JP2008174649A - Separation method for high-temperature high-pressure water and oil and its separation apparatus - Google Patents

Separation method for high-temperature high-pressure water and oil and its separation apparatus Download PDF

Info

Publication number
JP2008174649A
JP2008174649A JP2007009820A JP2007009820A JP2008174649A JP 2008174649 A JP2008174649 A JP 2008174649A JP 2007009820 A JP2007009820 A JP 2007009820A JP 2007009820 A JP2007009820 A JP 2007009820A JP 2008174649 A JP2008174649 A JP 2008174649A
Authority
JP
Japan
Prior art keywords
oil
temperature
pressure
pressure water
separation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007009820A
Other languages
Japanese (ja)
Other versions
JP5007403B2 (en
Inventor
Bunhin Tai
文斌 戴
Wataru Saiki
渉 斎木
Yasusuke Miyashita
庸介 宮下
Hajime Kawasaki
始 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Japan Petroleum Energy Center JPEC
Original Assignee
Petroleum Energy Center PEC
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Petroleum Energy Center PEC, Mitsubishi Materials Corp filed Critical Petroleum Energy Center PEC
Priority to JP2007009820A priority Critical patent/JP5007403B2/en
Publication of JP2008174649A publication Critical patent/JP2008174649A/en
Application granted granted Critical
Publication of JP5007403B2 publication Critical patent/JP5007403B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently separate an oil and water while recovering thermal energy by a relatively simple step. <P>SOLUTION: The high-temperature high-pressure water containing the oil comprising a heavy oil, a middle distillate, a light oil and a gas is firstly reduced to a predetermined temperature and pressure by a first separation means 11. Thereby, the heavy oil is retained in a liquid phase state with a part of the high-temperature high-pressure water, and the middle distillate, the light oil and the gas are made to be in a vapor phase state with a remained part of the high-temperature high-pressure water, and separated. Then, the heavy oil with the part of the high-temperature high-pressure water, separated by the first separation means 11, is reduced to a predetermined temperature and pressure by a second separation means 12. Thereby, the heavy oil is retained in a liquid phase state and the high-temperature high-pressure water is made to be in a vapor phase state, and separated. Further, the middle distillate, the light oil and the gas with the remained part of the high-temperature high-pressure water, separated by the first separation means 11, are reduced to a predetermined temperature and pressure by a third separation means 13. Thereby, the gas is retained in a vapor phase state and the middle distillate, the light oil and the high-temperature high-pressure water are made to be in a liquid phase state, and separated. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超臨界水又は亜臨界水からなる高温高圧水を用いて、石油アスファルト等を重質油、中質油、軽質油及びガスからなる油分に改質した後の、これらの油分を含む高温高圧水と油分を分離する方法と、その分離装置に関するものである。   The present invention uses high-temperature and high-pressure water composed of supercritical water or subcritical water, and reforms petroleum asphalt or the like into oils composed of heavy oil, medium oil, light oil, and gas, The present invention relates to a method for separating high-temperature and high-pressure water and oil, and a separation apparatus for the method.

従来、超臨界水又は亜臨界水からなる高温高圧水中で、減圧残油・重質原油等の重質な炭化水素を改質した後に、軽質な生成油と水に分離する方法としては、石炭の連続転換装置(例えば、特許文献1参照。)や、改質プラント(例えば、特許文献2参照。)などが開示されている。上記特許文献1に示された石炭の連続転換装置では、超臨界状態に維持可能に形成された流動層型反応塔内部の流動媒体に超臨界状態の水とともに一酸化炭素が流動ガスとして供給され、この反応塔に接続された分留装置で超臨界水が段階的に減圧及び冷却され、更に流動層型反応塔と分留装置との間に設けられた油改質器に酸化鉄を主成分とする平均粒径が0.3〜5mmの焼結粒体が充填される。また流動層型反応塔の流動媒体は酸化鉄を主成分とする平均粒径が0.3〜5mmの焼結粒体であり、分留装置が重質油分離器と中質油分離器と軽質油分離器とを備え、油改質器で改質された油が重質分離器、中質分離器及び軽質分離器の順に減圧及び冷却されるように構成される。
このように構成された石炭の連続転換装置では、超臨界状態に維持可能に形成された流動層型反応塔の下部より超臨界状態の水とともに一酸化炭素が流動状態の微粉化した石炭に供給されると、石炭が軽質化されて生成した油が油改質器内の焼結粒体を触媒としてより一層軽質化された後に、分留装置により重質油、中質油及び軽質油に分離されるようになっている。
Conventionally, after reforming heavy hydrocarbons such as vacuum residual oil and heavy crude oil in high-temperature and high-pressure water consisting of supercritical water or subcritical water, coal is separated into light product oil and water. (For example, refer patent document 1), a reforming plant (for example, refer patent document 2), etc. are disclosed. In the coal continuous conversion apparatus disclosed in Patent Document 1, carbon monoxide is supplied as a fluid gas together with water in a supercritical state to a fluid medium in a fluidized bed type reaction tower formed so as to be maintained in a supercritical state. The supercritical water is gradually reduced and cooled in a fractionation apparatus connected to the reaction tower, and iron oxide is mainly used in an oil reformer provided between the fluidized bed type reaction tower and the fractionation apparatus. The sintered particles having an average particle size of 0.3 to 5 mm as a component are filled. In addition, the fluidized medium of the fluidized bed type reaction tower is a sintered granule having an average particle size of 0.3 to 5 mm mainly composed of iron oxide, and the fractionator is composed of a heavy oil separator, a medium oil separator, A light oil separator, and the oil reformed by the oil reformer is depressurized and cooled in the order of the heavy separator, the medium separator, and the light separator.
In the coal continuous conversion apparatus constructed in this way, carbon monoxide is supplied to the pulverized coal in the fluidized state together with the water in the supercritical state from the lower part of the fluidized bed type reaction tower formed so as to be maintained in the supercritical state. If the oil produced by lightening the coal is further lightened by using the sintered particles in the oil reformer as a catalyst, it is converted into heavy oil, medium oil and light oil by the fractionator. It comes to be separated.

一方、特許文献2に記載された改質プラントでは、脱硫反応器で処理対象物が水熱反応によって脱硫され、脱硫反応器の処理物が低粘度化反応器で脱硫反応器の処理温度よりも高い処理温度の水熱反応によって低粘度化され、油分分離器で低粘度化反応器の処理物から油分が改質燃料として分離されるように構成される。また低粘度化反応器の処理物と脱硫反応器に供給される処理対象物とを熱交換することにより、脱硫反応器に供給される処理対象物が予熱されるように構成される。
このように構成された改質プラントでは、処理温度が相対的に低温な脱硫処理の後に処理温度が相対的に高温な低粘度化処理を行うので、処理対象物の改質処理に要する消費エネルギを低減できるようになっている。
特許第3402353号公報(請求項1〜3、段落[0005]、段落[0006]) 特開2004−339443号公報(請求項1及び2、段落[0032])
On the other hand, in the reforming plant described in Patent Document 2, the object to be treated is desulfurized by a hydrothermal reaction in the desulfurization reactor, and the treated product of the desulfurization reactor is lower than the treatment temperature of the desulfurization reactor in the low viscosity reactor. The viscosity is reduced by a hydrothermal reaction at a high processing temperature, and the oil content is separated as a reformed fuel from the processed product of the viscosity reduction reactor by the oil content separator. Further, the processing object to be supplied to the desulfurization reactor is preheated by exchanging heat between the processing object of the low viscosity reactor and the processing object to be supplied to the desulfurization reactor.
In the reforming plant configured as described above, the energy consumption required for the reforming process of the object to be processed is performed since the desulfurization process having a relatively low processing temperature is followed by the viscosity reducing process having a relatively high processing temperature. Can be reduced.
Japanese Patent No. 3402353 (Claims 1 to 3, paragraphs [0005] and [0006]) JP 2004-339443 A (claims 1 and 2, paragraph [0032])

しかし、上記従来の特許文献1に示された石炭の連続転換装置中の分留装置では、熱エネルギの回収方法が示されていないため、エネルギ効率が低下して消費エネルギが増大してしまう不具合があった。
また、上記従来の特許文献2に示された改質プラントでは、水と生成油との分離方法が不十分であり、回収された水が一部の生成油とエマルジョンを形成し、その後の水処理及び油の回収が複雑となる問題点があった。
更に、上記従来の特許文献2に示された改質プラントでは、生成油に含まれる重質成分が、圧力制御バルブ及び熱交換器に付着して、その制御性及び性能を低下させる問題点もあった。
本発明の目的は、比較的簡単な工程で熱エネルギを回収しつつ、効率良く油分と水とを分離することができる、高温高圧水と油分の分離方法及びその分離装置を提供することにある。
本発明の別の目的は、圧力調整弁等の圧力を下げる機器の制御性を低下させず、また熱交換器等の温度を下げる機器の性能を低下させることなく、効率良く油分と水とを分離することができる、高温高圧水と油分の分離方法及びその分離装置を提供することにある。
However, in the fractional distillation apparatus in the coal continuous conversion apparatus shown in the above-mentioned conventional patent document 1, since a method for recovering thermal energy is not shown, the energy efficiency is lowered and the energy consumption is increased. was there.
Moreover, in the reforming plant shown in the above-mentioned conventional patent document 2, the method for separating water and produced oil is insufficient, and the recovered water forms part of the produced oil and emulsion, and the subsequent water There was a problem that processing and oil recovery were complicated.
Furthermore, in the reforming plant shown in the above-mentioned conventional patent document 2, there is a problem that heavy components contained in the product oil adhere to the pressure control valve and the heat exchanger, thereby reducing the controllability and performance. there were.
An object of the present invention is to provide a high-temperature and high-pressure water-oil separation method and a separation apparatus that can efficiently separate oil and water while recovering thermal energy by a relatively simple process. .
Another object of the present invention is to efficiently remove oil and water without degrading the controllability of a device that lowers the pressure, such as a pressure regulating valve, and without degrading the performance of a device that lowers the temperature, such as a heat exchanger. An object of the present invention is to provide a method for separating high-temperature and high-pressure water and oil, which can be separated, and a separation apparatus therefor.

請求項1に係る発明は、図1に示すように、超臨界水又は亜臨界水からなる高温高圧水により改質して得られた重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水を、第1分離手段11にて300〜450℃の範囲内の所定の温度に下げかつ5〜22MPaの範囲内の所定の圧力に下げることにより、油分のうち重質油を高温高圧水の一部とともに液相状態のままとしかつ油分の残部である中質油、軽質油及びガスを高温高圧水の残部とともに気相状態にして分離する工程と、第1分離手段11で分離された重質油を高温高圧水の一部とともに、第2分離手段12にて100〜350℃の範囲内の所定の温度に下げかつ0.1〜4MPaの範囲内の所定の圧力に下げることにより、重質油を液相状態のままとしかつ高温高圧水を気相状態にして分離する工程と、第1分離手段11で分離された中質油、軽質油及びガスを高温高圧水の残部とともに、第3分離手段13にて0〜50℃の範囲内の所定の温度に下げかつ1〜10MPaの範囲内の所定の圧力に下げることにより、ガスを気相状態のままとしかつ中質油、軽質油及び高温高圧水を液相状態にして分離する工程とを含む高温高圧水と油分の分離方法である。   As shown in FIG. 1, the invention according to claim 1 is an oil component comprising heavy oil, medium oil, light oil and gas obtained by reforming with high-temperature and high-pressure water comprising supercritical water or subcritical water. The high-temperature high-pressure water containing water is reduced to a predetermined temperature within the range of 300 to 450 ° C. and reduced to a predetermined pressure within the range of 5 to 22 MPa in the first separation means 11, whereby heavy oil in the oil content is reduced. A step of separating the middle oil, light oil and gas, which remain in a liquid phase together with a part of the high-temperature and high-pressure water and in the gas phase together with the remainder of the high-temperature and high-pressure water, The separated heavy oil together with a part of the high-temperature high-pressure water is lowered by the second separation means 12 to a predetermined temperature within the range of 100 to 350 ° C. and to a predetermined pressure within the range of 0.1 to 4 MPa. By leaving the heavy oil in the liquid phase, A phase separation process, and the intermediate oil, light oil and gas separated by the first separation means 11 together with the remainder of the high-temperature and high-pressure water by the third separation means 13 within a predetermined range of 0 to 50 ° C. Reducing the temperature to a predetermined pressure within the range of 1 to 10 MPa, leaving the gas in a gas phase and separating the medium oil, light oil and high-temperature and high-pressure water into a liquid phase. This is a method for separating high temperature and high pressure water and oil.

