressure change occurs. Absent. Therefore, it is possible to prevent the occurrence of eddy currents (stagnation) at the ridgeline and improve the uniformity of the air-fuel mixture in the entire combustion space. As a result, combustion can be made uniform in the entire combustion space, which can contribute to the improvement of output and fuel efficiency, and can also contribute to the prevention of knocking.

そして、本願発明は稜線に丸みを持たせる構成であって既存のピストンにもそのまま適用できるため、現実性・汎用性に優れている。混合気の流れのスムーズ化の点からは、稜線の丸みの曲率半径は大きいほど好ましいが、過度に大きくすると、燃焼室の容積が大きくなって圧縮比維持のためには各部の設計をやり直さねばならなくなるおそれがある。この点、丸みの最大値を5〜6mmの曲率半径に留めておくと、圧縮比の変化を招来することなく渦流を防止できるため、特に好適である。 Further, the present invention has a configuration in which the ridgeline is rounded and can be applied to an existing piston as it is, so that it is excellent in reality and versatility. From the viewpoint of smoothing the flow of the air-fuel mixture, it is preferable that the radius of curvature of the roundness of the ridgeline is large, but if it is made excessively large, the volume of the combustion chamber becomes large and each part must be redesigned to maintain the compression ratio. There is a risk that it will not be. In this respect, it is particularly preferable to keep the maximum value of roundness within a radius of curvature of 5 to 6 mm because eddy current can be prevented without causing a change in the compression ratio.

本願発明において、全ての稜線に丸みを持たせることも可能であるが、既述のとおり、吸気側リセスが深くてその内側稜線の箇所において渦流が発生しやすいため、吸気側リセスのみに丸みを形成しても高い効果を享受できる。この場合は、既存のピストンに適用しても体積の変化は殆どないため、圧縮比と関連して設計のやり直しのような手間を皆無にできる。 In the present invention, it is possible to give roundness to all the ridgelines, but as described above, since the intake side recess is deep and eddy currents are likely to occur at the inner ridgeline, only the intake side recess is rounded. Even if it is formed, a high effect can be enjoyed. In this case, since there is almost no change in volume even when applied to an existing piston, it is possible to eliminate the trouble of redesigning in relation to the compression ratio.

実施形態の縦断正面図である。It is a longitudinal front view of the embodiment. (A)はピストンの平面図で、(B)は(A)のB−B視断面図である。(A) is a plan view of the piston, and (B) is a sectional view taken along line BB of (A). 吸気行程終了時点の縦断正面図である。It is a longitudinal front view at the end of the intake stroke. 圧縮行程終期での図2の IV-IV視断面図である。FIG. 2 is a sectional view taken along line IV-IV of FIG. 2 at the end of the compression stroke. 比較例(従来例)を示す図である。It is a figure which shows the comparative example (conventional example).

次に、本願発明の実施形態を図面に基づいて説明する。本実施形態は、自動車用内燃機関のピストンに適用している。 Next, an embodiment of the present invention will be described with reference to the drawings. This embodiment is applied to a piston of an internal combustion engine for automobiles.

(1).基本構造
本願発明のピストンが適用される内燃機関の基本構造は従来と同様であり、複数のシリンダボア1がクランク軸線方向に並べて形成されたシリンダブロック2と、その上面に固定されたシリンダヘッド3とを備えており、シリンダヘッド3には、クランク軸線方向に並んだ一対ずつの吸気ポート4と排気ポート5とが、シリンダボア軸心を挟んだ両側に形成されている。吸気ポート4は吸気バルブ6で開閉され、排気ポート5は排気バルブ7で開閉される。
(1). Basic structure The basic structure of the internal combustion engine to which the piston of the present invention is applied is the same as the conventional one, and the cylinder block 2 formed by arranging a plurality of cylinder bores 1 in the direction of the crank axis and fixed to the upper surface thereof. A cylinder head 3 is provided, and the cylinder head 3 is formed with a pair of intake ports 4 and exhaust ports 5 arranged in the direction of the crank axis on both sides of the cylinder bore axis. The intake port 4 is opened and closed by the intake valve 6, and the exhaust port 5 is opened and closed by the exhaust valve 7.

シリンダヘッド3には、各シリンダボア1と同心の状態でペントルーフ型(山型)の燃焼室8が形成されており、吸気バルブ6及び排気バルブ7は、燃焼室8の傾斜面と直交した状態で配置されている。シリンダボア1には、ピストン9が摺動自在に嵌め込まれている。 A pent roof type (mountain-shaped) combustion chamber 8 is formed in the cylinder head 3 in a state concentric with each cylinder bore 1, and the intake valve 6 and the exhaust valve 7 are in a state orthogonal to the inclined surface of the combustion chamber 8. Have been placed. A piston 9 is slidably fitted in the cylinder bore 1.

