JP2008174408A - Ceramic raw material particle, slurry, sintered compact, and its manufacturing method - Google Patents

Ceramic raw material particle, slurry, sintered compact, and its manufacturing method Download PDF

Info

Publication number
JP2008174408A
JP2008174408A JP2007008067A JP2007008067A JP2008174408A JP 2008174408 A JP2008174408 A JP 2008174408A JP 2007008067 A JP2007008067 A JP 2007008067A JP 2007008067 A JP2007008067 A JP 2007008067A JP 2008174408 A JP2008174408 A JP 2008174408A
Authority
JP
Japan
Prior art keywords
ceramic
material particles
raw material
inorganic material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007008067A
Other languages
Japanese (ja)
Other versions
JP5093765B2 (en
Inventor
Kimiyasu Sato
佐藤  公泰
Yuji Hotta
裕司 堀田
Koji Watari
渡利  広司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007008067A priority Critical patent/JP5093765B2/en
Publication of JP2008174408A publication Critical patent/JP2008174408A/en
Application granted granted Critical
Publication of JP5093765B2 publication Critical patent/JP5093765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic raw material particle equipped with an inorganic material particle and a dispersant comprising an organic group as constitutional components which has a structure that the dispersant is directly bonded chemically on the surface of the inorganic material particle, ceramic slurry containing the same, and a method for manufacturing from the slurry an inorganic material shaped body, an inorganic material sintered compact, and an inorganic or organic composite material. <P>SOLUTION: The ceramic raw material particle is equipped with (A) an inorganic material particle and (B) a dispersant comprising an organic group as constitutional elements and has a structure that (B) the dispersant comprising an organic group is directly bonded chemically on the surface of (A) the inorganic material particle. By dispersing this in an aqueous solvent to form ceramic slurry and applying a wet molding method to the slurry, a ceramic formed body having a specified shape is obtained. The ceramic sintered body is obtained by firing the ceramic formed body. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、セラミックス原料粒子及びそのセラミックス原料粒子からなるスラリー・成形体・焼結体・無機/有機複合材料に関するものである。具体的には、表面に有機原子団からなる分散剤が直接化学結合した構造を有することで、溶媒中に均一に高濃度で分散可能なセラミックス原料粒子、並びにそのセラミックス原料粒子を用いて製造するスラリー・成形体・焼結体・無機/有機複合材料に関するものである。   The present invention relates to ceramic raw material particles and slurry / molded body / sintered body / inorganic / organic composite material comprising the ceramic raw material particles. Specifically, it has a structure in which a dispersing agent composed of an organic atomic group is directly chemically bonded to the surface, and is manufactured using ceramic raw material particles that can be dispersed uniformly and at a high concentration in a solvent, and the ceramic raw material particles. The present invention relates to a slurry, a molded body, a sintered body, and an inorganic / organic composite material.

セラミックスは、金属やプラスティック等と比較して機械・熱・電磁気特性に優れることから、構造材料や電気・電子材料等、様々な用途で用いられている。その製造プロセスは、原料粒子を望みの形に成形し、この成形体を加熱して緻密化(焼結)するのが一般的である。   Ceramics are used in various applications such as structural materials, electrical / electronic materials, etc., because they are superior in mechanical / thermal / electromagnetic properties compared to metals and plastics. In the manufacturing process, the raw material particles are generally formed into a desired shape, and the formed body is heated to be densified (sintered).

このような成形体の製造方法としては、例えば、骨材粒子(セラミックス粉末等)、分散媒(水等)、有機バインダー等を混合してスラリーを得、そのスラリーを多孔体からなる吸水性の成形型に注型し、スラリーを乾燥させた後、焼成することによりセラミックス焼結体を得る製造方法が開示されている(鋳込み成形法:例えば、非特許文献1参照)。   As a method for producing such a molded body, for example, an aggregate particle (ceramic powder or the like), a dispersion medium (water or the like), an organic binder, or the like is mixed to obtain a slurry, and the slurry is made of a porous material. A manufacturing method is disclosed in which a ceramic sintered body is obtained by pouring into a mold, drying the slurry, and then firing (casting molding method: see, for example, Non-Patent Document 1).

また、骨材粒子(セラミックス粉末等)、分散媒(水等)、ゲル化剤(モノマーやプレポリマー等)等を混合してスラリーを得、そのスラリーを成形型に注型し、加熱や重合開始剤の添加等によりゲル化剤をゲル化させてスラリーを固化させた後、脱脂することにより無機材料成形体を得る製造方法が開示されている(ゲルキャスト法:例えば、特許文献1参照)。   Also, aggregate particles (ceramic powder, etc.), dispersion medium (water, etc.), gelling agent (monomer, prepolymer, etc.), etc. are mixed to obtain a slurry, which is cast into a mold, heated and polymerized. A manufacturing method is disclosed in which a gelling agent is gelled by addition of an initiator or the like to solidify a slurry and then degreased to obtain an inorganic material molded body (gel casting method: see, for example, Patent Document 1). .

また、骨材粒子(セラミックス粉末等)を樹脂等と混合して加熱溶融により流動性を付与した後、高圧で金型内に射出成形し冷却して固化させた後、脱脂することにより無機材料成形体を得る方法が開示されている(射出成型法:たとえば、非特許文献1参照)。   In addition, after mixing aggregate particles (ceramics powder, etc.) with resin, etc. and imparting fluidity by heating and melting, injection molding into a mold at high pressure, cooling to solidify, and then degreasing to make inorganic material A method for obtaining a molded body is disclosed (injection molding method: see, for example, Non-Patent Document 1).

