JP2008174629A - Molding material and molded part - Google Patents

Molding material and molded part Download PDF

Info

Publication number
JP2008174629A
JP2008174629A JP2007008599A JP2007008599A JP2008174629A JP 2008174629 A JP2008174629 A JP 2008174629A JP 2007008599 A JP2007008599 A JP 2007008599A JP 2007008599 A JP2007008599 A JP 2007008599A JP 2008174629 A JP2008174629 A JP 2008174629A
Authority
JP
Japan
Prior art keywords
molding material
plant
waste
derived
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008599A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yamagata
芳和 山縣
Seiji Kurozumi
誠治 黒住
Yasushi Iwasaki
泰史 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Innovative Technology for the Earth RITE
Panasonic Holdings Corp
Original Assignee
Research Institute of Innovative Technology for the Earth RITE
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Innovative Technology for the Earth RITE, Matsushita Electric Industrial Co Ltd filed Critical Research Institute of Innovative Technology for the Earth RITE
Priority to JP2007008599A priority Critical patent/JP2008174629A/en
Publication of JP2008174629A publication Critical patent/JP2008174629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that, though fibrous reinforcing material such as a glass fiber is generally added in order to enhance mechanical properties of the molding material using a thermosetting resin, lowered flowability of the molding material causes deterioration of productivity and defective molding. <P>SOLUTION: The molding material is made to comprise a thermosetting resin comprised of at least an unsaturated polyester and a crosslinkable monomer, and a fiber derived from a plant. Thus, strengths are enhanced while suppressing lowering of flowability of the molding material. The molding material is easily decomposable by an immersion treatment in an alkaline aqueous solution or the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はモールド材及びそのモールド材を用いたモールド部品に関する。   The present invention relates to a mold material and a molded part using the mold material.

従来、熱硬化性樹脂である不飽和ポリエステル樹脂やフェノール樹脂をモールド材として使用する場合、炭酸カルシウムや水酸化アルミニウムなどの無機充填材やガラス繊維などの補強材を添加して、増量、寸法安定化、収縮防止、強度向上、ひけ・そり防止、難燃化、コストダウンなどを図ることが一般的に行われている。   Conventionally, when using unsaturated polyester resin or phenol resin, which are thermosetting resins, as a molding material, inorganic fillers such as calcium carbonate and aluminum hydroxide and reinforcing materials such as glass fiber are added to increase the amount and stabilize the dimensions. In general, it has been attempted to reduce the size, prevent shrinkage, improve the strength, prevent sink / warp, flame retardancy, and reduce costs.

不飽和ポリエステル樹脂BMC(バルクモールディングコンパウンド)としては、例えば、特許文献1で、集束剤を用いたガラス繊維の添加による高強度BMC成形体を得る方法が開示されている。また特許文献2に、長さを調整した無機繊維と有機繊維を添加したBMCにより、高強度でかつ外観、特にウエルドラインを改善できる成形材料が開示されている。
特開平5−293823公報 特開2001−261924公報
As an unsaturated polyester resin BMC (bulk molding compound), for example, Patent Document 1 discloses a method of obtaining a high-strength BMC molded body by adding glass fibers using a sizing agent. Further, Patent Document 2 discloses a molding material that has high strength and can improve the appearance, particularly the weld line, by using a BMC to which inorganic fibers and organic fibers having adjusted lengths are added.
JP-A-5-293823 JP 2001-261924 A

しかしながら、ガラス繊維を補強材として添加することは、強度向上を図るためには大変有効な方法であるが、硬化前のBMCの流動性を低下させる傾向がある。そのため、流動性低下による成形不良の多発や成形自体が困難になることもあり、成形体強度向上と流動性低下のバランスを考慮して、ガラス繊維の添加量、形状、種類などを決定する必要があった。このことが原因で、十分な強度が得られなかったり、成形が長時間になり生産性の低下が起きることも考えられる。またガラス繊維は樹脂とのなじみが悪く、ガラス繊維に表面処理を施すことも必要となる場合が多い。さらに、ガラス繊維は皮膚に刺さりやすく、吸引すると悪影響もあるため、作業安全性の面からも問題がある。   However, adding glass fiber as a reinforcing material is a very effective method for improving the strength, but tends to reduce the fluidity of the BMC before curing. Therefore, frequent molding defects due to lower fluidity and molding itself may be difficult, and it is necessary to determine the addition amount, shape, type, etc. of glass fiber in consideration of the balance between improved compact strength and lower fluidity. was there. For this reason, it is conceivable that sufficient strength cannot be obtained, or that molding takes a long time and productivity is lowered. Moreover, glass fiber is not familiar with the resin, and it is often necessary to subject the glass fiber to a surface treatment. Furthermore, since glass fiber is easy to pierce the skin and has an adverse effect when sucked, there is a problem in terms of work safety.

一方、熱硬化性樹脂は、硬化反応によって複雑な橋架け化三次元構造となるため、一般的には不溶不融の樹脂であり、そのため分解・再生処理は困難であり、再利用し難い樹脂なのであるが、最近、廃棄物問題がクローズアップされるにつれ、様々な製品(建築物、自動車、電気製品等)の再利用が求められるようになってきた。   Thermosetting resins, on the other hand, have a complex cross-linked three-dimensional structure due to the curing reaction, so they are generally insoluble and infusible resins, and therefore are difficult to decompose and recycle, and are difficult to reuse. However, recently, as the problem of waste has been raised, various products (buildings, automobiles, electrical products, etc.) have been required to be reused.

