JP2006104311A - Method for reforming unutilized heavy oil and apparatus therefor - Google Patents

Method for reforming unutilized heavy oil and apparatus therefor Download PDF

Info

Publication number
JP2006104311A
JP2006104311A JP2004292115A JP2004292115A JP2006104311A JP 2006104311 A JP2006104311 A JP 2006104311A JP 2004292115 A JP2004292115 A JP 2004292115A JP 2004292115 A JP2004292115 A JP 2004292115A JP 2006104311 A JP2006104311 A JP 2006104311A
Authority
JP
Japan
Prior art keywords
water
heavy oil
subcritical
reaction vessel
supercritical water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004292115A
Other languages
Japanese (ja)
Inventor
Motohiro Sakaihara
基浩 境原
Kenji Nishimura
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004292115A priority Critical patent/JP2006104311A/en
Publication of JP2006104311A publication Critical patent/JP2006104311A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably reform an unutilized heavy oil without causing choking by coking. <P>SOLUTION: Supercritical water or subcritical water is fed from the outside of a reaction vessel 11 through a feed part 21a into a reaction pipe 21 installed in the interior of the reaction vessel 11 and the supercritical water or subcritical water is discharged through a discharge part 21b to the outside of the reaction vessel 11. The unutilized heavy oil is fed to a mixer 36 provided in a feed pipe 32 for feeding the supercritical water or subcritical water to the reaction pipe 21 to mix the supercritical water or subcritical water fed to the reaction pipe 21 with the unutilized heavy oil. Thereby, the unutilized heavy oil mixed with the supercritical water or subcritical water is reacted with the supercritical water or subcritical water in the reaction pipe 21 and converted into a reformed oil. The resultant reformed oil is separated and recovered from the supercritical water or subcritical water discharged through the discharge part 21b to the outside of the reaction vessel 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、未利用重質油を超臨界水又は亜臨界水と反応させることにより改質油に転換する未利用重質油の改質方法及びその装置に関するものである。   The present invention relates to a method for reforming unused heavy oil and an apparatus therefor, in which unused heavy oil is converted into reformed oil by reacting with supercritical water or subcritical water.

従来、化石燃料である原油は常圧蒸留塔や減圧蒸留塔等により精製され、減圧蒸留塔の最低部に溜まるような超重質油はアスファルト等への利用以外には利用価値が低いとされていた。しかし近年では、このような未利用重質油を超臨界水又は亜臨界水と反応させることにより改質油に転換し、その改質油をガスタービンの発電用燃料等として利用することが提案されている(例えば、特許文献1参照。)。ここで、亜臨界水とは200〜374℃の温度でかつ15.68〜21.07MPaの圧力にある水の状態を意味する。また水の超臨界状態とは374〜900℃の温度でかつ21.07〜49.00MPaの圧力にある水の状態を意味する。従って、未利用重質油を改質させる装置にあってはそのような高温かつ高圧の超臨界水又は亜臨界水を貯留する反応容器が用いられる。   Conventionally, crude oil, which is a fossil fuel, is refined by an atmospheric distillation column, a vacuum distillation column, etc., and superheavy oil that accumulates in the lowest part of the vacuum distillation column is considered to have low utility value other than asphalt. It was. In recent years, however, it has been proposed that such unused heavy oil be converted to reformed oil by reacting with supercritical water or subcritical water, and that the reformed oil be used as fuel for power generation of gas turbines, etc. (For example, refer to Patent Document 1). Here, subcritical water means a state of water at a temperature of 200 to 374 ° C. and a pressure of 15.68 to 21.07 MPa. The supercritical state of water means a state of water at a temperature of 374 to 900 ° C. and a pressure of 21.07 to 49.00 MPa. Therefore, in an apparatus for reforming unused heavy oil, a reaction vessel that stores such high-temperature and high-pressure supercritical water or subcritical water is used.

図3に詳しく示すように、従来の反応容器1は、上部が開口して超臨界水又は亜臨界水を貯留可能に構成された容器本体2と、その容器本体1の上部開口部2aを開放可能に閉止する蓋体3とを備える。容器本体2にはパッキン用の下凹溝2dが周方向に連続して形成され、蓋体3の下凹溝2dに対応する部分には上凹溝3bが円周方向に連続して形成される。そして、上下の凹溝3b,2dにパッキン4を装着して蓋体3により容器本体2の上部開口部2aを閉止させている。一方、その蓋体3にはその蓋体3を貫通して高圧水供給管6と重質油供給管7と改質油排出管8が設けられ、反応容器1の周囲には、反応容器1を加熱してその反応容器1に高圧水供給管6を介して供給された高圧水を超臨界水又は亜臨界水にするヒータ9が設けられる。そして、この反応容器1では、重質油供給管8を介して反応容器1に未利用重質油を供給し、その未利用重質油を反応容器1の内部に貯留された超臨界水又は亜臨界水と反応させることにより改質油に転換した後、改質油排出管8を介してその改質油を反応容器1から排出させるようになっている。
特開2003−286491号公報(「従来の技術」の欄)
As shown in detail in FIG. 3, the conventional reaction vessel 1 has a container body 2 that is open at the top and configured to store supercritical water or subcritical water, and an upper opening 2 a of the container body 1 is opened. And a lid 3 that closes as possible. A lower concave groove 2d for packing is formed continuously in the circumferential direction in the container body 2, and an upper concave groove 3b is formed continuously in the circumferential direction at a portion corresponding to the lower concave groove 2d of the lid 3. The The packing 4 is attached to the upper and lower concave grooves 3b and 2d, and the upper opening 2a of the container body 2 is closed by the lid 3. On the other hand, the lid 3 is provided with a high-pressure water supply pipe 6, a heavy oil supply pipe 7, and a reformed oil discharge pipe 8 penetrating through the lid 3. And a heater 9 is provided for converting the high-pressure water supplied to the reaction vessel 1 through the high-pressure water supply pipe 6 into supercritical water or subcritical water. In the reaction vessel 1, unused heavy oil is supplied to the reaction vessel 1 via the heavy oil supply pipe 8, and the unused heavy oil is stored in the reaction vessel 1 with supercritical water or After being converted to reformed oil by reacting with subcritical water, the reformed oil is discharged from the reaction vessel 1 via the reformed oil discharge pipe 8.
JP 2003-286491 A ("Conventional Technology" column)