図2に示すように、ピストン9の頂面には、外周近くまで広がる浅い凹所10が形成されており、凹所10のうち外周寄りの部分は緩く湾曲した湾曲面10aになっている。このため、図3に示すタンブル流11の生成を促進できる。凹所10の外側の部分は、基本的には軸心と直交した平坦面になっているが、燃焼室8の傾斜角度と略同じ角度で上窄まりに傾斜したテーパ状のスキッシュ面と成すことも可能である。 As shown in FIG. 2, a shallow recess 10 extending close to the outer circumference is formed on the top surface of the piston 9, and a portion of the recess 10 near the outer circumference is a gently curved curved surface 10a. Therefore, the generation of the tumble flow 11 shown in FIG. 3 can be promoted. The outer portion of the recess 10 is basically a flat surface orthogonal to the axis, but is formed as a tapered squish surface inclined upwardly constricted at substantially the same angle as the inclination angle of the combustion chamber 8. It is also possible.

ピストン9の頂面には、吸気側リセス12と排気側リセス13とが形成されている。両リセス12,13は、バルブ6,7がシリンダボア1の軸心(及びピストン9の軸心)に対して傾斜していることから三日月形に近い平面視形状になっており、また、断面は山形になっている。 An intake side recess 12 and an exhaust side recess 13 are formed on the top surface of the piston 9. Both recesses 12 and 13 have a plan view shape close to a crescent shape because the valves 6 and 7 are inclined with respect to the axis of the cylinder bore 1 (and the axis of the piston 9), and the cross section is It has a mountain shape.

リセス12,13は凹みであるため、リセス12,13を形成すると、リセス12,13の外側に位置した外側稜線14,15と、リセス12,13の内側に位置した内側稜線16,17とが形成されている。外側稜線14,15の外側は平坦面になっており、内側稜線16,17は、凹所10とリセス12,13との境界を成している。また、内側稜線16,17は、外側稜線14,15よりも高さが低くなっている。 Since the recesses 12 and 13 are recesses, when the recesses 12 and 13 are formed, the outer ridges 14 and 15 located outside the recesses 12 and 13 and the inner ridges 16 and 17 located inside the recesses 12 and 13 are formed. It is formed. The outer sides of the outer ridges 14 and 15 are flat surfaces, and the inner ridges 16 and 17 form a boundary between the recess 10 and the recesses 12 and 13. Further, the inner ridges 16 and 17 are lower in height than the outer ridges 14 and 15.

そして、図4に吸気側リセス12の内側稜線16を代表して示すとおり、各内側稜線16,17と外側稜線14,15との全体に、曲率半径Rが5mm程度の丸みを形成している。但し、丸みは、少なくとも、吸気側リセス12の内側稜線16に形成したら足りる。丸みの曲率半径Rは、いずれも3〜5mm程度でよい。 Then, as shown in FIG. 4 as a representative of the inner ridge line 16 of the intake side recess 12, a roundness having a radius of curvature R of about 5 mm is formed on the entire inner ridge lines 16 and 17 and the outer ridge lines 14 and 15. .. However, it is sufficient if the roundness is formed at least on the inner ridge line 16 of the intake side recess 12. The radius of curvature R of the roundness may be about 3 to 5 mm in each case.

さて、吸気行程において図3に示すタンブル流11が生成されるが、タンブル流11は、図2に点線矢印で示すように、排気側から軸心部を通って2つの吸気側リセス12の間を通って吸気側に向かい、吸気側においてシリンダボア1の内周にガイドされて排気側に戻るような流れになることが多く、タンブル流11は、圧縮行程の初期では増強されて、その後、加圧によって潰されて多数の乱流に分離する。 By the way, the tumble flow 11 shown in FIG. 3 is generated in the intake stroke, and the tumble flow 11 is between the two intake side recesses 12 from the exhaust side through the axial center as shown by the dotted arrow in FIG. In many cases, the flow flows toward the intake side through the intake side and is guided by the inner circumference of the cylinder bore 1 and returns to the exhaust side. The tumble flow 11 is enhanced at the initial stage of the compression stroke, and then added. It is crushed by pressure and separated into many turbulent flows.

そして、圧縮行程の終期では、燃焼室8がペントルーフ型であって軸心部が最も断面積が大きくなっていることにも関係して、図2(A)に点線矢印で示すように吸気側において方向変換した混合気は、図4に矢印20で示すように、外周部から排気側に向かうように流れる傾向を呈する。 Then, at the end of the compression stroke, the intake side is shown by the dotted arrow in FIG. 2 (A) because the combustion chamber 8 is a pent roof type and the axial center portion has the largest cross-sectional area. As shown by the arrow 20 in FIG. 4, the air-fuel mixture whose direction has been changed in the above direction tends to flow from the outer peripheral portion toward the exhaust side.

