JP2006104310A - Method for reforming unutilized heavy oil and apparatus therefor - Google Patents

Method for reforming unutilized heavy oil and apparatus therefor Download PDF

Info

Publication number
JP2006104310A
JP2006104310A JP2004292114A JP2004292114A JP2006104310A JP 2006104310 A JP2006104310 A JP 2006104310A JP 2004292114 A JP2004292114 A JP 2004292114A JP 2004292114 A JP2004292114 A JP 2004292114A JP 2006104310 A JP2006104310 A JP 2006104310A
Authority
JP
Japan
Prior art keywords
pressure water
heavy oil
reaction vessel
supply pipe
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004292114A
Other languages
Japanese (ja)
Inventor
Motohiro Sakaihara
基浩 境原
Kenji Nishimura
建二 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004292114A priority Critical patent/JP2006104310A/en
Publication of JP2006104310A publication Critical patent/JP2006104310A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stably reform an unutilized heavy oil without causing choking by coking. <P>SOLUTION: The unutilized heavy oil is fed into a cylindrical body for reaction with a heavy oil feed pipe 17 passing through a vessel wall of a reaction vessel 11, communicating with and connecting to the cylindrical body 23 for the reaction. When the unutilized heavy oil is fed, high-pressure water is fed to a first high-pressure water feed pipe 31 covering the heavy oil feed pipe and extending into the reaction vessel to thereby cool the heavy oil feed pipe and cool the outer surface of the cylindrical body for the reaction with the high-pressure water. The unutilized heavy oil is reacted with supercritical water or subcritical water in the cylindrical body for the reaction having the cooled outer surface and converted into a reformed oil. The resultant reformed oil converted in the cylindrical body 23 for the reaction is discharged from the cylindrical body 23 for the reaction and the reaction vessel 11 with a reformed oil discharge pipe 18 passing through the vessel wall of the reaction vessel, communicating with and connecting to the cylindrical body for the reaction. When the reformed oil is discharged, the reformed oil discharge pipe 18 is cooled by feeding the high-pressure water to a second high-pressure water feed pipe 32 covering the reformed oil discharge pipe 18 and extending into the reaction vessel 11. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、未利用重質油を超臨界水又は亜臨界水と反応させることにより改質油に転換する未利用重質油の改質方法及びその装置に関するものである。   The present invention relates to a method for reforming unused heavy oil and an apparatus therefor, in which unused heavy oil is converted into reformed oil by reacting with supercritical water or subcritical water.

従来、化石燃料である原油は常圧蒸留塔や減圧蒸留塔等により精製され、減圧蒸留塔の最低部に溜まるような超重質油はアスファルト等への利用以外には利用価値が低いとされていた。しかし近年では、このような未利用重質油を超臨界水又は亜臨界水と反応させることにより改質油に転換し、その改質油をガスタービンの発電用燃料等として利用することが提案されている(例えば、特許文献1参照。)。ここで、亜臨界水とは200〜374℃の温度でかつ15.68〜21.07MPaの圧力にある水の状態を意味する。また水の超臨界状態とは374〜900℃の温度でかつ21.07〜49.00MPaの圧力にある水の状態を意味する。従って、未利用重質油を改質させる装置にあってはそのような高温かつ高圧の超臨界水又は亜臨界水を貯留する反応容器が用いられる。   Conventionally, crude oil, which is a fossil fuel, is refined by an atmospheric distillation column, a vacuum distillation column, etc., and superheavy oil that accumulates in the lowest part of the vacuum distillation column is considered to have low utility value other than asphalt. It was. In recent years, however, it has been proposed that such unused heavy oil be converted to reformed oil by reacting with supercritical water or subcritical water, and that the reformed oil be used as fuel for power generation of gas turbines, etc. (For example, refer to Patent Document 1). Here, subcritical water means a state of water at a temperature of 200 to 374 ° C. and a pressure of 15.68 to 21.07 MPa. The supercritical state of water means a state of water at a temperature of 374 to 900 ° C. and a pressure of 21.07 to 49.00 MPa. Therefore, in an apparatus for reforming unused heavy oil, a reaction vessel that stores such high-temperature and high-pressure supercritical water or subcritical water is used.

図4に詳しく示すように、従来の反応容器1は、上部が開口して超臨界水又は亜臨界水を貯留可能に構成された容器本体2と、その容器本体1の上部開口部2aを開放可能に閉止する蓋体3とを備える。容器本体2にはパッキン用の下凹溝2dが周方向に連続して形成され、蓋体3の下凹溝2dに対応する部分には上凹溝3bが円周方向に連続して形成される。そして、上下の凹溝3b,2dにパッキン4を装着して蓋体3により容器本体2の上部開口部2aを閉止させている。一方、その蓋体3にはその蓋体3を貫通して高圧水供給管6と重質油供給管7と改質油排出管8が設けられ、反応容器1の周囲には、反応容器1を加熱してその反応容器1に高圧水供給管6を介して供給された高圧水を超臨界水又は亜臨界水にするヒータ9が設けられる。そして、この反応容器1では、重質油供給管8を介して反応容器1に未利用重質油を供給し、その未利用重質油を反応容器1の内部に貯留された超臨界水又は亜臨界水と反応させることにより改質油に転換した後、改質油排出管8を介してその改質油を反応容器1から排出させるようになっている。
特開2003−286491号公報(「従来の技術」の欄)
As shown in detail in FIG. 4, the conventional reaction vessel 1 has a container body 2 that is open at the top and configured to store supercritical water or subcritical water, and an upper opening 2 a of the container body 1 is opened. And a lid 3 that closes as possible. A lower concave groove 2d for packing is formed continuously in the circumferential direction in the container body 2, and an upper concave groove 3b is formed continuously in the circumferential direction at a portion corresponding to the lower concave groove 2d of the lid 3. The The packing 4 is attached to the upper and lower concave grooves 3b and 2d, and the upper opening 2a of the container body 2 is closed by the lid 3. On the other hand, the lid 3 is provided with a high-pressure water supply pipe 6, a heavy oil supply pipe 7, and a reformed oil discharge pipe 8 penetrating through the lid 3. And a heater 9 is provided for converting the high-pressure water supplied to the reaction vessel 1 through the high-pressure water supply pipe 6 into supercritical water or subcritical water. In the reaction vessel 1, unused heavy oil is supplied to the reaction vessel 1 via the heavy oil supply pipe 8, and the unused heavy oil is stored in the reaction vessel 1 with supercritical water or After being converted to reformed oil by reacting with subcritical water, the reformed oil is discharged from the reaction vessel 1 via the reformed oil discharge pipe 8.
JP 2003-286491 A ("Conventional Technology" column)