しかし、上述した従来の改質装置では、ヒータ9が周囲に設けられた反応容器1の蓋体3にその蓋体3を貫通させて重質油供給管7と改質油排出管8を設けているので、ヒータ9から発せられる熱及び高温高圧の超臨界水によりその反応容器1とともに重質油供給管7と改質油排出管8も高温となる。ここで、重質油供給管7から反応容器1に供給される未利用重質油は一般的に430℃以上でコーキングするため、反応容器1の温度が上昇すると、その内壁近傍の重質油がコーキングを起こし、その内壁に付着する不具合がある。また、蓋体3を貫通して設けられた供給管7の温度が上昇すると、その供給管7の内部で重質油がコーキングを起こし、その供給管7を閉塞させてしまう不具合がある。特に、この現象が起こるのは通油してから430℃の部分では1時間〜2時間程度であるけれども、高温になるとコーキングスピードが速くなるために、更に短い時間で閉塞を起こすことも考えられ、このため従来の反応容器を用いた改質装置では、比較的長時間にわたって安定して未利用重質油を改質させることが困難であった。
本発明の目的は、コーキングによる閉塞を生じさせることなく未利用重質油を安定して改質し得る未利用重質油の改質方法及びその装置を提供することにある。
However, in the above-described conventional reformer, the heavy oil supply pipe 7 and the reformed oil discharge pipe 8 are provided by penetrating the lid 3 of the reaction vessel 1 around which the heater 9 is provided. Therefore, the heavy oil supply pipe 7 and the reformed oil discharge pipe 8 are also heated together with the reaction vessel 1 by the heat generated from the heater 9 and the high-temperature and high-pressure supercritical water. Here, since the unused heavy oil supplied from the heavy oil supply pipe 7 to the reaction vessel 1 is generally coked at 430 ° C. or higher, when the temperature of the reaction vessel 1 rises, the heavy oil near the inner wall thereof Has a problem of causing caulking and adhering to its inner wall. Further, when the temperature of the supply pipe 7 provided through the lid body 3 rises, there is a problem that heavy oil causes coking inside the supply pipe 7 and closes the supply pipe 7. In particular, this phenomenon occurs for about 1 to 2 hours at 430 ° C after the oil has passed. However, since the caulking speed increases at high temperatures, it may be possible to cause clogging in a shorter time. For this reason, it is difficult for a conventional reformer using a reaction vessel to stably reform unused heavy oil for a relatively long time.
An object of the present invention is to provide a method for reforming unused heavy oil and an apparatus therefor that can stably reform unused heavy oil without causing blockage due to coking.

請求項1に係る発明は、図1に示すように、反応容器11の内部に設けられた反応管21に超臨界水又は亜臨界水を反応容器11の外部から供給部21aを介して供給するとともに排出部21bを介して超臨界水又は亜臨界水を反応容器11の外部に排出し、反応管21に未利用重質油を供給して反応管21に供給される超臨界水又は亜臨界水と未利用重質油とを混合し、超臨界水又は亜臨界水に混合した未利用重質油を反応管21内で超臨界水又は亜臨界水と反応させて改質油に転換し、排出部21bを介して反応容器11の外部に排出される超臨界水又は亜臨界水から改質油を分離回収する未利用重質油の改質方法である。   In the invention according to claim 1, as shown in FIG. 1, supercritical water or subcritical water is supplied to the reaction tube 21 provided inside the reaction vessel 11 from the outside of the reaction vessel 11 through the supply unit 21 a. In addition, supercritical water or subcritical water is discharged to the outside of the reaction vessel 11 through the discharge unit 21 b, supercritical water or subcritical water supplied to the reaction tube 21 by supplying unused heavy oil to the reaction tube 21. Water and unused heavy oil are mixed, and unused heavy oil mixed with supercritical water or subcritical water is reacted with supercritical water or subcritical water in a reaction tube 21 to be converted into reformed oil. This is a method for reforming unused heavy oil in which reformed oil is separated and recovered from supercritical water or subcritical water discharged to the outside of the reaction vessel 11 through the discharge unit 21b.

請求項3に係る発明は、反応容器11と、反応容器11の内部に螺旋状に又は蛇行して設けられ両端における供給部21aと排出部21bがそれぞれ反応容器11の容器壁13に貫通する反応管21と、反応容器11の外部から供給部21aを介して反応管21に超臨界水又は亜臨界水を供給するとともに排出部21bを介して超臨界水又は亜臨界水を反応容器11の外部に排出させる臨界水供給手段31と、臨界水供給手段31を構成する供給管32に設けられた混合器36に未利用重質油を供給して反応管21に供給される超臨界水又は亜臨界水と未利用重質油とを混合させる重質油供給手段37と、排出部21bに接続され排出部21bを介して反応容器11の外部に排出される超臨界水又は亜臨界水から改質油を分離回収する油水分離手段46とを備え、反応管21は、超臨界水又は亜臨界水と混合して内部を流れる未利用重質油をその超臨界水又は亜臨界水と反応させて改質油に転換させた後反応容器11の外部に導くように構成されたことを特徴とする未利用重質油の改質装置である。   The invention according to claim 3 is a reaction vessel 11 and a reaction that is provided spirally or meandering inside the reaction vessel 11, and the supply portion 21 a and the discharge portion 21 b at both ends penetrate the vessel wall 13 of the reaction vessel 11. Supercritical water or subcritical water is supplied to the reaction tube 21 from the tube 21 and from the outside of the reaction vessel 11 through the supply unit 21a, and supercritical water or subcritical water is supplied to the outside of the reaction vessel 11 through the discharge unit 21b. And the supercritical water or the sublimation water supplied to the reaction tube 21 by supplying unused heavy oil to the mixer 36 provided in the supply pipe 32 constituting the critical water supply unit 31. It is modified from heavy oil supply means 37 for mixing critical water and unused heavy oil, and supercritical water or subcritical water connected to the discharge part 21b and discharged to the outside of the reaction vessel 11 through the discharge part 21b. Oil moisture to separate and recover quality oil The reaction tube 21 is converted to reformed oil by reacting with the supercritical water or subcritical water the unused heavy oil flowing in the mixture after mixing with supercritical water or subcritical water. An unused heavy oil reforming apparatus characterized by being guided to the outside of the post-reaction vessel 11.

この請求項1に記載された未利用重質油の改質方法及び請求項3に記載された未利用重質油の改質装置では、未利用重質油の転換を超臨界水又は亜臨界水が比較的速い速度で流れる反応管21の内部で行わせることにより未利用重質油のコーキングを防止することができ、未利用重質油のコーキングに起因する反応管21の閉塞を有効に回避することができる。   In the method for reforming unused heavy oil described in claim 1 and the reformer for unused heavy oil described in claim 3, the conversion of unused heavy oil is performed by supercritical water or subcritical water. By causing the water to flow inside the reaction tube 21 flowing at a relatively high speed, coking of unused heavy oil can be prevented, and the blocking of the reaction tube 21 due to coking of unused heavy oil is effectively performed. It can be avoided.

請求項2に係る発明は、請求項1に係る発明であって、反応管21内の超臨界水又は亜臨界水と混合した未利用重質油の温度変化状況に基づいて反応管21に供給される超臨界水又は亜臨界水の水量を制御することを特徴とする。
請求項4に係る発明は、請求項3に係る発明であって、反応管21を流れる超臨界水又は亜臨界水と混合した未利用重質油の温度を測定する温度センサ61,62と、その温度センサ61,62の検出出力により臨界水供給手段31を制御するコントローラ63とを更に備えた改質装置である。
未利用重質油は一般的に430℃以上でコーキングが始まり、その430℃の部分では1時間〜2時間程度であるけれども、高温になるとコーキングスピードが速くなる。この請求項2に記載された未利用重質油の改質方法及び請求項4に記載された未利用重質油の改質装置では、反応管21内の超臨界水又は亜臨界水が430℃を越える場合にその反応管21に供給される超臨界水又は亜臨界水の水量を増加させれば、その超臨界水又は亜臨界水が反応管21を通過する時間を短縮させることができる。これにより反応管21の内部で重質油系成分がコーキングを起こす事態を回避することができ、反応管21に連続的に供給される未利用重質油を連続的に改質させることができる。
The invention according to claim 2 is the invention according to claim 1 and is supplied to the reaction tube 21 based on the temperature change state of unused heavy oil mixed with supercritical water or subcritical water in the reaction tube 21. The amount of supercritical water or subcritical water to be controlled is controlled.
The invention according to claim 4 is the invention according to claim 3, wherein the temperature sensors 61 and 62 for measuring the temperature of the unused heavy oil mixed with the supercritical water or subcritical water flowing through the reaction tube 21; The reformer further includes a controller 63 that controls the critical water supply means 31 based on detection outputs of the temperature sensors 61 and 62.
In general, unused heavy oil starts coking at 430 ° C. or more, and the portion at 430 ° C. is about 1 to 2 hours. In the method for reforming unused heavy oil described in claim 2 and the reformer for unused heavy oil described in claim 4, supercritical water or subcritical water in the reaction tube 21 is 430. If the amount of supercritical water or subcritical water supplied to the reaction tube 21 when the temperature exceeds ° C. is increased, the time for the supercritical water or subcritical water to pass through the reaction tube 21 can be shortened. . As a result, it is possible to avoid a situation in which heavy oil components cause coking in the reaction tube 21, and it is possible to continuously reform unused heavy oil continuously supplied to the reaction tube 21. .

本発明では、未利用重質油の転換を超臨界水又は亜臨界水が比較的速い速度で流れる反応管の内部で行わせるので、未利用重質油のコーキングを防止してそのコーキングに起因する反応管が閉塞するような事態を有効に防止することができる。そして、反応管内の超臨界水又は亜臨界水の温度が上昇する度合いに応じて反応管に供給される超臨界水又は亜臨界水の水量を増加させるように制御することにより、その超臨界水又は亜臨界水が反応管を通過する時間を短縮させることができる。これにより反応管の内部で重質油がコーキングを起こす事態を回避して、反応管に連続的に供給される未利用重質油を安定してかつ連続的に改質させることができる。   In the present invention, the conversion of the unused heavy oil is performed inside the reaction tube in which supercritical water or subcritical water flows at a relatively high speed. It is possible to effectively prevent such a situation that the reaction tube is blocked. Then, by controlling the amount of supercritical water or subcritical water supplied to the reaction tube in accordance with the degree of increase in the temperature of the supercritical water or subcritical water in the reaction tube, the supercritical water is controlled. Alternatively, the time for the subcritical water to pass through the reaction tube can be shortened. As a result, it is possible to avoid the situation where heavy oil coking inside the reaction tube, and to stably and continuously reform unused heavy oil continuously supplied to the reaction tube.

以下、本発明の最良の実施の形態について説明する。
図1に示すように、本発明の未利用重質油の改質装置10は、超臨界水又は亜臨界水を貯留する反応容器11を備える。未利用重質油としてはオイルサンド油、オイルシェール油等の超重質油や、石油精製工程から発生する利用できない超重質油が例示される。図2に詳しく示すように、反応容器11は、上部が開口して超臨界水又は亜臨界水を貯留可能に構成された容器本体12と、その容器本体12の上部開口部12aを開放可能に閉止する蓋体13とを備える。容器本体12及び蓋体13はそれぞれステンレス鋼等の金属からなるバルク体を切削加工により削り出すことにより作られる。容器本体12の上部周囲にはフランジ部12bが外側に突出して形成され、このフランジ部12bには複数の雌ねじ孔12cが縦方向に形成されるとともに、その上面にはパッキン用の下凹溝12dが周方向に連続して形成される。
The best mode of the present invention will be described below.
As shown in FIG. 1, the unused heavy oil reforming apparatus 10 of the present invention includes a reaction vessel 11 for storing supercritical water or subcritical water. Examples of unused heavy oils include super heavy oils such as oil sand oil and oil shale oil, and unusable super heavy oils generated from petroleum refining processes. As shown in detail in FIG. 2, the reaction vessel 11 is configured such that the upper portion of the reaction vessel 11 is open so that supercritical water or subcritical water can be stored, and the upper opening 12 a of the vessel body 12 can be opened. And a lid 13 for closing. The container body 12 and the lid body 13 are each made by cutting a bulk body made of a metal such as stainless steel by cutting. A flange portion 12b is formed on the periphery of the upper portion of the container body 12 so as to protrude outward. A plurality of female screw holes 12c are formed in the flange portion 12b in the vertical direction, and a lower concave groove 12d for packing is formed on the upper surface thereof. Are continuously formed in the circumferential direction.