従って、吸気側で方向変換した混合気は、図4に矢印20に示すように、吸気側リセス12を横切って流れるが、図5のように、内側稜線16のエッジが立っていると、混合気が横切って流れるにおいて、内側稜線16の下流側(軸心側)で渦流21が発生して、混合気に淀み・滞留が発生することが有り得る。そして、混合気に淀み・滞留が発生すると、混合気の拡散性が阻害されて燃焼の均一性が損なわれると共に、局部的な降温化によってノッキングが発生やすくなるおそれも出ている。 Therefore, the air-fuel mixture whose direction is changed on the intake side flows across the recess 12 on the intake side as shown by the arrow 20 in FIG. 4, but is mixed when the edge of the inner ridge line 16 stands as shown in FIG. When the air flows across the air, a vortex 21 may be generated on the downstream side (axial side) of the inner ridge line 16 to cause stagnation and retention of the air-fuel mixture. When the air-fuel mixture is stagnant or stagnant, the diffusivity of the air-fuel mixture is hindered and the uniformity of combustion is impaired, and knocking is likely to occur due to the local temperature decrease.

これに対して、本実施形態のように内側稜線16に3〜5mm程度の丸みを持たせると、混合気は、図4の矢印20のとおり、内側稜線16を舐めるようにしてスムーズに通過するため、渦流の発生はなくて、混合気を燃焼空間に均一に分散させることができる。従って、タンブル流11を有効利用して、出力と燃費とを向上できると共に、ノッキングも抑制できる。 On the other hand, when the inner ridge line 16 is rounded by about 3 to 5 mm as in the present embodiment, the air-fuel mixture smoothly passes by licking the inner ridge line 16 as shown by the arrow 20 in FIG. Therefore, no eddy current is generated, and the air-fuel mixture can be uniformly dispersed in the combustion space. Therefore, the tumble flow 11 can be effectively used to improve the output and the fuel consumption, and also to suppress knocking.

排気側リセス13の箇所でも、これを横切って吸気側に向かう流れが発生することが有り得るため、排気側リセス13の内側稜線17に3〜5mm程度の曲率半径の丸みを形成しておくのは有益である。 Since there is a possibility that a flow crossing the exhaust side recess 13 toward the intake side may occur, it is recommended to form a roundness with a radius of curvature of about 3 to 5 mm on the inner ridge line 17 of the exhaust side recess 13. It is beneficial.

但し、排気側リセス13の深さは吸気側リセス12に比べて浅いため、渦流の発生度合いも低い。また、外側稜線14,15の箇所では、圧縮行程において混合気は下向きに押されることから渦流の発生頻度は吸気側に比べると少ないため、丸みを設けなくてもさほどの問題はない。従って、渦流発生防止を目的とした丸みは、吸気側リセス12の内側稜線16のみに形成するだけでもよい。 However, since the depth of the exhaust side recess 13 is shallower than that of the intake side recess 12, the degree of generation of eddy current is also low. Further, at the locations of the outer ridges 14 and 15, since the air-fuel mixture is pushed downward in the compression stroke, the frequency of vortex flow is lower than that on the intake side, so that there is no problem even if the roundness is not provided. Therefore, the roundness for the purpose of preventing the generation of eddy current may be formed only on the inner ridge line 16 of the intake side recess 12.

本願発明は、内燃機関のピストンに具体化できる。従って、産業上利用できる。 The invention of the present application can be embodied in a piston of an internal combustion engine. Therefore, it can be used industrially.

1 シリンダボア
2 シリンダブロック
3 シリンダヘッド
4 吸気ポート
5 排気ポート
6 吸気バルブ
8 燃焼室
9 ピストン
10 凹所
11 タンブル流
12 吸気側リセス
13 排気側リセス
14,15 外側稜線
16,17 内側稜線
20 混合気の流れ
21 渦流
1 Cylinder bore 2 Cylinder block 3 Cylinder head 4 Intake port 5 Exhaust port 6 Intake valve 8 Combustion chamber 9 Piston 10 Recess 11 Tumble flow 12 Intake side recess 13 Exhaust side recess 14,15 Outer ridgeline 16,17 Inner ridgeline 20 Air-fuel mixture Flow 21 Whirlpool

Claims (1)