しかし樹脂の再生・再利用は、金属の場合と異なり、技術的にも確立していない点が多く、とりわけモールド成形体の再生・再利用は困難となっている。かかるモールド成形体は、構造材として使用されることが多く、たとえばモールドモータのモールド材や半導体封止材としての利用など、その内部に金属等を包含している場合が多いため、内部の有用な部品、材料を再生・再利用することも困難となっている。さらに、FRP(繊維強化重合性不飽和単量体含有熱硬化性樹脂)、その材料であるSMC、BMC等のリサイクル方法である、粉砕法、熱分解法、マイクロ波による分解法等は、専用の大がかりな装置が必要な上、多量のエネルギーを消費する場合もある。   However, unlike the case of metal, the regeneration / reuse of the resin is not technically established, and in particular, it is difficult to regenerate / reuse the molded product. Such a molded product is often used as a structural material. For example, it is often used as a molding material of a mold motor or a semiconductor sealing material. It is also difficult to recycle and reuse various parts and materials. In addition, recycling methods such as FRP (fiber reinforced polymerizable unsaturated monomer-containing thermosetting resin) and its materials, SMC, BMC, etc., such as grinding method, thermal decomposition method, microwave decomposition method, etc. are dedicated. A large-scale device is required, and a large amount of energy may be consumed.

さらに、地球環境保護の観点からは、廃棄物処理場の不足もあって、植物性廃棄物の再利用・リサイクルなども求められている。
たとえば、樹皮や間伐材、剪定枝、建築廃材などから発生する木質系廃材の再利用技術の開発が強く求められている。木質系廃材は、東南アジアなどで多く栽培されているパーム椰子の椰子殻廃材や廃葉・廃幹なども大量に発生するため、その利用方法の開発も望まれている。これらの廃材に含まれる植物由来の繊維状物質を利用することは今後さらに重要になってくると考えられる。
Furthermore, from the viewpoint of protecting the global environment, there is a shortage of waste disposal sites, and there is a need to reuse and recycle vegetable waste.
For example, there is a strong demand for the development of recycling technology for wood waste generated from bark, thinned wood, pruned branches, construction waste, and the like. Since wood-based waste materials are also produced in large quantities, such as palm coconut shell waste, waste leaves, and waste stems that are cultivated in Southeast Asia, development of a method for using them is also desired. Utilization of plant-derived fibrous substances contained in these waste materials will become even more important in the future.

本発明の目的は、上記問題に鑑み、植物廃材などから取り出した繊維をBMCの補強剤、特にガラス繊維の代用として用いることで、従来のBMCと同等以上の強度を有し、かつ分解性を向上させたモールド材およびモールド部品を提供することである。   In view of the above problems, the object of the present invention is to use fibers extracted from plant wastes as a substitute for BMC reinforcing agents, particularly glass fibers, so that it has a strength equal to or higher than that of conventional BMC and has degradability. It is to provide an improved molding material and molded part.

上記課題を解決するために、本発明のモールド材は、少なくとも不飽和ポリエステルおよび架橋性モノマーを含んだ熱硬化性樹脂と植物由来繊維とを含んだものとしたことを特徴とする。   In order to solve the above problems, the molding material of the present invention is characterized in that it contains at least a thermosetting resin containing an unsaturated polyester and a crosslinkable monomer and a plant-derived fiber.

植物由来繊維が、樹皮や間伐材、剪定枝、建築廃材などから発生する木質系廃材、あるいはパーム椰子の椰子殻廃材や廃葉・廃幹由来の繊維から選ばれる少なくとも1種であることが好ましい。   It is preferable that the plant-derived fiber is at least one selected from wood-based waste materials generated from bark, thinned wood, pruned branches, building waste materials, or palm-coconut palm shell waste materials and fibers derived from waste leaves and waste trunks. .

また、モールド材中に占める植物由来繊維の割合が0.5〜20wt%であることが好ましい。植物由来繊維が長さ1〜5mmに調整されていることも好ましい。
上記のモールド材を用いて作成したモールド部品も本発明に係る。
Moreover, it is preferable that the ratio of the plant origin fiber which occupies in a mold material is 0.5-20 wt%. It is also preferable that the plant-derived fiber is adjusted to a length of 1 to 5 mm.
A molded part produced using the above molding material also relates to the present invention.

以上のように本発明のモールド材は、少なくとも不飽和ポリエステルおよび架橋性モノマーを含んだ熱硬化性樹脂と植物由来繊維とを含んでいることにより、成形体の強度を向上させることができ、また前記植物由来繊維を廃材から取り出すことで資源の有効利用も実現できる。   As described above, the molding material of the present invention can improve the strength of the molded body by including a thermosetting resin containing at least an unsaturated polyester and a crosslinkable monomer and a plant-derived fiber. Effective use of resources can be realized by taking out the plant-derived fiber from the waste material.