一方、蓋体13はフランジ部12bの外径に相応する外径を有する円板状に形成され、雌ねじ孔12cに対応する位置に取付孔13aが形成され、下凹溝12dに対応する部分には上凹溝13bが円周方向に連続して形成される。上下の凹溝13b,12dにはパッキン14が装着され、この状態で取付孔13aに挿入された雄ねじ16を雌ねじ孔12cに螺合することにより、蓋体13は容器本体12の上部開口部12aを閉止するように構成される。
蓋体13にはその蓋体13を貫通して高圧水供給管17と高圧水排出管18が設けられる。また、反応容器11の内部には、この反応容器11の容器壁に離間して反応管21が設けられる。この実施の形態における反応管21は螺旋状を有し、その両端に供給部21aと排出部21bが形成される。この供給部21aと排出部21bはそれぞれ反応容器11の容器壁である蓋体13を貫通して設けられ、反応管21自体はこの供給部21aと排出部21bにより支持されて反応容器11の内部にその容器壁に離間して設けられる。
On the other hand, the lid body 13 is formed in a disk shape having an outer diameter corresponding to the outer diameter of the flange portion 12b, an attachment hole 13a is formed at a position corresponding to the female screw hole 12c, and a portion corresponding to the lower concave groove 12d. The upper concave groove 13b is continuously formed in the circumferential direction. Packing 14 is mounted in the upper and lower concave grooves 13b, 12d, and the lid 13 is fitted into the female screw hole 12c in this state, so that the lid 13 is placed in the upper opening 12a of the container body 12. Configured to close.
The lid body 13 is provided with a high-pressure water supply pipe 17 and a high-pressure water discharge pipe 18 through the lid body 13. A reaction tube 21 is provided inside the reaction vessel 11 so as to be separated from the vessel wall of the reaction vessel 11. The reaction tube 21 in this embodiment has a spiral shape, and a supply portion 21a and a discharge portion 21b are formed at both ends thereof. The supply unit 21a and the discharge unit 21b are respectively provided through the lid 13 which is a container wall of the reaction vessel 11, and the reaction tube 21 itself is supported by the supply unit 21a and the discharge unit 21b to be inside the reaction vessel 11. Are spaced apart from the container wall.

図1に戻って、反応容器11の外部の高圧水供給管17と高圧水排出管18の端部は水貯槽22にそれぞれ接続され、反応容器11と水貯槽22との間の高圧水供給管17には、水貯槽22に貯留された水を反応容器11に供給する高圧水供給ポンプ23と、この高圧水供給管17を流通する高圧水を調温する調温ヒータ24がこの順序で設けられる。一方、反応容器11と水貯槽22との間の高圧水排出管18には電磁弁26が設けられ、この電磁弁26により高圧水排出管18を遮断した状態で高圧水供給ポンプ23を駆動し、水貯槽22から高圧水供給管17を介して高圧水を供給することにより、反応容器11は高圧水で満たすように構成される。そして、反応容器11の外部には、反応容器11内に供給された高圧水を加熱して超臨界水又は亜臨界水にするヒータ27が設けられる。   Returning to FIG. 1, the ends of the high-pressure water supply pipe 17 and the high-pressure water discharge pipe 18 outside the reaction vessel 11 are respectively connected to the water storage tank 22, and the high-pressure water supply pipe between the reaction vessel 11 and the water storage tank 22. 17, a high-pressure water supply pump 23 that supplies water stored in the water storage tank 22 to the reaction vessel 11 and a temperature-control heater 24 that controls the temperature of the high-pressure water flowing through the high-pressure water supply pipe 17 are provided in this order. It is done. On the other hand, an electromagnetic valve 26 is provided in the high-pressure water discharge pipe 18 between the reaction vessel 11 and the water storage tank 22, and the high-pressure water supply pump 23 is driven in a state where the high-pressure water discharge pipe 18 is shut off by the electromagnetic valve 26. The reaction vessel 11 is configured to be filled with high-pressure water by supplying high-pressure water from the water storage tank 22 via the high-pressure water supply pipe 17. A heater 27 is provided outside the reaction vessel 11 to heat the high-pressure water supplied into the reaction vessel 11 into supercritical water or subcritical water.

また、反応容器11の外部には、反応容器11の外部から供給部21aを介して超臨界水又は亜臨界水を反応管21に供給する臨界水供給手段31が設けられる。この実施の形態における臨界水供給手段31は、前述した水貯槽22と、この水貯槽22と供給部21aを接続する供給管32と、この供給管32に設けられ水貯槽22に貯留された水を加圧して供給部21aに供給する臨界水供給ポンプ33と、加圧されて供給管32を流通する超臨界水又は亜臨界水を更に加熱する加熱器34とを備える。そして、この臨界水供給手段31では、臨界水供給ポンプ33を駆動すると水貯槽22から供給され加熱器34により加熱された高温高圧の超臨界水又は亜臨界水が反応容器11の外部から供給部21aを介して反応管21に供給されるとともに、排出部21bを介してその超臨界水又は亜臨界水を反応容器11の外部に排出させるようになっている。   In addition, a critical water supply unit 31 is provided outside the reaction vessel 11 to supply supercritical water or subcritical water to the reaction tube 21 from the outside of the reaction vessel 11 via the supply unit 21a. The critical water supply means 31 in this embodiment includes the water storage tank 22 described above, a supply pipe 32 connecting the water storage tank 22 and the supply unit 21a, and water stored in the water storage tank 22 provided in the supply pipe 32. And a heater 34 for further heating the supercritical water or the subcritical water that is pressurized and circulates through the supply pipe 32. In the critical water supply means 31, when the critical water supply pump 33 is driven, high-temperature and high-pressure supercritical water or subcritical water supplied from the water storage tank 22 and heated by the heater 34 is supplied from the outside of the reaction vessel 11. While being supplied to the reaction tube 21 through 21a, the supercritical water or subcritical water is discharged to the outside of the reaction vessel 11 through the discharge part 21b.

また、供給手段31を構成する供給管32には混合器36が設けられ、反応容器11の外部にはこの混合機36に未利用重質油を供給して反応管21に供給される超臨界水又は亜臨界水に未利用重質油を混合させる重質油供給手段37が設けられる。この実施の形態における重質油供給手段37は、反応容器11の外部の設けられ未利用重質油を貯留する重質油貯槽38と、この重質油貯槽38と混合器36を接続する重質油供給管39と、この重質油供給管39に設けられ重質油貯槽38から未利用重質油を混合機36に供給する重質油供給ポンプ41と、この重質油供給管39を流通する重質油を保温する保温ヒータ42とを備える。そして、この重質油供給手段37では、重質油供給ポンプ41を駆動すると重質油貯槽38から供給され保温ヒータ42により保温された未利用重質油が供給管32に設けられた混合器36に供給され、混合器36は反応管21に供給される超臨界水又は亜臨界水とその未利用重質油とを混合するように構成される。   In addition, a mixer 36 is provided in the supply pipe 32 constituting the supply means 31, and supercritical oil supplied to the reaction pipe 21 by supplying unused heavy oil to the mixer 36 outside the reaction vessel 11. A heavy oil supply means 37 for mixing unused heavy oil with water or subcritical water is provided. The heavy oil supply means 37 in this embodiment includes a heavy oil storage tank 38 provided outside the reaction vessel 11 for storing unused heavy oil, and a heavy oil storage tank 38 connected to the mixer 36. A heavy oil supply pipe 39, a heavy oil supply pump 41 provided in the heavy oil supply pipe 39 for supplying unused heavy oil from the heavy oil storage tank 38 to the mixer 36, and the heavy oil supply pipe 39 And a heat retaining heater 42 that retains the heavy oil that circulates. In this heavy oil supply means 37, a mixer in which unused heavy oil supplied from the heavy oil storage tank 38 and kept warm by the heat retaining heater 42 when the heavy oil supply pump 41 is driven is provided in the supply pipe 32. The mixer 36 is configured to mix the supercritical water or subcritical water supplied to the reaction tube 21 with the unused heavy oil.

一方、反応管21は、超臨界水又は亜臨界水に混合されて内部を流れる未利用重質油をその超臨界水又は亜臨界水と反応させて改質油に転換させた後反応容器11の外部に導くように構成され、反応容器11の外部には反応管21の排出部21bに接続されその排出部21bを介して反応容器11の外部に排出する超臨界水又は亜臨界水からその超臨界水又は亜臨界水に混合する改質油を分離回収する油水分離手段46が設けられる。この実施の形態における油水分離手段46は、反応容器11の外部に設けられ炭化水素系の重質系改質油を分離するフラッシュ分離槽47と、このフラッシュ分離槽47と排出部21bを接続する臨界水排出管48と、フラッシュ分離槽47と冷却器52aを介して接続されフラッシュ分離槽47で重質系改質油が分離された液体をガスと軽質系改質油と水に分離する気油水分離槽52と、臨界水排出管48に設けられた減圧弁51とを備える。なお、減圧弁51より上流側の臨界水排出管48には熱の有効利用の観点から熱交換機49が別に設けられる。   On the other hand, the reaction tube 21 reacts unused heavy oil that is mixed with supercritical water or subcritical water and flows through the reaction with the supercritical water or subcritical water to convert it into reformed oil, and then the reaction vessel 11. From the supercritical water or subcritical water that is connected to the discharge portion 21b of the reaction tube 21 and is discharged to the outside of the reaction vessel 11 through the discharge portion 21b. Oil / water separation means 46 for separating and recovering the reformed oil mixed with the supercritical water or subcritical water is provided. The oil / water separation means 46 in this embodiment is connected to the flash separation tank 47 provided outside the reaction vessel 11 for separating the hydrocarbon-based heavy reforming oil, and the flash separation tank 47 and the discharge part 21b. A gas which is connected to the critical water discharge pipe 48, the flash separation tank 47 and the cooler 52a and from which the heavy reformed oil is separated in the flash separation tank 47 is separated into gas, light reformed oil and water. An oil / water separation tank 52 and a pressure reducing valve 51 provided in the critical water discharge pipe 48 are provided. Note that a heat exchanger 49 is separately provided in the critical water discharge pipe 48 upstream of the pressure reducing valve 51 from the viewpoint of effective use of heat.

更に、反応管21の供給部21aにはこの供給部21a内の超臨界水又は亜臨界水と混合した未利用重質油の温度を測定する第1温度センサ61が設けられ、反応管21の排出部21bにはこの排出部21b内の超臨界水又は亜臨界水と混合した改質油の温度を測定する第2温度センサ62が設けられる。また、反応容器11には、この反応容器11内の超臨界水又は亜臨界水の温度を測定する第3温度センサ64が更に設けられる。この第1及び第2温度センサ61,62並びにこの第3温度センサ64の各検出出力はコントローラ63の入力端子に接続され、コントローラ63の制御出力は高圧水供給ポンプ23、臨界水供給ポンプ33、重質油供給ポンプ41、電磁弁26及びヒータ27に接続される。そして、このコントローラ63は第1温度センサ61及び第2温度センサ62の各検出出力により臨界水供給ポンプ33及び重質油供給ポンプ41を制御するように構成され、第3温度センサ64の検出出力により高圧水供給ポンプ23、電磁弁26及びヒータ27を制御するように構成される。   Furthermore, the supply unit 21a of the reaction tube 21 is provided with a first temperature sensor 61 that measures the temperature of the unused heavy oil mixed with the supercritical water or subcritical water in the supply unit 21a. The discharge part 21b is provided with a second temperature sensor 62 for measuring the temperature of the reformed oil mixed with the supercritical water or subcritical water in the discharge part 21b. The reaction vessel 11 is further provided with a third temperature sensor 64 that measures the temperature of supercritical water or subcritical water in the reaction vessel 11. The detection outputs of the first and second temperature sensors 61 and 62 and the third temperature sensor 64 are connected to the input terminal of the controller 63, and the control outputs of the controller 63 are the high-pressure water supply pump 23, the critical water supply pump 33, It is connected to the heavy oil supply pump 41, the electromagnetic valve 26 and the heater 27. The controller 63 is configured to control the critical water supply pump 33 and the heavy oil supply pump 41 based on the detection outputs of the first temperature sensor 61 and the second temperature sensor 62, and the detection output of the third temperature sensor 64. Is configured to control the high-pressure water supply pump 23, the electromagnetic valve 26, and the heater 27.