しかし、上述した従来の改質装置では、ヒータ9が周囲に設けられた反応容器1の蓋体3にその蓋体3を貫通させて重質油供給管7と改質油排出管8を設けているので、ヒータ9から発せられる熱及び高温高圧の超臨界水によりその反応容器1とともに重質油供給管7と改質油排出管8も高温となる。ここで、重質油供給管7から反応容器1に供給される未利用重質油は一般的に430℃以上でコーキングするため、反応容器1の温度が上昇すると、その内壁近傍の重質油がコーキングを起こし、その内壁に付着する不具合がある。また、蓋体3を貫通して設けられた供給管7の温度が上昇すると、その供給管7の内部で重質油がコーキングを起こし、その供給管7を閉塞させてしまう不具合がある。特に、この現象が起こるのは通油してから430℃の部分では1時間〜2時間程度であるけれども、高温になるとコーキングスピードが速くなるために、更に短い時間で閉塞を起こすことも考えられ、このため従来の反応容器を用いた改質装置では、比較的長時間にわたって安定して未利用重質油を改質させることが困難であった。
本発明の目的は、コーキングによる閉塞を生じさせることなく未利用重質油を安定して改質し得る未利用重質油の改質方法及びその装置を提供することにある。
However, in the above-described conventional reformer, the heavy oil supply pipe 7 and the reformed oil discharge pipe 8 are provided by penetrating the lid 3 of the reaction vessel 1 around which the heater 9 is provided. Therefore, the heavy oil supply pipe 7 and the reformed oil discharge pipe 8 are also heated together with the reaction vessel 1 by the heat generated from the heater 9 and the high-temperature and high-pressure supercritical water. Here, since the unused heavy oil supplied from the heavy oil supply pipe 7 to the reaction vessel 1 is generally coked at 430 ° C. or higher, when the temperature of the reaction vessel 1 rises, the heavy oil near the inner wall thereof Has a problem of causing caulking and adhering to its inner wall. Further, when the temperature of the supply pipe 7 provided through the lid body 3 rises, there is a problem that heavy oil causes coking inside the supply pipe 7 and closes the supply pipe 7. In particular, this phenomenon occurs for about 1 to 2 hours at 430 ° C after the oil has passed. However, since the caulking speed increases at high temperatures, it may be possible to cause clogging in a shorter time. For this reason, it is difficult for a conventional reformer using a reaction vessel to stably reform unused heavy oil for a relatively long time.
An object of the present invention is to provide a method for reforming unused heavy oil and an apparatus therefor that can stably reform unused heavy oil without causing blockage due to coking.

請求項1に係る発明は、図1に示すように、超臨界水又は亜臨界水を貯留する反応容器11内に反応容器11の容器壁に離間して設けられた反応用筒体23に未利用重質油を供給して未利用重質油を超臨界水又は亜臨界水と反応させることにより改質油に転換した後、改質油を反応用筒体23及び反応容器11から排出する未利用重質油の改質方法である。   As shown in FIG. 1, the invention according to claim 1 is not provided in a reaction cylinder 23 provided in a reaction vessel 11 storing supercritical water or subcritical water so as to be separated from the vessel wall of the reaction vessel 11. After the used heavy oil is supplied and the unused heavy oil is converted into reformed oil by reacting with supercritical water or subcritical water, the reformed oil is discharged from the reaction cylinder 23 and the reaction vessel 11. This is a method for reforming unused heavy oil.

その特徴ある点は、反応容器11の容器壁を貫通して反応用筒体23に連通接続された重質油供給管17により未利用重質油を反応用筒体23に供給し、未利用重質油を供給する際に、重質油供給管17を被覆しかつ反応容器11内に延びる第1高圧水供給管31に高圧水を供給することにより重質油供給管17を冷却するとともに反応用筒体23の外面を第1高圧水供給管31に供給された高圧水により冷却し、外面が冷却される反応用筒体23内で未利用重質油を超臨界水又は亜臨界水と反応させて改質油に転換し、反応容器11の容器壁を貫通して反応用筒体23に連通接続された改質油排出管18により反応用筒体23内で転換した改質油を反応用筒体23及び反応容器11から排出し、改質油を排出する際に、改質油排出管18を被覆しかつ反応容器11内に延びる第2高圧水供給管32に高圧水を供給することにより改質油排出管18を冷却し、第1及び第2高圧水供給管31,32により反応容器11内に供給された高圧水を反応容器11を加熱するヒータ39により超臨界水又は亜臨界水にすることを特徴とする。   The characteristic point is that unused heavy oil is supplied to the reaction cylinder 23 through the heavy oil supply pipe 17 that is connected to the reaction cylinder 23 through the container wall of the reaction container 11. When supplying heavy oil, the heavy oil supply pipe 17 is cooled by supplying high pressure water to the first high pressure water supply pipe 31 that covers the heavy oil supply pipe 17 and extends into the reaction vessel 11. The outer surface of the reaction cylinder 23 is cooled by the high-pressure water supplied to the first high-pressure water supply pipe 31, and unused heavy oil is supercritical water or subcritical water in the reaction cylinder 23 whose outer surface is cooled. The reformed oil is converted into reformed oil, and is converted in the reaction cylinder 23 by the reformed oil discharge pipe 18 that is connected to the reaction cylinder 23 through the container wall of the reaction vessel 11. Is discharged from the reaction cylinder 23 and the reaction vessel 11, and when the reformed oil is discharged, the reformed oil discharge pipe 18 is The reformed oil discharge pipe 18 is cooled by supplying high-pressure water to the second high-pressure water supply pipe 32 that covers and extends into the reaction container 11, and the first and second high-pressure water supply pipes 31, 32 provide the inside of the reaction container 11. The high-pressure water supplied to the reactor is converted into supercritical water or subcritical water by a heater 39 that heats the reaction vessel 11.

請求項5に係る発明は、更に図3に示すように、超臨界水又は亜臨界水を貯留する反応容器11と、反応容器11内に反応容器11の容器壁に離間して設けられ内部で未利用重質油を超臨界水又は亜臨界水と反応させて改質油に転換し得る反応用筒体23と、反応容器11の容器壁を貫通して反応用筒体23に連通接続され未利用重質油を反応用筒体23に供給する重質油供給管17と、重質油供給管17を被覆しかつ反応容器11内に延びて設けられた第1高圧水供給管31と、反応容器11の容器壁を貫通して反応用筒体23に連通接続され反応用筒体23内で転換した改質油を反応用筒体23及び反応容器11から排出する改質油排出管18と、改質油排出管18を被覆しかつ反応容器11内に延びて設けられた第2高圧水供給管32と、第1高圧水供給管31に高圧水を供給して未利用重質油を供給する際に重質油供給管17を冷却するとともに反応用筒体23の外面を第1高圧水供給管31に供給した高圧水により冷却する第1高圧水供給ポンプ34と、第2高圧水供給管32に高圧水を供給して改質油を排出する際に改質油排出管18を冷却する第2高圧水供給ポンプ36と、第1及び第2高圧水供給管31,32により反応容器11内に供給された高圧水を加熱して超臨界水又は亜臨界水にするヒータ39とを備えた未利用重質油の改質装置である。   As shown in FIG. 3, the invention according to claim 5 further includes a reaction vessel 11 for storing supercritical water or subcritical water, and is provided in the reaction vessel 11 so as to be separated from the vessel wall of the reaction vessel 11. A reaction cylinder 23 that can be converted into reformed oil by reacting unused heavy oil with supercritical water or subcritical water, and is connected to the reaction cylinder 23 through the container wall of the reaction vessel 11. A heavy oil supply pipe 17 that supplies unused heavy oil to the reaction cylinder 23, a first high-pressure water supply pipe 31 that covers the heavy oil supply pipe 17 and extends into the reaction vessel 11; The reformed oil discharge pipe which passes through the container wall of the reaction vessel 11 and communicates with the reaction cylinder 23 and converts the reformed oil converted in the reaction cylinder 23 from the reaction cylinder 23 and the reaction vessel 11. 18 and a second high-pressure water supply pipe 32 that covers the reformed oil discharge pipe 18 and extends into the reaction vessel 11. When the high pressure water is supplied to the first high pressure water supply pipe 31 and the unused heavy oil is supplied, the heavy oil supply pipe 17 is cooled and the outer surface of the reaction cylinder 23 is placed on the first high pressure water supply pipe 31. A first high-pressure water supply pump 34 that is cooled by the high-pressure water supplied to the second high-pressure water, and a second high-pressure water supply pipe 32 that cools the reformed oil discharge pipe 18 when the high-pressure water is supplied to the reformed oil. A high-pressure water supply pump 36 and a heater 39 provided with a heater 39 that heats the high-pressure water supplied into the reaction vessel 11 by the first and second high-pressure water supply pipes 31 and 32 to form supercritical water or subcritical water. It is a heavy oil reformer.