さらに、植物由来繊維を含む成形体は、水溶液の浸透性が向上するため、例えばアルカリ性溶液に浸漬することによって、植物由来繊維部分が分解・膨潤・軟化しやすくなり、所望時に容易に崩壊させることが可能になる。そのため、使用後廃棄物となった成形体をアルカリ性の水溶液で処理することで、減容化などの廃棄処理を容易にすることができる。また、アルカリ性の水溶液の浸透性向上により熱硬化性樹脂の骨格のポリエステル部分が加水分解しやすくなるため、樹脂の三次元構造を崩壊させる可能性も大きくなり、廃棄処理をより容易にすることができる。アルカリ性の水溶液の浸透性は、植物由来繊維の含有量を変更することによって調節できる。   Furthermore, since the molded body containing plant-derived fibers improves the permeability of aqueous solutions, the plant-derived fiber parts are easily decomposed, swollen, and softened, for example, by being immersed in an alkaline solution, and easily disintegrated when desired. Is possible. Therefore, disposal treatment such as volume reduction can be facilitated by treating the molded body that has become waste after use with an alkaline aqueous solution. In addition, since the polyester portion of the thermosetting resin skeleton is easily hydrolyzed by improving the permeability of the alkaline aqueous solution, the possibility of collapsing the three-dimensional structure of the resin is increased, and the disposal process can be made easier. it can. The permeability of the alkaline aqueous solution can be adjusted by changing the content of plant-derived fibers.

また、上記モールド材を用いたモールド部品において、その内部に有価物を有しているもの、例えば鉄芯や巻線などを有しているモールドモータやモールドトランスなどは、廃棄時に、アルカリ性の水溶液に浸漬して液を浸透させることにより、モールド部分を膨潤・軟化させ、さらには崩壊・剥離させて、内部の有価物を取り出すことができることとなり、再利用が容易になる。   Moreover, in the molded parts using the molding material, those having valuables inside, for example, mold motors or mold transformers having iron cores or windings, are disposed of an alkaline aqueous solution at the time of disposal. The mold part is swelled / softened, and further collapsed / peeled to allow the internal valuables to be taken out, and the reuse becomes easy.

以下、本発明の実施の形態について詳細に説明する。
本発明のモールド材において、熱硬化性樹脂を構成する不飽和ポリエステルとしては、主要原料として不飽和多塩基酸と飽和多塩基酸、グリコール類から構成されるあらゆる不飽和ポリエステルが使用できる。
Hereinafter, embodiments of the present invention will be described in detail.
In the molding material of the present invention, as the unsaturated polyester constituting the thermosetting resin, any unsaturated polyester composed of unsaturated polybasic acid, saturated polybasic acid, and glycols can be used as the main raw material.

不飽和多塩基酸としては、例えば、無水マレイン酸、フマル酸、イタコン酸等が用いられる。飽和多塩基酸としては、例えば、無水フタル酸、イソフタル酸、テレフタル酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、テトラブロム無水フタル酸、アジピン酸、セバシン酸等が挙げられる。   As the unsaturated polybasic acid, for example, maleic anhydride, fumaric acid, itaconic acid and the like are used. Examples of the saturated polybasic acid include phthalic anhydride, isophthalic acid, terephthalic acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, tetrabromophthalic anhydride, adipic acid, sebacic acid and the like. It is done.

グリコール類としては、例えば、プロピレングリコール、エチレングリコール、ジエチレングリコール、ジプロピレングリコール、ネオペンチルグリコール、ジブロムネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、水素化ビスフェノールA等が挙げられる。   Examples of glycols include propylene glycol, ethylene glycol, diethylene glycol, dipropylene glycol, neopentyl glycol, dibromoneopentyl glycol, 1,3-butanediol, 1,4-butanediol, hydrogenated bisphenol A, and the like. It is done.

架橋性モノマー、つまり架橋剤となる付加重合性モノマーとしては、スチレン、メタクリル酸メチル、酢酸ビニル、ビニルトルエン、α−メチルスチレン、アクリル酸メチル、アクリル酸2−ヒドロキシエチル、メタクリル酸2−ヒドロキシエチル等が挙げられる。これらのモノマーのうち、安価で架橋性も良好なスチレンが最も好ましい。   Examples of the crosslinkable monomer, that is, the addition polymerizable monomer serving as a crosslinking agent include styrene, methyl methacrylate, vinyl acetate, vinyltoluene, α-methylstyrene, methyl acrylate, 2-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate. Etc. Of these monomers, styrene is most preferred because it is inexpensive and has good crosslinkability.

架橋性モノマーは、不飽和多塩基酸に対してモル比で1.3〜5倍添加することが好ましい。モル比1.3以下では未反応の不飽和多塩基酸が多くなり、成形体の強度等が低下し、モル比5以上では未反応のモノマーが多く残存する場合がある。   The crosslinkable monomer is preferably added 1.3 to 5 times in molar ratio to the unsaturated polybasic acid. If the molar ratio is 1.3 or less, the amount of unreacted unsaturated polybasic acid increases, and the strength of the molded article is reduced. If the molar ratio is 5 or more, a large amount of unreacted monomer may remain.

重合開始剤として、例えば、t−ブチルパーオクエート、過酸化ベンゾイル、t−ブチルパーベンゾエート、2,2,ビス(t−ブチルパーオキシ)ブタン、3,3,5,トリメチル(t−ブチルパーオキシ)シクロヘキサン等を添加してもかまわない。   As the polymerization initiator, for example, t-butyl perocate, benzoyl peroxide, t-butyl perbenzoate, 2,2, bis (t-butylperoxy) butane, 3,3,5, trimethyl (t-butylperoxide) Oxy) cyclohexane or the like may be added.