鋳込み成形法は、大量の有機溶剤や樹脂を用いる必要がないため環境負荷が小さく、また火災等の危険性の問題が少なく、現在広く利用されている。ところで、この方法で用いるセラミックス粒子のスラリーにおいては、微細な粒子を用いることにより、機能の高度化・焼成温度の低下・ニアネットシェイプ化等が期待できることが分かった。しかしながら、このようなセラミックス粒子を分散させた水系/非水系セラミックススラリーを調整する場合、粘度が急上昇して実用に適さないという欠点を伴うため、これを解決する必要があった。   The cast molding method does not require the use of a large amount of organic solvent or resin, so it has a low environmental impact and has few dangers such as fire, and is currently widely used. By the way, in the slurry of ceramic particles used in this method, it has been found that the use of fine particles can be expected to improve the function, lower the firing temperature, and form a near net shape. However, when preparing an aqueous / non-aqueous ceramic slurry in which such ceramic particles are dispersed, there is a drawback in that the viscosity rapidly increases and is not suitable for practical use, and thus it has been necessary to solve this problem.

特開2002−179468号公報JP 2002-179468 A 社団法人日本セラミックス協会編、セラミックス工学ハンドブック、第2版、技報堂出版、2002年、p.176〜178Edited by the Ceramic Society of Japan, Ceramics Engineering Handbook, 2nd edition, Gihodo Publishing, 2002, p. 176-178

本発明は、このような事情のもとで、平均粒径が1μm未満の微細なセラミックス粒子を含むスラリーにおいて、分散安定性が良く、粘度上昇等の好ましくない現象が抑制されたセラミックススラリーを提供することを目的としてなされたものである。   In view of such circumstances, the present invention provides a ceramic slurry that has excellent dispersion stability and suppresses undesirable phenomena such as an increase in viscosity in a slurry containing fine ceramic particles having an average particle diameter of less than 1 μm. It was made for the purpose of doing.

本発明者らは、微細なセラミックス粒子を含むスラリーの粘度上昇の原因ついて検討した結果、分散剤として用いられる有機分子をセラミックス粒子表面に固定することで、溶媒中に残存する分散剤による粒子間の架橋を完全に防ぎ、粒子の分散性を向上させ、粘度上昇を抑制しうることを見出し、この知見に基づいて本発明を完成するに至った。具体的には、本発明は、以下のセラミックス原料粒子からなるスラリー及びその製造方法、並びにそのスラリーを用いたセラミックス焼結体及び無機/有機複合材料の製造方法を提供するものである。   As a result of investigating the cause of the viscosity increase of the slurry containing fine ceramic particles, the present inventors fixed the organic molecules used as the dispersant on the surface of the ceramic particles, so that the particles between the particles due to the dispersant remaining in the solvent. The present inventors have found that the crosslinking can be completely prevented, the dispersibility of the particles can be improved, and the increase in viscosity can be suppressed, and the present invention has been completed based on this finding. Specifically, the present invention provides a slurry comprising the following ceramic raw material particles and a method for producing the same, and a method for producing a ceramic sintered body and an inorganic / organic composite material using the slurry.

[1] (A):無機材料粒子と、(B):有機原子団からなる分散剤を構成要素として備え、
前記(A):無機材料粒子の表面に、前記(B):有機原子団からなる分散剤が直接化学結合した構造を有するセラミックス原料粒子。
[1] (A): inorganic material particles, and (B): a dispersant composed of an organic atomic group as constituent elements,
(A): Ceramic raw material particles having a structure in which the dispersant (B): an organic atomic group is directly chemically bonded to the surface of the inorganic material particles.

[2] 前記(A):無機材料粒子の平均粒径が1μm未満である、前記[1]に記載のセラミックス原料粒子。 [2] The ceramic raw material particles according to [1], wherein (A): the average particle diameter of the inorganic material particles is less than 1 μm.

[3] 前記(A):無機材料粒子が、酸化物系セラミックス、非酸化物系セラミックス、及び金属からなる群から選択される少なくとも一種の無機材料を含むものである前記[1]に記載のセラミックス原料粒子。 [3] The ceramic material according to [1], wherein (A): the inorganic material particles include at least one inorganic material selected from the group consisting of oxide ceramics, non-oxide ceramics, and metals. particle.

[4] 有機原子団からなる分散剤が含有量10質量%未満に制御されている前記[1]に記載のセラミックス原料粒子。 [4] The ceramic raw material particles according to [1], wherein the dispersant composed of an organic atomic group is controlled to a content of less than 10% by mass.

[5] 前記(B):有機原子団からなる分散剤が、オキシエチレン(−CO−)、水酸基(−OH)を含む非イオン性親水構造、カルボキシル基(−COOH)、スルホニル基(−SOH)、硫酸水素基(−OSOOH)、リン酸基(−PO)を含むアニオン性親水構造及び各々の塩、アミノ基(−NH)、第4級アンモニウム基(N・(CH・Cl)を含むカチオン性親水構造及び各々の塩、からなる群から選択される少なくとも一種の構造を含むものである前記[1]に記載のセラミックス原料粒子。 [5] (B): Nonionic hydrophilic structure containing oxyethylene (—C 2 H 4 O—), hydroxyl group (—OH), carboxyl group (—COOH), sulfonyl Anionic hydrophilic structure including a group (—SO 3 H), a hydrogen sulfate group (—OSO 3 OH), a phosphate group (—PO 4 H 2 ), and respective salts, amino groups (—NH 2 ), quaternary The ceramic raw material particles according to the above [1], comprising at least one structure selected from the group consisting of a cationic hydrophilic structure containing an ammonium group (N +. (CH 3 ) 3 · Cl ) and each salt. .

[6] 前記[1]〜[5]のいずれかに記載のセラミックス原料粒子を水系溶媒に分散させたセラミックススラリー。 [6] A ceramic slurry in which the ceramic raw material particles according to any one of [1] to [5] are dispersed in an aqueous solvent.

[7] 前記[6]に記載のセラミックススラリーに湿式成形方法を適用して所望の形状のセラミックス成形体を得、
前記セラミックス成形体を焼成してセラミックス焼結体を得る、セラミックス焼結体の製造方法。
[7] A ceramic molded body having a desired shape is obtained by applying a wet molding method to the ceramic slurry according to [6],
A method for producing a ceramic sintered body, wherein the ceramic molded body is fired to obtain a ceramic sintered body.

[8] 前記(B):有機原子団からなる分散剤が、炭化水素鎖を含む親油構造である前記[1]に記載のセラミックス原料粒子。 [8] The ceramic raw material particles according to [1], wherein the dispersant (B): the organic atom group has a lipophilic structure including a hydrocarbon chain.