この請求項1に記載された高温高圧水と油分の分離方法では、先ず超臨界水又は亜臨界水からなる高温高圧水により改質された重質油、中質油、軽質油及びガスからなる油分を、第1分離手段11にて上記改質時よりは低いけれども比較的高い所定の温度に下げるとともに、上記改質時よりは低いけれども比較的高い所定の圧力に下げることにより、重質油を高温高圧水の一部とともに液相状態のままとし、かつ中質油、軽質油及びガスを高温高圧水の残部とともに気相状態にして分離する。
次に第1分離手段11にて高温高圧水の一部とともに分離された重質油を、第2分離手段12にて第1分離手段11より低い所定の温度に下げるとともに、第1分離手段11より低い所定の圧力に下げることにより、重質油に物理溶解した高温高圧水が蒸発して重質油から分離される。これにより重質油から分離された高温高圧水を、温度を下げる機器(例えば、熱交換器)に通しても、この熱交換器に粘度の高い重質油が付着しないので、熱交換器の性能を低下させることなく、高温高圧水の持つ熱エネルギを効率良く回収できる。
一方、第1分離手段11にて分離された中質油、軽質油及びガスと高温高圧水の残部を、第3分離手段13にて第1分離手段11より低い所定の温度に下げるとともに、第1分離手段11より低い所定の圧力に下げることにより、気相(ガス)と液相(水と中質油及び軽質油)とに分離する気液分離と、水と中質油及び軽質油とに分離する油水分離とが同時に行われて、ガスと中質油及び軽質油と水とに分離される。これにより重質油から分離された中質油、軽質油及びガスと高温高圧水の残部を、第3分離手段の所定の温度に下げる機器(例えば、熱交換器)に通しても、この熱交換器に粘度の高い重質油が付着しないので、熱交換器の性能を低下させることなく、中質油、軽質油及びガスと高温高圧水の残部の持つ熱エネルギを効率良く回収できる。また重質油から分離された中質油、軽質油及びガスと高温高圧水の残部を、第3分離手段13の所定の圧力に下げる機器(例えば、圧力調整弁)に通しても、この圧力調整弁に粘度の高い重質油が付着しないので、圧力調整弁の制御性を低下させることがない。更にエマルジョンの形成の原因となるアスファルテンやレジンといった主に重質油に含まれる成分が第1分離手段11にて分離されるため、水と中質油及び軽質油とを分離する油水分離の際にエマルジョンを形成し難く、効率良く水と中質油及び軽質油とを分離できる。
In the method for separating high-temperature and high-pressure water and oil content described in claim 1, first, the oil comprises heavy oil, medium oil, light oil and gas modified by high-temperature and high-pressure water comprising supercritical water or subcritical water. By lowering the oil content to a predetermined temperature that is lower than that at the time of reforming but relatively high at the first separation means 11 and to a predetermined pressure that is lower than that at the time of reforming but relatively high, the heavy oil Is kept in a liquid phase with a part of the high-temperature high-pressure water, and the medium oil, light oil and gas are separated in a gas-phase state together with the rest of the high-temperature high-pressure water.
Next, the heavy oil separated together with a part of the high-temperature high-pressure water by the first separation means 11 is lowered to a predetermined temperature lower than that of the first separation means 11 by the second separation means 12, and the first separation means 11. By lowering the pressure to a lower predetermined pressure, the high-temperature and high-pressure water physically dissolved in the heavy oil is evaporated and separated from the heavy oil. Even if the high-temperature and high-pressure water separated from the heavy oil is passed through a device that lowers the temperature (for example, a heat exchanger), heavy oil with high viscosity does not adhere to the heat exchanger. The thermal energy possessed by the high-temperature and high-pressure water can be efficiently recovered without degrading the performance.
On the other hand, the medium oil, light oil and gas and the remainder of the high-temperature high-pressure water separated by the first separation means 11 are lowered to a predetermined temperature lower than the first separation means 11 by the third separation means 13, and the second Gas-liquid separation that separates into a gas phase (gas) and a liquid phase (water, medium oil and light oil) by lowering to a predetermined pressure lower than 1 separation means 11, water, medium oil and light oil, The oil and water are separated at the same time into gas, medium oil, light oil and water. Even if the medium oil, light oil and gas separated from the heavy oil and the remainder of the gas and the high-temperature high-pressure water are passed through a device (for example, a heat exchanger) that lowers the temperature to a predetermined temperature of the third separation means, this heat Since heavy oil with high viscosity does not adhere to the exchanger, it is possible to efficiently recover the thermal energy possessed by the remainder of the medium oil, light oil, gas, and high-temperature high-pressure water without degrading the performance of the heat exchanger. Moreover, even if the medium oil, light oil and gas separated from the heavy oil and the remainder of the gas and the high-temperature high-pressure water are passed through a device (for example, a pressure control valve) for reducing the pressure to a predetermined pressure of the third separation means 13, this pressure Since heavy oil with high viscosity does not adhere to the regulating valve, the controllability of the pressure regulating valve is not lowered. Furthermore, since the components mainly contained in heavy oil such as asphaltenes and resins that cause the formation of emulsion are separated by the first separation means 11, the oil-water separation for separating water from medium oil and light oil is performed. In addition, it is difficult to form an emulsion, and water can be efficiently separated from medium oil and light oil.

請求項2に係る発明は、請求項1に係る発明であって、更に図2に示すように、第2分離手段12で分離された気相状態の高温高圧水を第3分離手段13に供給する工程を更に含むことを特徴とする。
この請求項2に記載された高温高圧水と油分の分離方法では、第2分離手段12における圧力が第1分離手段11における圧力よりも高い場合、第2分離手段12にて重質分から分離された水蒸気となった高温高圧水が所定の圧力に下げられた後に第3分離手段13に供給される。これにより水蒸気となった高温高圧水の持つ熱エネルギを第3分離手段13で更に回収できる。
The invention according to claim 2 is the invention according to claim 1, and further supplies high-temperature and high-pressure water in a vapor phase separated by the second separation means 12 to the third separation means 13 as shown in FIG. 2. The method further includes the step of:
In the method for separating high-temperature and high-pressure water and oil described in claim 2, when the pressure in the second separation means 12 is higher than the pressure in the first separation means 11, the second separation means 12 separates from the heavy components. The high-temperature and high-pressure water that has become the steam is lowered to a predetermined pressure and then supplied to the third separation means 13. Thereby, the thermal energy of the high-temperature high-pressure water that has become steam can be further recovered by the third separation means 13.

請求項3に係る発明は、請求項1に係る発明であって、更に図3に示すように、第2分離手段12,112が互いに並列に2系統設けられ、これら2系統の第2分離手段12,112が交互に使用されるように構成されたことを特徴とする。
第1分離手段11にて高温高圧水の一部とともに分離された重質油が、第2分離手段12にて第1分離手段11より低い所定の温度に下げられるとともに、第1分離手段11より低い所定の圧力に下げられる。即ち、第2分離手段12の圧力を下げる機器(例えば、圧力調整弁)にて高温高圧水の一部とともに分離された重質油の圧力を所定の圧力に下げることにより、同時にその温度も所定の温度に下げられる。この圧力調整弁等の各機器を粘度の高い重質油が通るため、この重質油が各機器に付着したり、或いは圧力調整弁の制御性を低下させるおそれがある。このため請求項3に記載された高温高圧水と油分の分離方法では、第2分離手段12,112を互いに並列に2系統設け、所定時間毎に又は圧力調整弁の前後の圧力差に基づいて2系統の第2分離手段12,112を交互に使用し、使用していない第2分離手段12,112の圧力調整弁等の各機器を洗浄する。
The invention according to claim 3 is the invention according to claim 1, and, as shown in FIG. 3, two systems of the second separation means 12 and 112 are provided in parallel with each other, and these two systems of the second separation means. 12, 112 are configured to be used alternately.
The heavy oil separated together with a part of the high-temperature high-pressure water by the first separation means 11 is lowered to a predetermined temperature lower than the first separation means 11 by the second separation means 12 and from the first separation means 11. The pressure is lowered to a low predetermined pressure. That is, by reducing the pressure of the heavy oil separated together with a part of the high-temperature high-pressure water with a device (for example, a pressure regulating valve) that lowers the pressure of the second separation means 12 to a predetermined pressure, the temperature is also predetermined The temperature is lowered to Since heavy oil with high viscosity passes through each device such as the pressure regulating valve, the heavy oil may adhere to each device or the controllability of the pressure regulating valve may be reduced. For this reason, in the method for separating high-temperature and high-pressure water and oil content described in claim 3, two systems of the second separation means 12 and 112 are provided in parallel with each other, and based on the pressure difference before and after the pressure regulating valve every predetermined time. The two systems of the second separation means 12 and 112 are alternately used, and the devices such as the pressure regulating valves of the second separation means 12 and 112 that are not used are washed.

請求項4に係る発明は、図1に示すように、超臨界水又は亜臨界水からなる高温高圧水により改質して得られた重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水を、300〜450℃の範囲内の所定の温度に下げかつ5〜22MPaの範囲内の所定の圧力に下げることにより、油分のうち重質油を高温高圧水の一部とともに液相状態のままとしかつ油分の残部である中質油、軽質油及びガスを高温高圧水の残部とともに気相状態にして分離する第1分離手段11と、第1分離手段11で分離された重質油を高温高圧水の一部とともに、100〜350℃の範囲内の所定の温度に下げかつ0.1〜4MPaの範囲内の所定の圧力に下げることにより、重質油を液相状態のままとしかつ高温高圧水を気相状態にして分離する第2分離手段12と、第1分離手段11で分離された中質油、軽質油及びガスを高温高圧水の残部とともに、0〜50℃の範囲内の所定の温度に下げかつ1〜10MPaの範囲内の所定の圧力に下げることにより、ガスを気相状態のままとしかつ中質油、軽質油及び高温高圧水を液相状態にして分離する第3分離手段13とを備えた高温高圧水と油分の分離装置である。   As shown in FIG. 1, the invention according to claim 4 is an oil component comprising heavy oil, medium oil, light oil and gas obtained by reforming with high-temperature and high-pressure water comprising supercritical water or subcritical water. The high-temperature high-pressure water containing water is lowered to a predetermined temperature in the range of 300 to 450 ° C. and lowered to a predetermined pressure in the range of 5 to 22 MPa, whereby heavy oil in the oil component is combined with a part of the high-temperature high-pressure water. The first and second separation means 11 for separating the middle oil, light oil and gas, which remain in the liquid phase state, into a gas phase together with the remainder of the high-temperature and high-pressure water, and the remaining oil are separated by the first separation means 11. The heavy oil is brought into a liquid state by lowering the heavy oil together with a part of the high-temperature high-pressure water to a predetermined temperature in the range of 100 to 350 ° C. and to a predetermined pressure in the range of 0.1 to 4 MPa. 2nd part to leave high temperature and high pressure water in the gas phase The medium oil, light oil and gas separated by the means 12 and the first separation means 11 are lowered to a predetermined temperature within the range of 0 to 50 ° C. together with the remainder of the high-temperature high-pressure water and within the range of 1 to 10 MPa. By reducing the pressure to a predetermined pressure, the high-temperature and high-pressure water and the oil component are provided with the third separation means 13 that keeps the gas in a gas phase and separates the medium oil, light oil and high-temperature and high-pressure water into a liquid phase. Separation device.