充填材として、少なくとも植物由来繊維を含んでいればよく、それ以外の充填材でも流動性や強度等を考慮して混入してもかまわない。
植物由来繊維は、樹皮や間伐材、剪定枝、建築廃材などから発生する木質系廃材、あるいはパーム椰子の椰子殻廃材や廃葉・廃幹由来の繊維から選ばれる少なくとも1種であることが好ましい。
As the filler, it is sufficient if it contains at least plant-derived fibers, and other fillers may be mixed in consideration of fluidity and strength.
The plant-derived fiber is preferably at least one selected from wood-based waste materials generated from bark, thinned wood, pruned branches, construction waste materials, etc., or palm coconut shell waste materials, waste leaf / waste stem-derived fibers. .

その中でもパーム椰子の椰子殻廃材や廃葉・廃幹由来の繊維が好ましい。パーム椰子の椰子殻や廃葉・廃幹はそのままの状態で大部分が繊維状であるため、単純に粉砕するだけで、繊維状充填材として使用できる。   Among them, palm coconut shell waste and fibers derived from waste leaves and stems are preferable. Palm coconut shells, waste leaves, and waste trunks are mostly fibrous, and can be used as fibrous fillers simply by crushing.

一般の木質系廃材は、粉砕してチップ状の充填材として使用することもできるが、繊維状ではないがゆえにモールド材の強度向上は困難なので、アルカリ処理などでセルロースを分離して繊維状充填材とする方が好ましい。   General wood-based waste can be crushed and used as a chip-like filler, but because it is not fibrous, it is difficult to improve the strength of the molding material. A material is preferred.

粉砕処理には、一般的な粉砕処理装置である破砕機や、カッターミル、ディスクミルなどを組み合わせて使用できる。粉砕のためには、水分含有率はできるだけ小さい方がよく、50%以下が好ましい。そのため、廃材の種類によっては予め乾燥処理を施した方がよいものもある。   For the pulverization treatment, a crusher, a cutter mill, a disk mill, or the like, which is a general pulverization apparatus, can be used in combination. For pulverization, the water content should be as small as possible, preferably 50% or less. Therefore, depending on the type of waste material, it may be better to perform a drying process in advance.

植物由来繊維を熱硬化性樹脂に混合するには、予め乾燥することが必要である。乾燥には、一般的によく使用される恒温乾燥機などが使用できる。
植物由来繊維は、長さ1〜5mmに調整されていることが好ましい。短すぎるとモールド材の強度向上の効果が小さくなり、長すぎると流動性の低下やBMCの混練が困難になるなどの問題が発生する。
In order to mix a plant origin fiber with a thermosetting resin, it is necessary to dry beforehand. For drying, a constant temperature dryer or the like that is commonly used can be used.
The plant-derived fiber is preferably adjusted to a length of 1 to 5 mm. If it is too short, the effect of improving the strength of the molding material is reduced, and if it is too long, problems such as a decrease in fluidity and difficulty in kneading BMC occur.

モールド材中に占める植物由来繊維の割合は、0.5〜20wt%であることが好ましい。1.0〜15wt%がより好ましい。添加量が少なすぎると強度向上などの効果が小さく、添加量が多すぎると樹脂吸収量が多くなり、BMCの混練が困難になったり、流動性が低下したりする。   The proportion of plant-derived fibers in the mold material is preferably 0.5 to 20 wt%. 1.0-15 wt% is more preferable. If the added amount is too small, the effect of improving the strength is small, and if the added amount is too large, the amount of resin absorption increases, making it difficult to knead BMC or lowering the fluidity.

植物由来繊維の他に無機充填材を添加しても勿論かまわない。無機充填材としては、例えば、炭酸カルシウム、珪酸カルシウム、炭酸マグネシウム、硫酸バリウム、硫酸カルシウム、水酸化アルミニウム、ガラス球等が挙げられる。   Of course, an inorganic filler may be added in addition to the plant-derived fiber. Examples of the inorganic filler include calcium carbonate, calcium silicate, magnesium carbonate, barium sulfate, calcium sulfate, aluminum hydroxide, glass spheres and the like.

さらに、補強材として、ポリアクリロニトリル系あるいはレーヨン系もしくはピッチ系の炭素繊維、ビニロン、ポリプロピレン、ポリエステル、アラミド繊維等の有機繊維を添加してもかまわない。場合によってはガラス繊維を併用してもかまわない。   Furthermore, polyacrylonitrile-based or rayon-based or pitch-based carbon fibers, vinylon, polypropylene, polyester, aramid fibers, or other organic fibers may be added as a reinforcing material. In some cases, glass fiber may be used in combination.

低収縮剤として、例えば、ポリスチレン、ポリカプロラクトン、ポリジプロピレンアジペート、ポリジプロピレンイソフタレート等を添加してもかまわない。
着色剤として、一般的な染料や顔料を用いることができ、例えば、酸化鉄、酸化チタン、カドミウムイエロー、カドミウムレッド、クロムイエロー、クロムバーミリオン、群青等の無機顔料やアゾ化合物、シアニンブルー、塩素化シアニンブルー、シアニングリーン等の有機顔料、インジゴレッド、オイルレッド等の染料やカーボンブラック等を添加してもかまわない。
As the low shrinkage agent, for example, polystyrene, polycaprolactone, polydipropylene adipate, polydipropylene isophthalate and the like may be added.
As the colorant, general dyes and pigments can be used. For example, inorganic pigments such as iron oxide, titanium oxide, cadmium yellow, cadmium red, chrome yellow, chrome vermilion, ultramarine blue, azo compounds, cyanine blue, chlorine Organic pigments such as cyanine blue and cyanine green, dyes such as indigo red and oil red, carbon black and the like may be added.

増粘剤として、例えば、酸化マグネシウム、水酸化マグネシウム、水酸化カルシウム、多価イソシアナート化合物等を添加してもかまわない。
離型剤としては、例えば、フッ素系界面活性剤、ステアリン酸亜鉛、ステアリン酸マグネシウム等が使用できる。
As a thickener, for example, magnesium oxide, magnesium hydroxide, calcium hydroxide, a polyvalent isocyanate compound or the like may be added.
As the mold release agent, for example, a fluorine-based surfactant, zinc stearate, magnesium stearate and the like can be used.

本発明のモールド部品(モールド成形体)は、上述したモールド材を用いて、トランスファー成形機などにより成形される。モールド部品としては、例えばモータやトランスなどが挙げられる。   The molded component (molded product) of the present invention is molded by a transfer molding machine or the like using the above-described molding material. Examples of the molded part include a motor and a transformer.

モールド成形体を分解する方法としては、例えば、2〜7Nの濃度のアルカリ金属化合物またはアルカリ土類金属化合物を含むアルカリ性水溶液(以下、単に溶液という)に浸漬する。このことにより、植物由来繊維部分に溶液が浸透して、分解・膨潤・軟化などの作用を起こし、かつ不飽和ポリエステル樹脂骨格中のエステル部分も加水分解が促進されるため、容易に分解処理が行える。特に、上記濃度の溶液では、加水分解に十分な水酸イオンを与えるとともに、アルカリ金属化合物またはアルカリ土類金属化合物の添加による粘度上昇もそれほど大きくならないため、モールド材への浸透性の低下は生じない。このため、短時間でモールド成形体を分解処理することができる。   As a method for decomposing the molded product, for example, it is immersed in an alkaline aqueous solution (hereinafter simply referred to as a solution) containing an alkali metal compound or an alkaline earth metal compound having a concentration of 2 to 7N. As a result, the solution penetrates into the plant-derived fiber portion, causing actions such as decomposition, swelling, and softening, and the ester portion in the unsaturated polyester resin skeleton is also promoted to be easily decomposed. Yes. In particular, the solution having the above concentration gives sufficient hydroxide ions for hydrolysis, and the increase in viscosity due to the addition of an alkali metal compound or alkaline earth metal compound does not increase so much. Absent. For this reason, a molded object can be decomposed | disassembled in a short time.

アルカリ金属化合物あるいはアルカリ土類金属化合物としては、例えば、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、ナトリウムエトキシド、カリウムブトキシド等が挙げられる。これらのアルカリ金属化合物あるいはアルカリ土類金属化合物の水溶液は、濃度が大きいほど水酸イオンが増えて、熱硬化性ポリエステル樹脂のエステル結合を攻撃し、加水分解を促進するが、ナトリウムイオンやカリウムイオン等も多くなるため溶液の粘度も高くなり、樹脂中への溶液の浸透性は低下する。そのため、十分な加水分解反応が起き、かつ液の浸透性も低下させないような濃度が好ましい。10N以下が好ましく、特に2〜7Nがより好ましい。アルカリ金属化合物あるいはアルカリ土類金属化合物は、単一種類に限らず、複数種類含まれていてもよい。   Examples of the alkali metal compound or alkaline earth metal compound include sodium hydroxide, potassium hydroxide, barium hydroxide, sodium ethoxide, potassium butoxide and the like. In the aqueous solution of these alkali metal compounds or alkaline earth metal compounds, the higher the concentration, the more the hydroxide ions increase, attacking the ester bond of the thermosetting polyester resin, and promoting the hydrolysis. Etc., the viscosity of the solution also increases, and the permeability of the solution into the resin decreases. Therefore, it is preferable that the concentration is such that a sufficient hydrolysis reaction occurs and the liquid permeability is not lowered. 10N or less is preferable, and 2 to 7N is particularly preferable. The alkali metal compound or alkaline earth metal compound is not limited to a single type, and a plurality of types may be included.

上記の溶液の樹脂に対する浸透性を改善するために、親水性溶媒、例えば、メチルアルコールやエチルアルコールなどのアルコール類、アセトン、テトラヒドロフラン、エチレングリコール、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、ジエチレングリコール、ジエチレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジメチルホルムアミド、ジメチルアミン等を用いてもよい。   In order to improve the permeability of the above solution to the resin, hydrophilic solvents such as alcohols such as methyl alcohol and ethyl alcohol, acetone, tetrahydrofuran, ethylene glycol, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl Ether, diethylene glycol, diethylene glycol diethyl ether, diethylene glycol dimethyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, dimethylformamide, dimethylamine, and the like may be used.

水の電気分解装置により生成したアルカリ性水溶液を分解処理に使用してもよい。その場合は、pH11以上の水溶液を用いるのが好ましい。pH11未満では、十分な加水分解反応が起きず、処理時間が長くなる可能性がある。水を電気分解する際に、塩化ナトリウム、塩化カリウム、炭酸カルシウム、硫酸カルシウム、水酸化ナトリウム、塩酸等を電解質として少量添加してもよい。特に、塩化ナトリウムや塩化カリウムが取扱い上好ましい。   An alkaline aqueous solution generated by a water electrolysis apparatus may be used for the decomposition treatment. In that case, it is preferable to use an aqueous solution having a pH of 11 or more. If the pH is less than 11, sufficient hydrolysis reaction does not occur, and the treatment time may be long. When electrolyzing water, a small amount of sodium chloride, potassium chloride, calcium carbonate, calcium sulfate, sodium hydroxide, hydrochloric acid or the like may be added as an electrolyte. In particular, sodium chloride and potassium chloride are preferable in handling.

処理温度は、当然高温の方がより大きな分解速度が得られるため、水の沸点以下(常圧では100℃以下)の範囲内で加温してもよいが、アルコール類が含まれている場合はそれらの沸点以下が好ましい。   Of course, the higher the processing temperature, the higher the decomposition rate, so it may be heated within the range below the boiling point of water (under 100 ° C at normal pressure), but it contains alcohols. Is preferably below their boiling point.

なお、分解方法は、上記アルカリ性水溶液に浸漬するだけでなく、酸処理や溶剤処理などでもかまわない。このような、液体が浸透して分解や膨潤などの作用を引き起こす分解方法であることが、本発明のモールド材やモールド部品の特徴が生かせるため好ましい。   The decomposition method is not limited to immersing in the alkaline aqueous solution, but may be acid treatment or solvent treatment. Such a decomposition method in which a liquid permeates to cause an action such as decomposition or swelling is preferable because the characteristics of the molding material and the molded part of the present invention can be utilized.

以下、具体的な実施例を挙げて、本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to specific examples.

不飽和ポリエステル樹脂として大日本インキ化学工業製PB210と、ポリスチレン系低収縮剤であるPB987とを7:3の割合で混合したものを100重量部とり、重合開始剤1.1ジブチルパーオキシ−3.3.5トリメチルシクロヘキサンを1重量部加えて攪拌混合して樹脂液組成物を得た。なお、上記不飽和ポリエステル樹脂および低収縮材は、架橋性モノマーであるスチレンを含んだものである。   Take 100 parts by weight of a 7: 3 mixture of Dainippon Ink & Chemicals PB210 as an unsaturated polyester resin and PB987, which is a polystyrene-based low shrinkage agent, to obtain a polymerization initiator 1.1 dibutylperoxy-3. .1 part by weight of trimethylcyclohexane was added and mixed by stirring to obtain a resin liquid composition. The unsaturated polyester resin and the low shrinkage material contain styrene which is a crosslinkable monomer.

植物由来繊維としてパーム椰子の廃幹を用いた。200×300×50mmの板状に切り出した廃幹を、φ10mmのスクリーンを付けた槇野産業製カッターミルVM−22で数mm程度に粗粉砕した。次に、その粗粉砕品を槇野産業製微粉砕機DD−2−3.7により、さらに粉砕を行った。なお、スクリーンはΦ3mmを用いた。その結果、平均長さ約3mmの繊維状充填材が得られた。   The palm trunk was used as plant-derived fiber. The waste trunk cut out in a plate shape of 200 × 300 × 50 mm was coarsely pulverized to about several mm with a cutter mill VM-22 manufactured by Sugano Sangyo Co., Ltd. equipped with a screen of φ10 mm. Next, the coarsely pulverized product was further pulverized by a fine pulverizer DD-2-3.7 manufactured by Hadano Sangyo. The screen used was Φ3 mm. As a result, a fibrous filler having an average length of about 3 mm was obtained.

次に、他の充填剤である炭酸カルシウム28重量部、水酸化アルミニウム43重量部、離型剤であるステアリン酸亜鉛1.4重量部、着色剤である炭素粉末0.3重量部をニーダに移し、乾式混合を行った。約5分後、均一に混ざったこの乾式混合物に、上記樹脂液組成物21.2重量部を徐々に加え、約10分混練した。   Next, 28 parts by weight of calcium carbonate as another filler, 43 parts by weight of aluminum hydroxide, 1.4 parts by weight of zinc stearate as a release agent, and 0.3 parts by weight of carbon powder as a colorant are used as a kneader. Transfer and dry mix. After about 5 minutes, 21.2 parts by weight of the resin liquid composition was gradually added to the uniformly mixed dry mixture and kneaded for about 10 minutes.

最後に、上記繊維状充填材をモールド材全体に対して0〜20重量部になるよう変化させて添加して、数種類の均一なペースト状のモールド材を得た。
比較例として、上記繊維状充填材の代わりに、長さ3mmのガラス繊維をまんべんなく分散させながら、極力短時間で添加し、ガラス繊維が濡れて均一に分散したところで混練を終了して、比較用モールド材を得た。
Finally, the fibrous filler was added in an amount of 0 to 20 parts by weight with respect to the entire mold material, and several types of uniform paste-like mold materials were obtained.
As a comparative example, instead of the above fibrous filler, the glass fiber having a length of 3 mm was dispersed evenly and added in a short time as much as possible. A mold material was obtained.

得られたモールド材の流動性を測定した。測定方法は、スパイラル形状の溝を掘った金型(金型温度145℃)をトランスファー成形機に取り付け、成形圧力5MPa、硬化時間120sec、モールド材投入量50gで成形を行い、中心部からのスパイラル長を読み取り、スパイラルフローとして流動性を評価した。   The fluidity of the obtained molding material was measured. The measuring method is as follows: a die having a spiral groove (die temperature: 145 ° C.) is attached to a transfer molding machine, molding is performed at a molding pressure of 5 MPa, a curing time of 120 sec, and a molding material input amount of 50 g, and the spiral from the center is performed. The length was read and the fluidity was evaluated as a spiral flow.

また、上記トランスファー成形機を用いて、長さ127mm、幅12.7mm、厚み3.2mmの曲げ強度測定用成形体を作成した。成形条件は、金型温度145℃、成形圧力5MPaである。   Moreover, the molded object for a bending strength measurement of length 127mm, width 12.7mm, and thickness 3.2mm was created using the said transfer molding machine. The molding conditions are a mold temperature of 145 ° C. and a molding pressure of 5 MPa.

この成形体を島津製作所製オートグラフを用いて、テストスピード10mm/minで曲げ強度を測定した。
結果をまとめて(表1)に示す。
The bending strength of this molded body was measured at a test speed of 10 mm / min using an autograph manufactured by Shimadzu Corporation.
The results are summarized in (Table 1).

Figure 2008174629
表1からわかるように、植物由来繊維の添加は従来のガラス繊維添加に比べて、流動性の低下は抑制しながら、ほぼ同程度の曲げ強度の向上がみられた。これは、植物繊維が樹脂とのなじみがよいためと考えられる。
Figure 2008174629
As can be seen from Table 1, the addition of plant-derived fibers showed almost the same improvement in bending strength while suppressing a decrease in fluidity compared to the conventional glass fiber addition. This is presumably because the plant fibers are well compatible with the resin.

次に、上記曲げ強度測定用成形体を5Nの水酸化ナトリウム水溶液に80℃で10時間浸漬した後に切断して、液の浸透度を測定した。ここで、液の浸透度は、浸透した部分の色の変化から目視で評価した浸透度と、X線マイクロアナライザで測定したナトリウムの浸透度とが一致したため、目視評価で簡易的に行った。その結果を表2に示す。   Next, the molded body for measuring bending strength was immersed in a 5N aqueous sodium hydroxide solution at 80 ° C. for 10 hours, and then cut to measure the degree of penetration of the liquid. Here, the penetration degree of the liquid was simply determined by visual evaluation because the penetration degree visually evaluated from the change in the color of the penetrated portion and the penetration degree of sodium measured with an X-ray microanalyzer coincided. The results are shown in Table 2.

Figure 2008174629
この結果より、ガラス繊維の代わりに植物由来繊維を添加すると、アルカリ性溶液の浸透度が大きくなることがわかる。また、液が浸透した部分は軟らかくなっていて、手で容易にぼろぼろに崩壊させることができた。
Figure 2008174629
From this result, it can be seen that when plant-derived fibers are added instead of glass fibers, the permeability of the alkaline solution increases. Further, the portion where the liquid penetrated was soft and could be easily broken down by hand.

このような液の浸透による分解方法を用いることで、モールド成形体を容易に分解できるようになり、モールド内部に有価物がある場合は、その有価物を容易に取り出しリサイクルできる。   By using such a decomposition method by the permeation of liquid, the molded body can be easily decomposed. When there is a valuable material inside the mold, the valuable material can be easily taken out and recycled.

板状の杉木材を実施例1と同様の粉砕機で数mm程度に粗粉砕した。この粉砕物を苛性ソーダの蒸解液に浸漬して、加温加圧することで繊維を分離し、洗浄、乾燥したものをモールド材の繊維状充填材として用いた。   The plate-shaped cedar wood was roughly pulverized to a few millimeters by the same pulverizer as in Example 1. This pulverized product was immersed in a caustic soda cooking solution, heated and pressurized to separate the fibers, washed and dried, and used as the fibrous filler of the molding material.

この植物由来繊維を実施例1の繊維に変えて、他は同様の条件でモールド材を作成した。なお、植物由来繊維の添加量は10wt%に調整した。
その結果、スパイラルフローは175cmで、曲げ強度は45.5MPaであり、パーム椰子廃幹と同様に流動性低下を抑制しながら、強度向上が図れた。
The plant-derived fiber was changed to the fiber of Example 1, and the other molding material was prepared under the same conditions. In addition, the addition amount of the plant origin fiber was adjusted to 10 wt%.
As a result, the spiral flow was 175 cm, the bending strength was 45.5 MPa, and the strength could be improved while suppressing a decrease in fluidity as in the case of palm palm waste trunk.

また、実施例1と同条件で5Nの水酸化ナトリウム水溶液に浸漬処理すると、液は成形体に全浸透しており、手で容易にぼろぼろに崩壊させることができた。   Moreover, when the immersion treatment was performed in a 5N sodium hydroxide aqueous solution under the same conditions as in Example 1, the liquid had completely penetrated into the molded body and could be easily broken down by hand.

植物由来繊維を添加した本発明のモールド材は、従来のガラス繊維添加モールド材に比べて、流動性の低下を抑制しながら、成形体には同程度の強度向上を得ることができ、またアルカリ性水溶液などに浸漬処理することで容易に分解できるようになる。よって、モールドモータやモールドトランスなどに好適に利用でき、モールド内部の有価物のリサイクルも可能となる。   The molding material of the present invention to which plant-derived fibers are added can provide the same degree of strength improvement to the molded product while suppressing a decrease in fluidity compared to the conventional glass fiber-added molding material, and is alkaline. It can be easily decomposed by immersing it in an aqueous solution. Therefore, it can be suitably used for a mold motor, a mold transformer, and the like, and valuable materials inside the mold can be recycled.

Claims (5)

少なくとも不飽和ポリエステルおよび架橋性モノマーを含んだ熱硬化性樹脂と植物由来繊維とを含んでいることを特徴とするモールド材。   A molding material comprising a thermosetting resin containing at least an unsaturated polyester and a crosslinkable monomer and a plant-derived fiber. 請求項1において、植物由来繊維が、樹皮や間伐材、剪定枝、建築廃材などから発生する木質系廃材、あるいはパーム椰子の椰子殻廃材や廃葉・廃幹由来の繊維から選ばれる少なくとも1種であることを特徴とするモールド材。   2. The plant-derived fiber according to claim 1, wherein the plant-derived fiber is at least one selected from a wood-based waste material generated from bark, thinned wood, pruned branches, construction waste material, or the like, or palm coconut shell waste material, waste leaf / waste stem-derived fiber The mold material characterized by being. 請求項1または2において、モールド材中に占める植物由来繊維の割合が0.5〜20wt%であることを特徴とするモールド材。   The mold material according to claim 1 or 2, wherein a ratio of plant-derived fibers in the mold material is 0.5 to 20 wt%. 請求項1〜3のいずれかにおいて、植物由来繊維が長さ1〜5mmに調整されていることを特徴とするモールド材。   4. The molding material according to claim 1, wherein the plant-derived fiber is adjusted to a length of 1 to 5 mm. 請求項1〜4のいずれかに記載されたモールド材を用いて作成したモールド部品。   A molded part produced using the molding material according to claim 1.
JP2007008599A 2007-01-18 2007-01-18 Molding material and molded part Pending JP2008174629A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008599A JP2008174629A (en) 2007-01-18 2007-01-18 Molding material and molded part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008599A JP2008174629A (en) 2007-01-18 2007-01-18 Molding material and molded part

Publications (1)

Publication Number Publication Date
JP2008174629A true JP2008174629A (en) 2008-07-31

Family

ID=39701887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008599A Pending JP2008174629A (en) 2007-01-18 2007-01-18 Molding material and molded part

Country Status (1)

Country Link
JP (1) JP2008174629A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104013A1 (en) * 2015-12-16 2017-06-22 三菱電機株式会社 Stator, stator production method, electric motor, and air conditioning device
WO2019097824A1 (en) * 2017-11-17 2019-05-23 昭和電工株式会社 Bulk molding compound and method for encapsulating motor using same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104013A1 (en) * 2015-12-16 2017-06-22 三菱電機株式会社 Stator, stator production method, electric motor, and air conditioning device
JPWO2017104013A1 (en) * 2015-12-16 2018-03-01 三菱電機株式会社 Stator, stator manufacturing method, electric motor and air conditioner
US10594184B2 (en) 2015-12-16 2020-03-17 Mitsubishi Electric Corporation Stator, method of manufacturing stator, motor, and air conditioning apparatus
WO2019097824A1 (en) * 2017-11-17 2019-05-23 昭和電工株式会社 Bulk molding compound and method for encapsulating motor using same
CN111356722A (en) * 2017-11-17 2020-06-30 昭和电工株式会社 Bulk molding compound and method for packaging motor by using same
JPWO2019097824A1 (en) * 2017-11-17 2020-10-01 昭和電工株式会社 Bulk molding compound and how to use it to seal the motor
JP7108629B2 (en) 2017-11-17 2022-07-28 昭和電工株式会社 Bulk molding compound and method for encapsulating a motor using same
CN111356722B (en) * 2017-11-17 2022-12-30 昭和电工株式会社 Bulk molding compound and method for packaging motor by using same

Similar Documents

Publication Publication Date Title
CN107216672A (en) A kind of wood plastic composite and preparation method
CN105056853A (en) Surface modified selfreparing microcapsule and preparation method thereof, as well as selfreparing microcapsule composite material and preparation method thereof
WO1995029205A1 (en) Thermosetting composition, molding material, molded structure, and method of decomposing them
CN105017703A (en) Preparation method of flame-retardant acrylic plate material
CN104693464A (en) Preparation method of lignin-nanocelluose reinforced polylactic acid composite film
CN103232664A (en) Acrylic solid plate with characteristics of fire retardation, high strength and high toughness, and preparation method thereof
CN105837776A (en) Calcined shell micropore structure-based sea surface oil stain treatment micropowder preparation method
JPWO2020066537A1 (en) Method for Producing Cellulose Nanofiber (CNF) and Composite Material Containing It
CN105037655A (en) Carbon gold composite floor and preparation method thereof
CN110128058A (en) A kind of artificial marble and preparation method thereof with discarded terylene textile fabric preparation
CN109627725A (en) A kind of bathroom BMC material and preparation method thereof
JP2008174629A (en) Molding material and molded part
CN101962469A (en) Method for preparing full-degradable lactic acid composite material from secondary fibers of waste newspaper
JP4990170B2 (en) Mold material and molded body
CN104893241B (en) A kind of preparation method using useless paper money paper as the degradation plastic filler of base material
KR100836271B1 (en) Electronic parts case using biocomposites reinforced with sea algae fiber
JP5414153B2 (en) Unsaturated polyester resin and molded body
US20190224929A1 (en) Wood pulp fiber- or cellulose filament-reinforced bulk molding compounds, composites, compositions and methods for preparation thereof
US5874482A (en) Plastic molded product and method for disposal of the same
CN113354845A (en) Preparation method of waste paper fiber reinforced polylactic acid composite material
Kandelbauer et al. Handbook of thermoset plastics: 6. Unsaturated polyesters and vinyl esters
JPH0977836A (en) Photocurable composite material composition
CN110511552A (en) A kind of preparation method of the high plastic products of good in oxidation resistance, intensity
EP1092744B1 (en) Thermosetting prepreg composition and process for producing the same
JPH1121375A (en) Production of filler

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430