この請求項1に記載された未利用重質油の改質方法及び請求項5に記載された未利用重質油の改質装置では、第1高圧水供給管31に高圧水が供給されることによりその高圧水は容器壁13を貫通して設けられた重質油供給管17を周囲から冷却するので、重質油供給管17を通過する未利用重質油が加熱されてその供給管17の内部で重質油がコーキングを起こすことを防止する。第1高圧水供給管31に供給された高圧水は反応用筒体23の外面も冷却するので、反応用筒体23の内壁近傍はコーキング温度に達することはなく、反応用筒体23の内部に供給された重質油がコーキングを起こしてその内壁に付着することを防止する。
一方、第2高圧水供給管32に供給された高圧水は容器壁13を貫通して設けられた改質油排出管18を周囲から冷却するので、改質油排出管18を通過する改質油が加熱されてその排出管18の内部で重質油がコーキングを起こすことを防止する。そして、第1及び第2高圧水供給管31,32により反応容器11内に供給された高圧水を反応容器11を加熱するヒータにより加熱して超臨界水又は亜臨界水にするので、未利用重質油を改質させて改質油排出管18から外部に排出される超臨界水又は亜臨界水が新たに作られ、重質油供給管17を介して反応用筒体23に連続的に供給される未利用重質油を安定してかつ連続的に改質させることができる。
In the method for reforming unused heavy oil described in claim 1 and the reformer for unused heavy oil described in claim 5, high-pressure water is supplied to the first high-pressure water supply pipe 31. As a result, the high-pressure water cools the heavy oil supply pipe 17 provided through the container wall 13 from the surroundings, so that the unused heavy oil passing through the heavy oil supply pipe 17 is heated and the supply pipe is supplied. 17 prevents heavy oil from coking. Since the high-pressure water supplied to the first high-pressure water supply pipe 31 also cools the outer surface of the reaction cylinder 23, the vicinity of the inner wall of the reaction cylinder 23 does not reach the coking temperature, and the inside of the reaction cylinder 23 The heavy oil supplied to the tank prevents coking and adheres to its inner wall.
On the other hand, the high-pressure water supplied to the second high-pressure water supply pipe 32 cools the reformed oil discharge pipe 18 provided through the container wall 13 from the surroundings. The oil is heated to prevent heavy oil from coking inside the discharge pipe 18. Since the high-pressure water supplied into the reaction vessel 11 by the first and second high-pressure water supply pipes 31 and 32 is heated by the heater for heating the reaction vessel 11 to be supercritical water or subcritical water, Supercritical water or subcritical water that is reformed from the heavy oil and is discharged to the outside from the reformed oil discharge pipe 18 is newly created and continuously supplied to the reaction cylinder 23 via the heavy oil supply pipe 17. It is possible to stably and continuously reform the unused heavy oil supplied to.

請求項2に係る発明は、請求項1に係る発明であって、第1高圧水供給管31内の高圧水の温度変化状況に基づいて第1高圧水供給管31に供給される高圧水の水量を制御することを特徴とする。
請求項3に係る発明は、請求項1に係る発明であって、第1及び第2高圧水供給管31,32内の高圧水の温度変化状況に基づいて第1及び第2高圧水供給管31,32に供給される高圧水の水量をそれぞれ制御することを特徴とする。
この請求項2及び請求項3に記載された未利用重質油の改質方法では、第1及び第2高圧水供給管31,32内の高圧水の温度変化状況に基づいて第1及び第2高圧水供給管31,32に供給される高圧水の水量をそれぞれ制御するので、重質油供給管17の又は重質油供給管17と改質油排出管18双方を通過する重質油が加熱されてコーキングを起こすことを有効に防止することができる。
The invention according to claim 2 is the invention according to claim 1, wherein the high-pressure water supplied to the first high-pressure water supply pipe 31 based on the temperature change state of the high-pressure water in the first high-pressure water supply pipe 31. It is characterized by controlling the amount of water.
The invention according to claim 3 is the invention according to claim 1, wherein the first and second high-pressure water supply pipes are based on the temperature change state of the high-pressure water in the first and second high-pressure water supply pipes 31 and 32. The amount of high-pressure water supplied to 31 and 32 is controlled, respectively.
In the method for reforming unused heavy oil according to claim 2 and claim 3, the first and second high-pressure water in the first and second high-pressure water supply pipes 31 and 32 are changed based on the temperature change state of the first and second high-pressure water supply pipes 31 and 32. 2 Since the amount of high-pressure water supplied to the high-pressure water supply pipes 31 and 32 is controlled, the heavy oil passing through the heavy oil supply pipe 17 or both the heavy oil supply pipe 17 and the reformed oil discharge pipe 18. Can be effectively prevented from being heated and causing coking.

請求項6に係る発明は、請求項5に係る発明であって、第1高圧水供給管31内の高圧水の温度を測定する第1温度センサ41と、第1温度センサ41の検出出力により第1高圧水供給ポンプ34を制御するコントローラ43が設けられた改質装置である。
請求項7に係る発明は、請求項5に係る発明であって、第1高圧水供給管31内の高圧水の温度を測定する第1温度センサ41と、第2高圧水供給管32内の高圧水の温度を測定する第2温度センサ42と、第1温度センサ41及び第2温度センサ42の各検出出力により第1高圧水供給ポンプ34及び第2高圧水供給ポンプ36を制御するコントローラ43が設けられた改質装置である。
この請求項6及び請求項7に記載された未利用重質油の改質装置では、温度センサ41,42の検出出力によりコントローラ43がポンプ34,36を制御して第1及び第2高圧水供給管31,32に供給される高圧水の水量をそれぞれ制御するので、重質油供給管17の又は重質油供給管17と改質油排出管18双方を通過する重質油が加熱されてコーキングを起こすことを有効に防止することができる。
The invention according to claim 6 is the invention according to claim 5, wherein the first temperature sensor 41 that measures the temperature of the high-pressure water in the first high-pressure water supply pipe 31 and the detection output of the first temperature sensor 41 are used. The reformer is provided with a controller 43 that controls the first high-pressure water supply pump 34.
The invention according to claim 7 is the invention according to claim 5, wherein the first temperature sensor 41 for measuring the temperature of the high-pressure water in the first high-pressure water supply pipe 31 and the second high-pressure water supply pipe 32 are provided. A second temperature sensor 42 that measures the temperature of the high-pressure water, and a controller 43 that controls the first high-pressure water supply pump 34 and the second high-pressure water supply pump 36 based on the detection outputs of the first temperature sensor 41 and the second temperature sensor 42. Is a reforming apparatus.
In the reformer for unused heavy oil described in claims 6 and 7, the controller 43 controls the pumps 34 and 36 based on the detection outputs of the temperature sensors 41 and 42 so that the first and second high-pressure waters are supplied. Since the amount of high-pressure water supplied to the supply pipes 31 and 32 is controlled, the heavy oil passing through the heavy oil supply pipe 17 or both the heavy oil supply pipe 17 and the reformed oil discharge pipe 18 is heated. Can effectively prevent coking.

請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、反応容器11内の超臨界水又は亜臨界水の温度変化状況に基づいてヒータ39を制御する改質方法である。
請求項8に係る発明は、請求項6又は7に係る発明であって、反応容器11内の超臨界水又は亜臨界水の温度を測定する第3温度センサ44を更に備え、コントローラ43は第3温度センサ44の検出出力によりヒータ39を制御するように構成された改質装置である。
この請求項4に記載された改質方法及び請求項8に記載された改質装置では、高圧水の供給により変化する反応容器11内の超臨界水又は亜臨界水の温度変化状況によりヒータ39を制御するので、第1及び第2高圧水供給管31,32により反応容器11内に供給された高圧水に起因する超臨界水又は亜臨界水の温度変化を有効に減少させて、反応用筒体23に連続的に供給される未利用重質油を安定してかつ連続的に改質させる。
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the reforming is performed by controlling the heater 39 based on the temperature change state of the supercritical water or subcritical water in the reaction vessel 11. Is the method.
The invention according to claim 8 is the invention according to claim 6 or 7, further comprising a third temperature sensor 44 for measuring the temperature of the supercritical water or subcritical water in the reaction vessel 11, and the controller 43 includes The reformer is configured to control the heater 39 based on the detection output of the three temperature sensor 44.
In the reforming method described in claim 4 and the reforming apparatus described in claim 8, the heater 39 is changed depending on the temperature change state of the supercritical water or subcritical water in the reaction vessel 11 which is changed by the supply of high-pressure water. Therefore, the temperature change of supercritical water or subcritical water caused by the high pressure water supplied into the reaction vessel 11 by the first and second high pressure water supply pipes 31 and 32 is effectively reduced, and the reaction is performed. The unused heavy oil continuously supplied to the cylindrical body 23 is stably and continuously reformed.

本発明では、第1高圧水供給管に高圧水が供給されることによりその高圧水は容器壁を貫通して設けられた重質油供給管を周囲から冷却するので、重質油供給管を通過する未利用重質油が加熱されてその供給管の内部で重質油がコーキングを起こすことを防止することができる。第1高圧水供給管に供給された高圧水は反応用筒体の外面も冷却するので、反応用筒体の内壁近傍はコーキング温度に達することはなく、反応用筒体の内部に供給された重質油がコーキングを起こしてその内壁に付着することを防止することができる。一方、第2高圧水供給管に供給された高圧水は容器壁を貫通して設けられた改質油排出管を周囲から冷却するので、改質油排出管を通過する改質油が加熱されてその排出管の内部で重質油系成分がコーキングを起こすことを防止することができる。そして、第1及び第2高圧水供給管により反応容器内に供給された高圧水を反応容器を加熱するヒータにより加熱して超臨界水又は亜臨界水にするので、未利用重質油を改質させて改質油排出管から外部に排出される超臨界水又は亜臨界水が新たに作られ、重質油供給管を介して反応用筒体に連続的に供給される未利用重質油を安定してかつ連続的に改質させることができる。   In the present invention, when high pressure water is supplied to the first high pressure water supply pipe, the high pressure water cools the heavy oil supply pipe provided through the container wall from the surroundings. It is possible to prevent the unused heavy oil passing therethrough from being heated and causing heavy oil to coke inside the supply pipe. Since the high-pressure water supplied to the first high-pressure water supply pipe also cools the outer surface of the reaction cylinder, the vicinity of the inner wall of the reaction cylinder does not reach the coking temperature, and is supplied to the inside of the reaction cylinder. It is possible to prevent heavy oil from causing caulking and adhering to its inner wall. On the other hand, since the high-pressure water supplied to the second high-pressure water supply pipe cools the reformed oil discharge pipe provided through the container wall from the surroundings, the reformed oil passing through the reformed oil discharge pipe is heated. Thus, heavy oil components can be prevented from coking inside the discharge pipe. Then, the high-pressure water supplied into the reaction vessel by the first and second high-pressure water supply pipes is heated to a supercritical water or subcritical water by a heater that heats the reaction vessel. Supercritical water or subcritical water discharged to the outside from the reformed oil discharge pipe is newly made and continuously supplied to the reaction cylinder through the heavy oil supply pipe The oil can be stably and continuously modified.

以下、本発明の最良の実施の形態について説明する。
図3に示すように、本発明の未利用重質油の改質装置10は、超臨界水又は亜臨界水を貯留する反応容器11を備える。未利用重質油としてはオイルサンド油、オイルシェール油等の超重質油や、石油精製工程から発生する利用できない超重質油が例示される。図1に詳しく示すように、反応容器11は、上部が開口して超臨界水又は亜臨界水を貯留可能に構成された容器本体12と、その容器本体12の上部開口部12aを開放可能に閉止する蓋体13とを備える。容器本体12及び蓋体13はそれぞれステンレス鋼等の金属からなるバルク体を切削加工により削り出すことにより作られる。容器本体12の上部周囲にはフランジ部12bが外側に突出して形成され、このフランジ部12bには複数の雌ねじ孔12cが縦方向に形成されるとともに、その上面にはパッキン用の下凹溝12dが周方向に連続して形成される。
The best mode of the present invention will be described below.
As shown in FIG. 3, the unused heavy oil reforming apparatus 10 of the present invention includes a reaction vessel 11 for storing supercritical water or subcritical water. Examples of unused heavy oils include super heavy oils such as oil sand oil and oil shale oil, and unusable super heavy oils generated from petroleum refining processes. As shown in detail in FIG. 1, the reaction vessel 11 has a container body 12 that is open at the top and configured to store supercritical water or subcritical water, and an upper opening 12 a of the container body 12 can be opened. And a lid 13 for closing. The container body 12 and the lid body 13 are each made by cutting a bulk body made of a metal such as stainless steel by cutting. A flange portion 12b is formed on the periphery of the upper portion of the container body 12 so as to protrude outward. A plurality of female screw holes 12c are formed in the flange portion 12b in the vertical direction, and a lower concave groove 12d for packing is formed on the upper surface thereof. Are continuously formed in the circumferential direction.

一方、蓋体13はフランジ部12bの外径に相応する外径を有する円板状に形成され、雌ねじ孔12cに対応する位置に取付孔13aが形成され、下凹溝12dに対応する部分には上凹溝13bが円周方向に連続して形成される。上下の凹溝13b,12dにはパッキン14が装着され、この状態で取付孔13aに挿入された雄ねじ16を雌ねじ孔12cに螺合することにより、蓋体13は容器本体12の上部開口部12aを閉止するように構成される。   On the other hand, the lid body 13 is formed in a disk shape having an outer diameter corresponding to the outer diameter of the flange portion 12b, an attachment hole 13a is formed at a position corresponding to the female screw hole 12c, and a portion corresponding to the lower concave groove 12d. The upper concave groove 13b is continuously formed in the circumferential direction. Packing 14 is mounted in the upper and lower concave grooves 13b, 12d, and the lid 13 is fitted into the female screw hole 12c in this state, so that the lid 13 is placed in the upper opening 12a of the container body 12. Configured to close.

蓋体13にはその蓋体13を貫通して重質油供給管17と改質油排出管18が設けられる。また、反応容器11の内部には、この反応容器11の容器壁に離間して反応用筒体23が設けられる。反応用筒体23は反応容器11の内部の重質油供給管17の端部に接続され、重質油供給管17はその反応用筒体23の内部に未利用重質油を供給するように構成される。図2に詳しく示すように、この実施の形態における反応用筒体23は上端が閉止され下端が開放された筒体であって、蓋体13に鉛直に設けられた重質油供給管17の下端に閉止された上端が接続され、反応容器11内にその反応容器11の容器壁に離間して垂直に設けられる。この反応用筒体23では、下端開口部に焼結フィルタ23aが設けられ、下端開口部からその焼結フィルタ23aを通過して内部に侵入した超臨界水又は亜臨界水と重質油供給管17を介して供給された未利用重質油が反応してその内部において改質油に転換するように構成される。   The lid body 13 is provided with a heavy oil supply pipe 17 and a reformed oil discharge pipe 18 through the lid body 13. Further, a reaction cylinder 23 is provided inside the reaction vessel 11 so as to be separated from the vessel wall of the reaction vessel 11. The reaction cylinder 23 is connected to the end of the heavy oil supply pipe 17 inside the reaction vessel 11, and the heavy oil supply pipe 17 supplies unused heavy oil into the reaction cylinder 23. Configured. As shown in detail in FIG. 2, the reaction cylinder 23 in this embodiment is a cylinder whose upper end is closed and whose lower end is opened, and a heavy oil supply pipe 17 provided vertically on the lid body 13. The upper end closed at the lower end is connected, and the reaction vessel 11 is vertically provided in the reaction vessel 11 while being separated from the vessel wall of the reaction vessel 11. In this reaction cylinder 23, a sintered filter 23a is provided at the lower end opening, and supercritical water or subcritical water and heavy oil supply pipe that has entered the inside through the sintered filter 23a from the lower end opening. The unused heavy oil supplied via 17 reacts and is converted into reformed oil inside thereof.

一方、蓋体13を貫通して蓋体13に設けられた改質油排出管18は、反応容器11内部の下端が反応用筒体23の側壁に連通接続され、反応用筒体23内で転換した改質油を反応用筒体23及び反応容器11から排出するように構成される。また、蓋体13には、重質油供給管17を被覆しかつ反応容器11内に延びて設けられた第1高圧水供給管31と、改質油排出管18を被覆しかつ反応容器11内に延びて設けられた第2高圧水供給管32とが更に設けられる。   On the other hand, the reformed oil discharge pipe 18 penetrating the lid 13 and provided in the lid 13 has a lower end inside the reaction vessel 11 communicated with the side wall of the reaction cylinder 23, The converted reformed oil is configured to be discharged from the reaction cylinder 23 and the reaction vessel 11. The lid 13 is covered with a heavy oil supply pipe 17 and a first high-pressure water supply pipe 31 provided extending in the reaction vessel 11 and a reformed oil discharge pipe 18 and the reaction vessel 11. A second high-pressure water supply pipe 32 extending inward is further provided.

図3に示すように、反応容器11の外部の重質油供給管17の端部には重質油貯槽19が接続され、重質油貯槽19と蓋体13との間の重質油供給管17には、重質油貯槽19から未利用重質油を反応容器11に供給する重質油供給ポンプ21と、この重質油供給管17を流通する重質油を保温する保温ヒータ22が設けられる。反応容器11より外部の改質油排出管18の端部には気液分離槽24が接続され、反応容器11と気液分離槽24の間の改質油排出管18には熱交換機26と減圧弁27が設けられる。   As shown in FIG. 3, a heavy oil storage tank 19 is connected to an end of a heavy oil supply pipe 17 outside the reaction vessel 11, and a heavy oil supply between the heavy oil storage tank 19 and the lid body 13 is connected. The pipe 17 includes a heavy oil supply pump 21 that supplies unused heavy oil from the heavy oil storage tank 19 to the reaction vessel 11, and a heat retaining heater 22 that keeps the heavy oil flowing through the heavy oil supply pipe 17 warm. Is provided. A gas-liquid separation tank 24 is connected to the end of the reformed oil discharge pipe 18 outside the reaction vessel 11, and a heat exchanger 26 is connected to the reformed oil discharge pipe 18 between the reaction vessel 11 and the gas-liquid separation tank 24. A pressure reducing valve 27 is provided.

また、反応容器11の外部の第1及び第2高圧水供給管31,32の端部は水貯槽33にそれぞれ接続され、反応容器11と水貯槽33との間の第1及び第2高圧水供給管31,32には、水貯槽33に貯留された水を反応容器11に供給する第1及び第2高圧水供給ポンプ34,36がそれぞれ設けられ、この第1及び第2高圧水供給管31,32を流通する高圧水を調温する調温ヒータ37と加熱器38が第1及び第2高圧水供給管31,32に設けられる。第1高圧水供給ポンプ34は水貯槽33から第1高圧水供給管31に高圧水を供給して未利用重質油を供給する際の重質油供給管17を冷却するとともに、反応用筒体23の外面を第1高圧水供給管31に供給した高圧水により冷却するように構成され、第2高圧水供給ポンプ36は、第2高圧水供給管32に高圧水を供給して改質油を排出する際の改質油排出管18を冷却するように構成される。そして、反応容器11の外部には、第1及び第2高圧水供給管31,32により反応容器11内に供給された高圧水を加熱して超臨界水又は亜臨界水にするヒータ39が設けられる。   The ends of the first and second high-pressure water supply pipes 31 and 32 outside the reaction vessel 11 are connected to a water storage tank 33, respectively, and the first and second high-pressure water between the reaction vessel 11 and the water storage tank 33 are connected. The supply pipes 31 and 32 are provided with first and second high-pressure water supply pumps 34 and 36 for supplying water stored in the water storage tank 33 to the reaction vessel 11, respectively. The first and second high-pressure water supply pipes 31 and 32 are provided with a temperature control heater 37 and a heater 38 that control the temperature of the high-pressure water flowing through the first and second high-pressure water. The first high-pressure water supply pump 34 cools the heavy oil supply pipe 17 when supplying high-pressure water from the water storage tank 33 to the first high-pressure water supply pipe 31 to supply unused heavy oil, and also a reaction cylinder. The outer surface of the body 23 is configured to be cooled by the high pressure water supplied to the first high pressure water supply pipe 31, and the second high pressure water supply pump 36 supplies the high pressure water to the second high pressure water supply pipe 32 for reforming. The reformed oil discharge pipe 18 is cooled when the oil is discharged. A heater 39 is provided outside the reaction vessel 11 to heat the high-pressure water supplied into the reaction vessel 11 through the first and second high-pressure water supply pipes 31 and 32 to make supercritical water or subcritical water. It is done.

また、第1高圧水供給管31には、この第1高圧水供給管31内の高圧水の温度を測定する第1温度センサ41が設けられ、第2高圧水供給管32には、この第2高圧水供給管32内の高圧水の温度を測定する第2温度センサ42が設けられる。また、反応容器11には、この反応容器11内の超臨界水又は亜臨界水の温度を測定する第3温度センサ44が更に設けられる。この第1及び第2温度センサ41,42並びにこの第3温度センサ44の各検出出力はコントローラ43の入力端子に接続され、コントローラ43の制御出力は第1及び第2高圧水供給ポンプ34,36並びにヒータ39にそれぞれ接続される。そして、このコントローラ43は第1温度センサ41及び第2温度センサ42の各検出出力により第1高圧水供給ポンプ及び第2高圧水供給ポンプを制御するように構成され、第3温度センサ44の検出出力によりヒータ39を制御するように構成される。   The first high-pressure water supply pipe 31 is provided with a first temperature sensor 41 for measuring the temperature of the high-pressure water in the first high-pressure water supply pipe 31, and the second high-pressure water supply pipe 32 is provided with the first high-temperature water supply pipe 31. 2 A second temperature sensor 42 for measuring the temperature of the high-pressure water in the high-pressure water supply pipe 32 is provided. The reaction vessel 11 is further provided with a third temperature sensor 44 that measures the temperature of supercritical water or subcritical water in the reaction vessel 11. The detection outputs of the first and second temperature sensors 41 and 42 and the third temperature sensor 44 are connected to the input terminal of the controller 43, and the control output of the controller 43 is the first and second high-pressure water supply pumps 34 and 36. The heaters 39 are connected to each other. The controller 43 is configured to control the first high-pressure water supply pump and the second high-pressure water supply pump based on the detection outputs of the first temperature sensor 41 and the second temperature sensor 42, and detects the third temperature sensor 44. The heater 39 is controlled by the output.

次に、このような未利用重質油の改質装置を用いた本発明の未利用重質油の改質方法を説明する。
本発明の未利用重質油の改質方法は、超臨界水又は亜臨界水を貯留する反応容器11内に反応容器11の容器壁に離間して設けられた反応用筒体23に未利用重質油を供給して未利用重質油を超臨界水又は亜臨界水と反応させることにより改質油に転換した後、改質油を反応用筒体23及び反応容器11から排出する方法である。その具体的な手順は以下の通りである。
Next, the unused heavy oil reforming method of the present invention using such an unused heavy oil reforming apparatus will be described.
The method for reforming unused heavy oil of the present invention is not used for the reaction cylinder 23 provided in the reaction vessel 11 storing supercritical water or subcritical water so as to be separated from the vessel wall of the reaction vessel 11. Method of discharging heavy oil from reaction cylinder 23 and reaction vessel 11 after converting heavy oil into reformed oil by reacting unused heavy oil with supercritical water or subcritical water It is. The specific procedure is as follows.

(a) 未利用重質油の供給工程
反応容器11の容器壁を貫通して反応用筒体23に連通接続された重質油供給管17により未利用重質油を反応用筒体23に供給する。この前提として反応容器11には超臨界水又は亜臨界水が貯留され、この超臨界水又は亜臨界水は、第1及び第2高圧水供給管31,32により反応容器11内に供給された高圧水をヒータ39により加熱することにより得られたものである。
(a) Unused heavy oil supply step Unused heavy oil is supplied to the reaction cylinder 23 by a heavy oil supply pipe 17 that is connected to the reaction cylinder 23 through the container wall of the reaction vessel 11. Supply. As this premise, supercritical water or subcritical water is stored in the reaction vessel 11, and this supercritical water or subcritical water is supplied into the reaction vessel 11 through the first and second high-pressure water supply pipes 31 and 32. It is obtained by heating high-pressure water with the heater 39.

(b) 重質油供給管と反応用筒体の冷却工程
未利用重質油を供給する際に、重質油供給管17を被覆しかつ反応容器11内に延びる第1高圧水供給管31に高圧水を供給する。この高圧水の供給は第1高圧水供給ポンプ34を駆動することにより行われ、水貯槽33から第1高圧水供給管31に高圧水が供給されることによりその高圧水は蓋体13を貫通して設けられた重質油供給管17を周囲から冷却するとともに、反応容器11の内部に排出された高圧水は重質油供給管17の下端に連続するように設けられた反応用筒体23の外面を更に冷却する。これにより、重質油供給管17を通過する未利用重質油が加熱されてその供給管17の内部で重質油がコーキングを起こすようなことは回避され、その供給管17が閉塞するような事態を有効に防止することができる。
(b) Step of Cooling Heavy Oil Supply Pipe and Reaction Cylinder First High Pressure Water Supply Pipe 31 that covers heavy oil supply pipe 17 and extends into reaction vessel 11 when supplying unused heavy oil Supply high pressure water. The high-pressure water is supplied by driving the first high-pressure water supply pump 34, and the high-pressure water passes through the lid body 13 by supplying high-pressure water from the water storage tank 33 to the first high-pressure water supply pipe 31. The heavy oil supply pipe 17 provided in the reaction vessel 11 is cooled from the surroundings, and the high pressure water discharged into the reaction vessel 11 is provided continuously to the lower end of the heavy oil supply pipe 17. The outer surface of 23 is further cooled. As a result, it is avoided that unused heavy oil passing through the heavy oil supply pipe 17 is heated and coking of the heavy oil inside the supply pipe 17 is avoided, and the supply pipe 17 is blocked. Can be effectively prevented.

(c) 改質油転換工程
第1高圧水供給管31に供給された高圧水により外面が冷却される反応用筒体23内で未利用重質油を超臨界水又は亜臨界水と反応させて改質油に転換する。ここで、未利用重質油は、重質油供給ポンプ21を駆動することにより重質油供給管17を介して反応用筒体23の上部から内部に供給され、供給された未利用重質油が下端開口部から内部に侵入した超臨界水又は亜臨界水と反応してその内部において改質油に転換させられる。ここで、重質油供給管17から供給される未利用重質油は一般的に430℃以上でコーキングするけれども、反応用筒体23はその外面が冷却されているため、反応用筒体23の内壁近傍はコーキング温度に達することはなく、反応用筒体23の内部に供給された重質油がコーキングを起こしてその内壁に付着するような事態を回避することができる。
(c) Reformed oil conversion step Unused heavy oil is reacted with supercritical water or subcritical water in the reaction cylinder 23 whose outer surface is cooled by the high pressure water supplied to the first high pressure water supply pipe 31. To convert to reformed oil. Here, the unused heavy oil is supplied to the inside from the upper part of the reaction cylinder 23 via the heavy oil supply pipe 17 by driving the heavy oil supply pump 21, and the supplied unused heavy oil is supplied. The oil reacts with supercritical water or subcritical water that has entered the inside through the lower end opening, and is converted into reformed oil in the inside. Here, although the unused heavy oil supplied from the heavy oil supply pipe 17 is generally caulked at 430 ° C. or higher, the reaction cylinder 23 is cooled on its outer surface, so that the reaction cylinder 23 The vicinity of the inner wall does not reach the coking temperature, and it is possible to avoid a situation in which heavy oil supplied to the inside of the reaction cylinder 23 causes coking and adheres to the inner wall.

(d) 改質油の取り出し工程
次に、反応用筒体23内で転換した改質油を反応用筒体23及び反応容器11から水とともに排出させる。この排出は反応容器11の容器壁を貫通して反応用筒体23に連通接続された改質油排出管18により行う。改質油排出管18を介して水とともに排出された改質油はその後熱交換器26で冷却され、減圧弁27で減圧されて水の亜臨界状態又はそれ以下の温度及び圧力になる。この改質油と水の混合流体はフラッシュ分離槽24に送られて炭化水素系の重質系改質油が分離され、残余の液体は冷却器25aにより更に冷却されてその後気油水分離槽25においてガスと軽質系改質油と水に分離される。分離されたガスは図示しない発電用のボイラーの燃料等として使用される。また分離された重質系改質油と軽質系改質油は、図示しないボイラー用の燃料等として使用されるか、或いは石油精製プラントの中間原料として使用される。
(d) Step of taking out reformed oil Next, the reformed oil converted in the reaction cylinder 23 is discharged from the reaction cylinder 23 and the reaction vessel 11 together with water. This discharge is performed by a reformed oil discharge pipe 18 that passes through the container wall of the reaction container 11 and is connected to the reaction cylinder 23. The reformed oil discharged together with water through the reformed oil discharge pipe 18 is then cooled by the heat exchanger 26 and depressurized by the pressure reducing valve 27 to reach a subcritical state or lower temperature and pressure of water. The mixed fluid of the reformed oil and water is sent to the flash separation tank 24 to separate the hydrocarbon-based heavy reformed oil, and the remaining liquid is further cooled by the cooler 25a, and then the gas oil / water separation tank 25 is separated. Is separated into gas, light reforming oil and water. The separated gas is used as fuel for a power generation boiler (not shown). The separated heavy and light reformed oils are used as fuel for boilers (not shown) or the like, or used as intermediate raw materials for petroleum refining plants.

(e) 改質油排出管冷却工程
改質油を排出する際に、改質油排出管18を被覆しかつ反応容器11内に延びる第2高圧水供給管32に高圧水を供給する。この高圧水の供給は第2高圧水供給ポンプ36を駆動することにより行われ、水貯槽33から第2高圧水供給管32に高圧水が供給されることによりその高圧水は蓋体13を貫通して設けられた改質油排出管18を周囲から冷却する。これにより、改質油排出管18を通過する改質油が加熱されてその排出管18の内部で重質油系成分がコーキングを起こすようなことは回避され、その排出管18が閉塞するような事態を有効に防止することができる。
(e) Reformed oil discharge pipe cooling step When discharging the reformed oil, high pressure water is supplied to the second high pressure water supply pipe 32 that covers the reformed oil discharge pipe 18 and extends into the reaction vessel 11. The high-pressure water is supplied by driving the second high-pressure water supply pump 36, and the high-pressure water passes through the lid body 13 by supplying high-pressure water from the water storage tank 33 to the second high-pressure water supply pipe 32. Then, the reformed oil discharge pipe 18 provided is cooled from the surroundings. As a result, it is avoided that the reformed oil passing through the reformed oil discharge pipe 18 is heated to cause coking of heavy oil components in the discharge pipe 18, and the discharge pipe 18 is blocked. Can be effectively prevented.

(f) 高圧水加熱工程
第1及び第2高圧水供給管により反応容器11内に供給された高圧水を反応容器11を加熱するヒータにより加熱して超臨界水又は亜臨界水にする。これにより未利用重質油を改質させ、改質油排出管18から外部に排出された超臨界水又は亜臨界水が新たに作られ、重質油供給管17を介して反応用筒体23に連続的に供給される未利用重質油を連続的に改質させることができる。
(f) High-pressure water heating step The high-pressure water supplied into the reaction vessel 11 by the first and second high-pressure water supply pipes is heated by a heater for heating the reaction vessel 11 to be supercritical water or subcritical water. As a result, the unused heavy oil is reformed, and supercritical water or subcritical water discharged to the outside from the reformed oil discharge pipe 18 is newly made, and the reaction cylinder through the heavy oil supply pipe 17 The unused heavy oil continuously supplied to the fuel oil can be continuously reformed.

本発明の改質装置における反応容器の構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the reaction container in the reformer of this invention. その内部に設けられた反応用筒体の構造を示す拡大断面図である。It is an expanded sectional view which shows the structure of the cylinder for reaction provided in the inside. その装置の全体構成を示す構成図である。It is a block diagram which shows the whole structure of the apparatus. 従来の反応容器を示す図1に対応する断面図である。It is sectional drawing corresponding to FIG. 1 which shows the conventional reaction container.

符号の説明Explanation of symbols

10 改質装置
11 反応容器
17 重質油供給管
18 改質油排出管
23 反応用筒体
31 第1高圧水供給管
32 第2高圧水供給管
34 第1高圧水供給ポンプ
36 第2高圧水供給ポンプ
39 ヒータ
41 第1温度センサ
42 第2温度センサ
43 コントローラ
44 第3温度センサ
DESCRIPTION OF SYMBOLS 10 Reformer 11 Reaction container 17 Heavy oil supply pipe 18 Reformed oil discharge pipe 23 Reaction cylinder 31 First high-pressure water supply pipe 32 Second high-pressure water supply pipe 34 First high-pressure water supply pump 36 Second high-pressure water Supply pump 39 Heater 41 First temperature sensor 42 Second temperature sensor 43 Controller 44 Third temperature sensor

Claims (8)

超臨界水又は亜臨界水を貯留する反応容器(11)内に前記反応容器(11)の容器壁に離間して設けられた反応用筒体(23)に未利用重質油を供給して前記未利用重質油を前記超臨界水又は亜臨界水と反応させることにより改質油に転換した後、前記改質油を前記反応用筒体(23)及び前記反応容器(11)から排出する未利用重質油の改質方法であって、
前記反応容器(11)の容器壁を貫通して前記反応用筒体(23)に連通接続された重質油供給管(17)により前記未利用重質油を前記反応用筒体(23)に供給し、
前記未利用重質油を供給する際に、前記重質油供給管(17)を被覆しかつ前記反応容器(11)内に延びる第1高圧水供給管(31)に高圧水を供給することにより前記重質油供給管(17)を冷却するとともに前記反応用筒体(23)の外面を前記第1高圧水供給管(31)に供給された高圧水により冷却し、
外面が冷却される前記反応用筒体(23)内で前記未利用重質油を超臨界水又は亜臨界水と反応させて改質油に転換し、
前記反応容器(11)の容器壁を貫通して前記反応用筒体(23)に連通接続された改質油排出管(18)により前記反応用筒体(23)内で転換した改質油を前記反応用筒体(23)及び前記反応容器(11)から排出し、
前記改質油を排出する際に、前記改質油排出管(18)を被覆しかつ前記反応容器(11)内に延びる第2高圧水供給管(32)に高圧水を供給することにより前記改質油排出管(18)を冷却し、
前記第1及び第2高圧水供給管(31,32)により前記反応容器(11)内に供給された高圧水を前記反応容器(11)を加熱するヒータ(39)により超臨界水又は亜臨界水にする
ことを特徴とする未利用重質油の改質方法。
In the reaction vessel (11) for storing supercritical water or subcritical water, unused heavy oil is supplied to the reaction cylinder (23) provided spaced apart from the vessel wall of the reaction vessel (11). After converting the unused heavy oil into reformed oil by reacting with the supercritical water or subcritical water, the reformed oil is discharged from the reaction cylinder (23) and the reaction vessel (11). A method for reforming unused heavy oil,
The unused heavy oil is passed through the container wall of the reaction vessel (11) and communicated with the reaction cylinder (23) by the heavy oil supply pipe (17), and the unused heavy oil is supplied to the reaction cylinder (23). To supply
When supplying the unused heavy oil, supplying high-pressure water to the first high-pressure water supply pipe (31) that covers the heavy oil supply pipe (17) and extends into the reaction vessel (11). And cooling the heavy oil supply pipe (17) and cooling the outer surface of the reaction cylinder (23) with high-pressure water supplied to the first high-pressure water supply pipe (31),
In the reaction cylinder (23) whose outer surface is cooled, the unused heavy oil is reacted with supercritical water or subcritical water to be converted into reformed oil,
The reformed oil converted in the reaction cylinder (23) by the reformed oil discharge pipe (18) connected to the reaction cylinder (23) through the container wall of the reaction container (11). Is discharged from the reaction cylinder (23) and the reaction vessel (11),
When discharging the reformed oil, the high pressure water is supplied to a second high pressure water supply pipe (32) that covers the reformed oil discharge pipe (18) and extends into the reaction vessel (11). Cool the reforming oil discharge pipe (18),
The high-pressure water supplied into the reaction vessel (11) by the first and second high-pressure water supply pipes (31, 32) is supercritical water or subcritical water by a heater (39) for heating the reaction vessel (11). A method for reforming unused heavy oil, characterized by using water.
第1高圧水供給管(31)内の高圧水の温度変化状況に基づいて前記第1高圧水供給管(31)に供給される高圧水の水量を制御する請求項1記載の改質方法。   The reforming method according to claim 1, wherein the amount of high-pressure water supplied to the first high-pressure water supply pipe (31) is controlled based on a temperature change state of the high-pressure water in the first high-pressure water supply pipe (31). 第1及び第2高圧水供給管(31,32)内の高圧水の温度変化状況に基づいて前記第1及び第2高圧水供給管(31,32)に供給される高圧水の水量をそれぞれ制御する請求項1記載の改質方法。   The amount of high-pressure water supplied to the first and second high-pressure water supply pipes (31, 32) based on the temperature change state of the high-pressure water in the first and second high-pressure water supply pipes (31, 32), respectively. The reforming method according to claim 1 to be controlled. 反応容器(11)内の超臨界水又は亜臨界水の温度変化状況に基づいてヒータ(39)を制御する請求項1ないし3いずれか1項に記載の改質方法。   The reforming method according to any one of claims 1 to 3, wherein the heater (39) is controlled based on a temperature change state of supercritical water or subcritical water in the reaction vessel (11). 超臨界水又は亜臨界水を貯留する反応容器(11)と、
前記反応容器(11)内に前記反応容器(11)の容器壁に離間して設けられ内部で未利用重質油を前記超臨界水又は亜臨界水と反応させて改質油に転換し得る反応用筒体(23)と、
前記反応容器(11)の容器壁を貫通して前記反応用筒体(23)に連通接続され前記未利用重質油を前記反応用筒体(23)に供給する重質油供給管(17)と、
前記重質油供給管(17)を被覆しかつ前記反応容器(11)内に延びて設けられた第1高圧水供給管(31)と、
前記反応容器(11)の容器壁を貫通して前記反応用筒体(23)に連通接続され前記反応用筒体(23)内で転換した改質油を前記反応用筒体(23)及び前記反応容器(11)から排出する改質油排出管(18)と、
前記改質油排出管(18)を被覆しかつ前記反応容器(11)内に延びて設けられた第2高圧水供給管(32)と、
前記第1高圧水供給管(31)に高圧水を供給して前記未利用重質油を供給する際に前記重質油供給管(17)を冷却するとともに前記反応用筒体(23)の外面を前記第1高圧水供給管(31)に供給した高圧水により冷却する第1高圧水供給ポンプ(34)と、
前記第2高圧水供給管(32)に高圧水を供給して前記改質油を排出する際に前記改質油排出管(18)を冷却する第2高圧水供給ポンプ(36)と、
前記第1及び第2高圧水供給管(31,32)により前記反応容器(11)内に供給された高圧水を加熱して超臨界水又は亜臨界水にするヒータ(39)と
を備えた未利用重質油の改質装置。
A reaction vessel (11) for storing supercritical water or subcritical water;
The reaction vessel (11) can be converted into a reformed oil by reacting with the supercritical water or subcritical water inside the reaction vessel (11) separated from the vessel wall of the reaction vessel (11). A reaction cylinder (23);
A heavy oil supply pipe (17) that is connected to the reaction cylinder (23) through the container wall of the reaction container (11) and supplies the unused heavy oil to the reaction cylinder (23). )When,
A first high-pressure water supply pipe (31) provided to cover the heavy oil supply pipe (17) and extend into the reaction vessel (11);
The reformed oil that passes through the container wall of the reaction vessel (11) and is connected to the reaction cylinder (23) and converted in the reaction cylinder (23) is converted into the reaction cylinder (23) and A reformed oil discharge pipe (18) discharged from the reaction vessel (11);
A second high-pressure water supply pipe (32) provided to cover the reformed oil discharge pipe (18) and extend into the reaction vessel (11);
When the high-pressure water is supplied to the first high-pressure water supply pipe (31) to supply the unused heavy oil, the heavy oil supply pipe (17) is cooled and the reaction cylinder (23) A first high-pressure water supply pump (34) for cooling the outer surface with high-pressure water supplied to the first high-pressure water supply pipe (31);
A second high-pressure water supply pump (36) for cooling the reformed oil discharge pipe (18) when high-pressure water is supplied to the second high-pressure water supply pipe (32) and the reformed oil is discharged;
A heater (39) for heating the high-pressure water supplied into the reaction vessel (11) by the first and second high-pressure water supply pipes (31, 32) to form supercritical water or subcritical water. Equipment for reforming unused heavy oil.
第1高圧水供給管(31)内の高圧水の温度を測定する第1温度センサ(41)と、前記第1温度センサ(41)の検出出力により第1高圧水供給ポンプ(34)を制御するコントローラ(43)が設けられた請求項5記載の改質装置。   A first temperature sensor (41) for measuring the temperature of the high-pressure water in the first high-pressure water supply pipe (31), and the first high-pressure water supply pump (34) are controlled by the detection output of the first temperature sensor (41). The reformer according to claim 5, further comprising a controller (43) for performing the operation. 第1高圧水供給管(31)内の高圧水の温度を測定する第1温度センサ(41)と、第2高圧水供給管(32)内の高圧水の温度を測定する第2温度センサ(42)と、前記第1温度センサ(41)及び前記第2温度センサ(42)の各検出出力により第1高圧水供給ポンプ(34)及び第2高圧水供給ポンプ(36)を制御するコントローラ(43)が設けられた請求項5記載の改質装置。   A first temperature sensor (41) for measuring the temperature of the high-pressure water in the first high-pressure water supply pipe (31) and a second temperature sensor (for measuring the temperature of the high-pressure water in the second high-pressure water supply pipe (32)) 42) and a controller for controlling the first high-pressure water supply pump (34) and the second high-pressure water supply pump (36) according to the detection outputs of the first temperature sensor (41) and the second temperature sensor (42). 43. The reformer according to claim 5, wherein 43) is provided. 反応容器(11)内の超臨界水又は亜臨界水の温度を測定する第3温度センサ(44)を更に備え、コントローラ(43)は前記第3温度センサ(44)の検出出力によりヒータ(39)を制御するように構成された請求項6又は7記載の改質装置。
A third temperature sensor (44) for measuring the temperature of supercritical water or subcritical water in the reaction vessel (11) is further provided, and the controller (43) is provided with a heater (39) according to the detection output of the third temperature sensor (44). 8) A reformer according to claim 6 or 7, wherein the reformer is configured to control the above.
JP2004292114A 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor Withdrawn JP2006104310A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004292114A JP2006104310A (en) 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004292114A JP2006104310A (en) 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor

Publications (1)

Publication Number Publication Date
JP2006104310A true JP2006104310A (en) 2006-04-20

Family

ID=36374415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004292114A Withdrawn JP2006104310A (en) 2004-10-05 2004-10-05 Method for reforming unutilized heavy oil and apparatus therefor

Country Status (1)

Country Link
JP (1) JP2006104310A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232961A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Heavy oil reforming apparatus and heavy oil combustion gas turbine system
JP2008031285A (en) * 2006-07-28 2008-02-14 Hitachi Ltd Reactor for modifying heavy oil and gas turbine system equipped with the same
JP2011104561A (en) * 2009-11-20 2011-06-02 Tohzai Chemical Industry Co Ltd Subcritical water treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006232961A (en) * 2005-02-24 2006-09-07 Hitachi Ltd Heavy oil reforming apparatus and heavy oil combustion gas turbine system
JP4680628B2 (en) * 2005-02-24 2011-05-11 株式会社日立製作所 Heavy oil reformer and heavy oil-fired gas turbine system
JP2008031285A (en) * 2006-07-28 2008-02-14 Hitachi Ltd Reactor for modifying heavy oil and gas turbine system equipped with the same
JP2011104561A (en) * 2009-11-20 2011-06-02 Tohzai Chemical Industry Co Ltd Subcritical water treatment apparatus

Similar Documents

Publication Publication Date Title
JP4857258B2 (en) Compact steam reformer
US7658078B2 (en) System for reforming heavy oil, method therefor, and combined cycle power system
US8323364B2 (en) Control system for an on-demand gas generator
JP6046706B2 (en) Evaporative gas generator, evaporative gas production method, hydrogen bromide production apparatus, and hydrogen bromide production method
JP6070906B1 (en) Supercritical water gasification system and gasification method
JP6573261B2 (en) Supercritical water gasification system
US20240198306A1 (en) Reaction chamber for supercritical water oxidation reactor
CN102215948A (en) Device for generating combustible product gas from carbonaceous feedstocks
JP2006104310A (en) Method for reforming unutilized heavy oil and apparatus therefor
JP2006104311A (en) Method for reforming unutilized heavy oil and apparatus therefor
SU1360589A3 (en) Installation for producing liquid products from coal
CN101890254B (en) Separation system and method for high-temperature and high-pressure complex fluid
CN107427802B (en) Boiling water reactor
JP4487103B2 (en) Highly efficient synthesis method of methanol and apparatus therefor
CA2834946C (en) Heat exchange system
US9963664B2 (en) Supplying heat to a processing device in a plant for producing beer
JP4575700B2 (en) Gas storage method
EP4114560A1 (en) Charging water oxidation reactor using recovered reactor energy
JP4402606B2 (en) Heavy oil reforming method using hydrothermal reaction and heavy oil reformer using hydrothermal reaction
JP2006028329A (en) Heavy oil reformer and gas turbine system using the same
JP4861088B2 (en) Heavy oil reformer and method of operating heavy oil reformer
JP2006348220A (en) Heavy oil reforming system and power generation system
RU2225430C1 (en) Electric heating plant for producing carbide oil and high-calorie gas from sawdust or peat
CN205462176U (en) High -efficient hydrogenation ware of 2 - methylfuran
CN102036737A (en) Method for separating process condensate during steam reformation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080108