次に、このような未利用重質油の改質装置を用いた本発明の未利用重質油の改質方法を説明する。
(a) 超臨界水又は亜臨界水の供給工程
反応容器11の内部に設けられた反応管21に超臨界水又は亜臨界水を反応容器11の外部から供給部21aを介して供給する。但し、その前提として反応管21の周囲である反応容器11の内部に超臨界水又は亜臨界水を満たしておく。この反応容器11を満たす超臨界水又は亜臨界水は、高圧水供給管17を介して高圧水供給ポンプ23により反応容器11内に供給された高圧水をヒータ27により加熱することにより得られたものである。このように反応容器11の内部に超臨界水又は亜臨界水を満たしておくと、その反応管21の周囲にも高温高圧の超臨界水又は亜臨界水が存在することになり、反応管21に供給される超臨界水又は亜臨界水と均衡が保たれ、その均衡が崩れることに起因する反応管21の破損を有効に防止することができる。
なお、超臨界水又は亜臨界水の供給は臨界水供給手段31により行われ、臨界水供給ポンプ33を駆動することにより水貯槽22から供給され加熱器34により加熱された超臨界水又は亜臨界水を反応容器11の外部から供給部21aを介して反応管21に供給させる。そして、供給された超臨界水又は亜臨界水は反応管21を通過して排出部21bに至り、この排出部21bから反応容器11の外部に排出する。
Next, the unused heavy oil reforming method of the present invention using such an unused heavy oil reforming apparatus will be described.
(a) Supplying process of supercritical water or subcritical water Supercritical water or subcritical water is supplied to the reaction tube 21 provided inside the reaction vessel 11 from the outside of the reaction vessel 11 via the supply unit 21a. However, as a precondition, supercritical water or subcritical water is filled in the reaction vessel 11 around the reaction tube 21. The supercritical water or subcritical water filling the reaction vessel 11 was obtained by heating the high-pressure water supplied into the reaction vessel 11 by the high-pressure water supply pump 23 through the high-pressure water supply pipe 17 with the heater 27. Is. If supercritical water or subcritical water is filled in the reaction vessel 11 in this way, high-temperature and high-pressure supercritical water or subcritical water is also present around the reaction tube 21. The balance with the supercritical water or subcritical water supplied to the water is maintained, and breakage of the reaction tube 21 due to the loss of the balance can be effectively prevented.
The supercritical water or subcritical water is supplied by the critical water supply means 31, and the supercritical water or subcritical water supplied from the water storage tank 22 and heated by the heater 34 by driving the critical water supply pump 33. Water is supplied from the outside of the reaction vessel 11 to the reaction tube 21 via the supply unit 21a. Then, the supplied supercritical water or subcritical water passes through the reaction tube 21 to reach the discharge part 21b, and is discharged from the discharge part 21b to the outside of the reaction vessel 11.

(b) 重質油供給転換工程
次に、反応管21に超臨界水又は亜臨界水を供給する供給管32に設けられた混合器36に未利用重質油を供給して反応管21に供給される超臨界水又は亜臨界水と未利用重質油とを混合させ、この超臨界水又は亜臨界水に混合した未利用重質油を反応管21内でその超臨界水又は亜臨界水と反応させて改質油に転換させる。即ち、未利用重質油の転換を超臨界水又は亜臨界水が比較的速い速度で流れる反応管21の内部で行わせることにより未利用重質油のコーキングを防止し、未利用重質油のコーキングに起因する反応管21が閉塞するような事態を有効に防止する。ここで、未利用重質油の供給は重質油供給手段37により行われ、その重質油供給ポンプ41を駆動することにより重質油貯槽38から保温ヒータ42により保温された未利用重質油が混合器36に供給され、その未利用重質油は混合器36において反応管21に供給される超臨界水又は亜臨界水と混合する。
(b) Heavy oil supply conversion step Next, unused heavy oil is supplied to the mixer 36 provided in the supply pipe 32 for supplying supercritical water or subcritical water to the reaction pipe 21 to the reaction pipe 21. The supplied supercritical water or subcritical water and unused heavy oil are mixed, and the unused heavy oil mixed with the supercritical water or subcritical water is mixed in the reaction tube 21 with the supercritical water or subcritical water. React with water to convert to reformed oil. That is, the conversion of unused heavy oil is performed inside the reaction tube 21 in which supercritical water or subcritical water flows at a relatively high speed, thereby preventing coking of unused heavy oil. This effectively prevents a situation where the reaction tube 21 is blocked due to the coking. Here, the supply of the unused heavy oil is performed by the heavy oil supply means 37, and the heavy oil supply pump 41 is driven to drive the unused heavy oil from the heavy oil storage tank 38 to the unused heavy oil. Oil is supplied to the mixer 36, and the unused heavy oil is mixed with supercritical water or subcritical water supplied to the reaction tube 21 in the mixer 36.

なお、反応管21内の超臨界水又は亜臨界水の温度変化状況に基づいて反応管21に供給される超臨界水又は亜臨界水の水量は制御される。この制御はコントローラ63により行われ、このコントローラ63は第1温度センサ61及び第2温度センサ62の各検出出力により臨界水供給ポンプ33を制御して反応管21に供給される超臨界水又は亜臨界水の水量を制御する。ここで、未利用重質油は一般的に430℃以上でコーキングが始まり、その430℃の部分では1時間〜2時間程度であるけれども、高温になるとコーキングスピードが速くなる。このため、コントローラ63は反応管21内の超臨界水又は亜臨界水が430℃を越える度合いに応じて反応管21に供給される超臨界水又は亜臨界水の水量を増加させるように制御し、その超臨界水又は亜臨界水が反応管21を通過する時間を短縮させる。これにより反応管21の内部で重質油系成分がコーキングを起こす事態を回避して、反応管21に連続的に供給される未利用重質油を連続的に改質させることができる。   The amount of supercritical water or subcritical water supplied to the reaction tube 21 is controlled based on the temperature change state of the supercritical water or subcritical water in the reaction tube 21. This control is performed by the controller 63, which controls the critical water supply pump 33 according to the detection outputs of the first temperature sensor 61 and the second temperature sensor 62 and supplies supercritical water or sub-water supplied to the reaction tube 21. Control the amount of critical water. Here, the unused heavy oil generally starts coking at 430 ° C. or higher, and the portion at 430 ° C. is about 1 to 2 hours. For this reason, the controller 63 controls to increase the amount of supercritical water or subcritical water supplied to the reaction tube 21 according to the degree to which the supercritical water or subcritical water in the reaction tube 21 exceeds 430 ° C. The time for the supercritical water or subcritical water to pass through the reaction tube 21 is shortened. As a result, it is possible to avoid the occurrence of coking of heavy oil components in the reaction tube 21 and to continuously improve unused heavy oil continuously supplied to the reaction tube 21.

(c) 改質油の回収工程
排出部21bから反応容器11の外部に排出する超臨界水又は亜臨界水からその超臨界水又は亜臨界水に混合する改質油を分離回収する。この改質油の分離回収は油水分離手段46により行われ、排出部21bを介して超臨界水又は亜臨界水とともに排出された改質油はその後超臨界水又は亜臨界水とともに熱交換器49で冷却され、減圧弁51で減圧される。このように減圧冷却された超臨界水又は亜臨界水と改質油からなる混合流体はフラッシュ分離槽47に送られて炭化水素系の重質系改質油が先ず分離される。フラッシュ分離槽47において重質系改質油が分離された残余の液体は冷却器52aにより更に冷却されてその後気油水分離槽52においてガスと軽質系改質油と水に分離される。分離されたガスは図示しない発電用のボイラーの燃料等として使用される。また分離された重質系改質油と軽質系改質油は、図示しないボイラー用の燃料等として使用されるか、或いは石油精製プラントの中間原料として使用される。
(c) Recovered oil reforming step The reformed oil mixed with the supercritical water or subcritical water is separated and recovered from the supercritical water or subcritical water discharged from the discharge unit 21b to the outside of the reaction vessel 11. The reformed oil is separated and recovered by the oil / water separation means 46, and the reformed oil discharged together with the supercritical water or the subcritical water via the discharge portion 21b is then heat exchanger 49 together with the supercritical water or the subcritical water. The pressure is reduced by the pressure reducing valve 51. The mixed fluid composed of supercritical water or subcritical water and reformed oil cooled under reduced pressure in this way is sent to the flash separation tank 47, and the hydrocarbon-based heavy reformed oil is first separated. The remaining liquid from which the heavy reforming oil has been separated in the flash separation tank 47 is further cooled by the cooler 52a, and then separated into gas, light reforming oil, and water in the gas oil water separation tank 52. The separated gas is used as fuel for a power generation boiler (not shown). The separated heavy and light reformed oils are used as fuel for boilers (not shown) or the like, or used as intermediate raw materials for petroleum refining plants.

本発明の改質装置を示す構成図である。It is a block diagram which shows the reforming apparatus of this invention. それに用いられる反応容器の構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the reaction container used for it. 従来の反応容器を示す図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the conventional reaction container.

符号の説明Explanation of symbols

11 反応容器
13 蓋体(容器壁)
21 反応管
21a 供給部
21b 排出部
31 臨界水供給手段
32 供給管
36 混合器
37 重質油供給手段
46 油水分離手段
61,62 温度センサ
63 コントローラ
11 reaction vessel 13 lid (container wall)
21 reaction tube 21a supply unit 21b discharge unit 31 critical water supply unit 32 supply tube 36 mixer 37 heavy oil supply unit 46 oil / water separation unit 61, 62 temperature sensor 63 controller

Claims (4)

反応容器(11)の内部に設けられた反応管(21)に超臨界水又は亜臨界水を前記反応容器(11)の外部から供給部(21a)を介して供給するとともに排出部(21b)を介して前記超臨界水又は亜臨界水を前記反応容器(11)の外部に排出し、
前記反応管(21)に未利用重質油を供給して前記反応管(21)に供給される超臨界水又は亜臨界水と未利用重質油とを混合し、
超臨界水又は亜臨界水に混合した未利用重質油を前記反応管(21)内で超臨界水又は亜臨界水と反応させて改質油に転換し、
前記排出部(21b)を介して前記反応容器(11)の外部に排出される前記超臨界水又は亜臨界水から改質油を分離回収する
未利用重質油の改質方法。
Supercritical water or subcritical water is supplied to the reaction tube (21) provided inside the reaction vessel (11) from the outside of the reaction vessel (11) via the supply unit (21a) and the discharge unit (21b). The supercritical water or subcritical water is discharged to the outside of the reaction vessel (11) through
Supplying unused heavy oil to the reaction tube (21) and mixing supercritical water or subcritical water and unused heavy oil supplied to the reaction tube (21),
Unused heavy oil mixed with supercritical water or subcritical water is reacted with supercritical water or subcritical water in the reaction tube (21) to be converted into reformed oil,
A method for reforming unused heavy oil, in which reformed oil is separated and recovered from the supercritical water or subcritical water discharged to the outside of the reaction vessel (11) through the discharge section (21b).
反応管(21)内の超臨界水又は亜臨界水と混合した未利用重質油の温度変化状況に基づいて前記反応管(21)に供給される超臨界水又は亜臨界水の水量を制御する請求項1記載の改質方法。   Control the amount of supercritical water or subcritical water supplied to the reaction tube (21) based on the temperature change of unused heavy oil mixed with supercritical water or subcritical water in the reaction tube (21). The reforming method according to claim 1. 反応容器(11)と、
前記反応容器(11)の内部に螺旋状に又は蛇行して設けられ両端における供給部(21a)と排出部(21b)がそれぞれ前記反応容器(11)の容器壁(13)に貫通する反応管(21)と、
前記反応容器(11)の外部から前記供給部(21a)を介して前記反応管(21)に超臨界水又は亜臨界水を供給するとともに前記排出部(21b)を介して前記超臨界水又は亜臨界水を前記反応容器(11)の外部に排出させる臨界水供給手段(31)と、
前記臨界水供給手段(31)を構成する供給管(32)に設けられた混合器(36)に未利用重質油を供給して前記反応管(21)に供給される超臨界水又は亜臨界水と未利用重質油とを混合させる重質油供給手段(37)と、
前記排出部(21b)に接続され前記排出部(21b)を介して前記反応容器(11)の外部に排出される前記超臨界水又は亜臨界水から改質油を分離回収する油水分離手段(46)と
を備え、
前記反応管(21)は、超臨界水又は亜臨界水と混合して内部を流れる未利用重質油をその超臨界水又は亜臨界水と反応させて改質油に転換させた後前記反応容器(11)の外部に導くように構成された
ことを特徴とする未利用重質油の改質装置。
A reaction vessel (11),
A reaction tube provided inside the reaction vessel (11) in a spiral or meandering manner, and the supply portion (21a) and the discharge portion (21b) at both ends penetrate the vessel wall (13) of the reaction vessel (11), respectively. (21) and
Supercritical water or subcritical water is supplied from the outside of the reaction vessel (11) to the reaction tube (21) through the supply unit (21a) and the supercritical water or through the discharge unit (21b). Critical water supply means (31) for discharging subcritical water to the outside of the reaction vessel (11);
Supercritical water or sub-phase supplied to the reaction tube (21) by supplying unused heavy oil to the mixer (36) provided in the supply tube (32) constituting the critical water supply means (31). Heavy oil supply means (37) for mixing critical water and unused heavy oil;
Oil-water separation means for separating and recovering reformed oil from the supercritical water or subcritical water connected to the discharge unit (21b) and discharged to the outside of the reaction vessel (11) through the discharge unit (21b) ( 46) and
The reaction tube (21) is a mixture of supercritical water or subcritical water that reacts with the unused heavy oil flowing inside to react with the supercritical water or subcritical water to convert it into a reformed oil, and then the reaction. An apparatus for reforming unused heavy oil, characterized in that it is configured to guide the container (11) to the outside.
反応管(21)を流れる超臨界水又は亜臨界水と混合した未利用重質油の温度を測定する温度センサ(61,62)と、前記温度センサ(61,62)の検出出力により臨界水供給手段(31)を制御するコントローラ(63)とを更に備えた請求項3記載の改質装置。
A temperature sensor (61, 62) for measuring the temperature of the unused heavy oil mixed with supercritical water or subcritical water flowing through the reaction tube (21), and the detection output of the temperature sensor (61, 62) The reformer according to claim 3, further comprising a controller (63) for controlling the supply means (31).
JP2004292115A 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor Withdrawn JP2006104311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292115A JP2006104311A (en) 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292115A JP2006104311A (en) 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2006104311A true JP2006104311A (en) 2006-04-20

Family

ID=36374416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292115A Withdrawn JP2006104311A (en) 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2006104311A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174649A (en) * 2007-01-19 2008-07-31 Mitsubishi Materials Corp Separation method for high-temperature high-pressure water and oil and its separation apparatus
WO2011106217A2 (en) * 2010-02-23 2011-09-01 Chevron U.S.A. Inc. Process for upgrading hydrocarbons and device for use therein
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
US8815081B2 (en) 2007-11-28 2014-08-26 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174649A (en) * 2007-01-19 2008-07-31 Mitsubishi Materials Corp Separation method for high-temperature high-pressure water and oil and its separation apparatus
US8815081B2 (en) 2007-11-28 2014-08-26 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US9656230B2 (en) 2007-11-28 2017-05-23 Saudi Arabian Oil Company Process for upgrading heavy and highly waxy crude oil without supply of hydrogen
US10010839B2 (en) 2007-11-28 2018-07-03 Saudi Arabian Oil Company Process to upgrade highly waxy crude oil by hot pressurized water
US8394260B2 (en) 2009-12-21 2013-03-12 Saudi Arabian Oil Company Petroleum upgrading process
WO2011106217A2 (en) * 2010-02-23 2011-09-01 Chevron U.S.A. Inc. Process for upgrading hydrocarbons and device for use therein
WO2011106217A3 (en) * 2010-02-23 2011-11-24 Chevron U.S.A. Inc. Process for upgrading hydrocarbons and device for use therein
US8197670B2 (en) 2010-02-23 2012-06-12 Chevron U.S.A. Inc. Process for upgrading hydrocarbons and device for use therein
US9382485B2 (en) 2010-09-14 2016-07-05 Saudi Arabian Oil Company Petroleum upgrading process
US9957450B2 (en) 2010-09-14 2018-05-01 Saudi Arabian Oil Company Petroleum upgrading process

Similar Documents

Publication Publication Date Title
US7658078B2 (en) System for reforming heavy oil, method therefor, and combined cycle power system
JP4857258B2 (en) Compact steam reformer
US4272383A (en) Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions
EP2292325B1 (en) Process for coal dewatering
US20240198306A1 (en) Reaction chamber for supercritical water oxidation reactor
FI3476468T3 (en) Gasification device in a supercritical medium of an aqueous effluent
JP2006104311A (en) Method for reforming unutilized heavy oil and apparatus therefor
JPWO2009041600A1 (en) Synthetic reaction system
CN101890254B (en) Separation system and method for high-temperature and high-pressure complex fluid
EP0018366B1 (en) Method and apparatus for effecting subsurface, controlled, accelerated chemical reactions
US8361175B2 (en) Method and device for converting biomass into gaseous products
JP2006104310A (en) Method for reforming unutilized heavy oil and apparatus therefor
CN107427802B (en) Boiling water reactor
CA2834946C (en) Heat exchange system
JP4575700B2 (en) Gas storage method
JP2002226427A (en) Method for cooling equipment
JP4643369B2 (en) Heavy oil reforming system and power generation system
EP4114560A1 (en) Charging water oxidation reactor using recovered reactor energy
JP4402606B2 (en) Heavy oil reforming method using hydrothermal reaction and heavy oil reformer using hydrothermal reaction
JP4861088B2 (en) Heavy oil reformer and method of operating heavy oil reformer
RU2225430C1 (en) Electric heating plant for producing carbide oil and high-calorie gas from sawdust or peat
EP3031776B1 (en) Carbon dioxide preferential oxidation reactor
WO2015197752A1 (en) Apparatus and process for cooling hot gas
AU2002302182B2 (en) High pressure extraction
JP2008133370A (en) Device for modifying heavy oil

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108