この請求項4に記載された高温高圧水と油分の分離装置では、先ず超臨界水又は亜臨界水からなる高温高圧水により改質された重質油、中質油、軽質油及びガスからなる油分を、第1分離手段11にて上記改質時よりは低いけれども比較的高い所定の温度に下げるとともに、上記改質時よりは低いけれども比較的高い所定の圧力に下げることにより、重質油を高温高圧水の一部とともに液相状態のままとし、かつ中質油、軽質油及びガスを高温高圧水の残部とともに気相状態にして分離する。
次に第2分離手段12にて第1分離手段11より低い所定の温度に下げるとともに、第1分離手段11より低い所定の圧力に下げることにより、重質油に物理溶解した高温高圧水が蒸発して重質油から分離される。これにより重質油から分離された高温高圧水を、第2分離手段12の温度を下げる機器(例えば、熱交換器)に通しても、この熱交換器に粘度の高い重質油が付着しないので、熱交換器の性能を低下させることなく、高温高圧水の持つ熱エネルギを効率良く回収できる。
一方、第1分離手段11にて分離された中質油、軽質油及びガスと高温高圧水の残部を、第3分離手段13にて第1分離手段11より低い所定の温度に下げるとともに、第1分離手段11より低い所定の圧力に下げることにより、気相(ガス)と液相(水と中質油及び軽質油)とに分離する気液分離と、水と中質油及び軽質油とに分離する油水分離とが同時に行われて、ガスと中質油及び軽質油と水とに分離される。これにより重質油から分離された中質油、軽質油及びガスと高温高圧水の残部を、第3分離手段13の所定の温度に下げる機器(例えば、熱交換器)に通しても、この熱交換器に粘度の高い重質油が付着しないので、熱交換器の性能を低下させることなく、中質油、軽質油及びガスと高温高圧水の残部の持つ熱エネルギを効率良く回収できる。また重質油から分離された中質油、軽質油及びガスと高温高圧水の残部を、第3分離手段13の所定の圧力に下げる機器(例えば、圧力調整弁)に通しても、この圧力調整弁に粘度の高い重質油が付着しないので、圧力調整弁の制御性を低下させることがない。更にエマルジョンの形成の原因となるアスファルテンやレジンといった主に重質油に含まれる成分が第1分離手段11にて分離されるため、水と中質油及び軽質油とを分離する油水分離の際にエマルジョンを形成し難く、効率良く水と中質油及び軽質油とを分離できる。
In the high-temperature and high-pressure water and oil content separation apparatus according to claim 4, firstly, the high-temperature and high-pressure water comprising supercritical water or subcritical water is reformed, and consists of heavy oil, medium oil, light oil and gas. By lowering the oil content to a predetermined temperature that is lower than that at the time of reforming but relatively high at the first separation means 11 and to a predetermined pressure that is lower than that at the time of reforming but relatively high, the heavy oil Is kept in a liquid phase with a part of the high-temperature high-pressure water, and the medium oil, light oil and gas are separated in a gas-phase state together with the rest of the high-temperature high-pressure water.
Next, the temperature of the second separation means 12 is lowered to a predetermined temperature lower than that of the first separation means 11 and the pressure is lowered to a predetermined pressure lower than that of the first separation means 11, whereby high-temperature and high-pressure water physically dissolved in heavy oil is evaporated. Separated from heavy oil. Thus, even if the high-temperature and high-pressure water separated from the heavy oil is passed through a device (for example, a heat exchanger) that lowers the temperature of the second separation means 12, the heavy oil having a high viscosity does not adhere to the heat exchanger. Therefore, the thermal energy possessed by the high-temperature and high-pressure water can be efficiently recovered without degrading the performance of the heat exchanger.
On the other hand, the medium oil, light oil and gas and the remainder of the high-temperature high-pressure water separated by the first separation means 11 are lowered to a predetermined temperature lower than the first separation means 11 by the third separation means 13, and the second Gas-liquid separation that separates into a gas phase (gas) and a liquid phase (water, medium oil and light oil) by lowering to a predetermined pressure lower than 1 separation means 11, water, medium oil and light oil, The oil and water are separated at the same time into gas, medium oil, light oil and water. Even if it passes the apparatus (for example, heat exchanger) which lowers | remains medium oil, light oil and gas and high temperature / high pressure water which were isolate | separated from heavy oil to the predetermined temperature of the 3rd separation means 13 by this, Since heavy oil with high viscosity does not adhere to the heat exchanger, it is possible to efficiently recover the thermal energy of the remainder of the medium oil, light oil, gas, and high-temperature high-pressure water without degrading the performance of the heat exchanger. Further, even if the medium oil, light oil and gas separated from the heavy oil and the remainder of the high-temperature high-pressure water are passed through a device (for example, a pressure regulating valve) that lowers the predetermined pressure of the third separation means 13, this pressure Since heavy oil with high viscosity does not adhere to the regulating valve, the controllability of the pressure regulating valve is not lowered. Furthermore, since the components mainly contained in heavy oil such as asphaltenes and resins that cause the formation of emulsion are separated by the first separation means 11, the oil-water separation for separating water from medium oil and light oil is performed. In addition, it is difficult to form an emulsion, and water can be efficiently separated from medium oil and light oil.

請求項5に係る発明は、請求項4に係る発明であって、更に図2に示すように、第2分離手段12で分離された気相状態の高温高圧水を第3分離手段13に供給する供給手段を更に備えたことを特徴とする。
この請求項5に記載された高温高圧水と油分の分離装置では、第2分離手段12における圧力が第1分離手段11における圧力よりも高い場合、第2分離手段12にて重質分から分離された水蒸気となった高温高圧水が所定の圧力に下げられた後に第3分離手段13に供給される。これにより水蒸気となった高温高圧水の持つ熱エネルギを第3分離手段13で更に回収できる。
The invention according to claim 5 is the invention according to claim 4, and further supplies high-temperature and high-pressure water in the vapor phase separated by the second separation means 12 to the third separation means 13 as shown in FIG. 2. The apparatus further includes supply means for performing the above operation.
In the high-temperature high-pressure water and oil content separation apparatus according to claim 5, when the pressure in the second separation means 12 is higher than the pressure in the first separation means 11, the second separation means 12 separates from the heavy components. The high-temperature and high-pressure water that has become the steam is lowered to a predetermined pressure and then supplied to the third separation means 13. Thereby, the thermal energy of the high-temperature high-pressure water that has become steam can be further recovered by the third separation means 13.

請求項6に係る発明は、請求項4に係る発明であって、更に図3に示すように、第2分離手段12,112が互いに並列に2系統設けられ、これら2系統の第2分離手段12,112が交互に使用されるように構成されたことを特徴とする。
第1分離手段11にて高温高圧水の一部とともに分離された重質油が、第2分離手段12にて第1分離手段11より低い所定の温度に下げられるとともに、第1分離手段11より低い所定の圧力に下げられる。即ち、第2分離手段12の圧力を下げる機器(例えば、圧力調整弁)にて高温高圧水の一部とともに分離された重質油の圧力を所定の圧力に下げることにより、同時にその温度も所定の温度に下げられる。この圧力調整弁等の各機器を粘度の高い重質油が通るため、この重質油が各機器の付着したり、或いは圧力調整弁の制御性を低下させるおそれがある。このため請求項3に記載された高温高圧水と油分の分離方法では、第2分離手段12,112を互いに並列に2系統設け、所定時間毎に又は圧力調整弁の前後の圧力差に基づいて2系統の第2分離手段12,112を交互に使用し、使用していない第2分離手段12,112の圧力調整弁等の各機器を洗浄する。
The invention according to claim 6 is the invention according to claim 4, and further, as shown in FIG. 3, two systems of the second separation means 12 and 112 are provided in parallel with each other, and these two systems of the second separation means. 12, 112 are configured to be used alternately.
The heavy oil separated together with a part of the high-temperature high-pressure water by the first separation means 11 is lowered to a predetermined temperature lower than the first separation means 11 by the second separation means 12 and from the first separation means 11. The pressure is lowered to a low predetermined pressure. That is, the pressure of the heavy oil separated together with a part of the high-temperature high-pressure water is lowered to a predetermined pressure by a device (for example, a pressure regulating valve) that lowers the pressure of the second separation means 12, and the temperature is also predetermined. The temperature is lowered to Since heavy oil with high viscosity passes through each device such as the pressure regulating valve, the heavy oil may adhere to each device or reduce the controllability of the pressure regulating valve. For this reason, in the method for separating high-temperature and high-pressure water and oil content described in claim 3, two systems of the second separation means 12 and 112 are provided in parallel with each other, and based on the pressure difference before and after the pressure regulating valve every predetermined time. The two systems of the second separation means 12 and 112 are alternately used, and the devices such as the pressure regulating valves of the second separation means 12 and 112 that are not used are washed.

本発明によれば、重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水を、第1分離手段にて所定の温度及び圧力に下げることにより、重質油を高温高圧水の一部とともに液相状態のままとしかつ中質油、軽質油及びガスを高温高圧水の残部とともに気相状態にして分離し、第1分離手段で分離された重質油を高温高圧水の一部とともに、第2分離手段にて所定の温度及び圧力に下げることにより、重質油を液相状態のままとしかつ高温高圧水を気相状態にして分離し、更に第1分離手段で分離された中質油、軽質油及びガスを高温高圧水の残部とともに、第3分離手段にて所定の温度及び圧力に下げることにより、ガスを気相状態のままとしかつ中質油、軽質油及び高温高圧水を液相状態にして分離したので、比較的簡単な工程で効率良く熱エネルギを回収できるとともに、効率良く油分と水とを分離できる。
また各分離手段の圧力を下げる機器(例えば、圧力調整弁)の制御性を低下させず、各分離手段の温度を下げる機器(例えば、熱交換器)の性能を低下させることなく、効率良く油分と水とを分離することができる。またエマルジョンの形成の原因となるアスファルテンやレジンといった主に重質油に含まれる成分が第1分離手段にて分離されるため、第3分離手段により水と中質油及び軽質油とを分離する油水分離の際にエマルジョンを形成し難く、効率良く水と中質油及び軽質油とを分離できる。
According to the present invention, high-temperature and high-pressure water containing oil consisting of heavy oil, medium-weight oil, light oil and gas is lowered to a predetermined temperature and pressure by the first separation means, so that the heavy oil is heated to high-temperature and high-pressure. The heavy oil separated in the first separation means is separated from the high-temperature and high-pressure water by leaving it in a liquid phase with a part of the water and separating the intermediate oil, light oil and gas in the gas-phase state with the remainder of the high-temperature and high-pressure water. The heavy oil is kept in the liquid phase and the high-temperature and high-pressure water is separated in the gas phase by lowering the temperature to a predetermined temperature and pressure by the second separation means. The separated medium oil, light oil, and gas together with the remainder of the high-temperature high-pressure water are lowered to a predetermined temperature and pressure by the third separation means, so that the gas remains in a gas phase state and the medium oil, light oil And high-temperature and high-pressure water separated in a liquid phase. It is possible to efficiently recovered thermal energy can be efficiently separated and oil and water.
In addition, the oil content can be efficiently reduced without degrading the controllability of the equipment (for example, pressure regulating valve) that lowers the pressure of each separation means and without reducing the performance of the equipment (for example, heat exchanger) that lowers the temperature of each separation means. And water can be separated. In addition, since components mainly contained in heavy oil such as asphaltenes and resins that cause emulsion formation are separated by the first separation means, water, medium oil and light oil are separated by the third separation means. It is difficult to form an emulsion during oil-water separation, and water can be efficiently separated from medium oil and light oil.

また第2分離手段で分離された気相状態の高温高圧水を第3分離手段に供給すれば、第2分離手段における圧力が第1分離手段における圧力よりも高い場合、第2分離手段にて重質分から分離された水蒸気となった高温高圧水が所定の圧力に下げられた後に第3分離手段に供給されるので、水蒸気となった高温高圧水の持つ熱エネルギを第3分離手段で更に回収できる。
また第2分離手段を互いに並列に2系統設け、これら2系統の第2分離手段を交互に使用すれば、一方の第2分離手段を通る粘度の高い重質油により、第2分離手段の圧力を調整する機器(例えば、圧力調整弁)の制御性が低下したとき、この一方の第2分離手段の使用を停止し、他方の第2分離手段を使用する。この結果、使用を停止した一方の第2分離手段の圧力調整弁等の各機器を洗浄することにより、本発明の高温高圧水と油分の分離を連続的行うことができる。
In addition, when high-temperature and high-pressure water in a gas phase separated by the second separation means is supplied to the third separation means, if the pressure in the second separation means is higher than the pressure in the first separation means, the second separation means Since the high-temperature and high-pressure water that has become water vapor separated from the heavy component is supplied to the third separation means after being lowered to a predetermined pressure, the third separation means further supplies the thermal energy of the high-temperature and high-pressure water that has become water vapor. Can be recovered.
In addition, if two systems of the second separation means are provided in parallel with each other, and these two systems of second separation means are used alternately, the pressure of the second separation means is increased by heavy oil having a high viscosity passing through one of the second separation means. When the controllability of the device for adjusting the pressure (for example, the pressure regulating valve) is lowered, the use of the one second separation means is stopped and the other second separation means is used. As a result, it is possible to continuously separate the high-temperature and high-pressure water and the oil component of the present invention by washing each device such as the pressure regulating valve of one of the second separation means that has stopped using.

次に本発明を実施するための最良の形態を図面に基づいて説明する。
<第1の実施の形態>
図1に示すように、高温高圧水と油分の分離装置は、超臨界水又は亜臨界水からなる高温高圧水により改質して得られた重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水を所定の温度に下げかつ所定の圧力に下げることにより、油分のうち重質油を高温高圧水の一部とともに液相状態のままとしかつ油分の残部である中質油、軽質油及びガスを高温高圧水の残部とともに気相状態にして分離する第1分離手段11と、第1分離手段11で分離された重質油を高温高圧水の一部とともに、所定の温度に下げかつ所定の圧力に下げることにより、重質油を液相状態のままとしかつ高温高圧水を気相状態にして分離する第2分離手段12と、第1分離手段11で分離された中質油、軽質油及びガスを高温高圧水の残部とともに、所定の温度に下げかつ所定の圧力に下げることにより、ガスを気相状態のままとしかつ中質油、軽質油及び高温高圧水を液相状態にして分離する第3分離手段13とを備える。超臨界水や亜臨界水により改質装置で改質される物質としては、石油アスファルト、重質原油などが挙げられる。また上記改質装置内の超臨界水又は亜臨界水の温度は400℃を越えかつ550℃以下であり、圧力は15MPaを越えかつ30MPa以下であることが好ましい。更に重質油の沸点は常圧換算で360℃を越えるものであり、中質油の沸点は180℃を越えかつ360℃以下であり、軽質油の沸点は40℃を越えかつ180℃以下である。
Next, the best mode for carrying out the present invention will be described with reference to the drawings.
<First Embodiment>
As shown in FIG. 1, the high-temperature high-pressure water / oil separation device is composed of heavy oil, medium oil, light oil and gas obtained by reforming with high-temperature high-pressure water consisting of supercritical water or subcritical water. The high-temperature high-pressure water containing the oil component is reduced to a predetermined temperature and reduced to a predetermined pressure, so that the heavy oil in the oil component remains in a liquid phase together with a part of the high-temperature high-pressure water and is the remaining oil content First separation means 11 for separating oil, light oil and gas in a gas phase together with the remainder of the high-temperature high-pressure water, and heavy oil separated by the first separation means 11 together with a part of the high-temperature high-pressure water together with a predetermined amount The first separation unit 11 and the second separation unit 12 separate the heavy oil in the liquid phase and the high temperature and high pressure water in the gas phase by lowering the temperature to a predetermined pressure. Medium oil, light oil and gas, together with the remainder of the high-temperature high-pressure water By lowering lowered and a predetermined pressure to a temperature, and a third separation means 13 for leaving the life and death wood containing oil vapor phase gas, and the light oil and high temperature and high pressure water to liquid phase separation. Examples of substances that can be reformed with a reformer using supercritical water or subcritical water include petroleum asphalt and heavy crude oil. The temperature of the supercritical water or subcritical water in the reformer is preferably higher than 400 ° C. and lower than 550 ° C., and the pressure is preferably higher than 15 MPa and lower than 30 MPa. Further, the boiling point of heavy oil exceeds 360 ° C in terms of atmospheric pressure, the boiling point of medium oil exceeds 180 ° C and below 360 ° C, and the boiling point of light oil exceeds 40 ° C and below 180 ° C. is there.

第1分離手段11は、重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水の圧力及び温度を下げる第1圧力調整弁11bと、この第1圧力調整弁11bにより圧力及び温度が下げられた重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水が貯留される第1密閉容器11cとを有する。第1圧力調整弁11bは一端が改質装置に接続された供給管11aの途中に設けられ、供給管11aの他端は第1密閉容器11cに接続される。改質装置で改質された重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水は第1分離手段11により温度が300〜450℃の範囲内の所定の温度に下げられるとともに、圧力が5〜22MPaの範囲内の所定の温度に下げられる。ここで、重質油、中質油、軽質油及びガスからなる油分を含む高温高圧水の温度を300〜450℃の範囲内の所定の温度に下げるとともに、圧力を5〜22MPaの範囲内の所定の温度に下げたのは、高い熱エネルギの回収率と高い軽質油及び中質油の回収率を得るためである。なお、更に高い熱エネルギの回収率と更に高い軽質油及び中質油の回収率を得るためには、温度を340〜420℃の範囲内の所定の温度に下げるとともに、圧力を10〜20MPaの範囲内の所定の圧力に下げることが好ましい。また圧力を10MPaに下げたときは温度を340〜420℃の範囲内の所定の温度に下げ、圧力を15MPaに下げたときは温度を360〜420℃の範囲内の所定の温度に下げ、圧力を20MPaに下げたときは温度を380〜420℃の範囲内の所定の温度に下げることが更に好ましい。   The first separation means 11 includes a first pressure regulating valve 11b that lowers the pressure and temperature of high-temperature and high-pressure water containing oil components consisting of heavy oil, medium oil, light oil, and gas, and the pressure by the first pressure regulating valve 11b. And a first sealed container 11c in which high-temperature and high-pressure water containing an oil component consisting of heavy oil, medium oil, light oil and gas whose temperature has been lowered is stored. One end of the first pressure regulating valve 11b is provided in the middle of the supply pipe 11a connected to the reformer, and the other end of the supply pipe 11a is connected to the first sealed container 11c. The high-temperature high-pressure water containing oil composed of heavy oil, medium oil, light oil and gas reformed by the reformer is lowered to a predetermined temperature within the range of 300 to 450 ° C. by the first separation means 11. At the same time, the pressure is lowered to a predetermined temperature in the range of 5 to 22 MPa. Here, the temperature of the high-temperature high-pressure water containing oil components consisting of heavy oil, medium oil, light oil and gas is lowered to a predetermined temperature within the range of 300 to 450 ° C., and the pressure is within the range of 5 to 22 MPa. The reason why the temperature is lowered to a predetermined temperature is to obtain a high recovery rate of heat energy and a high recovery rate of light oil and medium oil. In order to obtain a higher recovery rate of heat energy and a higher recovery rate of light oil and medium oil, the temperature is lowered to a predetermined temperature within the range of 340 to 420 ° C., and the pressure is 10 to 20 MPa. Preferably, the pressure is lowered to a predetermined pressure within the range. When the pressure is lowered to 10 MPa, the temperature is lowered to a predetermined temperature within a range of 340 to 420 ° C., and when the pressure is lowered to 15 MPa, the temperature is lowered to a predetermined temperature within a range of 360 to 420 ° C. When the temperature is lowered to 20 MPa, the temperature is more preferably lowered to a predetermined temperature within the range of 380 to 420 ° C.

第2分離手段12は、一端が第1密閉容器11cの下端に接続されたロア分岐管12aに設けられ第1密閉容器11cから排出された重質油を高温高圧水の一部とともに所定の圧力及び所定の温度に下げる第2メイン圧力調整弁12bと、ロア分岐管12aの他端に接続され第2メイン圧力調整弁12bにより圧力が下げられた重質油を高温高圧水の一部とともに貯留する第2密閉容器12cと、第2密閉容器12cの下端に接続された第2ロア排出管12dに設けられ第2密閉容器12c内の圧力を調整するとともに第2密閉容器12cから排出される重質油の排出量を調整する第2ロア圧力調整弁12eと、第2密閉容器12cの上端に接続された第2アッパ排出管12fに設けられ第2密閉容器12c内の圧力を調整するとともに第2密閉容器12cから排出される気相状態の高温高圧水の排出量を調整する第2アッパ圧力調整弁12gとを有する。第2アッパ排出管12fの第2アッパ圧力調整弁12gより下流側には、気相状態の高温高圧水から熱エネルギを回収するためのロア熱交換器12hが設けられる。   The second separation means 12 has a predetermined pressure with heavy oil discharged from the first sealed container 11c provided at a lower branch pipe 12a having one end connected to the lower end of the first sealed container 11c together with a part of high-temperature high-pressure water. And the second main pressure regulating valve 12b for lowering to a predetermined temperature and the heavy oil connected to the other end of the lower branch pipe 12a and having the pressure lowered by the second main pressure regulating valve 12b together with a part of the high-temperature high-pressure water. The second airtight container 12c and the second lower airtight pipe 12d connected to the lower end of the second airtight container 12c are adjusted to adjust the pressure in the second airtight container 12c and are discharged from the second airtight container 12c. The second lower pressure adjusting valve 12e for adjusting the discharge amount of the quality oil and the second upper discharge pipe 12f connected to the upper end of the second sealed container 12c are used to adjust the pressure in the second sealed container 12c and the second. 2 And a second upper pressure regulating valve 12g for adjusting the discharging amount of high-temperature and high-pressure water vapor state discharged from closed container 12c. A lower heat exchanger 12h for recovering thermal energy from the high-temperature and high-pressure water in the gas phase is provided on the downstream side of the second upper pressure adjusting valve 12g of the second upper discharge pipe 12f.

第1密閉容器11cの下端から排出された重質油は高温高圧水の一部とともに第2分離手段12の第2メイン圧力調整弁12b、第2ロア圧力調整弁12e及び第2アッパ圧力調整弁12gにより100〜350℃の範囲内の所定の温度に下げられるとともに、0.1〜4MPaの範囲内の所定の圧力に下げられる。ここで、圧力調整弁12b,12e,12gにより重質油等の圧力のみならず温度も下がるのは、減圧に伴う断熱膨張によるものである。また第1密閉容器11cの下端から排出された高温高圧水の一部は重質油に物理溶解した状態で含まれる。ここで、重質油を高温高圧水の一部とともに100〜350℃の範囲内の所定の温度に下げるとともに、0.1〜4MPaの範囲内の所定の圧力に下げたのは、重質油に物理溶解した高温高圧水の突沸による重質油の体積の著しい増加を防止して、重質油のハンドリングを容易にするためである。また重質油の融点は100〜250℃と高いため、重質油に水が混入している場合、大気圧に減圧することで温度が低下し、重質油が固化して配管を閉塞させてしまう場合がある。このため、重質油を高温高圧水の一部とともに、第2分離手段12により第1密閉容器11c内の温度よりは低いけれども、150℃以上の比較的高い温度に下げることが好ましい。具体的には、圧力を4MPaに下げたときは温度を250〜350℃の範囲内の所定の温度に下げ、圧力を1MPaに下げたときは180〜350℃の範囲内の所定の温度に下げ、圧力を0.1MPaに下げたときは120〜350℃の範囲内の所定の温度に下げることが好ましい。なお、不活性ガス等を第2密閉容器に供給すれば、第2アッパ排出管に設けた第2アッパ圧力調整弁とロア熱交換器の順序を逆にすることができる。   The heavy oil discharged from the lower end of the first sealed container 11c is a second main pressure regulating valve 12b, a second lower pressure regulating valve 12e and a second upper pressure regulating valve of the second separating means 12 together with a part of the high-temperature high-pressure water. With 12 g, the temperature is lowered to a predetermined temperature within a range of 100 to 350 ° C., and at a predetermined pressure within a range of 0.1 to 4 MPa. Here, the pressure adjustment valves 12b, 12e, and 12g reduce the temperature as well as the pressure of heavy oil or the like due to adiabatic expansion accompanying decompression. A part of the high-temperature high-pressure water discharged from the lower end of the first sealed container 11c is contained in a state of being physically dissolved in heavy oil. Here, the heavy oil was lowered to a predetermined temperature within the range of 100 to 350 ° C. together with a part of the high-temperature high-pressure water, and the heavy oil was reduced to the predetermined pressure within the range of 0.1 to 4 MPa. This is to prevent the heavy oil volume from significantly increasing due to bumping of high-temperature and high-pressure water physically dissolved in the water, thereby facilitating handling of the heavy oil. Also, since the melting point of heavy oil is as high as 100-250 ° C, when water is mixed in heavy oil, the temperature is lowered by reducing the pressure to atmospheric pressure, and the heavy oil solidifies and blocks the piping. May end up. For this reason, it is preferable to reduce the heavy oil together with a part of the high-temperature high-pressure water to a relatively high temperature of 150 ° C. or higher, although it is lower than the temperature in the first sealed container 11 c by the second separation means 12. Specifically, when the pressure is lowered to 4 MPa, the temperature is lowered to a predetermined temperature within a range of 250 to 350 ° C., and when the pressure is lowered to 1 MPa, the temperature is lowered to a predetermined temperature within a range of 180 to 350 ° C. When the pressure is reduced to 0.1 MPa, the temperature is preferably lowered to a predetermined temperature within the range of 120 to 350 ° C. In addition, if inert gas etc. are supplied to a 2nd airtight container, the order of the 2nd upper pressure regulating valve and lower heat exchanger which were provided in the 2nd upper discharge pipe can be reversed.