[9] 前記[1]〜[4]及び[8]のいずれかに記載のセラミックス原料粒子を非水系溶媒に分散させたセラミックススラリー。 [9] A ceramic slurry in which the ceramic raw material particles according to any one of [1] to [4] and [8] are dispersed in a non-aqueous solvent.

[10] 前記[9]に記載のセラミックススラリーに湿式成形方法を適用して所望の形状のセラミックス成形体を得、
前記セラミックス成形体を焼成してセラミックス焼結体を得る、セラミックス焼結体の製造方法。
[10] A ceramic molded body having a desired shape is obtained by applying a wet molding method to the ceramic slurry according to [9],
A method for producing a ceramic sintered body, wherein the ceramic molded body is fired to obtain a ceramic sintered body.

[11] 前記[8]に記載のセラミックス原料粒子を有機高分子中に分散させた無機/有機複合材料。 [11] An inorganic / organic composite material in which the ceramic raw material particles according to [8] are dispersed in an organic polymer.

本発明のセラミックススラリーの製造方法は、セラミックス粒子の微細化による粘度上昇を抑制でき、高密度な成形体を焼成に供することができるという、従来の製造方法と比較して有利な効果を奏するものである。   The method for producing a ceramic slurry according to the present invention has an advantageous effect compared to the conventional production method that can suppress an increase in viscosity due to the refinement of ceramic particles and can be used for firing a high-density molded body. It is.

以下、本発明の無機材料成形体及びその製造方法を実施するための最良の形態について具体的に説明する。但し、本発明は、分散剤となる有機原子団を無機材料粒子表面に直接化学結合させた上で、溶媒中に分散させるという思想に基づくセラミックススラリー、無機材料成形体、無機材料焼結体、及び無機/有機複合材料及びその製造方法を広く包含するものであり、以下に説明する実施形態に限定して解釈されるべきではない。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the inorganic material molded body and the method for producing the same of the present invention will be specifically described below. However, the present invention is a ceramic slurry, an inorganic material molded body, an inorganic material sintered body based on the idea that an organic atomic group serving as a dispersant is chemically bonded directly to the surface of inorganic material particles and then dispersed in a solvent. In addition, the present invention broadly encompasses inorganic / organic composite materials and methods for producing the same, and should not be interpreted as being limited to the embodiments described below.

本発明の一つの側面は、無機材料粒子と、有機原子団からなる分散剤を構成要素として備え、無機材料粒子の表面に分散剤が直接化学結合した構造を有することを特徴とするセラミックス原料粒子を含有するセラミックススラリーを得て、無機材料成形体、無機材料焼結体、及び無機/有機複合材料を得るための方法である。   One aspect of the present invention is a ceramic raw material particle comprising inorganic material particles and a dispersant composed of an organic atomic group as constituent elements, and having a structure in which the dispersant is directly chemically bonded to the surface of the inorganic material particles. Is a method for obtaining an inorganic material molded body, an inorganic material sintered body, and an inorganic / organic composite material.

[1]第1工程
本発明の製造方法の第1工程は、無機材料粒子表面に有機原子団からなる分散剤を直接化学結合させてセラミックス原料粒子を得る工程である。
[1] First Step The first step of the production method of the present invention is a step for obtaining ceramic raw material particles by directly chemically bonding a dispersant composed of an organic atomic group to the surface of the inorganic material particles.

無機材料粒子は、成形体の主たる構成成分となる粒子であり、無機材料成形体を製造する場合には、無機材料からなる無機材料粒子が用いられる。そして本発明の製造方法においては、無機材料粒子を分散させる溶媒と親和性の高い有機原子団が表面に化学結合された無機材料粒子、を用いる必要がある。「有機原子団」とは、炭素原子を構成原子として含む原子団を意味し、他の構造については特に限定はない。   The inorganic material particles are particles that are the main constituent components of the molded body, and when the inorganic material molded body is manufactured, inorganic material particles made of an inorganic material are used. And in the manufacturing method of this invention, it is necessary to use the inorganic material particle by which the organic atom group with high affinity with the solvent which disperse | distributes inorganic material particle was chemically bonded to the surface. “Organic atomic group” means an atomic group containing a carbon atom as a constituent atom, and the other structure is not particularly limited.

有機原子団からなる分散剤としては、水系溶媒への分散に用いる場合、オキシエチレン(−CO−)、水酸基(−OH)などの非イオン性親水構造、カルボキシル基(−COOH)、スルホニル基(−SOH)、硫酸水素基(−OSOOH)、リン酸基(−PO)などのアニオン性親水構造及び各々の塩、アミノ基(−NH)、第4級アンモニウム基(N・(CH・Cl)などのカチオン性親水構造及び各々の塩、からなる群から選択される少なくとも一種の構造を含むものが挙げられる。 As a dispersant composed of an organic atomic group, when used for dispersion in an aqueous solvent, a nonionic hydrophilic structure such as oxyethylene (—C 2 H 4 O—) or a hydroxyl group (—OH), a carboxyl group (—COOH) , Anionic hydrophilic structures such as sulfonyl group (—SO 3 H), hydrogen sulfate group (—OSO 3 OH), phosphate group (—PO 4 H 2 ), and their salts, amino groups (—NH 2 ), Examples include those containing at least one structure selected from the group consisting of a cationic hydrophilic structure such as a quaternary ammonium group (N +. (CH 3 ) 3 .Cl ) and each salt.

有機原子団からなる分散剤としては、非水系溶媒への分散に用いる場合、炭化水素鎖を含む親油構造であるものが挙げられる。   Examples of the dispersant composed of an organic atomic group include those having a lipophilic structure containing a hydrocarbon chain when used for dispersion in a non-aqueous solvent.

「無機材料粒子」は、有機原子団からなる分散剤と共有結合を形成することが可能な結合サイト(水酸基等)を有する無機材料からなるものを用いることが好ましく、例えば、表面水酸基を有する酸化物セラミックスからなる粒子を好適に用いることができる。また、非酸化物系セラミックスや金属からなる粒子も、空気酸化によってその表面に不可避的に酸化物セラミックスが形成されるため(表面酸化膜)、「無機材料粒子」として用いることができる。即ち、本発明の製造方法においては、酸化物系セラミックス、非酸化物系セラミックス、及び金属の群から選択される少なくとも一種の無機材料からなる無機材料粒子を用いることが好ましい。   As the “inorganic material particles”, those made of an inorganic material having a binding site (such as a hydroxyl group) capable of forming a covalent bond with a dispersant made of an organic atomic group are preferably used. Particles made of ceramics can be suitably used. Also, particles made of non-oxide ceramics or metals can be used as “inorganic material particles” because oxide ceramics are inevitably formed on the surface by air oxidation (surface oxide film). That is, in the production method of the present invention, it is preferable to use inorganic material particles made of at least one inorganic material selected from the group of oxide ceramics, non-oxide ceramics, and metals.

酸化物セラミックスとしては、例えば、シリカ、アルミナ、ジルコニア、チタニア等の汎用セラミックスの他、バリア、セリア、酸化亜鉛、酸化ゲルマニウム、酸化インジウム、酸化スズ、酸化アンチモン等の金属酸化物等が挙げられる。これらの酸化物セラミックスは結合サイトとなる表面水酸基を有しており、有機原子団からなる分散剤の化学結合が容易である点において好ましい。また、非酸化物セラミックスとしては、炭化ケイ素、窒化ケイ素等が、金属としては、ケイ素、アルミニウム、ジルコニウム、チタニウム、バリウム、セリウム、亜鉛、ゲルマニウム、インジウム、スズ、アンチモン等が挙げられる。   Examples of oxide ceramics include metal oxides such as barrier, ceria, zinc oxide, germanium oxide, indium oxide, tin oxide, and antimony oxide, as well as general-purpose ceramics such as silica, alumina, zirconia, and titania. These oxide ceramics have a surface hydroxyl group as a binding site, and are preferable in that chemical bonding of a dispersant composed of an organic atomic group is easy. Examples of non-oxide ceramics include silicon carbide and silicon nitride. Examples of metals include silicon, aluminum, zirconium, titanium, barium, cerium, zinc, germanium, indium, tin, and antimony.

無機材料粒子の平均粒子径としては、1nm〜1μmの範囲内であることが好ましく、10〜500nmの範囲内であることがより好ましい。上記範囲未満であると無機材料粒子の比表面積が過剰となり、無機材料粒子の単位質量当たりに占める分散剤の割合が大きくなり過ぎるおそれがあり好ましくない。一方、上記範囲を超えると、セラミックス粒子の径が粗大になり、本発明の目的である微細なセラミックス粒子を含むスラリーの提供が果たせなくなる。   The average particle diameter of the inorganic material particles is preferably in the range of 1 nm to 1 μm, and more preferably in the range of 10 to 500 nm. If it is less than the above range, the specific surface area of the inorganic material particles becomes excessive, and the proportion of the dispersing agent per unit mass of the inorganic material particles may become too large, which is not preferable. On the other hand, when the above range is exceeded, the diameter of the ceramic particles becomes coarse, and it becomes impossible to provide a slurry containing fine ceramic particles, which is an object of the present invention.

有機原子団からなる分散剤を無機材料粒子表面に化学結合させる方法は特に限定されず、従来公知の化学修飾法を利用することができる。例えば、カップリング剤により有機分子を固定する方法、オートクレーブ法により有機分子を固定する方法、コロナ放電による表面改質を利用する方法、オゾンによる表面改質を利用する方法、超臨界水中での反応による方法等が挙げられる。中でも、簡便に強固な結合を形成することが可能であるという理由から、カップリング剤により有機分子を固定する方法を用いることが好ましい。   There is no particular limitation on the method of chemically bonding the dispersant composed of an organic atomic group to the surface of the inorganic material particle, and a conventionally known chemical modification method can be used. For example, a method of fixing organic molecules by a coupling agent, a method of fixing organic molecules by an autoclave method, a method using surface modification by corona discharge, a method using surface modification by ozone, a reaction in supercritical water And the like. Among them, it is preferable to use a method of fixing organic molecules with a coupling agent because it is possible to easily form a strong bond.

カップリング剤としては、例えば、シラン系カップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、クロム系カップリング剤等を用いることができる。   As the coupling agent, for example, a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a chromium coupling agent, or the like can be used.

シラン系カップリング剤を利用した化学結合の方法としては、例えば、以下のような方法が挙げられる。   Examples of the chemical bonding method using a silane coupling agent include the following methods.

まず、無機材料粒子に対して、シラン系カップリング剤を作用させ、無機材料粒子とシラン系カップリング剤との間で縮合反応を起こさせることによって、シラノール残基が前記無機材料粒子に対して共有結合によって結合された構造を有するシラノール結合無機材料粒子を得る。   First, a silanol residue acts on the inorganic material particles by causing a silane coupling agent to act on the inorganic material particles and causing a condensation reaction between the inorganic material particles and the silane coupling agent. Silanol-bonded inorganic material particles having a structure bonded by covalent bonds are obtained.

例えば、下記一般式(1)に示すように、無機材料粒子(I)に対して、シラン系カップリング剤(II)を作用させ、無機材料粒子(I)の表面水酸基(OH)とシラン系カップリング剤(II)の加水分解性官能基(Hy,Hy,Hy)との間で縮合反応を起こさせることによって、シラノール残基が前記無機材料粒子に対して共有結合によって結合された構造を有するシラノール結合無機材料粒子(III)を得る。
(但し、Hy,Hy,Hy:加水分解性官能基、A:有機原子団、Re:反応性官能基、Pi:無機材料粒子)
For example, as shown in the following general formula (1), a silane coupling agent (II) is allowed to act on the inorganic material particles (I), and the surface hydroxyl groups (OH) of the inorganic material particles (I) and the silane system By causing a condensation reaction with the hydrolyzable functional groups (Hy 1 , Hy 2 , Hy 3 ) of the coupling agent (II), silanol residues are bonded to the inorganic material particles by covalent bonds. Silanol-bonded inorganic material particles (III) having the above structure are obtained.
(However, Hy 1 , Hy 2 , Hy 3 : Hydrolyzable functional group, A: Organic atomic group, Re 1 : Reactive functional group, Pi: Inorganic material particles)

加水分解性官能基(Hy,Hy,Hy)としては、例えば、アルコキシ基(RO−:Rはアルキル基)等が挙げられる。各々の官能基は同じ官能基であってもよいし、異なる官能基であってもよい。アルコキシ基の場合、水の存在により加水分解されてシラノール基(−SiO−)を生成し、そのシラノール基が水素結合によって無機材料粒子の表面水酸基に吸着される。これを高温で加熱することにより、シラノール基と表面水酸基とが脱水縮合し、シラノール残基が無機材料粒子に対して共有結合によって結合される。 Examples of the hydrolyzable functional group (Hy 1 , Hy 2 , Hy 3 ) include an alkoxy group (RO—: R is an alkyl group). Each functional group may be the same functional group or a different functional group. In the case of an alkoxy group, it is hydrolyzed by the presence of water to produce a silanol group (—SiO—), and the silanol group is adsorbed on the surface hydroxyl group of the inorganic material particles by hydrogen bonding. By heating this at a high temperature, the silanol group and the surface hydroxyl group undergo dehydration condensation, and the silanol residue is bonded to the inorganic material particles by a covalent bond.

次いで、シラノール結合無機材料粒子表面の反応性官能基Reに対して、溶媒との親和性の高い有機化合物を作用させ、シラノール結合無機材料粒子とその有機化合物との間で結合形成反応を起こさせることによって、分散剤が表面に化学結合した無機材料粒子を得る。あるいは、有機原子団A及び反応性官能基Reを溶媒との親和性の高い有機原子団としてもよい。 Next, an organic compound having a high affinity with the solvent is allowed to act on the reactive functional group Re 1 on the surface of the silanol-bonded inorganic material particle to cause a bond formation reaction between the silanol-bonded inorganic material particle and the organic compound. By doing so, inorganic material particles in which the dispersant is chemically bonded to the surface are obtained. Alternatively, the organic atomic group A and the reactive functional group Re 1 may be organic atomic groups having high affinity with the solvent.

[2]第2工程
本発明の製造方法の第2工程は、セラミックス原料粒子を溶媒に分散させてセラミックススラリーを得、これを用いて成形体を形成させる工程である。
[2] Second Step The second step of the production method of the present invention is a step of dispersing ceramic raw material particles in a solvent to obtain a ceramic slurry, and using this to form a formed body.

セラミックス原料粒子を溶媒中へ分散させるための方法について特に制限はなく、本発明の分散剤の性能が損なわれない限り、従来公知の分散方法の中から任意に選択できる。例えば、超音波バスによる方法、ホモジナイザーによる方法、撹拌による方法、ボールミルによる方法等を好適に用いることができる。   The method for dispersing the ceramic raw material particles in the solvent is not particularly limited, and can be arbitrarily selected from conventionally known dispersion methods as long as the performance of the dispersant of the present invention is not impaired. For example, a method using an ultrasonic bath, a method using a homogenizer, a method using stirring, a method using a ball mill, and the like can be suitably used.

成形の方法について特に制限はなく、従来公知の成形法の中から適宜選択すればよい。例えば、鋳込み成形、遠心成形、押出成形、電気泳動法、濾過法、磁場プレス、シート成形、テープ成形等、骨材粒子が密な状態で充填される湿式成形法を好適に用いることができる。   There is no restriction | limiting in particular about the shaping | molding method, What is necessary is just to select suitably from conventionally well-known shaping | molding methods. For example, a wet molding method in which aggregate particles are packed in a dense state, such as casting molding, centrifugal molding, extrusion molding, electrophoresis method, filtration method, magnetic field press, sheet molding, and tape molding, can be suitably used.

以下、実施例及び比較例により、本発明を更に具体的に説明する。但し、以下の実施例は本発明の一部の実施形態を示すものに過ぎないため、本発明をこれらの実施例に限定して解釈するべきではない。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. However, since the following examples show only some embodiments of the present invention, the present invention should not be construed as being limited to these examples.

(実施例1)
無機材料粒子としてシリカ粒子を用い、そのシリカ粒子表面に対して、アミノ基(−NH)を有するシラン系カップリング剤を化学結合させ、さらにアミノ基にオキシエチレン(−CO−)構造を有する有機分子を化学結合させることで、表面に親水性オキシエチレン構造が化学結合したシリカ粒子を得た。
(Example 1)
Silica particles are used as inorganic material particles, and a silane coupling agent having an amino group (—NH 2 ) is chemically bonded to the surface of the silica particles, and oxyethylene (—C 2 H 4 O— is further bonded to the amino group. ) By chemically bonding organic molecules having a structure, silica particles having a hydrophilic oxyethylene structure chemically bonded to the surface were obtained.

まず、下記式(2)に示すように、シリカ粒子(I−a)に対して、シラン系カップリング剤である3−アミノプロピルトリエトキシシラン(II−a:NHSi(OC)を作用させ、表面にアミノ基を有するシラノール結合性シリカ粒子(III−a)を得た。
First, as shown in the following formula (2), 3-aminopropyltriethoxysilane (II-a: NH 2 C 3 H 6 Si (II-a), which is a silane coupling agent, is applied to the silica particles (Ia). OC 2 H 5 ) 3 ) was allowed to act to obtain silanol-bonding silica particles (III-a) having an amino group on the surface.

具体的には、3−アミノプロピルトリエトキシシラン1.0gを純水100mlに溶解させてシラン系カップリング剤の水溶液を調製し、その水溶液中に、ゾルゲル法によって得られた、平均粒径270nmのシリカ粒子5.0gを分散させ1時間撹拌することにより、シリカ粒子の表面に3−アミノプロピルトリエトキシシランを吸着させ、遠心洗浄により遊離の3−アミノプロピルトリエトキシシランを除去した後、105℃で加熱乾燥し、シリカ粒子と3−アミノプロピルトリエトキシシランとの間で縮合反応を起こさせることによって、シラノール残基がシリカ粒子に対して共有結合によって結合された構造を有するシラノール結合シリカ粒子を得た。   Specifically, 1.0 g of 3-aminopropyltriethoxysilane was dissolved in 100 ml of pure water to prepare an aqueous solution of a silane coupling agent, and an average particle diameter of 270 nm obtained by a sol-gel method was obtained in the aqueous solution. After dispersing 5.0 g of the silica particles and stirring for 1 hour, 3-aminopropyltriethoxysilane was adsorbed on the surface of the silica particles, and free 3-aminopropyltriethoxysilane was removed by centrifugal washing. Silanol-bonded silica particles having a structure in which silanol residues are covalently bonded to the silica particles by causing a condensation reaction between the silica particles and 3-aminopropyltriethoxysilane by heating and drying at ° C. Got.

次いで、オキシエチレン構造とカルボジイミド基(−N=C=N−)が10:1の比で連なった構造を有する分子量約2000の有機化合物(水溶性ポリカルボジイミド)(IV)を用い、下記式(3)に示すように、その構造中のカルボジイミド基とシラノール結合性シリカ粒子表面のアミノ基を結合させた。
(但し、(IV)は、Bブロックと−N=C=N−ブロックとのランダム共重合体、B:オキシエチレン基)
Next, using an organic compound (water-soluble polycarbodiimide) (IV) having a molecular weight of about 2000 having a structure in which an oxyethylene structure and a carbodiimide group (—N═C═N—) are linked at a ratio of 10: 1, the following formula ( As shown in 3), the carbodiimide group in the structure was bonded to the amino group on the surface of the silanol-bonding silica particles.
(However, (IV) is a random copolymer of B block and -N = C = N-block, B: oxyethylene group)

具体的には、純水25mlに、前記シラノール結合性シリカ粒子2.5g及び水溶性ポリカルボジイミド0.55gを加え、55℃まで加熱した状態で2時間撹拌した後、純水で粒子を洗浄し未反応の水溶性ポリカルボジイミドを除去し、さらに凍結乾燥して、オキシエチレン結合性シリカ粒子を得た。処理前のシリカ粒子、前記シラノール結合性シリカ粒子、並びにオキシエチレン結合性シリカ粒子のそれぞれについて、赤外分光により分析したところ、図1のIRチャートに示すように、処理前のシリカ粒子、シラノール結合性シリカ粒子では観測されないカルボジイミド基による吸収ピーク(2120/cm−1)が、オキシエチレン結合性シリカ粒子にのみ観測され、水溶性ポリカルボジイミドがシリカ粒子表面に固定されていることが示された。 Specifically, 2.5 g of the silanol-binding silica particles and 0.55 g of water-soluble polycarbodiimide are added to 25 ml of pure water, and the mixture is stirred for 2 hours while being heated to 55 ° C., and then the particles are washed with pure water. Unreacted water-soluble polycarbodiimide was removed and lyophilized to obtain oxyethylene-bonded silica particles. The silica particles before treatment, the silanol-bonding silica particles, and the oxyethylene-bonded silica particles were analyzed by infrared spectroscopy. As shown in the IR chart of FIG. 1, the silica particles and silanol bonds before treatment were analyzed. The absorption peak (2120 / cm −1 ) due to the carbodiimide group, which is not observed in the porous silica particles, was observed only in the oxyethylene-bonded silica particles, indicating that the water-soluble polycarbodiimide was fixed on the silica particle surfaces.

前記オキシエチレン結合性シリカ粒子を分散させた水系スラリーを作製した。このセラミックススラリーを、鋳込み成形法に供し、セラミックス成形体を得た。   An aqueous slurry in which the oxyethylene-bonded silica particles were dispersed was prepared. This ceramic slurry was subjected to a casting method to obtain a ceramic molded body.

具体的には、純水7mlに、前記オキシエチレン結合性シリカ粒子6.63gを加えて超音波バスによって分散させ、粒子が30体積%を占める高濃度スラリーを得た。このセラミックススラリーを石膏型に流し込むことで鋳込み成形を行った。   Specifically, 6.63 g of the oxyethylene-bonded silica particles were added to 7 ml of pure water and dispersed by an ultrasonic bath to obtain a high-concentration slurry in which the particles accounted for 30% by volume. The ceramic slurry was cast into a gypsum mold.

(比較例1)
前記オキシエチレン結合性シリカ粒子を用いずに、同量の未処理シリカ粒子を用いたことを除いては、実施例1と同様にしてセラミックススラリー及びセラミックス成形体を得た。
(Comparative Example 1)
A ceramic slurry and a ceramic molded body were obtained in the same manner as in Example 1 except that the same amount of untreated silica particles was used without using the oxyethylene-bonded silica particles.

(評価)
実施例1で作製したオキシエチレン結合性シリカ粒子からなるセラミックススラリーと比較例1で作製した未処理シリカ粒子からなるセラミックススラリーを、回転粘度計による粘度測定に供した。予めセラミックススラリーのpH測定をおこなったところ、実施例1のセラミックススラリーはpH=8.7、比較例1のセラミックススラリーはpH=4.1であり、いずれも等電点近傍のpHであった。図2に示す通り、比較例1に比して、実施例1のオキシエチレン結合性シリカ粒子からなるセラミックススラリーは、極めて低粘度であることが示された。
(Evaluation)
The ceramic slurry made of oxyethylene-bonded silica particles produced in Example 1 and the ceramic slurry made of untreated silica particles produced in Comparative Example 1 were subjected to viscosity measurement using a rotational viscometer. When the pH of the ceramic slurry was measured in advance, the ceramic slurry of Example 1 was pH = 8.7, and the ceramic slurry of Comparative Example 1 was pH = 4.1, both of which were near the isoelectric point. . As shown in FIG. 2, it was shown that the ceramic slurry composed of the oxyethylene-bonded silica particles of Example 1 has a very low viscosity as compared with Comparative Example 1.

更に、実施例1で作製したオキシエチレン結合性シリカ粒子からなるセラミックススラリーと比較例1で作製した未処理シリカ粒子からなるセラミックススラリーを鋳込み成形に供した。各々の成形体密度をアルキメデス法により測定したところ、実施例1の成形体の密度は58体積%であった。それに比して、比較例1の成形体密度は53体積%であり、成形体密度の向上においても、効果が認められた。   Further, the ceramic slurry made of oxyethylene-bonded silica particles produced in Example 1 and the ceramic slurry made of untreated silica particles produced in Comparative Example 1 were subjected to casting. When the density of each molded body was measured by the Archimedes method, the density of the molded body of Example 1 was 58% by volume. In comparison, the density of the molded body of Comparative Example 1 was 53% by volume, and an effect was also observed in improving the density of the molded body.

本発明の無機材料成形体の製造方法は、構造材料や電気・電子材料等、様々な用途で用いられている、セラミックスや金属の各種成形体、セラミックス焼結体、並びに無機/有機複合材料の製造に好適に用いられる。   The method for producing an inorganic material molded body of the present invention includes various ceramic and metal molded bodies, ceramic sintered bodies, and inorganic / organic composite materials used in various applications such as structural materials and electrical / electronic materials. It is suitably used for production.

シリカ粒子、シラノール結合性シリカ粒子、及びオキシエチレン結合性シリカ粒子を赤外分光により分析した結果を示すIRチャートである。It is IR chart which shows the result of having analyzed the silica particle, the silanol bond silica particle, and the oxyethylene bond silica particle by infrared spectroscopy. シリカ粒子及びオキシエチレン結合性シリカ粒子を各々30体積%含むセラミックススラリーの回転粘度計測定結果を示すチャートである。It is a chart which shows the rotational viscometer measurement result of the ceramic slurry which contains 30 volume% of a silica particle and an oxyethylene bondable silica particle respectively.

Claims (11)

(A):無機材料粒子と、(B):有機原子団からなる分散剤を構成要素として備え、
前記(A):無機材料粒子の表面に、前記(B):有機原子団からなる分散剤が直接化学結合した構造を有するセラミックス原料粒子。
(A): inorganic material particles, and (B): a dispersant composed of an organic atomic group as constituent elements,
(A): Ceramic raw material particles having a structure in which the dispersant (B): an organic atomic group is directly chemically bonded to the surface of the inorganic material particles.
前記(A):無機材料粒子の平均粒径が1μm未満である、請求項1に記載のセラミックス原料粒子。   Said (A): The ceramic raw material particle | grains of Claim 1 whose average particle diameter of an inorganic material particle is less than 1 micrometer. 前記(A):無機材料粒子が、酸化物系セラミックス、非酸化物系セラミックス、及び金属からなる群から選択される少なくとも一種の無機材料を含むものである請求項1に記載のセラミックス原料粒子。   2. The ceramic raw material particles according to claim 1, wherein (A): the inorganic material particles include at least one inorganic material selected from the group consisting of oxide ceramics, non-oxide ceramics, and metals. 有機原子団からなる分散剤が含有量10質量%未満に制御されている請求項1に記載のセラミックス原料粒子。   The ceramic raw material particles according to claim 1, wherein the dispersant comprising an organic atomic group is controlled to a content of less than 10% by mass. 前記(B):有機原子団からなる分散剤が、オキシエチレン(−CO−)、水酸基(−OH)を含む非イオン性親水構造、カルボキシル基(−COOH)、スルホニル基(−SOH)、硫酸水素基(−OSOOH)、リン酸基(−PO)を含むアニオン性親水構造及び各々の塩、アミノ基(−NH)、第4級アンモニウム基(N・(CH・Cl)を含むカチオン性親水構造及び各々の塩、からなる群から選択される少なくとも一種の構造を含むものである請求項1に記載のセラミックス原料粒子。 (B): a dispersant composed of an organic atomic group is a nonionic hydrophilic structure containing oxyethylene (—C 2 H 4 O—), a hydroxyl group (—OH), a carboxyl group (—COOH), a sulfonyl group (— SO 3 H), hydrogen sulfate groups (—OSO 3 OH), anionic hydrophilic structures including phosphate groups (—PO 4 H 2 ) and salts thereof, amino groups (—NH 2 ), quaternary ammonium groups ( 2. The ceramic raw material particles according to claim 1, comprising at least one structure selected from the group consisting of a cationic hydrophilic structure containing N + · (CH 3 ) 3 · Cl ) and a salt thereof. 請求項1〜5のいずれか一項に記載のセラミックス原料粒子を水系溶媒に分散させたセラミックススラリー。   A ceramic slurry in which the ceramic raw material particles according to any one of claims 1 to 5 are dispersed in an aqueous solvent. 請求項6に記載のセラミックススラリーに湿式成形方法を適用して所望の形状のセラミックス成形体を得、
前記セラミックス成形体を焼成してセラミックス焼結体を得る、セラミックス焼結体の製造方法。
Applying a wet forming method to the ceramic slurry according to claim 6 to obtain a ceramic formed body having a desired shape,
A method for producing a ceramic sintered body, wherein the ceramic molded body is fired to obtain a ceramic sintered body.
前記(B):有機原子団からなる分散剤が、炭化水素鎖を含む親油構造である請求項1に記載のセラミックス原料粒子。   The ceramic raw material particles according to claim 1, wherein the dispersant (B): the organic atomic group has a lipophilic structure including a hydrocarbon chain. 請求項1〜4及び請求項8のいずれか一項に記載のセラミックス原料粒子を非水系溶媒に分散させたセラミックススラリー。   A ceramic slurry in which the ceramic raw material particles according to any one of claims 1 to 4 and claim 8 are dispersed in a non-aqueous solvent. 請求項9に記載のセラミックススラリーに湿式成形方法を適用して所望の形状のセラミックス成形体を得、
前記セラミックス成形体を焼成してセラミックス焼結体を得る、セラミックス焼結体の製造方法。
Applying a wet forming method to the ceramic slurry according to claim 9 to obtain a ceramic formed body having a desired shape,
A method for producing a ceramic sintered body, wherein the ceramic molded body is fired to obtain a ceramic sintered body.
請求項8に記載のセラミックス原料粒子を有機高分子中に分散させた無機/有機複合材料。   An inorganic / organic composite material in which the ceramic raw material particles according to claim 8 are dispersed in an organic polymer.
JP2007008067A 2007-01-17 2007-01-17 Ceramic raw material particles, slurry, sintered body and method for producing the same Expired - Fee Related JP5093765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008067A JP5093765B2 (en) 2007-01-17 2007-01-17 Ceramic raw material particles, slurry, sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008067A JP5093765B2 (en) 2007-01-17 2007-01-17 Ceramic raw material particles, slurry, sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008174408A true JP2008174408A (en) 2008-07-31
JP5093765B2 JP5093765B2 (en) 2012-12-12

Family

ID=39701706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008067A Expired - Fee Related JP5093765B2 (en) 2007-01-17 2007-01-17 Ceramic raw material particles, slurry, sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP5093765B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221141A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method for manufacturing ceramic powder with improved dispersibility, and method for manufacturing dispersion of ceramic powder
CN113149626A (en) * 2021-05-13 2021-07-23 武汉理工大学 Feed for quartz ceramic injection molding and preparation method thereof
CN116854483A (en) * 2023-07-10 2023-10-10 江西萍乡龙发实业股份有限公司 Preparation method of silicon carbide micro powder

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505359A (en) * 1992-04-15 1995-06-15 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニツイヘ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Method for producing surface-modified ceramic powder that is nanometer-sized particles
JP2004075459A (en) * 2002-08-19 2004-03-11 Tokuyama Corp Modified silica dispersion and method for producing the same
JP2005170738A (en) * 2003-12-11 2005-06-30 Mitsubishi Materials Corp Sio2 powder for sintered compact target for forming optical recording medium protective film, production method of sintered compact target using the powder, and sintered compact target
WO2006137432A1 (en) * 2005-06-21 2006-12-28 Nisshinbo Industries, Inc. Filler for substrate and composition for use as material for inorganic/organic composite substrate formation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07505359A (en) * 1992-04-15 1995-06-15 インスティトゥート フィア ノイエ マテリアーリエン ゲマインニツイヘ ゲゼルシャフト ミット ベシュレンクタ ハフトゥンク Method for producing surface-modified ceramic powder that is nanometer-sized particles
JP2004075459A (en) * 2002-08-19 2004-03-11 Tokuyama Corp Modified silica dispersion and method for producing the same
JP2005170738A (en) * 2003-12-11 2005-06-30 Mitsubishi Materials Corp Sio2 powder for sintered compact target for forming optical recording medium protective film, production method of sintered compact target using the powder, and sintered compact target
WO2006137432A1 (en) * 2005-06-21 2006-12-28 Nisshinbo Industries, Inc. Filler for substrate and composition for use as material for inorganic/organic composite substrate formation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佐藤公泰 他: "相互に化学結合するセラミックス粒子のテープ成形", 日本セラミックス協会秋季シンポジウム講演予稿集, vol. Vol.19th, pp.295, JPN6012001955, 19 September 2006 (2006-09-19), JP, ISSN: 0002311217 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221141A (en) * 2009-03-24 2010-10-07 Ngk Insulators Ltd Method for manufacturing ceramic powder with improved dispersibility, and method for manufacturing dispersion of ceramic powder
CN113149626A (en) * 2021-05-13 2021-07-23 武汉理工大学 Feed for quartz ceramic injection molding and preparation method thereof
CN116854483A (en) * 2023-07-10 2023-10-10 江西萍乡龙发实业股份有限公司 Preparation method of silicon carbide micro powder
CN116854483B (en) * 2023-07-10 2024-04-26 江西萍乡龙发实业股份有限公司 Preparation method of silicon carbide micro powder

Also Published As

Publication number Publication date
JP5093765B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5090907B2 (en) Silicon dioxide dispersion containing polyol
Zawrah et al. Facile and economic synthesis of silica nanoparticles
JP2005286315A (en) Silica-coated rare-earth magnetic powder, manufacturing method therefor, and applications thereof
JP5093765B2 (en) Ceramic raw material particles, slurry, sintered body and method for producing the same
TWI363047B (en) Process for the preparation of products of high early strength comprising hydraulic binders
JP2009215088A (en) Spherical silica glass fine particle and method for producing the same
JP3798162B2 (en) Porous ceramic filter and manufacturing method thereof
JP2008150263A (en) Method of manufacturing silicon carbide powder
Li et al. Synthesis of polycarboxylate superplasticizer modified by β‐cyclodextrin for possessing clay tolerance
Yamanoi et al. Interparticle photo-cross-linkable Pickering emulsions for rapid manufacturing of complex-structured porous ceramic materials
JP5418843B2 (en) Stimulus-responsive inorganic material particles and method for producing the same
JP4727973B2 (en) Ceramic molded body and method for producing the same
JP2018535919A (en) Process for providing inorganic polymer ceramic-like materials
JP2022152981A (en) Polymer material, heat-sealing material, anti-fogging film and manufacturing method of polymer material
JP2019034864A (en) Aluminum nitride-based filler
Kickelbick Introduction to sol-gel nanocomposites
JP3396113B2 (en) Si-containing glassy carbon material and method for producing the same
JP5067781B2 (en) Manufacturing method of inorganic material molded body by binderless molding utilizing hydration reaction and molded body thereof
JPS63176308A (en) Zirconia based particle having treated surface and production thereof
JP2549976B2 (en) Heat-resistant mullite sintered body
JP5344509B2 (en) Inorganic material molded body
Manivannan et al. Toxic‐free aqueous gelcasting of alumina ceramics using alumina sol binder
JP5531280B2 (en) Manufacturing method of inorganic material molded body and manufacturing method of inorganic material sintered body
M Mustafa et al. Preparation of PAI/ZnO-SnO2-Ag Nanocomposites Derived from Diacid monomer and Diamines by Condensation Polymerization
KR100483512B1 (en) Porous ceramic filter and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees