JPH10237458A - Apparatus for continuous conversion of coal - Google Patents

Apparatus for continuous conversion of coal

Info

Publication number
JPH10237458A
JPH10237458A JP4335497A JP4335497A JPH10237458A JP H10237458 A JPH10237458 A JP H10237458A JP 4335497 A JP4335497 A JP 4335497A JP 4335497 A JP4335497 A JP 4335497A JP H10237458 A JPH10237458 A JP H10237458A
Authority
JP
Japan
Prior art keywords
coal
reaction tower
oil
medium
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4335497A
Other languages
Japanese (ja)
Other versions
JP3402353B2 (en
Inventor
Kunio Arai
邦夫 新井
Masafumi Ajiri
雅文 阿尻
Akira Tanaka
皓 田中
Shinichi Hasegawa
伸一 長谷川
Kenji Nishimura
建二 西村
Hajime Kawasaki
始 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP04335497A priority Critical patent/JP3402353B2/en
Publication of JPH10237458A publication Critical patent/JPH10237458A/en
Application granted granted Critical
Publication of JP3402353B2 publication Critical patent/JP3402353B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus by which coal can be continuously converted into a more volatilizable component, this component can be liquefied, the product of liquefaction can be continuously fractionated into a heavy oil, a middle oil and a light oil, and the residue left after the liquefaction of coal can be utilized to generate active hydrogen and by which the reaction time is very short, the efficiency of conversion is high and the conversion cost is low as compared with prior art. SOLUTION: This apparatus consists of a fluidized bed reaction tower 10 in which a fluidizing medium formed so as to be kept in a supercritical state and based on an inside iron oxide is fed with carbon dioxide being a fluidizing gas together with supercritical water. Pulverized coal is fed into the medium to convert the coal into a more volatilizable component and this component is converted into an oil and a fractionation apparatus 20 whereby the supercritical water containing the oil formed in the tower 19 is reduced in pressure in stages and cooled to fractionate the formed oil.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は超臨界状態で石炭を
連続的に油その他に転換する装置に関する。更に詳しく
は石炭に活性水素を添加することにより石炭を軽質化
し、燃料用油又は有用な化合物或いは混合物に連続的に
転換する装置に関するものである。
The present invention relates to an apparatus for continuously converting coal into oil or the like in a supercritical state. More particularly, the present invention relates to an apparatus for lightening coal by adding active hydrogen to coal and continuously converting the coal into a fuel oil or a useful compound or mixture.

【0002】[0002]

【従来の技術】従来、石炭に水素を添加して液化する方
法としては、Ni,Co,Fe等の触媒の存在下で分子
状水素ガスを石炭に添加して軽質化し、石炭を液化する
方法が知られている。また別の方法として、水素供与性
溶剤の利用により石炭に水素を添加し、石炭を軽質化し
液化する方法が知られている。
2. Description of the Related Art Conventionally, as a method of liquefying coal by adding hydrogen, a method of adding molecular hydrogen gas to coal in the presence of a catalyst such as Ni, Co, Fe or the like to lighten the coal and liquefy the coal is known. It has been known. As another method, a method is known in which hydrogen is added to coal by using a hydrogen-donating solvent to lighten and liquefy the coal.

【0003】[0003]

【発明が解決しようとする課題】これらの技術において
必要となる水素は、重量換算で石炭重量の約5〜約8%
に及んでいる。またこれらの技術では高価な水素ガスや
石炭のガス化等により製造した水素を用いることが前提
とされている。そのため石炭の液化コストに占める水素
ガスのコストや水素製造のためのコストが増大し、その
結果石炭転換プロセスとしてこれらに代わるコストの安
い転換プロセスが望まれている。また従来の方法は、高
温下で石炭を熱分解し、触媒下で水素と反応させる方法
であるが、反応が遅く、所定日数において転換量を増や
す場合には、反応装置を多数設けるか、或いは反応装置
を大型化しなければならなかった。
The hydrogen required in these technologies is about 5 to about 8% by weight of coal weight.
It extends to. These techniques are based on the premise that expensive hydrogen gas or hydrogen produced by gasification of coal is used. For this reason, the cost of hydrogen gas and the cost for hydrogen production in the liquefaction cost of coal increase, and as a result, a low-cost alternative to the coal conversion process is desired. Further, the conventional method is a method of pyrolyzing coal at high temperature and reacting with hydrogen under a catalyst.However, when the reaction is slow and the amount of conversion is increased in a predetermined number of days, a large number of reactors are provided, or The reactor had to be upsized.

【0004】本発明の目的は、石炭を連続的に軽質化し
て液化し、かつ液化物から連続的に重質油、中質油及び
軽質油を分留する石炭の連続転換装置を提供することに
ある。本発明の別の目的は、石炭を液化した後の残渣を
活性水素を生成するために利用する石炭の連続転換装置
を提供することにある。本発明の更に別の目的は、従来
装置と比べて反応時間が極めて短く転換効率が高く、転
換コストを低減する石炭の連続転換装置を提供すること
にある。
[0004] It is an object of the present invention to provide a continuous coal conversion apparatus for continuously lightening and liquefying coal and continuously fractionating heavy oil, medium oil and light oil from liquefied matter. It is in. Another object of the present invention is to provide a continuous coal conversion apparatus that utilizes the residue after liquefaction of coal to produce active hydrogen. Still another object of the present invention is to provide a continuous coal conversion apparatus in which the reaction time is extremely short as compared with the conventional apparatus, the conversion efficiency is high, and the conversion cost is reduced.

【0005】[0005]

【課題を解決するための手段】請求項1に係る発明は、
図1に示すように、超臨界状態に維持可能に形成され内
部の流動媒体に超臨界状態の水とともに一酸化炭素が流
動ガスとして供給されこの流動媒体に微粉化した石炭が
供給されてこの石炭を軽質化して油を生成する流動層型
反応塔10と、この反応塔10で生成した油を含む超臨
界水を段階的に減圧及び冷却して生成した油を分留する
分留装置20とを備えた石炭の連続転換装置である。超
臨界状態に維持可能に形成された流動層型反応塔10の
下部より超臨界状態の水とともに一酸化炭素が流動状態
の微粉化した石炭に供給されると、石炭の軽質化反応が
行われる。本明細書では、超臨界状態とは温度374〜
800℃で密度0.05〜0.9g/cm3である状態
をいう。上記温度範囲及び密度範囲の下限値未満では反
応が遅く転換効率が良くない。また上記温度範囲及び密
度範囲の上限値を越えると反応器に負荷がかかり過ぎこ
れも効率的でない。この温度は400〜600℃がより
好ましく、密度は0.1〜0.6g/cm3がより好ま
しい。
The invention according to claim 1 is
As shown in FIG. 1, carbon monoxide is supplied as a fluid gas together with water in a supercritical state to a fluid medium inside which can be maintained in a supercritical state, and pulverized coal is supplied to the fluid medium. A fluidized bed reactor 10 for reducing the amount of oil to produce oil, a fractionating apparatus 20 for fractionating the supercritical water containing oil generated in the reactor 10 by gradually reducing and cooling the oil and fractionating the generated oil. It is a continuous coal conversion device provided with. When carbon monoxide is supplied to the pulverized coal in the fluidized state together with water in the supercritical state from the lower part of the fluidized bed reactor 10 formed so as to be maintained in the supercritical state, a lightening reaction of the coal is performed. . In the present specification, the supercritical state is a temperature of 374 to 374.
A state in which the density is 800 to 900 g / cm 3 at 800 ° C. Below the lower limit of the above temperature range and density range, the reaction is slow and conversion efficiency is not good. If the temperature range and the density range exceed the upper limits, the reactor is overloaded, which is not efficient. This temperature is more preferably 400 to 600 ° C., and the density is more preferably 0.1 to 0.6 g / cm 3 .

【0006】この超臨界状態の石炭の軽質化反応とし
て、石炭の加水分解反応、石炭の熱分解反応及び
水素添加反応が挙げられる。石炭の加水分解反応で
は、石炭のベンゼン環をつないでいるヘテロ元素部分に
2OのOH-が付加され、石炭が低分子化される。石
炭の熱分解反応では、石炭が単純に熱分解し低分子化す
る。更に水素添加反応では、上記やで生成された
ラジカルにHが付加され、これにより熱分解種が安定す
る。ここで加水分解種にも水素添加反応が起こり得る
が、上記ラジカルへの水素反応の方が優位に起こる。ま
たここでいう水素添加反応には、上記の加水分解反応
で述べた、石炭そのものへのHの付加により石炭が分解
し低分子化する反応も含む。しかし、上記〜の反応
は個別的に行われず、互いに競合して複合的に行われ、
石炭の軽質化が進行する。流動層型反応塔10で石炭が
軽質化されて生成した油は反応塔の上部より排出され、
分留装置20で重質油、中質油及び軽質油に分離され
る。
The supercritical coal lightening reaction includes a coal hydrolysis reaction, a coal thermal decomposition reaction, and a hydrogenation reaction. The coal of the hydrolysis reaction, the hetero element portion which connects the benzene ring of coal H 2 O OH - is added, the coal is depolymerized. In the thermal decomposition reaction of coal, the coal is simply pyrolyzed and decomposed. Further, in the hydrogenation reaction, H is added to the radicals generated in the above, thereby stabilizing the thermally decomposed species. Here, a hydrogenation reaction can also occur in the hydrolyzed species, but the hydrogen reaction to the above radical occurs more predominantly. The term "hydrogenation reaction" as used herein also includes the reaction described above for the hydrolysis reaction in which coal is decomposed by addition of H to the coal itself to lower the molecular weight. However, the above-mentioned reactions are not performed individually, but are performed in competition with each other,
Lightening of coal progresses. The oil produced by lightening the coal in the fluidized bed reactor 10 is discharged from the upper part of the reactor,
The fractionation device 20 separates the oil into heavy oil, medium oil and light oil.

【0007】請求項2に係る発明は、請求項1に係る発
明であって、流動層型反応塔10の流動媒体が酸化鉄を
主成分とする平均粒径が0.3〜5mmの焼結粒体であ
る石炭の連続転換装置である。上記流動媒体により反応
塔内の流動層が良好に維持され、酸化鉄は生成した油の
軽質化の触媒としても作用し、かつ反応塔の内壁面への
灰分等のスケーリングを防止する。焼結粒体の平均粒径
が上記範囲外では流動層が良好に維持されず、また灰分
等のスケーリング防止効果が十分でなくなる。
The invention according to claim 2 is the invention according to claim 1, wherein the fluidized medium of the fluidized bed type reaction tower 10 has a mean particle diameter of 0.3 to 5 mm mainly composed of iron oxide. This is a continuous conversion device for coal, which is granular. The fluidized medium favorably maintains the fluidized bed in the reaction tower, the iron oxide also acts as a catalyst for lightening the produced oil, and prevents scaling of ash and the like on the inner wall surface of the reaction tower. When the average particle size of the sintered particles is out of the above range, the fluidized bed is not maintained well, and the effect of preventing scaling of ash and the like becomes insufficient.

【0008】請求項3に係る発明は、請求項1又は2に
係る発明であって、流動層型反応塔10と分留装置20
との間に酸化鉄を主成分とする平均粒径が0.3〜5m
mの焼結粒体が充填された油改質器19を備えた石炭の
連続転換装置である。油改質器19内の焼結粒体が触媒
となって反応塔10で生成した油をより一層軽質化す
る。
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the fluidized bed type reaction tower 10 and the fractionating apparatus 20
Between 0.3 and 5 m in average particle diameter mainly composed of iron oxide
This is a continuous coal conversion apparatus equipped with an oil reformer 19 filled with m sintered particles. The sintered granules in the oil reformer 19 serve as a catalyst to further lighten the oil generated in the reaction tower 10.

【0009】請求項4に係る発明は、請求項3に係る発
明であって、分留装置20が重質油分離器21と中質油
分離器22と軽質油分離器23と気液分離器24を備
え、油改質器19で改質された油が重質油分離器21、
中質油分離器22及び軽質油分離器23の順に減圧及び
冷却されるように構成された石炭の連続転換装置であ
る。重質油分離器21、中質油分離器22及び軽質油分
離器23を設けることにより、複数種の油がその性状毎
に適切に分離回収される。また気液分離器24では二酸
化炭素と水に分離され、二酸化炭素は大気に放出され
る。
The invention according to claim 4 is the invention according to claim 3, wherein the fractionating apparatus 20 comprises a heavy oil separator 21, a medium oil separator 22, a light oil separator 23, and a gas-liquid separator. 24, the oil reformed by the oil reformer 19 is a heavy oil separator 21,
This is a continuous coal conversion apparatus configured to be depressurized and cooled in the order of the medium oil separator 22 and the light oil separator 23. By providing the heavy oil separator 21, the medium oil separator 22, and the light oil separator 23, a plurality of types of oil can be appropriately separated and recovered for each property. Further, in the gas-liquid separator 24, carbon dioxide and water are separated, and the carbon dioxide is released to the atmosphere.

【0010】請求項5に係る発明は、請求項1ないし3
のいずれかに係る発明であって、流動層型反応塔10が
超臨界状態にそれぞれ維持可能に形成された1次反応塔
11と2次反応塔12とを有し、1次反応塔11の反応
生成物が2次反応塔12に供給され、これらの1次及び
2次反応塔11,12の内部の各流動媒体に超臨界状態
の水とともに一酸化炭素が流動ガスとして供給されるよ
うに構成された石炭の連続転換装置である。反応塔を2
つ設けることにより、微粉化した石炭の反応塔内の滞留
時間を長くすることができ、石炭の軽質化反応をより確
実に行うことができる。
The invention according to claim 5 is the invention according to claims 1 to 3
Wherein the fluidized bed reactor 10 comprises a primary reactor 11 and a secondary reactor 12 each formed so as to be maintained in a supercritical state. The reaction product is supplied to the secondary reaction tower 12, and carbon monoxide is supplied as a flowing gas together with supercritical water to each of the fluidized media inside the primary and secondary reaction towers 11, 12. It is a configured continuous coal conversion device. 2 reaction towers
By providing one, the residence time of the pulverized coal in the reaction tower can be lengthened, and the lightening reaction of coal can be performed more reliably.

【0011】請求項6に係る発明は、請求項1ないし3
のいずれかに係る発明であって、超臨界状態に維持可能
に形成され内部の流動媒体に酸素が流動ガスとして供給
され前記流動媒体に流動層型反応塔10で生成した残渣
炭が供給されて一酸化炭素を生成する流動層型部分酸化
反応塔13と備え、この部分酸化反応塔13で生成され
た一酸化炭素を流動ガスとして反応塔10に供給するよ
うに構成された石炭の連続転換装置である。流動層型反
応塔10で生成した残渣炭(チャー)を部分酸化反応塔
13で超臨界状態で酸素を加えることにより、このチャ
ーの炭素を一酸化炭素に部分酸化する。ここでチャーと
は上記石炭の加水分解反応及び石炭の熱分解反応
で、それぞれ分解しきれなかったもの又は熱分解種が再
重合したものである。この部分酸化反応塔13で生成し
た一酸化炭素は超臨界水とともに流動層型反応塔10に
下部より供給され、そこで活性水素を生成して、この活
性水素を未反応の石炭との反応に使用する石炭の転換方
法である。
The invention according to claim 6 is the invention according to claims 1 to 3
In the invention according to any one of the above, oxygen is supplied as a flowing gas to the internal fluid medium that is formed so as to be maintained in a supercritical state, and the residual coal generated in the fluidized bed reactor 10 is supplied to the fluid medium. A continuous coal conversion apparatus comprising a fluidized bed partial oxidation reaction tower 13 for producing carbon monoxide, and configured to supply the carbon monoxide generated in the partial oxidation reaction tower 13 to the reaction tower 10 as a fluidized gas. It is. The carbon in the char is partially oxidized to carbon monoxide by adding oxygen in a supercritical state to the residual coal (char) generated in the fluidized bed reactor 10 in the partial oxidation reactor 13. Here, the char is the one that has not been completely decomposed or the one that has been re-polymerized by the pyrolysis reaction of the coal and the pyrolysis reaction of the coal. The carbon monoxide generated in the partial oxidation reaction tower 13 is supplied from the lower part to the fluidized bed type reaction tower 10 together with supercritical water, where active hydrogen is generated, and this active hydrogen is used for reaction with unreacted coal. It is a method of converting coal.

【0012】この部分酸化反応塔13では、次の式
(1)に示す反応を生じる。 2C + O2 → 2CO …… (1) 式(1)に示すように、石炭液化で生じた残渣であるチ
ャーを部分酸化して一酸化炭素にし、流動層型反応塔1
0で次の式(2)に示す水性ガスシフト反応を起こさせ
て活性水素を生成する。式(2)の水性ガスシフト反応
では部分酸化で生成したCOは速やかにH2Oと反応さ
せられる。 CO + H2O → CO2 + H2 …… (2) 上記式(2)で生じた活性水素を上述した水素添加反
応に使用する。この結果、流動層型反応塔10の残渣を
有効利用し、本発明の装置から排出される廃棄物を減容
することができる。
In the partial oxidation reaction tower 13, a reaction represented by the following equation (1) occurs. 2C + O 2 → 2CO (1) As shown in the formula (1), char which is a residue produced by coal liquefaction is partially oxidized to carbon monoxide, and the fluidized bed reactor 1
At 0, a water gas shift reaction represented by the following formula (2) is caused to generate active hydrogen. In the water gas shift reaction of the formula (2), CO generated by partial oxidation is immediately reacted with H 2 O. CO + H 2 O → CO 2 + H 2 (2) The active hydrogen generated by the above formula (2) is used in the above-mentioned hydrogenation reaction. As a result, the residue of the fluidized bed type reaction tower 10 can be effectively used, and the volume of waste discharged from the apparatus of the present invention can be reduced.

【0013】請求項7に係る発明は、請求項6に係る発
明であって、流動層型部分酸化反応塔13の流動媒体が
酸化鉄を主成分とする平均粒径が0.3〜5mmの焼結
粒体である石炭の連続転換装置である。反応塔13内の
焼結粒体が触媒となってチャーの部分酸化をより一層促
進する。
The invention according to claim 7 is the invention according to claim 6, wherein the fluidized medium of the fluidized bed partial oxidation reaction tower 13 has an average particle diameter of 0.3 to 5 mm mainly composed of iron oxide. This is a continuous converter for coal, which is a sintered granule. The sintered particles in the reaction tower 13 serve as a catalyst to further promote partial oxidation of the char.

【0014】請求項8に係る発明は、請求項6又は7に
係る発明であって、流動層型部分酸化反応塔13で生成
した粉末状灰分を回収する灰分受けホッパ17を備え、
この灰分受けホッパ17に酸化カルシウムが供給されて
灰分中の硫黄分から硫酸カルシウムを生成するように構
成された石炭の連続転換装置である。これにより部分酸
化反応塔13から排出される灰分と硫酸カルシウムを同
時に乾式回収することができる。
The invention according to claim 8 is the invention according to claim 6 or 7, comprising an ash receiving hopper 17 for collecting powdery ash generated in the fluidized bed type partial oxidation reaction tower 13,
This is a continuous coal conversion apparatus configured to supply calcium oxide to the ash receiving hopper 17 to generate calcium sulfate from sulfur in the ash. As a result, the ash and calcium sulfate discharged from the partial oxidation reaction tower 13 can be simultaneously dry-recovered.

【0015】[0015]

【発明の実施の形態】次に本発明の実施の形態を図面に
基づいて説明する。図1に示すように、流動層型反応塔
10は1次反応塔11と2次反応塔12を有する。これ
らの1次及び2次反応塔11,12は超臨界状態を維持
可能に肉厚の円筒状に形成され、1次反応塔11の反応
生成物が2次反応塔12に供給されるようになってい
る。両反応塔11,12の内部には酸化鉄を主成分とす
る平均粒径が3mmの焼結粒体の流動媒体がそれぞれ貯
えられ、この流動媒体に超臨界状態の水とともに一酸化
炭素が流動ガスとして供給され流動層が形成される。1
次反応塔11の原料供給口には石炭供給ホッパ11a及
び11bが直列に設けられる。ホッパ11bの供給側及
び排出側にはそれぞれ図示しないバルブが設けられ、石
炭供給時の反応塔11の超臨界状態を維持するようにな
っている。最初のホッパ11aには32メッシュアンダ
ー(約200μm)に微粉砕された石炭が供給される。
この石炭としては、草炭、褐炭、亜歴青炭又は歴青炭が
液化効率が良く好ましい。また埋蔵量が比較的多いこれ
らの石炭種を有効利用でき、自然環境に適合する。
Embodiments of the present invention will now be described with reference to the drawings. As shown in FIG. 1, the fluidized bed reactor 10 has a primary reactor 11 and a secondary reactor 12. The primary and secondary reaction towers 11 and 12 are formed in a thick cylindrical shape so as to maintain a supercritical state, and the reaction products of the primary reaction tower 11 are supplied to the secondary reaction tower 12. Has become. Inside the reaction towers 11 and 12, fluidized media of sintered particles having an average particle diameter of 3 mm and containing iron oxide as a main component are stored, respectively, and carbon monoxide flows together with supercritical water in the fluidized media. It is supplied as a gas to form a fluidized bed. 1
Coal supply hoppers 11a and 11b are provided in series at a raw material supply port of the next reaction tower 11. Valves (not shown) are provided on the supply side and the discharge side of the hopper 11b, respectively, so as to maintain the supercritical state of the reaction tower 11 during coal supply. The first hopper 11a is supplied with coal pulverized to a size of 32 mesh under (about 200 μm).
As this coal, grass coal, lignite, sub-bituminous coal or bituminous coal is preferred because of its high liquefaction efficiency. In addition, these coal types with relatively large reserves can be used effectively and are compatible with the natural environment.

【0016】2次反応器12の残渣排出口には残渣受け
ホッパ12a及び残渣供給ホッパ12bが直列に設けら
れる。残渣供給ホッパ12bは超臨界状態を維持可能に
肉厚の円筒状に形成された流動層型部分酸化反応塔13
の原料供給口に接続される。ホッパ12a及び12bの
供給側及び排出側にはそれぞれ図示しないバルブが設け
られ、残渣受け時及び残渣供給時の反応塔12及び反応
塔13の超臨界状態をそれぞれ維持するようになってい
る。反応塔13の内部には酸化鉄を主成分とする平均粒
径が3mmの焼結粒体の流動媒体が貯えられ、この流動
媒体に反応塔下部より圧縮機14で圧縮された酸素が流
動ガスとして供給され流動層が形成される。この反応塔
13では2次反応塔12で生成した残渣炭が上記流動媒
体に供給されて一酸化炭素を生成し、この生成された一
酸化炭素は反応塔13の上部に設けられた固気分離フィ
ルタ13aを通って混合器15で超臨界水と混合され、
流動ガスとして1次及び2次反応塔11,12に供給さ
れるようになっている。16は純水を超臨界状態にする
高圧ポンプである。部分酸化反応塔13の灰分排出口に
は灰分受けホッパ17及び灰分受け槽18が直列に設け
られ、ホッパ17の供給側及び排出側にはそれぞれ図示
しないバルブが設けられ、灰分受け時の反応塔13の超
臨界状態を維持するようになっている。
At the residue outlet of the secondary reactor 12, a residue receiving hopper 12a and a residue supply hopper 12b are provided in series. The residue supply hopper 12b is a fluidized bed type partial oxidation reaction tower 13 formed in a thick cylindrical shape so as to maintain a supercritical state.
Connected to the raw material supply port. Valves (not shown) are provided on the supply side and the discharge side of the hoppers 12a and 12b, respectively, so as to maintain the supercritical state of the reaction tower 12 and the reaction tower 13 at the time of receiving and supplying the residue, respectively. Inside the reaction tower 13, a fluidized medium of sintered particles having an average particle diameter of 3 mm and containing iron oxide as a main component is stored. And a fluidized bed is formed. In the reaction tower 13, the residual coal generated in the secondary reaction tower 12 is supplied to the fluid medium to generate carbon monoxide, and the generated carbon monoxide is supplied to a solid-gas separation provided at the upper part of the reaction tower 13. Mixed with supercritical water in mixer 15 through filter 13a,
The gas is supplied to the primary and secondary reaction towers 11 and 12 as a flowing gas. Reference numeral 16 denotes a high-pressure pump that brings pure water into a supercritical state. An ash receiving hopper 17 and an ash receiving tank 18 are provided in series at the ash outlet of the partial oxidation reaction tower 13, and valves (not shown) are provided on the supply side and the discharge side of the hopper 17, respectively. Thirteen supercritical states are maintained.

【0017】1次及び2次反応塔11,12の各上部に
は固気分離フィルタ11c及び12cが設けられ、これ
らのフィルタ11c及び12cは背圧弁19aを介して
酸化鉄を主成分とする平均粒径が3mmの焼結粒体が充
填された油改質器19の供給側に接続される。この油改
質器19の排出側には分留装置20が接続される。分留
装置20は重質油分離器21と中質油分離器22と軽質
油分離器23と気液分離器24を備える。これらの分離
器21,22,23及び24はそれぞれガス冷却機能を
兼備し、各前段には背圧弁21a,22a,23a及び
24aがそれぞれ設けられる。また分離器21,22,
23及び24の下部には重質油受け槽21b,中質油受
け槽22b,軽質油受け槽23b及び水受け槽24bが
それぞれ設けられる。
Solid and gas separation filters 11c and 12c are provided on the upper portions of the primary and secondary reaction towers 11 and 12, respectively. These filters 11c and 12c are provided with an average of iron oxide as a main component through a back pressure valve 19a. It is connected to the supply side of an oil reformer 19 filled with sintered particles having a particle size of 3 mm. A fractionating device 20 is connected to the discharge side of the oil reformer 19. The fractionation apparatus 20 includes a heavy oil separator 21, a medium oil separator 22, a light oil separator 23, and a gas-liquid separator 24. These separators 21, 22, 23 and 24 also have a gas cooling function, respectively, and are provided with back pressure valves 21a, 22a, 23a and 24a at the preceding stages, respectively. Separators 21, 22,
A heavy oil receiving tank 21b, a medium oil receiving tank 22b, a light oil receiving tank 23b, and a water receiving tank 24b are provided below 23 and 24, respectively.

【0018】このように構成された石炭の連続転換装置
では、純水が高圧ポンプ16により反応塔13で生成さ
れた一酸化炭素とともに反応塔11及び12に圧送さ
れ、そこで更に昇圧・昇温され超臨界状態になる。これ
らの反応塔11及び12では、酸化鉄を主成分とする焼
結粒体が超臨界水及び一酸化炭素を流動ガスとして平均
温度420℃、平均密度0.5g/cm3の超臨界状態
の流動層に維持される。1次反応塔11に図示しないバ
ルブを切換えて石炭供給ホッパ11a,11bより微粉
化した石炭を供給すると、前述した〜の反応を互い
に競合して複合的に生じさせる。超臨界状態の水は、水
素イオンと水酸基イオンへの解離が通常の水よりも大き
いので石炭の加水分解反応は促進される。この加水分解
は石炭のみならず一次分解物の重質液化油等についても
行われる。 上述した式(2)の水性ガスシフト反応
は、高密度の水中では活性化エネルギが通常の1/3程
度にまで減少すると言われており、従って超臨界水中で
は水性ガスシフト反応の速度が速くなり、活性水素(H
2)による石炭の軽質化反応を促進する方向に寄与す
る。
In the continuous coal converter constructed as described above, pure water is pumped by the high-pressure pump 16 together with the carbon monoxide generated in the reaction tower 13 to the reaction towers 11 and 12, where the pressure is further increased and the temperature is increased. It becomes supercritical. In these reaction towers 11 and 12, the sintered particles containing iron oxide as a main component are in a supercritical state with an average temperature of 420 ° C. and an average density of 0.5 g / cm 3 using supercritical water and carbon monoxide as flowing gas. Maintained in a fluidized bed. When a finely divided coal is supplied from the coal supply hoppers 11a and 11b by switching a valve (not shown) to the primary reaction tower 11, the above-mentioned reactions (1) to (6) compete with each other and occur in a complex manner. Water in a supercritical state has a greater degree of dissociation into hydrogen ions and hydroxyl ions than ordinary water, so that the hydrolysis reaction of coal is promoted. This hydrolysis is carried out not only for coal but also for heavy liquefied oil as a primary decomposition product. In the water gas shift reaction of the above formula (2), it is said that the activation energy is reduced to about 1/3 of the ordinary energy in high-density water, and therefore the speed of the water gas shift reaction in supercritical water is increased, Active hydrogen (H
It contributes to the promotion of the coal lightening reaction by 2 ).