第3分離手段13は、一端が第1密閉容器11cの上端に接続されたアッパ分岐管13aに設けられ第1密閉容器11cの上端から排出された中質油、軽質油及びガスを高温高圧水の残部とともに第1の所定の温度に下げて熱エネルギを回収するメイン熱交換器13bと、アッパ分岐管13aのメイン熱交換器13bより下流側に設けられメイン熱交換器13bにより温度が下げられた中質油、軽質油及びガスを高温高圧水の残部とともに所定の圧力に下げる第3メイン圧力調整弁13cと、アッパ分岐管13aの第3メイン圧力調整弁13cより下流側に設けられ第3メイン圧力調整弁13cにより圧力が下げられた中質油、軽質油及びガスを高温高圧水の残部とともに第2の所定の温度に下げて更に熱エネルギを回収するサブ熱交換器13dと、アッパ分岐管13aの他端に接続されサブ熱交換器13dにより温度が下げられた中質油、軽質油及びガスを高温高圧水の残部とともに貯留する第3密閉容器13eとを有する。第3密閉容器13eの下端には第3ロア排出管13fが接続され、この第3ロア排出管13fには第3密閉容器13e内の圧力を調整するとともに第3密閉容器13eから排出される液相状態の水(高温高圧水の温度及び圧力が低下したもの)の排出量を調整する第3ロア圧力調整弁13gが設けられる。また第3密閉容器13eの上端には第3アッパ排出管13hが接続され、この第3アッパ排出管13hの途中には第3密閉容器13e内の圧力を調整するとともに第3密閉容器13eから排出されるガスの排出量を調整する第3アッパ圧力調整弁13iが設けられる。更に第3密閉容器13eの上下方向の中央には第3ミドル排出管13jが設けられ、この第3ミドル排出管13jには第3密閉容器13e内の圧力を調整するとともに第3密閉容器13eから排出される中質油及び軽質油の排出量を調整する第3ミドル圧力調整弁13kが設けられる。   The third separation means 13 is provided in the upper branch pipe 13a, one end of which is connected to the upper end of the first sealed container 11c, and the medium oil, light oil and gas discharged from the upper end of the first sealed container 11c The main heat exchanger 13b that recovers the heat energy by lowering the temperature to the first predetermined temperature together with the remaining portion of the main heat exchanger 13b is provided downstream of the main heat exchanger 13b of the upper branch pipe 13a, and the temperature is lowered by the main heat exchanger 13b. A third main pressure regulating valve 13c for lowering the medium oil, light oil and gas to a predetermined pressure together with the remainder of the high-temperature high-pressure water, and a third main pressure regulating valve 13c provided on the downstream side of the third main pressure regulating valve 13c of the upper branch pipe 13a. The sub heat exchanger 1 recovers thermal energy by lowering the medium oil, light oil and gas whose pressure has been reduced by the main pressure regulating valve 13c to the second predetermined temperature together with the remaining high-temperature high-pressure water. Has a d, wood containing oil temperature is lowered by being connected to the other end of the upper branch pipe 13a sub heat exchanger 13d, and a third closed container 13e for storing light oil and gas with the balance of high temperature and high pressure water. A third lower discharge pipe 13f is connected to the lower end of the third closed container 13e, and the third lower discharge pipe 13f adjusts the pressure in the third closed container 13e and is discharged from the third closed container 13e. A third lower pressure regulating valve 13g is provided for adjusting the discharge amount of the water in the phase state (those in which the temperature and pressure of the high-temperature high-pressure water are reduced). A third upper discharge pipe 13h is connected to the upper end of the third closed container 13e, and the pressure in the third closed container 13e is adjusted and discharged from the third closed container 13e in the middle of the third upper discharge pipe 13h. A third upper pressure adjustment valve 13i is provided for adjusting the amount of gas discharged. Further, a third middle discharge pipe 13j is provided at the center in the vertical direction of the third sealed container 13e. The pressure in the third sealed container 13e is adjusted to the third middle discharge pipe 13j from the third sealed container 13e. A third middle pressure adjusting valve 13k is provided for adjusting the discharge amount of the medium oil and light oil discharged.

上記メイン熱交換器13b、第3メイン圧力調整弁13c、サブ熱交換器13d、第3ロア圧力調整弁13g、第3アッパ圧力調整弁13i及び第3ミドル圧力調整弁13kにより第3密閉容器13e内の温度が0〜50℃、好ましくは0〜30℃の範囲内の所定の温度に下げられ、第3密閉容器13e内の圧力が1〜10MPa、好ましくは1〜4℃の範囲内の所定の圧力に下げられる。第3密閉容器13e内の温度を0〜50℃の範囲内の所定の温度に下げ、第3密閉容器13e内の圧力を1〜10MPaの範囲内の所定の圧力に下げたのは、第1密閉容器11cから排出された中質油、軽質油及びガスの持つ熱エネルギを回収するとともに、中質油及び軽質油と高温高圧水を、それぞれ確実に液相状態にするためである。また第3密閉容器13e内の圧力が低いと軽質油の一部がガス側(気相側)へ移行してしまい、その後の軽質油の回収が困難になるため、第3密閉容器13e内の圧力を1MPa以上とした。更に第3密閉容器13e内の温度は低い方が軽質油や水(高温高圧水の温度及び圧力が低下したもの)のガス側(気相側)への移行が少ないため、0〜50℃の範囲のできるだけ低い温度が望ましい。なお、メイン熱交換器で十分な冷却を達成できる場合には、サブ熱交換器を省略することができる。   The main heat exchanger 13b, the third main pressure regulating valve 13c, the sub heat exchanger 13d, the third lower pressure regulating valve 13g, the third upper pressure regulating valve 13i, and the third middle pressure regulating valve 13k are used to form a third sealed container 13e. The temperature inside is lowered to a predetermined temperature in the range of 0 to 50 ° C., preferably 0 to 30 ° C., and the pressure in the third sealed container 13e is 1 to 10 MPa, preferably in the range of 1 to 4 ° C. The pressure is lowered to The reason why the temperature in the third sealed container 13e is lowered to a predetermined temperature in the range of 0 to 50 ° C. and the pressure in the third sealed container 13e is lowered to a predetermined pressure in the range of 1 to 10 MPa is the first This is to recover the thermal energy of the medium oil, light oil, and gas discharged from the sealed container 11c, and to ensure that the medium oil, light oil, and high-temperature high-pressure water are in a liquid phase state. Further, if the pressure in the third sealed container 13e is low, a part of the light oil moves to the gas side (gas phase side), and subsequent recovery of the light oil becomes difficult. The pressure was 1 MPa or more. Furthermore, the lower the temperature in the third sealed container 13e, the smaller the transition of light oil or water (those in which the temperature and pressure of the high-temperature high-pressure water is reduced) to the gas side (gas phase side). The lowest possible temperature in the range is desirable. If the main heat exchanger can achieve sufficient cooling, the sub heat exchanger can be omitted.

このように構成された分離装置を用いた高温高圧水と油分の分離方法を説明する。
先ず石油アスファルト等の原料を超臨界水又は亜臨界水からなる高温高圧水により改質して得られた重質油、中質油、軽質油及びガスからなる油分は、第1圧力調整弁11bにて減圧された後に第1密閉容器11cに貯留される。第1密閉容器11c内の温度は第1圧力調整弁11bによる減圧操作で低下する。具体的には、第1密閉容器11c内の温度は、上記改質時よりは低いけれども比較的高い300〜450℃の範囲内の所定の温度に下げられるとともに、上記改質時よりは低いけれども比較的高い5〜22MPaの範囲内の所定の圧力に下げられる。これにより、高温高圧水に溶解していた重質油の一部の溶解度が低下するので、比重の大きい重質油は高温高圧水の一部とともに第1密閉容器11cの下部に移行し、中質油、軽質油及びガスは高温高圧水の残部とともに気相状態となって第1密閉容器11cの上部に移行する。なお、第1密閉容器11c内の圧力が高いほど熱エネルギの回収率が高くなる。また、第1密閉容器11c内の温度が低いと、中質油の一部も液相状態となって重質油とともに回収されてしまうため、第1密閉容器11c内の温度及び圧力を上記温度範囲及び圧力範囲で適切に選定する必要がある。
A method for separating high-temperature and high-pressure water and oil using the thus configured separation device will be described.
First, an oil component consisting of heavy oil, medium oil, light oil and gas obtained by reforming a raw material such as petroleum asphalt with high-temperature and high-pressure water composed of supercritical water or subcritical water is a first pressure regulating valve 11b. And then stored in the first sealed container 11c. The temperature in the 1st airtight container 11c falls by pressure reduction operation by the 1st pressure regulation valve 11b. Specifically, although the temperature in the first sealed container 11c is lower than that during the reforming, it is lowered to a predetermined temperature within a relatively high range of 300 to 450 ° C. and lower than that during the reforming. The pressure is lowered to a predetermined pressure within a relatively high range of 5 to 22 MPa. As a result, the solubility of a part of the heavy oil dissolved in the high-temperature and high-pressure water is lowered, so that the heavy oil having a large specific gravity moves to the lower part of the first sealed container 11c together with a part of the high-temperature and high-pressure water. The refined oil, light oil and gas become a gas phase together with the remainder of the high-temperature and high-pressure water and move to the upper part of the first sealed container 11c. The higher the pressure in the first sealed container 11c, the higher the heat energy recovery rate. In addition, if the temperature in the first sealed container 11c is low, a part of the medium oil is also in a liquid phase and recovered together with the heavy oil. Therefore, the temperature and pressure in the first sealed container 11c are set to the above temperature. It is necessary to select appropriately in the range and pressure range.

第1密閉容器11cの下部に貯まった重質油は高温高圧水の一部とともにロア分岐管12aを通り、第2メイン圧力調整弁12bにて減圧された後に、第2密閉容器12cに貯留される。第2密閉容器12c内の温度は第2メイン圧力調整弁12bによる減圧操作で低下する。具体的には、第2密閉容器12c内の温度は、第1密閉容器11c内より低い100〜350℃の範囲内の所定の温度に下げられるとともに、第1密閉容器11c内より低い0.1〜4MPaの範囲内の所定の圧力に下げられる。これにより重質油に物理溶解した高温高圧水が蒸発して重質油から分離されるので、重質油は液相状態のまま第2密閉容器12cの下部に移行し、蒸発して気相状態となった高温高圧水は第2密閉容器12cの上部に移行する。第2密閉容器12cの下部に貯まった重質油は第2ロア排出管12dを通り、第2ロア圧力調整弁12eで減圧された後に排出される。また第2密閉容器12cの上部に貯まった気相状態の高温高圧水は第2アッパ排出管12fを通り、第2アッパ圧力調整弁12gで減圧された後に、ロア熱交換器12hで熱エネルギが回収されて排出される。この気相状態の高温高圧水には重質油が含まれないため、第2アッパ圧力調整弁12gやロア熱交換器12hに粘度の高い重質油が付着しない。この結果、第2アッパ圧力調整弁12gの制御性を低下させず、ロア熱交換器12hの性能を低下させることなく、気相状態の高温高圧水の持つ熱エネルギを効率良く回収できる。   The heavy oil stored in the lower portion of the first sealed container 11c passes through the lower branch pipe 12a together with a part of the high-temperature and high-pressure water, and after being depressurized by the second main pressure regulating valve 12b, is stored in the second sealed container 12c. The The temperature in the 2nd airtight container 12c falls by pressure reduction operation by the 2nd main pressure regulating valve 12b. Specifically, the temperature in the second sealed container 12c is lowered to a predetermined temperature in the range of 100 to 350 ° C. lower than that in the first sealed container 11c, and is 0.1 lower than that in the first sealed container 11c. The pressure is lowered to a predetermined pressure within a range of ˜4 MPa. As a result, the high-temperature and high-pressure water physically dissolved in the heavy oil evaporates and is separated from the heavy oil, so that the heavy oil moves to the lower part of the second sealed container 12c in the liquid phase and evaporates to the gas phase. The high-temperature and high-pressure water in the state moves to the upper part of the second sealed container 12c. The heavy oil stored in the lower portion of the second sealed container 12c passes through the second lower discharge pipe 12d and is discharged after being depressurized by the second lower pressure regulating valve 12e. The high-temperature and high-pressure water in the vapor state stored in the upper part of the second sealed container 12c passes through the second upper discharge pipe 12f and is depressurized by the second upper pressure regulating valve 12g. Collected and discharged. Since the high-temperature and high-pressure water in the gas phase does not contain heavy oil, heavy oil with high viscosity does not adhere to the second upper pressure regulating valve 12g or the lower heat exchanger 12h. As a result, the thermal energy of the high-temperature and high-pressure water in the gas phase can be efficiently recovered without degrading the controllability of the second upper pressure regulating valve 12g and without degrading the performance of the lower heat exchanger 12h.