シリンダヘッドと対向した頂面に、吸気バルブを逃がすための吸気側リセスと排気バルブを逃がすための排気側リセスとが形成されており、このため、前記リセスは、外周側に位置した外側稜線と軸心側に位置した内側稜線とで挟まれている構成であって、
少なくとも前記吸気側リセスの内側稜線に、圧縮行程において混合気が軸心側から外周を通って流れるにおいて渦流の発生を防止し得る3mm以上の曲率半径の丸みを形成している、
内燃機関のピストン。
An intake side recess for letting the intake valve escape and an exhaust side recess for letting the exhaust valve escape are formed on the top surface facing the cylinder head. Therefore, the recess is the outer ridge line located on the outer peripheral side. It has a structure that is sandwiched between the inner ridge line located on the axis side.
At least on the inner ridge of the intake side recess, a roundness with a radius of curvature of 3 mm or more is formed, which can prevent the generation of a vortex when the air-fuel mixture flows from the axial center side through the outer circumference in the compression stroke.
Internal combustion engine piston.
JP2019064350A 2019-03-28 2019-03-28 internal combustion engine piston Active JP7303002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019064350A JP7303002B2 (en) 2019-03-28 2019-03-28 internal combustion engine piston

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064350A JP7303002B2 (en) 2019-03-28 2019-03-28 internal combustion engine piston

Publications (2)

Publication Number Publication Date
JP2020165337A true JP2020165337A (en) 2020-10-08
JP7303002B2 JP7303002B2 (en) 2023-07-04

Family

ID=72717282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064350A Active JP7303002B2 (en) 2019-03-28 2019-03-28 internal combustion engine piston

Country Status (1)

Country Link
JP (1) JP7303002B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272447A (en) * 1991-02-27 1992-09-29 Yanmar Diesel Engine Co Ltd Direct injection type diesel engine
JP2008175133A (en) * 2007-01-18 2008-07-31 Nissan Motor Co Ltd Combustion chamber structure of internal combustion engine
JP2008184930A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Piston for internal combustion engine and internal combustion engine provided with the piston
JP2012184710A (en) * 2011-03-04 2012-09-27 Toyota Motor Corp Internal combustion engine
JP3181358U (en) * 2005-12-17 2013-01-31 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston for internal combustion engine
JP2014122589A (en) * 2012-12-21 2014-07-03 Toyota Motor Corp Piston of internal combustion engine, and internal combustion engine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04272447A (en) * 1991-02-27 1992-09-29 Yanmar Diesel Engine Co Ltd Direct injection type diesel engine
JP3181358U (en) * 2005-12-17 2013-01-31 マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング Piston for internal combustion engine
JP2008175133A (en) * 2007-01-18 2008-07-31 Nissan Motor Co Ltd Combustion chamber structure of internal combustion engine
JP2008184930A (en) * 2007-01-29 2008-08-14 Toyota Motor Corp Piston for internal combustion engine and internal combustion engine provided with the piston
JP2012184710A (en) * 2011-03-04 2012-09-27 Toyota Motor Corp Internal combustion engine
JP2014122589A (en) * 2012-12-21 2014-07-03 Toyota Motor Corp Piston of internal combustion engine, and internal combustion engine

Also Published As

Publication number Publication date
JP7303002B2 (en) 2023-07-04

Similar Documents

Publication Publication Date Title
EP2799686B1 (en) Combustion chamber structure for internal combustion engine
JP2597657B2 (en) Combustion chamber of internal combustion engine
JP4379503B2 (en) Piston for internal combustion engine
JP2011074836A (en) Internal combustion engine
CN100532815C (en) Combustion chamber of internal combustion engine
JP2008511779A (en) Axial flow rotary valve for internal combustion engine
JP2006183512A (en) Combustion chamber structure for internal combustion engine
JP2009041397A (en) Combustion chamber structure of multiple ignition engine
CN109983208A (en) Diesel engine
JP2007270749A (en) Internal combustion engine
WO2018163742A1 (en) Diesel engine
JP6747573B2 (en) Intake port structure of internal combustion engine
JP2020165337A (en) Piston of internal combustion engine
JP6898179B2 (en) Internal combustion engine
JP6327180B2 (en) Internal combustion engine
US10400720B2 (en) Partition plate
JP2009047070A (en) Cylinder injection type spark ignition internal combustion engine
JP4929013B2 (en) Direct fuel injection engine
CN113404613B (en) Cylinder head and gas engine
JP2007239563A (en) Combustion chamber structure for internal combustion engine
JP2006152904A (en) Combustion chamber structure of internal combustion engine
JP5782978B2 (en) Cylinder head and internal combustion engine
JP2008255934A (en) Fuel direct injection engine
JP2008274788A (en) Combustion chamber structure of engine
JP6966898B2 (en) Internal combustion engine cylinder head

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230622

R150 Certificate of patent or registration of utility model

Ref document number: 7303002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150