【0019】1次反応塔11の反応生成物はオーバーフ
ローして2次反応塔12に供給される。反応塔11及び
12における石炭の液化物は重質油、中質油及び軽質油
であり、液化し切れなかった残渣炭は残渣炭受けホッパ
12aに貯留される。図示しないバルブを切換えて残渣
炭供給ホッパ12bより部分酸化反応塔13に反応塔1
2で生成した残渣炭(チャー)を供給する。反応塔13
では、酸化鉄を主成分とする焼結粒体が高圧酸素の流動
ガスにより流動層が維持され、反応塔13は平均温度4
00℃、平均密度0.42g/cm3の超臨界状態の保
たれる。このチャーの供給により反応塔13ではチャー
の一部が酸化され、前記式(1)に示すように、一酸化
炭素を生成する。上述した式(1)の反応でも、高密度
の水中では活性化エネルギが通常の1/3程度にまで減
少することによって、チャーの熱分解により生成するC
Oを迅速に反応させることにも寄与する。生成した一酸
化炭素は前述したように超臨界水と混合して反応塔11
及び12に流動ガスとして供給される。反応塔13から
排出された灰分は灰分受けホッパ17に貯留される。こ
のホッパ17には粉末状の酸化カルシウムが供給され、
ここでこの酸化カルシウム(CaO)が灰分中の硫黄分
と反応して粉末状の硫酸カルシウム(CaSO4)が生
成され、灰分受け槽18に回収される。
The reaction product of the primary reaction tower 11 overflows and is supplied to the secondary reaction tower 12. The liquefied coal in the reaction towers 11 and 12 is heavy oil, medium oil and light oil, and the residual coal that has not been completely liquefied is stored in the residual coal receiving hopper 12a. The valve (not shown) is switched to the partial oxidation reaction tower 13 from the residual coal supply hopper 12b to the reaction tower 1
The residual char (char) produced in Step 2 is supplied. Reaction tower 13
In the above, the fluidized bed is maintained by the flowing gas of high-pressure oxygen in the sintered granules mainly composed of iron oxide,
A supercritical state of 00 ° C. and an average density of 0.42 g / cm 3 is maintained. Due to the supply of the char, a part of the char is oxidized in the reaction tower 13 to generate carbon monoxide as shown in the above formula (1). Also in the reaction of the above-mentioned formula (1), the activation energy is reduced to about 1/3 of the ordinary energy in high-density water, so that the C generated by the thermal decomposition of char is generated.
It also contributes to making O react quickly. The produced carbon monoxide is mixed with supercritical water as described above, and
And 12 as a flowing gas. The ash discharged from the reaction tower 13 is stored in the ash receiving hopper 17. This hopper 17 is supplied with powdered calcium oxide,
Here, the calcium oxide (CaO) reacts with the sulfur in the ash to produce powdered calcium sulfate (CaSO 4 ), which is collected in the ash receiving tank 18.

【0020】反応塔11及び12で生成された油は超臨
界状態で気化してフィルタ11c,12c及び背圧弁1
9aを通って油改質器19に供給される。ここで反応塔
11及び12で生成した油は油改質器19内の焼結粒体
が触媒となってより一層軽質化される。
The oil generated in the reaction towers 11 and 12 is vaporized in a supercritical state, and is filtered by the filters 11c and 12c and the back pressure valve 1.
The oil is supplied to the oil reformer 19 through 9a. Here, the oil generated in the reaction towers 11 and 12 is further lightened by using the sintered particles in the oil reformer 19 as a catalyst.

【0021】分留装置20では、油改質器19より圧送
される流体を背圧弁21aで所定圧力に減圧し、重質油
分離器21で所定の温度まで冷却して、重質油を重質油
受け槽21bに貯える。次いで重質油分離器21より圧
送される流体を背圧弁22aで所定圧力に減圧し、中質
油分離器22で所定の温度まで冷却して、中質油を中質
油受け槽22bに貯える。次に中質油分離器22より圧
送される流体を背圧弁23aで所定圧力に減圧し、軽質
油分離器23で所定の温度まで冷却して、軽質油を軽質
油受け槽23bに貯える。更に軽質油分離器23から排
出された流体は背圧弁24aで大気圧に降圧され、気液
分離器24で水とガス(CO2)に分離される。CO2
大気に排出され、水は水受け槽24bに貯えられた後、
超臨界水用の水として再利用される。
In the fractionating apparatus 20, the pressure of the fluid fed from the oil reformer 19 is reduced to a predetermined pressure by the back pressure valve 21a, and the fluid is cooled to a predetermined temperature by the heavy oil separator 21 to remove the heavy oil. It is stored in the high quality oil receiving tank 21b. Next, the fluid pumped from the heavy oil separator 21 is reduced to a predetermined pressure by the back pressure valve 22a, cooled to a predetermined temperature by the medium oil separator 22, and the medium oil is stored in the medium oil receiving tank 22b. . Next, the fluid pumped from the medium oil separator 22 is reduced to a predetermined pressure by the back pressure valve 23a, cooled to a predetermined temperature by the light oil separator 23, and the light oil is stored in the light oil receiving tank 23b. Further, the fluid discharged from the light oil separator 23 is reduced to atmospheric pressure by the back pressure valve 24a, and separated into water and gas (CO 2 ) by the gas-liquid separator 24. After CO 2 is discharged to the atmosphere and water is stored in the water receiving tank 24b,
Reused as water for supercritical water.

【0022】[0022]

【発明の効果】以上述べたように、本発明は次の優れた
効果を有する。 (1) 石炭を連続的に軽質化して液化し、かつ液化物から
連続的に重質油、中質油及び軽質油を分留できる。 (2) 水素添加反応に必要な活性水素は、石炭を液化した
後の残渣を利用してつくられるので、外部からの高価な
水素の供給は必要ない。 (3) 従来装置と比べて反応時間が極めて短く転換効率が
高く、転換コストを低減でき、反応塔を多数設けること
なく、また大型化することなく、所定日数における転換
量を増やすことができる。 (4) 超臨界状態では、水、ガス、転換油等が均一相で作
用するため、石炭軽質化を効率よく行える。 (5) 水分除去の前処理工程が不要となり、また液化油の
分留も減圧操作のみで可能であるため液化油の蒸留分離
工程等が簡素化する。従って、従来の転換装置に比べて
簡素化する。
As described above, the present invention has the following excellent effects. (1) Coal can be continuously lightened and liquefied, and heavy oil, medium oil and light oil can be continuously fractionated from the liquefied product. (2) Since active hydrogen required for the hydrogenation reaction is produced using the residue after liquefaction of coal, it is not necessary to supply expensive hydrogen from outside. (3) Compared with the conventional apparatus, the reaction time is extremely short, the conversion efficiency is high, the conversion cost can be reduced, and the conversion amount in a predetermined number of days can be increased without providing a large number of reaction towers and without increasing the size. (4) In the supercritical state, water, gas, converted oil, etc. act in a uniform phase, so that coal can be lightened efficiently. (5) A pretreatment step for removing water is not required, and fractionation of the liquefied oil can be performed only by a reduced pressure operation, so that the distillation and separation step of the liquefied oil is simplified. Therefore, it is simplified as compared with the conventional conversion device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の石炭の連続転換装置の構成図。FIG. 1 is a configuration diagram of a continuous coal conversion device of the present invention.

【符号の説明】[Explanation of symbols]

10 流動層型反応塔 11 1次反応塔 12 2次反応塔 13 流動層型部分酸化反応塔 17 灰分受けホッパ 19 油改質器 20 分留装置 21 重質油分離器 22 中質油分離器 23 軽質油分離器 24 気液分離器 DESCRIPTION OF SYMBOLS 10 Fluidized bed type reaction tower 11 Primary reaction tower 12 Secondary reaction tower 13 Fluidized bed type partial oxidation reaction tower 17 Ash receiving hopper 19 Oil reformer 20 Fractionation apparatus 21 Heavy oil separator 22 Medium oil separator 23 Light oil separator 24 Gas-liquid separator

フロントページの続き (72)発明者 長谷川 伸一 東京都文京区小石川1丁目3番25号 三菱 マテリアル株式会社システム事業センター 内 (72)発明者 西村 建二 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内 (72)発明者 川崎 始 茨城県那珂郡那珂町大字向山字六人頭1002 番地の14 三菱マテリアル株式会社那珂エ ネルギー研究所内Continuing from the front page (72) Inventor Shinichi Hasegawa 1-33 Koishikawa, Bunkyo-ku, Tokyo Mitsubishi Materials Corporation System Business Center (72) Inventor Kenji Nishimura Six-headed Mukoyama, Naka-machi, Naka-machi, Naka-gun, Ibaraki Prefecture 1002 14 Mitsubishi Energy Corporation Naka Energy Research Institute (72) Inventor Hajime Kawasaki 1002 14 Mitsubishi Materials Corporation Naka Energy Research Institute