一方、第1密閉容器11cの上部に貯まった気相状態の中質油、軽質油及びガスは気相状態の高温高圧水の残部とともに、アッパ分岐管13aを通り、メイン熱交換器13bで冷却されかつ主な熱エネルギが回収され、第3メイン圧力調整弁13cで減圧され、更にサブ熱交換器13dで更に冷却されかつ熱エネルギが回収された後に、第3密閉容器13eに貯留される。第3密閉容器13e内の温度はメイン熱交換器13b及びサブ熱交換器13dにより低下する。具体的には、第3密閉容器13e内の温度は、第1密閉容器11c内より低い0〜50℃の範囲内の所定の温度に下げられるとともに、第1密閉容器11c内より低い0.1〜10MPaの範囲内の所定の圧力に下げられる。これにより、気相(ガス)と液相(水と中質油及び軽質油)とに分離する気液分離と、水と中質油及び軽質油とに分離する油水分離とが同時に行われるので、ガスと中質油及び軽質油と水とに分離される。具体的には、メイン熱交換器13b、第3メイン圧力調整弁13c及びサブ熱交換器13dにより、気相状態の高温高圧水が冷却・減圧されて水となり、気相状態の中質油及び軽質油が冷却・減圧されて液相状態の中質油及び軽質油となるけれども、ガスは気相状態のまま第3密閉容器13eに貯留される。そして比重の最も大きい水が第3密閉容器13eの下部に移行し、比重の最も小さいガスが第3密閉容器13eの上部に移行し、比重が水より小さくかつガスより大きい液相状態の中質油及び軽質油が第3密閉容器13eの上下方向の中央に移行する。   On the other hand, the gas phase intermediate oil, light oil and gas stored in the upper part of the first sealed container 11c pass through the upper branch pipe 13a together with the remainder of the gas phase high temperature and high pressure water and are cooled by the main heat exchanger 13b. Then, the main heat energy is recovered, depressurized by the third main pressure regulating valve 13c, further cooled by the sub heat exchanger 13d and recovered, and then stored in the third sealed container 13e. The temperature in the third sealed container 13e is lowered by the main heat exchanger 13b and the sub heat exchanger 13d. Specifically, the temperature in the third sealed container 13e is lowered to a predetermined temperature in the range of 0 to 50 ° C. lower than that in the first sealed container 11c, and is 0.1 lower than in the first sealed container 11c. The pressure is lowered to a predetermined pressure within a range of 10 MPa. As a result, gas-liquid separation that separates into a gas phase (gas) and a liquid phase (water, medium oil, and light oil) and oil-water separation that separates into water, medium oil, and light oil are performed simultaneously. , Separated into gas and medium oil and light oil and water. Specifically, the main heat exchanger 13b, the third main pressure regulating valve 13c, and the sub heat exchanger 13d cool and decompress the high-temperature and high-pressure water in the vapor phase to form water, Although the light oil is cooled and depressurized to become a medium oil and a light oil in a liquid phase, the gas is stored in the third sealed container 13e in a gas phase. Then, the water having the highest specific gravity moves to the lower part of the third sealed container 13e, the gas having the lowest specific gravity moves to the upper part of the third sealed container 13e, and the liquid phase state has a specific gravity smaller than that of water and larger than that of the gas. Oil and light oil move to the center of the 3rd airtight container 13e in the up-and-down direction.

第3密閉容器13eの下部に貯まった水は第3ロア排出管13fを通り、第3ロア圧力調整弁13gで減圧された後に排出される。また第3密閉容器13eの上部に貯まったガスは第3アッパ排出管13hを通り、第3アッパ圧力調整弁13iで減圧された後に排出される。更に第3密閉容器13eの上下方向の中央に貯まった液相状態の中質油及び軽質油は第3ミドル排出管13jを通り、第3ミドル圧力調整弁13kで減圧された後に排出される。このように第1分離手段11で重質油から分離された中質油、軽質油及びガスを高温高圧水の残部とともに、メイン熱交換器13b、第3メイン圧力調整弁13c及びサブ熱交換器13dに通しても、これらの熱交換器及び圧力調整弁に粘度の高い重質油が付着しないので、熱交換器の性能を低下させることなく、中質油、軽質油及びガスと高温高圧水の残部の持つ熱エネルギを効率良く回収できるとともに、圧力調整弁の制御性を低下させることがない。即ち、熱交換器や圧力調整弁への重質油の付着・蓄積による劣化や作動不良が発生しないため、これらの性能及び制御性を維持することができる。更にエマルジョンの形成の原因となるアスファルテンやレジンといった主に重質油に含まれる成分が第1分離手段11にて分離されるため、水と中質油及び軽質油とを分離する油水分離の際にエマルジョンを形成し難く、効率良く水と中質油及び軽質油とを分離できる。   The water stored in the lower part of the third sealed container 13e passes through the third lower discharge pipe 13f, and is discharged after being depressurized by the third lower pressure regulating valve 13g. The gas stored in the upper portion of the third sealed container 13e passes through the third upper discharge pipe 13h and is discharged after being depressurized by the third upper pressure adjusting valve 13i. Furthermore, the liquid medium state light oil and light oil stored in the vertical center of the third hermetic container 13e pass through the third middle discharge pipe 13j and are discharged after being depressurized by the third middle pressure regulating valve 13k. Thus, the main oil exchanger 13b, the third main pressure regulating valve 13c, and the sub heat exchanger together with the remainder of the high temperature and high pressure water, the medium oil, the light oil and the gas separated from the heavy oil by the first separation means 11. Even if it passes 13d, since heavy oil with high viscosity does not adhere to these heat exchangers and pressure control valves, medium oil, light oil and gas, and high-temperature and high-pressure water without deteriorating the performance of the heat exchanger The remaining heat energy can be efficiently recovered and the controllability of the pressure regulating valve is not lowered. That is, since deterioration and operation failure due to adhesion and accumulation of heavy oil on the heat exchanger and the pressure regulating valve do not occur, these performances and controllability can be maintained. Furthermore, since the components mainly contained in heavy oil such as asphaltenes and resins that cause the formation of emulsion are separated by the first separation means 11, the oil-water separation for separating water from medium oil and light oil is performed. In addition, it is difficult to form an emulsion, and water can be efficiently separated from medium oil and light oil.

<第2の実施の形態>
図2は本発明の第2の実施の形態を示す。図2において図1と同一符号は同一部品を示す。
この実施の形態では、第2分離手段12で分離された気相状態の高温高圧水が供給手段31により第3分離手段13に供給される。供給手段31は、第2アッパ排出管12fとアッパ分岐管13aとを接続する連通管31aと、この連通管31aに設けられ第2密閉容器12c内の気相状態の高温高圧水の圧力を下げる連通用圧力調整弁31bとを有する。連通管31aの一端は第2アッパ排出管12fのうち第2密閉容器12cと第2アッパ圧力調整弁12gとの間に接続され、連通管31aの他端はアッパ分岐管13aのうち第3メイン圧力調整弁13cとサブ熱交換器13dとの間に接続される。上記以外は第1の実施の形態と同一に構成される。
このように構成された高温高圧水と油分の分離装置では、第2密閉容器12c内の圧力が第3密閉容器13e内の圧力より高い場合、気相状態の高温高圧水が連通用圧力調整弁31bにより所定の圧力に下げられた後にサブ熱交換器13dに供給されるので、高温高圧水の持つ熱エネルギを更に効率良く回収できる。上記以外の動作は第1の実施の形態の動作と略同様であるため、繰返しの説明を省略する。
<Second Embodiment>
FIG. 2 shows a second embodiment of the present invention. 2, the same reference numerals as those in FIG. 1 denote the same components.
In this embodiment, the high-temperature high-pressure water in the vapor phase separated by the second separation means 12 is supplied to the third separation means 13 by the supply means 31. The supply means 31 lowers the pressure of the high-temperature high-pressure water in the gas phase state in the second sealed container 12c provided in the communication pipe 31a and the communication pipe 31a connecting the second upper discharge pipe 12f and the upper branch pipe 13a. And a communication pressure regulating valve 31b. One end of the communication pipe 31a is connected between the second sealed container 12c and the second upper pressure regulating valve 12g in the second upper discharge pipe 12f, and the other end of the communication pipe 31a is the third main in the upper branch pipe 13a. It is connected between the pressure regulating valve 13c and the sub heat exchanger 13d. The configuration other than the above is the same as that of the first embodiment.
In the high-temperature and high-pressure water / oil separation device configured as described above, when the pressure in the second sealed container 12c is higher than the pressure in the third sealed container 13e, the high-temperature and high-pressure water in the gas phase is connected to the pressure regulating valve for communication. Since it is supplied to the sub heat exchanger 13d after being lowered to a predetermined pressure by 31b, the thermal energy possessed by the high-temperature high-pressure water can be recovered more efficiently. Since the operation other than the above is substantially the same as the operation of the first embodiment, repeated description is omitted.

<第3の実施の形態>
図3は本発明の第3の実施の形態を示す。図3において図1と同一符号は同一部品を示す。
この実施の形態では、第2分離手段12,112が互いに並列に2系統設けられる、即ち一方の第2分離手段12と他方の第2分離手段112が同一に構成される。具体的には、一方の第2分離手段12は、ロア分岐管12aと、第2メイン圧力調整弁12bと、第2密閉容器12cと、第2ロア排出管12dと、第2ロア圧力調整弁12eと、第2アッパ排出管12fと、第2アッパ圧力調整弁12gと、ロア熱交換器12hとを有し、他方の第2分離手段112は、ロア分岐管112aと、第2メイン圧力調整弁112bと、第2密閉容器112cと、第2ロア排出管112dと、第2ロア圧力調整弁112eと、第2アッパ排出管112fと、第2アッパ圧力調整弁112gと、ロア熱交換器112hとを有する。他方の第2分離手段112のロア分岐管112aの一端は、一方の第2分離手段12のロア分岐管12aのうち第1密閉容器11cと第2メイン圧力調整弁12bとの間に接続される。上記以外は第1の実施の形態と同一に構成される。
<Third Embodiment>
FIG. 3 shows a third embodiment of the present invention. 3, the same reference numerals as those in FIG. 1 denote the same components.
In this embodiment, two systems of the second separation means 12 and 112 are provided in parallel with each other, that is, one second separation means 12 and the other second separation means 112 are configured identically. Specifically, one of the second separating means 12 includes a lower branch pipe 12a, a second main pressure adjustment valve 12b, a second sealed container 12c, a second lower discharge pipe 12d, and a second lower pressure adjustment valve. 12e, a second upper discharge pipe 12f, a second upper pressure adjustment valve 12g, and a lower heat exchanger 12h. The other second separation means 112 includes a lower branch pipe 112a, a second main pressure adjustment A valve 112b, a second sealed container 112c, a second lower discharge pipe 112d, a second lower pressure adjustment valve 112e, a second upper discharge pipe 112f, a second upper pressure adjustment valve 112g, and a lower heat exchanger 112h And have. One end of the lower branch pipe 112a of the other second separating means 112 is connected between the first sealed container 11c and the second main pressure regulating valve 12b in the lower branch pipe 12a of the second second separating means 12. . The configuration other than the above is the same as that of the first embodiment.

このように構成された分離装置を用いた高温高圧水と油分の分離方法を説明する。
先ず一方の第2分離手段12の第2メイン圧力調整弁12bを開くとともに、他方の第2分離手段112の第2メイン圧力調整弁112bを閉じて、一方の第2分離手段12により第1密閉容器11cから排出された重質油を高温高圧水の一部とともに処理する。そして所定の時間が経過したとき、一方の第2分離手段12の第2メイン圧力調整弁12bを閉じるとともに、他方の第2分離手段112の第2メイン圧力調整弁112bを開いて、他方の第2分離手段112により第1密閉容器11cから排出された重質油を高温高圧水の一部とともに処理する。この間に、使用を停止した一方の第2分離手段12の第2メイン圧力調整弁12b、第2密閉容器12c、第2ロア圧力調整弁12e等に付着した粘度の高い重質油を除去する。そして所定時間が経過したときに、一方の第2分離手段12の第2メイン圧力調整弁12bを開くとともに、他方の第2分離手段112の第2メイン圧力調整弁112bを閉じて、一方の第2分離手段12により第1密閉容器11cから排出された重質油を高温高圧水の一部とともに処理する。この間に、使用を停止した他方の第2分離手段112の第2メイン圧力調整弁112b、第2密閉容器112c、第2ロア圧力調整弁112e等に付着した粘度の高い重質油を除去する。このように、一方の第2分離手段12と他方の第2分離手段112とを交互運転して、不使用側の第2分離手段の各機器を洗浄することにより、第2メイン圧力調整弁や第2ロア圧力調整弁等の制御性を低下させることなく、重質油と高温高圧水との分離を連続的に行うことができる。
なお、第3の実施の形態では、一方の第2分離手段と他方の第2分離手段の切換え操作を所定時間毎に行ったが、第2メイン圧力調整弁又は第2ロア圧力調整弁のいずれか一方又は双方の前後に圧力センサを設け、この圧力センサの検出出力に基づいて一方の第2分離手段と他方の第2分離手段の切換え操作を行ってもよい。
A method for separating high-temperature and high-pressure water and oil using the thus configured separation device will be described.
First, the second main pressure regulating valve 12b of one second separating means 12 is opened, the second main pressure regulating valve 112b of the other second separating means 112 is closed, and the first sealing is performed by one second separating means 12. The heavy oil discharged from the container 11c is treated together with a part of the high-temperature high-pressure water. When a predetermined time has elapsed, the second main pressure regulating valve 12b of one second separating means 12 is closed, the second main pressure regulating valve 112b of the other second separating means 112 is opened, and the other second pressure regulating valve 112b is opened. The heavy oil discharged | emitted from the 1st airtight container 11c by the 2 separation means 112 is processed with a part of high temperature high pressure water. During this time, the heavy oil with high viscosity attached to the second main pressure regulating valve 12b, the second sealed container 12c, the second lower pressure regulating valve 12e, etc. of the second separating means 12 whose use has been stopped is removed. When a predetermined time has elapsed, the second main pressure regulating valve 12b of one of the second separating means 12 is opened, and the second main pressure regulating valve 112b of the other second separating means 112 is closed, The heavy oil discharged | emitted from the 1st airtight container 11c by the 2 separation means 12 is processed with a part of high temperature high pressure water. During this time, the heavy oil with high viscosity attached to the second main pressure regulating valve 112b, the second sealed container 112c, the second lower pressure regulating valve 112e, etc. of the other second separating means 112 that has been stopped is removed. In this way, by alternately operating one second separation means 12 and the other second separation means 112 and washing each device of the second separation means on the unused side, the second main pressure regulating valve or Separation of heavy oil and high-temperature high-pressure water can be performed continuously without degrading the controllability of the second lower pressure regulating valve or the like.
In the third embodiment, the switching operation between one second separation means and the other second separation means is performed every predetermined time. However, either the second main pressure adjustment valve or the second lower pressure adjustment valve is used. A pressure sensor may be provided before or after one or both, and the switching operation of one second separation means and the other second separation means may be performed based on the detection output of the pressure sensor.

次に本発明の実施例を詳しく説明する。
<実施例1>
原料として石油アスファルトを用い、超臨界水からなる高温高圧水による改質条件、即ち改質温度を480℃とし、改質圧力を25MPaとした。油分と高温高圧水の合計量を100重量%としたとき、上記改質後の各成分を次のように設定した。重質油を8重量%とし、中質油を3重量%とし、軽質油を2重量%とし、ガスを19重量%とし、高温高圧水を68重量%とした。この油分を含む高温高圧水を第1分離手段により、高温高圧水と軽質油及び中質油とを気相状態で分離し、減圧残油相当の重質油を液相状態で分離し、第1分離手段の第1密閉容器の温度条件及び圧力条件を変えて上記分離挙動の変化をコンピュータを用いて計算した。その結果を図4に示す。
図4から明らかなように、第1密閉容器内の温度が高いほど水と軽質油及び中質油の気相移行率が高くなるけれども、重質油の気相への移行も多くなることが分った。また圧力の影響としては、第1密閉容器内の圧力が低圧になるほど重質油の気相側への同伴が少なくなるけれども、製品の一つである中質油の軽油が液相へ残留し易くなる傾向があることが分った。これらのことから推測される第1密閉容器内での適切な分離条件は、圧力が20MPaであるとき温度は380〜420℃であり、圧力が15MPaであるとき温度は360〜420℃であり、圧力が10MPaであるとき温度は340〜420℃であると考えられる。
Next, embodiments of the present invention will be described in detail.
<Example 1>
Petroleum asphalt was used as a raw material, the reforming conditions with high-temperature and high-pressure water made of supercritical water, that is, the reforming temperature was 480 ° C., and the reforming pressure was 25 MPa. When the total amount of oil and high-temperature high-pressure water was 100% by weight, each component after the above reforming was set as follows. Heavy oil was 8% by weight, medium oil was 3% by weight, light oil was 2% by weight, gas was 19% by weight, and high-temperature high-pressure water was 68% by weight. The high-temperature and high-pressure water containing this oil is separated by the first separation means from the high-temperature and high-pressure water and the light oil and medium oil in the gas phase, and the heavy oil corresponding to the vacuum residue is separated in the liquid phase. The change in the separation behavior was calculated using a computer while changing the temperature condition and pressure condition of the first closed container of one separation means. The result is shown in FIG.
As is clear from FIG. 4, the higher the temperature in the first sealed container, the higher the gas phase transfer rate of water, light oil, and medium oil, but the heavy oil may also shift to the gas phase. I understand. Moreover, as the influence of the pressure, the lower the pressure in the first sealed container, the less entrainment of heavy oil on the gas phase side becomes, but the light oil of medium oil, which is one of the products, remains in the liquid phase. It turned out that it tends to become easy. Appropriate separation conditions in the first closed container inferred from these, the temperature is 380-420 ° C. when the pressure is 20 MPa, the temperature is 360-420 ° C. when the pressure is 15 MPa, It is considered that the temperature is 340 to 420 ° C. when the pressure is 10 MPa.

<実施例2>
第1分離手段の第1密閉容器から排出された液相状態の重質油を高温高圧水の一部とともに第2分離手段により、高温高圧水を気相状態で分離し、重質油を液相状態で分離し、第2分離手段の第2密閉容器の温度条件及び圧力条件を変えて上記分離挙動の変化をコンピュータを用いて計算した。その結果を図5に示す。
図5から明らかなように、重質油は液相状態であり、高温高圧水は圧力が低くなるに従って気相への移行率が増加することが分った。また第2密閉容器内の圧力が0.1MPa未満になると、重質油の粘度が増大し、ハンドリングが困難になるおそれがあると考えられるため、第2密閉容器内での適切な分離圧力は0.1〜4MPaの範囲内であると推測される。なお、第2密閉容器内での分離温度については、圧力が1MPaであるとき温度を180〜350℃とし、圧力が4MPaであるとき温度を250〜350℃とする必要であるけれども、重質油の粘度を低く維持するためには、より高い温度での分離操作が適切であると考えられる。
<Example 2>
Liquid phase heavy oil discharged from the first airtight container of the first separation means is separated together with a part of the high temperature and high pressure water by the second separation means, and the high temperature and high pressure water is separated in the gas phase state, and the heavy oil is liquefied. Separation was performed in the phase state, and the change in the separation behavior was calculated using a computer while changing the temperature condition and pressure condition of the second closed vessel of the second separation means. The result is shown in FIG.
As is clear from FIG. 5, it was found that heavy oil is in a liquid phase, and high-temperature high-pressure water increases in the rate of transition to the gas phase as the pressure decreases. In addition, when the pressure in the second sealed container is less than 0.1 MPa, the viscosity of the heavy oil is increased, and it may be difficult to handle. Therefore, the appropriate separation pressure in the second sealed container is It is estimated that it is in the range of 0.1 to 4 MPa. As for the separation temperature in the second closed vessel, the temperature is 180 to 350 ° C. when the pressure is 1 MPa, and the temperature is 250 to 350 ° C. when the pressure is 4 MPa. In order to maintain a low viscosity, it is considered that a separation operation at a higher temperature is appropriate.

<実施例3>
第1分離手段の第1密閉容器から排出された気相状態の中質油、軽質油及びガスを高温高圧水の残部とともに第3分離手段により、ガスを気相状態で分離し、中質油及び軽質油と水とを液相状態で分離し、第3分離手段の第3密閉容器の温度条件及び圧力条件を変えて上記分離挙動の変化をコンピュータを用いて計算した。その結果を図6に示す。
図6から明らかなように、軽質油と水が気相側へ移行し難い分離条件としては、第3密閉容器内の圧力が1〜4MPaの範囲内の低温条件側が適切であると考えられる。
<Example 3>
Gas-phase medium oil, light oil and gas discharged from the first sealed container of the first separation means are separated from the gas in the gas-phase state by the third separation means together with the remainder of the high-temperature and high-pressure water. In addition, light oil and water were separated in a liquid phase, and the change in the separation behavior was calculated using a computer while changing the temperature condition and pressure condition of the third sealed container of the third separation means. The result is shown in FIG.
As apparent from FIG. 6, it is considered that the low temperature condition side in which the pressure in the third sealed container is in the range of 1 to 4 MPa is appropriate as the separation condition in which the light oil and water hardly move to the gas phase side.

本発明第1実施形態の高温高圧水と油分の分離装置を示す構成図である。It is a block diagram which shows the high temperature / high pressure water and oil content separation apparatus of 1st Embodiment of this invention. 本発明第2実施形態の高温高圧水と油分の分離装置を示す構成図である。It is a block diagram which shows the high temperature / high pressure water and oil content separation apparatus of 2nd Embodiment of this invention. 本発明第3実施形態の高温高圧水と油分の分離装置を示す構成図である。It is a block diagram which shows the high temperature / high pressure water and oil-separation apparatus of 3rd Embodiment of this invention. 第1分離器における各油分の温度変化及び圧力変化による気相移行率を示す図である。It is a figure which shows the gaseous-phase transfer rate by the temperature change and pressure change of each oil component in a 1st separator. 第2分離器における各油分の温度変化及び圧力変化による気相移行率を示す図である。It is a figure which shows the gaseous-phase transfer rate by the temperature change and pressure change of each oil component in a 2nd separator. 第3分離器における各油分の温度変化及び圧力変化による気相移行率を示す図である。It is a figure which shows the gaseous-phase transfer rate by the temperature change and pressure change of each oil component in a 3rd separator.