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 超臨界状態に維持可能に形成され内部の
流動媒体に超臨界状態の水とともに一酸化炭素が流動ガ
スとして供給され前記流動媒体に微粉化した石炭が供給
されて前記石炭を軽質化して油を生成する流動層型反応
塔(10)と、 前記反応塔(10)で生成した油を含む超臨界水を段階的に
減圧及び冷却して前記生成した油を分留する分留装置(2
0)とを備えた石炭の連続転換装置。
1. Carbon monoxide is supplied as a flowing gas together with water in a supercritical state to a fluidizing medium formed therein so as to be maintained in a supercritical state, and pulverized coal is supplied to the fluidizing medium so that the coal is lightened. Fluidized-bed type reaction tower (10), which converts the supercritical water containing oil generated in the reaction tower (10) into a reduced pressure and cooled stepwise to fractionate the generated oil. Equipment (2
0).
【請求項2】 流動層型反応塔(10)の流動媒体が酸化鉄
を主成分とする平均粒径が0.3〜5mmの焼結粒体で
ある請求項1記載の石炭の連続転換装置。
2. The continuous coal conversion apparatus according to claim 1, wherein the fluidized medium of the fluidized bed type reaction tower (10) is sintered granules containing iron oxide as a main component and having an average particle size of 0.3 to 5 mm. .
【請求項3】 流動層型反応塔(10)と分留装置(20)との
間に酸化鉄を主成分とする平均粒径が0.3〜5mmの
焼結粒体が充填された油改質器(19)を備えた請求項1又
は2記載の石炭の連続転換装置。
3. An oil filled between a fluidized bed type reaction tower (10) and a fractionating apparatus (20) and containing sintered particles having an average particle diameter of 0.3 to 5 mm and containing iron oxide as a main component. 3. The continuous coal conversion device according to claim 1, further comprising a reformer (19).
【請求項4】 分留装置(20)が重質油分離器(21)と中質
油分離器(22)と軽質油分離器(23)と気液分離器(24)を備
え、 油改質器(19)で改質された油が前記重質油分離器(21)、
中質油分離器(22)及び軽質油分離器(23)の順に減圧及び
冷却されるように構成された請求項3記載の石炭の連続
転換装置。
4. A fractionator (20) comprising a heavy oil separator (21), a medium oil separator (22), a light oil separator (23), and a gas-liquid separator (24). The oil reformed in the heavy oil separator (19) is the heavy oil separator (21),
4. The continuous coal conversion apparatus according to claim 3, wherein the apparatus is configured to be depressurized and cooled in the order of the medium oil separator (22) and the light oil separator (23).
【請求項5】 流動層型反応塔(10)が超臨界状態にそれ
ぞれ維持可能に形成された1次反応塔(11)と2次反応塔
(12)とを有し、 前記1次反応塔(11)の反応生成物が前記2次反応塔(12)
に供給され、 前記1次及び2次反応塔(11,12)の内部の各流動媒体に
超臨界状態の水とともに一酸化炭素が流動ガスとして供
給されるように構成された請求項1ないし3いずれか記
載の石炭の連続転換装置。
5. A primary reaction column (11) and a secondary reaction column each having a fluidized bed type reaction column (10) formed so as to be maintained in a supercritical state.
(12), wherein the reaction product of the primary reaction tower (11) is the secondary reaction tower (12)
And carbon monoxide is supplied as a fluid gas together with supercritical water to each fluid medium inside the primary and secondary reaction towers (11, 12). The continuous coal conversion device according to any one of the above.
【請求項6】 超臨界状態に維持可能に形成され内部の
流動媒体に酸素が流動ガスとして供給され前記流動媒体
に流動層型反応塔(10)で生成した残渣炭が供給されて一
酸化炭素を生成する流動層型部分酸化反応塔(13)と備
え、 前記部分酸化反応塔(13)で生成された一酸化炭素を流動
ガスとして前記反応塔(10)に供給するように構成された
請求項1ないし3いずれか記載の石炭の連続転換装置。
6. Oxygen is supplied as a flowing gas to an internal fluid medium which can be maintained in a supercritical state, and the residual coal produced in the fluidized bed type reaction tower (10) is supplied to the fluid medium to produce carbon monoxide. And a fluidized bed partial oxidation reaction tower (13) that generates carbon monoxide generated in the partial oxidation reaction tower (13) as a fluidized gas to the reaction tower (10). Item 4. A continuous coal conversion apparatus according to any one of Items 1 to 3.
【請求項7】 流動層型部分酸化反応塔(13)の流動媒体
が酸化鉄を主成分とする平均粒径が0.3〜5mmの焼
結粒体である請求項6記載の石炭の連続転換装置。
7. The continuous coal according to claim 6, wherein the fluidized medium of the fluidized-bed partial oxidation reaction tower (13) is a sintered particle mainly composed of iron oxide and having an average particle diameter of 0.3 to 5 mm. Conversion device.
【請求項8】 流動層型部分酸化反応塔(13)で生成した
粉末状灰分を回収する灰分受けホッパ(17)を備え、 前記灰分受けホッパ(17)に酸化カルシウムが供給されて
前記灰分中の硫黄分から硫酸カルシウムを生成するよう
に構成された請求項6又は7記載の石炭の連続転換装
置。
8. An ash receiving hopper (17) for recovering powdery ash generated in a fluidized bed partial oxidation reaction tower (13), wherein calcium oxide is supplied to the ash receiving hopper (17) and The continuous coal conversion apparatus according to claim 6 or 7, wherein the apparatus is configured to generate calcium sulfate from sulfur content of the coal.
JP04335497A 1997-02-27 1997-02-27 Continuous coal conversion equipment Expired - Fee Related JP3402353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04335497A JP3402353B2 (en) 1997-02-27 1997-02-27 Continuous coal conversion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04335497A JP3402353B2 (en) 1997-02-27 1997-02-27 Continuous coal conversion equipment

Publications (2)

Publication Number Publication Date
JPH10237458A true JPH10237458A (en) 1998-09-08
JP3402353B2 JP3402353B2 (en) 2003-05-06

Family

ID=12661527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04335497A Expired - Fee Related JP3402353B2 (en) 1997-02-27 1997-02-27 Continuous coal conversion equipment

Country Status (1)

Country Link
JP (1) JP3402353B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174649A (en) * 2007-01-19 2008-07-31 Mitsubishi Materials Corp Separation method for high-temperature high-pressure water and oil and its separation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008174649A (en) * 2007-01-19 2008-07-31 Mitsubishi Materials Corp Separation method for high-temperature high-pressure water and oil and its separation apparatus

Also Published As

Publication number Publication date
JP3402353B2 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
EP0225146B1 (en) Two-stage coal gasification process
CA1151428A (en) Process for gasification of coal to maximize coal utilization and minimize quantity and ecological impact of waste products
US4017272A (en) Process for gasifying solid carbonaceous fuel
US9187704B2 (en) Method of biomass gasification
US4166786A (en) Pyrolysis and hydrogenation process
US4050908A (en) Process for the production of fuel values from coal
US20080141591A1 (en) Gasification of sulfur-containing carbonaceous fuels
CN102781818A (en) Using fossil fuels to increase biomass-based fuel benefits
CN103635449A (en) Systems for converting fuel
CN101300327A (en) Method for producing synthesis gas or a hydrocarbon product
CN101845319B (en) Process for producing wax and clean fuel oil by using biomass as raw material
US3944480A (en) Production of oil and high Btu gas from coal
US5505839A (en) Method of coal liquefaction
JP4644831B2 (en) Liquid fuel production equipment from biomass
CA2069320C (en) Process for the conversion of carbonaceous feedstocks to particulate carbon and methanol
US4526903A (en) Process for the production of synthesis gas from coal
CN102549116A (en) Method for supplying an entrained flow gasification reactor with carbon-containing fuels
JPS5822502B2 (en) coal liquefaction method
JPH08269459A (en) Coal liquefaction method
JP3538146B2 (en) Treatment of medium filter cake
CN113785035A (en) Syngas production from gasification and reforming of carbonaceous materials
JP3402353B2 (en) Continuous coal conversion equipment
US4523986A (en) Liquefaction of coal
US4226698A (en) Ash removal and synthesis gas generation from heavy oils produced by coal hydrogenation
JP3491664B2 (en) Conversion method of coal using supercritical water

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030129

LAPS Cancellation because of no payment of annual fees