符号の説明Explanation of symbols

11 第1分離手段
12,112 第2分離手段
13 第3分離手段
31 供給手段
11 First Separation Unit 12, 112 Second Separation Unit 13 Third Separation Unit 31 Supply Unit

Claims (6)

超臨界水又は亜臨界水からなる高温高圧水により改質して得られた重質油、中質油、軽質油及びガスからなる油分を含む前記高温高圧水を、第1分離手段にて300〜450℃の範囲内の所定の温度に下げかつ5〜22MPaの範囲内の所定の圧力に下げることにより、前記油分のうち前記重質油を前記高温高圧水の一部とともに液相状態のままとしかつ前記油分の残部である前記中質油、前記軽質油及び前記ガスを前記高温高圧水の残部とともに気相状態にして分離する工程と、
前記第1分離手段で分離された前記重質油を前記高温高圧水の一部とともに、第2分離手段にて100〜350℃の範囲内の所定の温度に下げかつ0.1〜4MPaの範囲内の所定の圧力に下げることにより、前記重質油を液相状態のままとしかつ前記高温高圧水を気相状態にして分離する工程と、
前記第1分離手段で分離された前記中質油、前記軽質油及び前記ガスを前記高温高圧水の残部とともに、第3分離手段にて0〜50℃の範囲内の所定の温度に下げかつ1〜10MPaの範囲内の所定の圧力に下げることにより、前記ガスを気相状態のままとしかつ前記中質油、前記軽質油及び前記高温高圧水を液相状態にして分離する工程と
を含む高温高圧水と油分の分離方法。
The high-temperature high-pressure water containing an oil component consisting of heavy oil, medium oil, light oil and gas obtained by reforming with high-temperature high-pressure water consisting of supercritical water or subcritical water is converted into 300 by the first separation means. The heavy oil is kept in a liquid phase together with a part of the high-temperature high-pressure water by lowering to a predetermined temperature within a range of ˜450 ° C. and lowering to a predetermined pressure within a range of 5 to 22 MPa. And separating the intermediate oil, the light oil and the gas that are the remainder of the oil into a gas phase together with the remainder of the high-temperature high-pressure water, and
The heavy oil separated by the first separation means is lowered to a predetermined temperature within the range of 100 to 350 ° C. by the second separation means together with a part of the high-temperature high-pressure water, and the range of 0.1 to 4 MPa. Reducing the internal oil to a predetermined pressure, leaving the heavy oil in a liquid phase and separating the high-temperature and high-pressure water in a gas phase; and
The intermediate oil, the light oil and the gas separated by the first separation means are lowered to a predetermined temperature within a range of 0 to 50 ° C. by the third separation means together with the rest of the high-temperature high-pressure water and 1 Lowering the pressure to a predetermined pressure within a range of 10 MPa to leave the gas in a gas phase and separating the medium oil, the light oil, and the high-temperature and high-pressure water in a liquid phase, Separation method of high pressure water and oil.
第2分離手段で分離された気相状態の高温高圧水を第3分離手段に供給する工程を更に含む請求項1記載の高温高圧水と油分の分離方法。   The method for separating high-temperature and high-pressure water and oil components according to claim 1, further comprising a step of supplying high-temperature and high-pressure water in a gas phase separated by the second separation means to the third separation means. 第2分離手段が互いに並列に2系統設けられ、前記2系統の第2分離手段が交互に使用されるように構成された請求項1記載の高温高圧水と油分の分離方法。   The method for separating high-temperature and high-pressure water and oil components according to claim 1, wherein two systems of second separation means are provided in parallel with each other, and the two systems of second separation means are used alternately. 超臨界水又は亜臨界水からなる高温高圧水により改質して得られた重質油、中質油、軽質油及びガスからなる油分を含む前記高温高圧水を、300〜450℃の範囲内の所定の温度に下げかつ5〜22MPaの範囲内の所定の圧力に下げることにより、前記油分のうち前記重質油を前記高温高圧水の一部とともに液相状態のままとしかつ前記油分の残部である前記中質油、前記軽質油及び前記ガスを前記高温高圧水の残部とともに気相状態にして分離する第1分離手段と、
前記第1分離手段で分離された前記重質油を前記高温高圧水の一部とともに、100〜350℃の範囲内の所定の温度に下げかつ0.1〜4MPaの範囲内の所定の圧力に下げることにより、前記重質油を液相状態のままとしかつ前記高温高圧水を気相状態にして分離する第2分離手段と、
前記第1分離手段で分離された前記中質油、前記軽質油及び前記ガスを前記高温高圧水の残部とともに、0〜50℃の範囲内の所定の温度に下げかつ1〜10MPaの範囲内の所定の圧力に下げることにより、前記ガスを気相状態のままとしかつ前記中質油、前記軽質油及び前記高温高圧水を液相状態にして分離する第3分離手段と
を備えた高温高圧水と油分の分離装置。
The high temperature and high pressure water containing an oil component consisting of heavy oil, medium oil, light oil and gas obtained by reforming with high temperature and high pressure water consisting of supercritical water or subcritical water is within a range of 300 to 450 ° C. To a predetermined pressure within a range of 5 to 22 MPa, the heavy oil of the oil component is left in a liquid phase together with a part of the high-temperature high-pressure water, and the remainder of the oil component A first separation means for separating the medium oil, the light oil and the gas into a gas phase together with the remainder of the high-temperature high-pressure water;
The heavy oil separated by the first separation means is lowered together with a part of the high-temperature high-pressure water to a predetermined temperature in the range of 100 to 350 ° C. and to a predetermined pressure in the range of 0.1 to 4 MPa. A second separation means for keeping the heavy oil in a liquid state and separating the high-temperature high-pressure water in a gas-phase state by lowering,
The intermediate oil, the light oil and the gas separated by the first separation means are lowered to a predetermined temperature within a range of 0 to 50 ° C. together with the rest of the high-temperature high-pressure water and within a range of 1 to 10 MPa. High-temperature high-pressure water comprising a third separation means for keeping the gas in a gas phase state and lowering the medium oil, the light oil, and the high-temperature high-pressure water in a liquid phase state by lowering to a predetermined pressure And oil separator.
第2分離手段で分離された気相状態の高温高圧水を第3分離手段に供給する供給手段を更に備えた請求項4記載の高温高圧水と油分の分離装置。   The apparatus for separating high-temperature and high-pressure water and oil according to claim 4, further comprising a supply means for supplying the high-temperature and high-pressure water in a gas phase separated by the second separation means to the third separation means. 第2分離手段が互いに並列に2系統設けられ、前記2系統の第2分離手段が交互に使用されるように構成された請求項4記載の高温高圧水と油分の分離装置。   The high-temperature high-pressure water and oil content separation device according to claim 4, wherein two systems of the second separation means are provided in parallel to each other, and the two systems of the second separation means are alternately used.
JP2007009820A 2007-01-19 2007-01-19 Method and apparatus for separating high temperature and high pressure water and oil Expired - Fee Related JP5007403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007009820A JP5007403B2 (en) 2007-01-19 2007-01-19 Method and apparatus for separating high temperature and high pressure water and oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007009820A JP5007403B2 (en) 2007-01-19 2007-01-19 Method and apparatus for separating high temperature and high pressure water and oil

Publications (2)

Publication Number Publication Date
JP2008174649A true JP2008174649A (en) 2008-07-31
JP5007403B2 JP5007403B2 (en) 2012-08-22

Family

ID=39701906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007009820A Expired - Fee Related JP5007403B2 (en) 2007-01-19 2007-01-19 Method and apparatus for separating high temperature and high pressure water and oil

Country Status (1)

Country Link
JP (1) JP5007403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149213B2 (en) 2019-12-27 2021-10-19 Saudi Arabian Oil Company Method to produce light olefins from crude oil

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121302A (en) * 1974-01-17 1975-09-23
JPH04220493A (en) * 1990-03-09 1992-08-11 Veba Oel Technol Gmbh Thermal high-pressure separator
JPH10237458A (en) * 1997-02-27 1998-09-08 Mitsubishi Materials Corp Apparatus for continuous conversion of coal
JPH10251655A (en) * 1997-03-14 1998-09-22 Mitsubishi Materials Corp Continuous conversion method for coal with supercritical water
JPH10314767A (en) * 1997-05-21 1998-12-02 Japan Organo Co Ltd Supercritical water reactor and method for pressure reduction of supercritical water reaction treating fluid
JP2005288388A (en) * 2004-04-02 2005-10-20 Showa Tansan Co Ltd Gas-liquid separating device
JP2006104311A (en) * 2004-10-05 2006-04-20 Mitsubishi Materials Corp Method for reforming unutilized heavy oil and apparatus therefor
JP2006312917A (en) * 2005-05-09 2006-11-16 Hitachi Ltd Power generating facility, gas turbine power generating facility, reformed fuel supplying method for power generating facility
JP2007051223A (en) * 2005-08-18 2007-03-01 Chubu Electric Power Co Inc Method and apparatus for modifying heavy oil

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121302A (en) * 1974-01-17 1975-09-23
JPH04220493A (en) * 1990-03-09 1992-08-11 Veba Oel Technol Gmbh Thermal high-pressure separator
JPH10237458A (en) * 1997-02-27 1998-09-08 Mitsubishi Materials Corp Apparatus for continuous conversion of coal
JPH10251655A (en) * 1997-03-14 1998-09-22 Mitsubishi Materials Corp Continuous conversion method for coal with supercritical water
JPH10314767A (en) * 1997-05-21 1998-12-02 Japan Organo Co Ltd Supercritical water reactor and method for pressure reduction of supercritical water reaction treating fluid
JP2005288388A (en) * 2004-04-02 2005-10-20 Showa Tansan Co Ltd Gas-liquid separating device
JP2006104311A (en) * 2004-10-05 2006-04-20 Mitsubishi Materials Corp Method for reforming unutilized heavy oil and apparatus therefor
JP2006312917A (en) * 2005-05-09 2006-11-16 Hitachi Ltd Power generating facility, gas turbine power generating facility, reformed fuel supplying method for power generating facility
JP2007051223A (en) * 2005-08-18 2007-03-01 Chubu Electric Power Co Inc Method and apparatus for modifying heavy oil

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11149213B2 (en) 2019-12-27 2021-10-19 Saudi Arabian Oil Company Method to produce light olefins from crude oil

Also Published As

Publication number Publication date
JP5007403B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
CN101273113B (en) Hydrogen purification for make-up gas in hydroprocessing processes
AU2012234832C1 (en) Method for producing hydrocarbons
BRPI0700828B1 (en) method for hydrocracking heavy crude oil
JP2005289792A (en) High-pressure delivery system for ultra high purity liquid carbon dioxide
JP5364715B2 (en) Hydrocarbon compound synthesis reaction unit and operating method thereof
CA2926504A1 (en) Method and device for separating synthesis gases
EA012028B1 (en) A process for regasifying a gas hydrate slurry
EP3036212A1 (en) Enhanced hydrogen recovery
CN105189709A (en) Process and apparatus for recovering hydroprocessed hydrocarbons with stripper columns
CN102549111B (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and hydrocarbon synthesis reaction method
CN102575173B (en) Hydrocarbon synthesis reaction apparatus, hydrocarbon synthesis reaction system, and method for recovering liquid hydrocarbon
JP5007403B2 (en) Method and apparatus for separating high temperature and high pressure water and oil
CN103443249B (en) Hydrocarbon synthesis reaction apparatus, method for starting up the same, and hydrocarbon synthesis reaction system
US9421509B2 (en) Hydrocarbon production apparatus and hydrocarbon production process
JP4724477B2 (en) Ultra high purity liquefied carbon dioxide purification and filling equipment
CN106350107A (en) Process for the treatment of a hydrocarbon feed containing hydrogen and hydrocarbons
EA029799B1 (en) Method for startup of bubble tower-type slurry bed reactor
JP5113992B2 (en) Refining and filling method of ultra high purity liquefied carbon dioxide
US9513051B2 (en) Method for recovering hydrocarbon compounds and a hydrocarbon recovery apparatus from a gaseous by-product
JP2017125100A (en) Water heat treatment device and water heat treatment method
US9688917B2 (en) Hydrocarbon-producing apparatus and hydrocarbon-producing method
CN110527546B (en) Method and device for reducing ethylene machine torch discharge amount of steam cracking device
RU2718943C2 (en) Method of liquefying stream of contaminated co2 containing hydrocarbons
JP2023532829A (en) Method for producing isopropyl alcohol
CN106957680A (en) The apparatus and method of the sour gas of common compression hydro-conversion or hydrotreating unit and the gaseous effluent of catalytic cracking unit

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees