JP2008173562A - Method of treating booth circulation water - Google Patents

Method of treating booth circulation water Download PDF

Info

Publication number
JP2008173562A
JP2008173562A JP2007008723A JP2007008723A JP2008173562A JP 2008173562 A JP2008173562 A JP 2008173562A JP 2007008723 A JP2007008723 A JP 2007008723A JP 2007008723 A JP2007008723 A JP 2007008723A JP 2008173562 A JP2008173562 A JP 2008173562A
Authority
JP
Japan
Prior art keywords
paint
circulating water
booth
added
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007008723A
Other languages
Japanese (ja)
Other versions
JP4717837B2 (en
Inventor
Hitoshi Ito
仁 伊藤
Yukihisa Kobayashi
幸久 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakuto Co Ltd
Original Assignee
Hakuto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakuto Co Ltd filed Critical Hakuto Co Ltd
Priority to JP2007008723A priority Critical patent/JP4717837B2/en
Publication of JP2008173562A publication Critical patent/JP2008173562A/en
Application granted granted Critical
Publication of JP4717837B2 publication Critical patent/JP4717837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of treating painting booth circulation water by which uncoated paint in the booth circulation water is sufficiently rendered non-adhesive, even if aqueous paint and/or oily paint are contained in the booth circulation water in the wet painting booth, foams are little generated and uncoated paint can be easily and efficiently separated and recovered. <P>SOLUTION: When the aqueous paint and/or oily paint are contained in the booth circulation water of the wet painting booth, novolac type phenol resin expressed by general formula 1 (a methylol group may be bonded to a terminal benzene ring), a cation coagulant and a flocculant are added to the booth circulation water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、湿式塗装ブースのブース循環水中に含まれている水性塗料及び/又は油性塗料を凝集処理するための、ブース循環水の処理方法に関する。   The present invention relates to a booth circulating water treatment method for coagulating an aqueous paint and / or an oil paint contained in a booth circulating water of a wet painting booth.

従来、自動車や電気製品等の塗装法の一種として、塗料を被塗装物に噴霧するスプレー塗装法がある。スプレー塗装法では塗料品質の保持及び作業環境の保全のため、湿式塗装ブース内で塗料の噴霧が行われている。   2. Description of the Related Art Conventionally, there is a spray coating method in which paint is sprayed on an object to be coated as a kind of coating method for automobiles, electrical products and the like. In the spray painting method, paint is sprayed in a wet painting booth in order to maintain the quality of the paint and preserve the work environment.

この湿式塗装ブースは、被塗装物に塗料を噴霧するための塗装室と、塗装室の空気を吸引するためのファンを有するダクトと、吸引した空気とブース循環水とを接触させるための接触部と、ブース循環水を貯留可能なピットとが備えられている。この湿式塗装ブースでは、被塗装物に塗着しなかった未塗着塗料がファンによって空気とともにダクト内に吸引され、接触部においてブース循環水と接触して捕集される。こうして、沈殿あるいは浮上した未塗着塗料は回収され、廃棄処分される。   This wet painting booth has a painting chamber for spraying paint on an object to be coated, a duct having a fan for sucking air in the painting chamber, and a contact portion for bringing the sucked air and the booth circulating water into contact with each other. And a pit capable of storing booth circulating water. In this wet coating booth, uncoated paint that has not been applied to the object to be coated is sucked into the duct together with air by the fan, and collected in contact with the booth circulating water at the contact portion. In this way, the uncoated paint that has settled or floated is collected and discarded.

しかし、未塗着塗料の一部は分離されることなくブース循環水中に浮遊して循環し、配管内面等に付着してブース循環水の循環水量を低下させる。さらに、その循環水量の低下が著しい場合には、塗装作業を停止しなければならないことさえある。こうした不具合を防止するため、ブース循環水にあらかじめ塗料処理剤を添加しておき、ブース循環水内に浮遊する未塗着塗料を不粘着化するとともに固液分離を容易にすることが行われている。   However, a portion of the unpainted paint floats and circulates in the booth circulating water without being separated, and adheres to the inner surface of the piping and reduces the circulating water volume of the booth circulating water. Furthermore, if the amount of circulating water is drastically reduced, the painting operation may even have to be stopped. In order to prevent such problems, a paint treatment agent is added to the booth circulating water in advance to detack the unpainted paint floating in the booth circulating water and facilitate solid-liquid separation. Yes.

このような塗料処理剤として、例えば苛性ソーダ等のアルカリ剤、カチオンポリマー、無機凝集剤、メラミン−アルデヒド樹脂酸コロイド(特許文献1)等が挙げられる。   Examples of such paint treating agents include alkali agents such as caustic soda, cationic polymers, inorganic flocculants, melamine-aldehyde resin acid colloids (Patent Document 1), and the like.

アルカリ剤は未塗着油性塗料の表面をケン化し、不粘着化することによって、配管への未塗着油性塗料の付着を防ぐものである。また、カチオンポリマー、無機凝集剤及びメラミン−アルデヒド樹脂酸コロイドは、未塗着塗料の表面に付着し、不粘着化して固液分離を容易化するものである。   The alkaline agent saponifies the surface of the uncoated oil-based paint to make it non-tacky, thereby preventing the non-coated oil-based paint from adhering to the pipe. Further, the cationic polymer, the inorganic flocculant and the melamine-aldehyde resin acid colloid adhere to the surface of the uncoated paint and become non-tacky to facilitate solid-liquid separation.

また、未塗着水性塗料に対しては、ポリエチレンイミンを成分として含む塗料処理剤(特許文献2)や、カチオン系有機化合物とアニオン系有機化合物とを含む塗料処理剤(特許文献3)等が用いられている。これらの塗料処理剤は、ブース循環水中に均一に分散あるいは溶解した未塗着水性塗料の固液分離を容易にするものである。   For uncoated water-based paints, there are paint treatment agents containing polyethyleneimine as a component (Patent Document 2), paint treatment agents containing a cationic organic compound and an anionic organic compound (Patent Document 3), and the like. It is used. These paint treatment agents facilitate solid-liquid separation of uncoated water-based paints that are uniformly dispersed or dissolved in Booth circulating water.

上記従来のブース循環水の処理方法では、ブース循環水中の未塗着塗料の種類に応じた、適切な塗料処理剤を選択することにより、未塗着塗料の固液分離を容易に行うことができる。ところが、近年においては、従来から多用されている油性塗料の他、有機溶剤の環境への影響を考慮して、水性塗料も多く用いられるようになった。このため、ブース循環水中に油性塗料用の塗料処理剤と、水性塗料用の塗料処理剤とが併用されることも多い。しかし、このように塗料処理剤を併用した場合、それらの塗料処理剤が互いに干渉して、効果を充分発揮できない場合がある。   In the above conventional booth circulating water treatment method, solid-liquid separation of uncoated paint can be easily performed by selecting an appropriate paint treatment agent according to the type of uncoated paint in the booth circulating water. it can. However, in recent years, water-based paints are often used in consideration of the environmental impact of organic solvents in addition to oil-based paints that have been frequently used. For this reason, paint processing agents for oil-based paints and paint processing agents for water-based paints are often used in booth circulating water. However, when the paint treatment agents are used in this way, the paint treatment agents may interfere with each other and may not be fully effective.

例えば、アルミナゾルは油性塗料の不粘着化処理に有効であり、カチオン凝結剤は水性塗料の凝集に有効であるため、油性塗料と水性塗料を含むブース循環水にアルミナゾルとカチオン凝結剤が併用されている。しかし、この方法ではアルミナゾルの不粘着化作用がカチオン凝結剤により阻害され、未塗着塗料の分離・回収が不十分となる場合がある。   For example, alumina sol is effective for detackifying oil-based paints and cationic coagulant is effective for agglomeration of water-based paints. Therefore, alumina sol and cationic coagulant are used in combination with booth circulating water containing oil-based paints and water-based paints. Yes. However, in this method, the detackifying action of the alumina sol is hindered by the cationic coagulant, and separation and recovery of the uncoated paint may be insufficient.

また、油性塗料の不粘着化を促進するポリオレフィンと、水性塗料の凝結を促進するカチオン凝結剤を添加することも行われている。しかし、この方法においても、水性塗料又は油性塗料が単独で含まれているブース循環水を処理した場合に比べて凝結効果が低下し、水性塗料の分離・回収が不充分となる場合がある。   In addition, a polyolefin that promotes detackification of an oil-based paint and a cationic coagulant that promotes the setting of an aqueous paint are also added. However, even in this method, the coagulation effect is lowered compared with the case where booth circulating water containing an aqueous paint or oil paint alone is treated, and the separation and recovery of the aqueous paint may be insufficient.

このため、油性塗料用の塗料処理剤と水性塗料用の塗料処理剤とが併用される塗装ブースのブース循環水に適した処理方法として、カチオン系ポリマーとフェノール系樹脂を使用する処理方法が提案されている(特許文献4)。この処理方法によれば、塗装ブースにおいて水性塗料及び油性塗料が併用されていたとしても、未塗着塗料の分離・回収を行うことができる旨記載されている。
特公平6−2259号公報 特開昭61−74607号公報 特開昭63−42706号公報 特開2004−337671号公報
Therefore, a treatment method using a cationic polymer and a phenolic resin is proposed as a treatment method suitable for booth circulating water in a paint booth where a paint treatment agent for oil paints and a paint treatment agent for water-based paints are used in combination. (Patent Document 4). According to this processing method, it is described that even if a water-based paint and an oil-based paint are used in combination at the painting booth, the uncoated paint can be separated and collected.
Japanese Patent Publication No. 6-2259 JP-A-61-74607 JP-A 63-42706 JP 2004-337671 A

しかし、上記特許文献4に記載のカチオン系ポリマーとフェノール系樹脂を塗装ブース循環水に添加する処理方法では、同文献の実施例にも記載されているように、消泡時間が60秒を超えることもあり、このような場合には泡の発生によって未塗着塗料の分離・回収が困難となる。また、発明者らの試験結果によれば、フェノール系樹脂の種類によっては、未塗着塗料が凝集せず、固液分離できないことがある。   However, in the treatment method in which the cationic polymer and the phenolic resin described in Patent Document 4 are added to the paint booth circulating water, the defoaming time exceeds 60 seconds, as described in Examples in the same document. In such a case, it is difficult to separate and recover the uncoated paint due to the generation of bubbles. Moreover, according to the test results of the inventors, depending on the type of the phenolic resin, the uncoated paint does not aggregate and solid-liquid separation may not be possible.

本発明は、上記従来の実情に鑑みてなされたものであり、湿式塗装ブースにおいてブース循環水中に水性塗料及び/又は油性塗料を含む場合においても、ブース循環水中の未塗着塗料の不粘着化が充分になされ、泡の発生が少なく、未塗着塗料の分離及び回収を容易かつ効率的に行うことが可能な塗装ブース循環水の処理方法を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and even when a wet paint booth contains an aqueous paint and / or an oil paint in the booth circulating water, the non-coated paint in the booth circulating water becomes non-tacky. It is an object to be solved to provide a method for treating circulating water in a coating booth that can be sufficiently performed, that bubbles are not generated, and that an uncoated paint can be separated and recovered easily and efficiently.

発明者らは、上記課題を解決すべく、カチオン系ポリマーとフェノール系樹脂を塗装ブース循環水に添加する処理方法において、いかにしたら発泡を抑え、未塗着塗料の凝集することができるかについて、鋭意研究を行った。その結果、フェノール系樹脂としてノボラック型フェノール樹脂を用い、さらにそのノボラック型フェノール樹脂の重合度が特定の範囲内である場合に、特に優れた消泡効果を奏することを見出し、本発明を完成するに至った。   In order to solve the above problems, the inventors of the present invention have a method of adding a cationic polymer and a phenolic resin to the paint booth circulating water, how to suppress foaming and agglomeration of uncoated paint. We conducted intensive research. As a result, when a novolac type phenol resin is used as the phenolic resin and the degree of polymerization of the novolac type phenol resin is within a specific range, the present invention has been found to exhibit a particularly excellent defoaming effect, and the present invention is completed. It came to.

すなわち、本発明の塗装ブース循環水の処理方法は、水性塗料及び/又は油性塗料を含む湿式塗装ブースの循環水の処理方法であって、該ブース循環水に下記一般式(1)(ただし、末端のベンゼン環にはメチロール基が結合していてもよい)であらわされるノボラック型フェノール樹脂とカチオン凝結剤と凝集剤とを添加することを特徴とする。

Figure 2008173562
That is, the treatment method for circulating water in a painting booth according to the present invention is a treatment method for circulating water in a wet painting booth containing a water-based paint and / or an oil-based paint, and the following general formula (1) (however, A novolak type phenol resin represented by a methylol group may be bonded to the terminal benzene ring), a cationic coagulant and an aggregating agent are added.
Figure 2008173562

本発明の塗装ブース循環水の処理方法において、ブース循環水に添加されるノボラック型フェノール樹脂は、ブース循環水中に浮遊する水性塗料及び/又は油性塗料の表面に付着して不粘着化させ、ブース循環水中に懸濁している塗料成分の懸濁状態を分離可能な状態とする。そして、さらには、水性塗料に起因するブース循環水の発泡という現象を抑制するという効果を奏する。発明者らの試験結果によれば、ブース循環水の発泡を抑制する効果はノボラック型フェノール樹脂の重合度によって著しく異なり、上記一般式(1)で表わされるノボラック型フェノール樹脂において、nが4〜8である場合に、特に消泡効果が高い。また、懸濁状態を分離可能な状態とする効果もnが4〜8の範囲で特に優れており、未塗着塗料固液分離も容易となる。これに対して、n<4であるとブース循環水中に浮遊する水性塗料及び/又は油性塗料を不粘着化させる効果と懸濁塗料成分の分離効果とが不十分となる。   In the treatment method for circulating water in the painting booth of the present invention, the novolak type phenolic resin added to the circulating water in the booth adheres to the surface of the water-based paint and / or oil-based paint that floats in the booth circulating water, and makes the booth non-tacky. The suspended state of the paint component suspended in the circulating water is made separable. In addition, there is an effect of suppressing a phenomenon of booth circulating water foaming caused by the water-based paint. According to the test results of the inventors, the effect of suppressing the foaming of the booth circulating water is remarkably different depending on the degree of polymerization of the novolak type phenol resin, and in the novolak type phenol resin represented by the general formula (1), n is 4 to In the case of 8, the defoaming effect is particularly high. In addition, the effect of making the suspended state separable is particularly excellent when n is in the range of 4 to 8, and solid-liquid separation of uncoated paint is facilitated. On the other hand, when n <4, the effect of making the aqueous paint and / or oil paint floating in the booth circulating water non-tacky and the effect of separating the suspended paint components become insufficient.

また、本発明において用いられるカチオン凝結剤とは、水中でカチオン電荷を有する水溶性高分子のことをいう。カチオン凝結剤はブース循環水中においてプラスの表面電荷を有しているため、マイナスに帯電して安定な状態で溶解又はコロイド状に分散している水性塗料にクーロン力によって吸着し、表面電荷を中和する。この作用によって水性塗料は凝結し、微細粒子として不溶化する。一方、フェノール系樹脂もブース循環水中においてマイナスの表面電荷を有しているため、カチオン系ポリマーで荷電が中和され、凝結されて不溶化される。こうして不溶化した水性塗料及び不溶化したフェノール系樹脂どうしが結びつき、ある程度の大きさの微少な懸濁状態のフロックを形成する。こうして、形成されたフロックは沈殿し易くなるため、ろ過やデカンテーションによって容易に固液分離を行うことができる。   The cationic coagulant used in the present invention refers to a water-soluble polymer having a cationic charge in water. Since the cationic coagulant has a positive surface charge in the booth circulating water, it is adsorbed by the Coulomb force to the aqueous paint that is negatively charged and dissolved or colloidally dispersed in a stable state. To sum up. By this action, the water-based paint is condensed and insolubilized as fine particles. On the other hand, since the phenolic resin also has a negative surface charge in the booth circulating water, the charge is neutralized by the cationic polymer, and is condensed and insolubilized. The water-insoluble paint thus insolubilized and the phenol-based resin insolubilized are combined with each other to form a slightly suspended floc having a certain size. In this way, the formed floc is likely to precipitate, so that solid-liquid separation can be easily performed by filtration or decantation.

また、凝集剤は、凝結・不粘着化させて固液分離した塗料粒子を架橋して粗大化し、回収をさらに容易にする効果を奏する。さらには、発泡要因となる微細分散した塗料粒子が凝集して除去されるため、発泡抑制効果も奏する。   In addition, the flocculant has the effect of further solidifying the coating particles that have been solidified and separated by coagulation and non-adhesion to coarsen the particles. Furthermore, since finely dispersed paint particles that cause foaming are agglomerated and removed, there is also an effect of suppressing foaming.

したがって、本発明の塗装ブース循環水の処理方法によれば、湿式塗装ブースにおいてブース循環水中に水性塗料及び/又は油性塗料を含む場合においても、ブース循環水中の未塗着塗料の不粘着化が充分になされ、泡の発生が少なく、未塗着塗料の分離及び回収を容易かつ効率的に行うことができる。   Therefore, according to the coating booth circulating water treatment method of the present invention, even when a wet paint booth contains a water-based paint and / or an oil-based paint in the booth circulating water, the uncoated paint in the booth circulating water can be made non-tacky. Sufficiently, there is little generation | occurrence | production of a bubble, and isolation | separation and collection | recovery of an uncoated paint can be performed easily and efficiently.

カチオン凝結剤の分子量は2,000〜500,000の範囲が好ましい。分子量がこの範囲であれば、特に水性塗料の凝結効果に優れているからである。さらに好ましくは2,000〜200,000である。   The molecular weight of the cationic coagulant is preferably in the range of 2,000 to 500,000. This is because if the molecular weight is within this range, the setting effect of the aqueous paint is particularly excellent. More preferably, it is 2,000-200,000.

カチオン凝結剤としては、例えば(メタ)アクリル酸エステル(炭素数1〜4のアルコールのエステル)・(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体、(メタ)アクリルアミノジアルキル(炭素数1〜4のアルキル基)・(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体、ポリ(メタ)アクリルアミノエチルトリメチルアンモニウム等の(メタ)アクリルアミノエチルトリメチルアンモニウム共重合体;ジシアンジアミド重合体、ジシアンジアミド−ホルムアルデヒド共重合体、ジシアンジアミド−ジエチレントリアミン共重合体等のジシアンジアミド共重合体;ジメチルアミン−エピクロロヒドリン共重合体、ジエチルアミン−エピクロロヒドリン共重合体、ジメチルアミン−エピクロルヒドリン−アンモニア共重合体、ジエチルアミン−エピクロルヒドリン−アンモニア共重合体等のジアルキルアミン−エピハロヒドリン共重合体、ポリジアリルジメチルアンモニウムクロライド、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジアリルジメチルアンモニウムクロライド−(メタ)アクリルアミド共重合体、ジアリルジメチルアンモニウムクロライド−(メタ)アクリル酸共重合体、ジアリルジメチルアンモニウムクロライド−(メタ)アクリル酸−(メタ)アクリルアミド共重合体等のジアリルジメチルアンモニウムクロライド(以下、DADMACとする。)共重合体;ポリエチレンイミン、ポリアリルアミン等のポリアルキルアミンが挙げられる。   Examples of the cationic coagulant include (meth) acrylic acid ester (ester of alcohol having 1 to 4 carbon atoms) / (meth) acrylaminoethyltrimethylammonium copolymer, (meth) acrylaminodialkyl (having 1 to 4 carbon atoms). Alkyl group) / (meth) acrylaminoethyltrimethylammonium copolymer, (meth) acrylaminoethyltrimethylammonium copolymer such as poly (meth) acrylaminoethyltrimethylammonium; dicyandiamide polymer, dicyandiamide-formaldehyde copolymer, Dicyandiamide copolymers such as dicyandiamide-diethylenetriamine copolymer; dimethylamine-epichlorohydrin copolymer, diethylamine-epichlorohydrin copolymer, dimethylamine-epichlorohydrin-a Monia copolymer, dialkylamine-epihalohydrin copolymer such as diethylamine-epichlorohydrin-ammonia copolymer, polydiallyldimethylammonium chloride, diallyldimethylammonium chloride-sulfur dioxide copolymer, diallyldimethylammonium chloride- (meth) acrylamide copolymer Polymers, diallyldimethylammonium chloride- (meth) acrylic acid copolymer, diallyldimethylammonium chloride- (meth) acrylic acid- (meth) acrylamide copolymer, etc. diallyldimethylammonium chloride (hereinafter referred to as DADMAC) Polymers: Polyalkylamines such as polyethyleneimine and polyallylamine.

これらの中でも、ポリアクリルアミノエチルトリメチルアンモニウムクロライド、ジシアンジアミド−ホルムアルデヒド縮合物、ジシアンジアミド−ジエチレントリアミン縮合物、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン縮合物、ジメチルアミン−エピクロルヒドリン−アンモニア縮合物、ジアリルジメチルアンモニウムクロライド重合体、ジアリルジメチルアンモニウムクロライド−アクリルアミド共重合体及びポリエチレンイミンは、カチオン強度が高いために好適である。   Among these, polyacrylaminoethyltrimethylammonium chloride, dicyandiamide-formaldehyde condensate, dicyandiamide-diethylenetriamine condensate, diallyldimethylammonium chloride-sulfur dioxide copolymer, dimethylamine-epichlorohydrin condensate, dimethylamine-epichlorohydrin-ammonia condensate , Diallyldimethylammonium chloride polymer, diallyldimethylammonium chloride-acrylamide copolymer and polyethyleneimine are preferred because of their high cation strength.

本発明におけるノボラック型フェノール樹脂は、水に難溶であるためアルカリ性物質に溶解させて用いることが好ましい。アルカリ性物質としてはアルカリ金属水酸化物、アルカリ土類金属水酸化物、アンモニア、アミン等が挙げられる。これらの中でも水酸化ナトリウム、水酸化カリウムを用いることが好ましい。   Since the novolac type phenol resin in the present invention is hardly soluble in water, it is preferably used after being dissolved in an alkaline substance. Examples of the alkaline substance include alkali metal hydroxides, alkaline earth metal hydroxides, ammonia, and amines. Of these, sodium hydroxide and potassium hydroxide are preferably used.

本発明において用いられる凝集剤は、水溶性のアニオン系、カチオン系及び非イオン系高分子で、分子量が1,500,000〜20,000,000、好ましくは2,000,000〜15,000,000の水溶性高分子である。凝集剤は、ノボラック型フェノール樹脂及びカチオン凝結剤により、電荷が中和され凝結した水性塗料及び油性塗料の微細な懸濁状フロックをさらに大きく結合させ、より大きなフロックを形成させ、固液分離を容易にする。具体的には、ポリアクリルアミド、アクリルアミド−アクリル酸共重合体、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、アクリルアミド−メタクリルアミノエチルトリメチルアンモニウムクロライド共重合体、アクリルアミド−[2−(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウムクロライド・[2−(アクリロイルオキシ)エチル]トリメチルアンモニウム共重合体、アクリルアミド−ビニルスルフォン酸共重合体及びその塩、ポリビニルイミダゾリン、ポリエチレンオキシド等が挙げられる。   The flocculant used in the present invention is a water-soluble anionic, cationic or nonionic polymer having a molecular weight of 1,500,000 to 20,000,000, preferably 2,000,000 to 15,000. 1,000 water-soluble polymers. The flocculant is a novolac type phenolic resin and cationic coagulant that binds finely suspended flocs of water-based paint and oil-based paint that have been neutralized and condensed to form larger flocs for solid-liquid separation. make it easier. Specifically, polyacrylamide, acrylamide-acrylic acid copolymer, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, acrylamide-methacrylaminoethyltrimethylammonium chloride copolymer, acrylamide- [2- (acryloyloxy) ethyl And benzyldimethylammonium chloride / [2- (acryloyloxy) ethyl] trimethylammonium copolymer, acrylamide-vinyl sulfonic acid copolymer and salts thereof, polyvinyl imidazoline, and polyethylene oxide.

これらの中でも、ポリアクリルアミド、アクリルアミド−アクリル酸共重合体、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、アクリルアミド−メタクリルアミノエチルトリメチルアンモニウムクロライド共重合体、アクリルアミド−[2−(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウムクロライド・[2−(アクリロイルオキシ)エチル]トリメチルアンモニウム共重合体が好適である。   Among these, polyacrylamide, acrylamide-acrylic acid copolymer, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, acrylamide-methacrylaminoethyltrimethylammonium chloride copolymer, acrylamide- [2- (acryloyloxy) ethyl] Benzyldimethylammonium chloride / [2- (acryloyloxy) ethyl] trimethylammonium copolymer is preferred.

本発明のブース循環水の処理方法において、カチオン凝結剤の添加量は、水性塗料の電荷を考慮して適宜決定されれば良く、特に限定されるものではないが、通常、水性塗料の塗料樹脂固形分に対して0.05〜100重量%であり、好ましくは0.5〜30重量%である。また、ノボラック型フェノール樹脂の添加量は、通常、水性塗料と油性塗料に要求される不粘着化ならびに発泡抑制の程度に応じて考慮し、適宜決定されれば良く、特に限定されるものではないが、通常、水性塗料ならびに油性塗料の塗料樹脂固形分に対して0.05〜100重量%であり、好ましくは0.5〜30重量%である。また、凝集剤の添加量は通常、固液分離した水性塗料と油性塗料の塗料粒子の凝集の程度に応じて考慮し、適宜決定されれば良く、特に限定されるものではないが、通常、固液分離した水性塗料と油性塗料の塗料樹脂固形分に対して0.001〜10重量であり、好ましくは0.05〜3重量%である。   In the booth circulating water treatment method of the present invention, the addition amount of the cationic coagulant may be appropriately determined in consideration of the charge of the aqueous paint, and is not particularly limited. It is 0.05-100 weight% with respect to solid content, Preferably it is 0.5-30 weight%. Further, the addition amount of the novolac-type phenol resin is not particularly limited and may be appropriately determined in consideration of the degree of tack-free and suppression of foaming usually required for water-based paints and oil-based paints. However, it is usually 0.05 to 100% by weight, preferably 0.5 to 30% by weight, based on the coating resin solid content of the water-based paint and oil-based paint. The amount of the flocculant added is usually determined in consideration of the degree of agglomeration of the paint particles of the solid-liquid separated aqueous paint and oil paint, and is not particularly limited. The amount is 0.001 to 10% by weight, preferably 0.05 to 3% by weight, based on the solid content of the paint resin in the aqueous and oil-based paints separated into solid and liquid.

また、カチオン凝結剤の添加量をブース循環水中の電荷量によって管理することも好ましい。発明者らの試験結果によれば、ブース循環水中の電荷量はカチオン凝結剤の添加量によって大きく変化し、ノボラック型フェノール樹脂ならびに凝集剤の添加によるブース循環水の電荷量の変化は極僅かである。そして、カチオン凝結剤をブース循環水中の電荷量が−50〜+200μeq/Lとなるように添加すれば、水溶性塗料の凝結効果が高くなり、その分離・回収が極めて容易となる。   It is also preferable to control the amount of cationic coagulant added based on the amount of charge in the booth circulating water. According to the test results of the inventors, the amount of charge in the booth circulating water varies greatly depending on the amount of the cationic coagulant added, and the amount of charge in the booth circulating water due to the addition of the novolak type phenol resin and the flocculant is negligible. is there. If the cationic coagulant is added so that the charge amount in the booth circulating water is −50 to +200 μeq / L, the coagulation effect of the water-soluble paint is enhanced, and the separation and recovery thereof becomes extremely easy.

本発明のブース循環水の処理方法において、処理の対象となる水性塗料としては特に限定はなく、例えば水性アルキッド樹脂塗料、水性ポリエステル樹脂塗料、水性アクリル樹脂塗料、水性ポリウレタン樹脂塗料等が挙げられる。また、処理の対象となる油性塗料についても特に限定はなく、例えばエポキシ樹脂塗料、ポリエステル樹脂塗料、ウレタン樹脂塗料、アルキド樹脂塗料、アミノ樹脂塗料、ビニル樹脂塗料、アクリル樹脂塗料、フェノール樹脂塗料、セルロース誘導体塗料、酒精塗料等が挙げられる。   In the booth circulating water treatment method of the present invention, the aqueous paint to be treated is not particularly limited, and examples thereof include an aqueous alkyd resin paint, an aqueous polyester resin paint, an aqueous acrylic resin paint, and an aqueous polyurethane resin paint. There is no particular limitation on the oil-based paint to be treated, for example, epoxy resin paint, polyester resin paint, urethane resin paint, alkyd resin paint, amino resin paint, vinyl resin paint, acrylic resin paint, phenol resin paint, cellulose Examples include derivative paints and alcoholic paints.

また、カチオン凝結剤とノボラック型フェノール樹脂の添加場所についても特に限定はないが、ブース循環水が未塗着塗料と接する手前でブース循環水に添加するのが好ましい。また、添加方法についても特に限定はないが、定量ポンプで連続的に添加したり、間歇的に添加したりするなど適宜選択することができる。   Further, there are no particular limitations on the place where the cationic coagulant and the novolac type phenol resin are added, but it is preferable to add the booth circulating water to the booth circulating water before it comes into contact with the uncoated paint. The addition method is not particularly limited, and can be selected as appropriate, such as continuous addition with a metering pump or intermittent addition.

凝集剤を添加する場所は、カチオン凝結剤とノボラック型フェノール樹脂を添加した後であって、塗料スラッジを回収する手前等で凝集剤がブース循環水中に混合され易い箇所で添加することが好ましい。また、添加方法についても特に限定はないが、定量ポンプで連続的に添加したり、間歇的に添加したりするなど適宜選択することができる。   The place where the flocculant is added is preferably after the cationic coagulant and the novolac type phenol resin are added, and at a place where the flocculant is easily mixed in the booth circulating water before collecting the paint sludge. The addition method is not particularly limited, and can be selected as appropriate, such as continuous addition with a metering pump or intermittent addition.

また、カチオン凝結剤の添加量をブース循環水中の電荷量によって管理する場合、コロイド滴定法、粒子電荷測定法(PCD法)、電気泳動法等の既に公知の方法で電荷量を測定することができる。   In addition, when the amount of cationic coagulant added is controlled by the amount of charge in Booth circulating water, the amount of charge can be measured by a known method such as colloid titration method, particle charge measurement method (PCD method) or electrophoresis method. it can.

コロイド滴定法とは、水中の電解質、コロイド粒子、懸濁物質等の電荷量をアニオン及びカチオン水溶性高分子電解質で電荷の中和を行ない、指示薬の色の変化で定量する方法である(「コロイド滴定試験法」千手諒一著、3〜6頁、南江堂、1969年刊参照)。例えば、アニオン電荷の測定には、指示薬としてトルイジンブルー(TB)を数滴加えて、カチオン水溶性電解質水溶液であるメチルグリコールキトサン水溶液(以下、「MGK」と略す)を過剰となる既知量加え、残存したMGKをアニオン水溶性電解質のポリビニル硫酸カリウム(以下、「PVSK」と略す)水溶液で滴定し、カチオン電荷量を測定する。当初加えたMGK量からカチオン電荷測定値を引き、アニオン電荷を求める。一方、カチオン電荷量の測定は、PVSKで直接、測定して求められる。手分析でも数分の短時間で測定され、市販の自動化分析装置を使用すれば更に短時間で分析される。   The colloid titration method is a method in which the charge amount of electrolytes, colloidal particles, suspended substances, etc. in water is neutralized with anionic and cationic water-soluble polymer electrolytes and quantified by changing the color of the indicator (" Colloid titration test method ”by Shinichi Sente, 3-6, Nanedo, 1969)). For example, for the measurement of anion charge, a few drops of toluidine blue (TB) is added as an indicator, and an aqueous solution of methyl glycol chitosan (hereinafter abbreviated as “MGK”), which is a cationic aqueous electrolyte solution, is added in excess, The remaining MGK is titrated with an aqueous polyvinyl potassium sulfate (hereinafter abbreviated as “PVSK”) aqueous solution of an anionic water-soluble electrolyte, and the amount of cationic charge is measured. The anion charge is obtained by subtracting the measured cation charge from the amount of MGK added initially. On the other hand, the measurement of the amount of cationic charge is obtained by directly measuring with PVSK. Even in manual analysis, it is measured in a few minutes, and if a commercially available automated analyzer is used, the analysis is further shortened.

また、PCD法は、例えばPCD装置(Mutek社製)と自動滴定装置を組み合わせた市販の測定装置を用いて容易に測定できる。このPCD装置は、円筒状容器の上下に電極を備えたセルとセルの中にセル内径よりわずかに小さい棒状のピストンを入れたものである。セルの中に所定量の試料水を入れ、ピストンを浸せきし、上下に動かすことで、電荷を持った電解質の移動により電流が発生し、これを電位差として検出し、電位差を0とするまでカチオン高分子電解質あるいはアニオン高分子電解質を添加して試料水の電荷量を測定する。この時に使用されるカチオン高分子電解質としては、一般的にポリジアリルジメチルアンモニウムクロライド水溶液が使われ、アニオン高分子電解質としては、一般的にポリエチレンスルフォン酸ナトリウム水溶液が使用されている。   In addition, the PCD method can be easily measured by using a commercially available measuring apparatus that combines, for example, a PCD apparatus (manufactured by Mutek) and an automatic titration apparatus. In this PCD device, a cell having electrodes on the upper and lower sides of a cylindrical container and a rod-like piston slightly smaller than the inner diameter of the cell are placed in the cell. A predetermined amount of sample water is put into the cell, the piston is immersed and moved up and down to generate an electric current due to the movement of the charged electrolyte, and this is detected as a potential difference. A polyelectrolyte or an anionic polyelectrolyte is added to measure the charge amount of the sample water. As the cationic polymer electrolyte used at this time, a polydiallyldimethylammonium chloride aqueous solution is generally used, and as the anionic polymer electrolyte, a sodium polyethylene sulfonate aqueous solution is generally used.

さらに、電気泳動法とは、少量の試料水を採取して、ガラス製の円筒状セルに入れ、セル両端に電圧をかけながら、セル内を顕微鏡で観察して電極間を移動する粒子の速度を測定して、電荷量を求める方法である。   Electrophoresis is a method in which a small amount of sample water is collected, placed in a glass cylindrical cell, and the voltage of the particles moving between the electrodes is observed with a microscope while applying voltage across the cell. Is a method for determining the charge amount.

以下に本発明を具体化した実施例を比較例と比較しつつ説明する。   Examples in which the present invention is embodied will be described below in comparison with comparative examples.

(実施例1)
実施例1では、カチオン凝結剤としてジメチルアミン−エピクロルヒドリン−アンモニア縮合物(平均分子量30000、固形分45%:長瀬産業(株)製「ワイステックスH−90」)を用い、これを塗装ブースで噴霧された水性塗料に対して2.5重量%の割合で添加した。また、ノボラック型フェノール樹脂として前記一般式(1)において、nが4の樹脂を水酸化ナトリウムに溶解させたもの(樹脂分20%)を用い、これを塗装ブースで噴霧された塗料に対して10重量%の割合で添加した。また、凝集剤としてアクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体(分子量800万:三井サイテック(株)製「スーパーフロック3390」)を塗装ブースで噴霧された塗料に対して0.5重量%の割合で添加した。
(Example 1)
In Example 1, dimethylamine-epichlorohydrin-ammonia condensate (average molecular weight 30000, solid content 45%: “Wytex H-90” manufactured by Nagase Sangyo Co., Ltd.) was used as a cationic coagulant and sprayed at a coating booth. The added water-based paint was added in a proportion of 2.5% by weight. In addition, a novolac-type phenolic resin obtained by dissolving a resin in which n is 4 in sodium hydroxide in the general formula (1) (resin content: 20%) is applied to the paint sprayed in the coating booth. 10% by weight was added. Further, an acrylamide-acrylaminoethyltrimethylammonium chloride copolymer (molecular weight: 8 million: “Super Flock 3390” manufactured by Mitsui Cytec Co., Ltd.) as a flocculant is 0.5% by weight with respect to the paint sprayed at the coating booth. Added in proportions.

(実施例2)
実施例2では、実施例1と同じカチオン凝結剤を同じ量だけ添加し、ノボラック型フェノール樹脂として前記一般式(1)において、nが6の樹脂を水酸化ナトリウムに溶解させたもの(樹脂分20%)を用い、これを塗装ブースで噴霧された塗料に対して10重量%の割合で添加した。また、凝集剤は実施例1と同じ凝集剤を同じ量だけ添加した。
(Example 2)
In Example 2, the same cationic coagulant as in Example 1 was added in the same amount, and a novolak type phenol resin in which n is 6 in the general formula (1) was dissolved in sodium hydroxide (resin content) 20%) was added at a rate of 10% by weight with respect to the paint sprayed in the paint booth. Further, the same amount of the same flocculant as in Example 1 was added as the flocculant.

(実施例3)
実施例3では、実施例1と同じカチオン凝結剤を同じ量だけ添加し、ノボラック型フェノール樹脂として前記一般式(1)において、nが8の樹脂を水酸化ナトリウムに溶解させたもの(樹脂分20%)を用い、これを塗装ブースで噴霧された塗料に対して10重量%の割合で添加した。また、凝集剤は実施例1と同じ凝集剤を同じ量だけ添加した。
(Example 3)
In Example 3, the same cationic coagulant as in Example 1 was added in the same amount, and a novolac type phenol resin in which the resin having n of 8 in the general formula (1) was dissolved in sodium hydroxide (resin content) 20%) was added at a rate of 10% by weight with respect to the paint sprayed in the paint booth. Further, the same amount of the same flocculant as in Example 1 was added as the flocculant.

(実施例4)
実施例4では、実施例2と同じカチオン凝結剤を同じ量だけ添加し、実施例2と同じノボラック型フェノール樹脂を実施例2の半分の量となるよう添加した。また、凝集剤は実施例2と同じ凝集剤を同じ量だけ添加した。
Example 4
In Example 4, the same cationic coagulant as in Example 2 was added in the same amount, and the same novolak type phenolic resin as in Example 2 was added in half the amount in Example 2. Further, as the flocculant, the same amount of the same flocculant as in Example 2 was added.

(実施例5)
実施例5では、カチオン凝結剤としてジメチルアミン−エピクロルヒドリン縮合物(平均分子量5000、固形分50%:長瀬産業(株)製「ワイステックスT−101−50」)を用い、これを塗装ブースで噴霧された水性塗料に対して2重量%の割合で添加し、実施例1と同じノボラック型フェノール及び凝集剤を同じ量だけ添加した。
(Example 5)
In Example 5, dimethylamine-epichlorohydrin condensate (average molecular weight 5000, solid content 50%: “Wastex T-101-50” manufactured by Nagase Sangyo Co., Ltd.) was used as a cationic coagulant and sprayed at a coating booth. The same novolac type phenol and the flocculant as in Example 1 were added in the same amount.

(実施例6)
実施例6では、カチオン凝結剤としてジアリルジメチルアンモニウムクロライド(DADMAC)重合体(平均分子量20万、固形分40%、SNF社製「PRP4440」)を用い、これを塗装ブースで噴霧された水性塗料に対して3重量%の割合で添加し、実施例1と同じノボラック型フェノール及び凝集剤を同じ量だけ添加した。
(Example 6)
In Example 6, diallyldimethylammonium chloride (DADMAC) polymer (average molecular weight 200,000, solid content 40%, “PRP4440” manufactured by SNF) was used as a cationic coagulant, and this was applied to an aqueous paint sprayed at a coating booth. The same novolak type phenol and flocculant as in Example 1 were added in the same amount.

(実施例7)
実施例7では、カチオン凝結剤としてジアリルジメチルアンモニウムクロライド(DADMAC)−アクリルアミド重合体(平均分子量13万、固形分40%、センカ社製「センカフロックDC−7513」)を用い、これを塗装ブースで噴霧された水性塗料に対して3重量%の割合で添加し、実施例3と同じノボラック型フェノール及び凝集剤を同じ量だけ添加した。
(Example 7)
In Example 7, diallyldimethylammonium chloride (DADMAC) -acrylamide polymer (average molecular weight 130,000, solid content 40%, “Sencafloc DC-7513” manufactured by SENKA) was used as a cationic coagulant at a coating booth. The same amount of the same novolak type phenol and flocculant as in Example 3 was added to the sprayed water-based paint at a ratio of 3% by weight.

(実施例8)
実施例8では、カチオン凝結剤としてポリエチレンイミン(平均分子量7万、固形分30%、日本触媒(株)製「エポミンP−1000」)を用い、これを塗装ブースで噴霧された塗料に対して2.0質量%の割合で添加し、実施例1と同じノボラック型フェノール樹脂及び凝集剤を同じ量だけ添加した。
(Example 8)
In Example 8, polyethyleneimine (average molecular weight 70,000, solid content 30%, “Epomin P-1000” manufactured by Nippon Shokubai Co., Ltd.) was used as the cationic coagulant, and this was applied to the paint sprayed at the coating booth. The same novolak type phenolic resin and flocculant as in Example 1 were added in the same amount.

(実施例9)
実施例9では、実施例1と同じカチオン凝結剤及びノボラック型フェノール樹脂を同じ量だけ添加し、凝集剤としてアクリルアミド−アクリル酸共重合体(分子量1700万:三井サイテック(株)製「スーパーフロック2360」)を塗装ブースで噴霧された塗料に対して1重量%の割合で添加した。
Example 9
In Example 9, the same cationic coagulant and novolac type phenol resin as in Example 1 were added in the same amount, and an acrylamide-acrylic acid copolymer (molecular weight: 17 million: “Super Flock 2360” manufactured by Mitsui Cytec Co., Ltd.) was used as a flocculant. )) Was added at a rate of 1% by weight with respect to the paint sprayed in the paint booth.

(実施例10)
実施例10では、実施例3と同じカチオン凝結剤及びノボラック型フェノール樹脂を同じ量だけ添加し、凝集剤としてアクリルアミド−[2−(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウムクロライド・[2−(アクリロイルオキシ)エチル]トリメチルアンモニウム共重合体(分子量450万:荏原エンジニアリングサービス(株)製「エバグロースLDC−100」)を塗装ブースで噴霧された塗料に対して0.5重量%の割合で添加した。
(Example 10)
In Example 10, the same cationic coagulant and novolak type phenol resin as in Example 3 were added in the same amount, and acrylamide- [2- (acryloyloxy) ethyl] benzyldimethylammonium chloride. [2- (acryloyloxy) was used as a flocculant. ) Ethyl] trimethylammonium copolymer (molecular weight: 4.5 million: “Ebagulose LDC-100” manufactured by Ebara Engineering Service Co., Ltd.) was added at a ratio of 0.5% by weight to the paint sprayed at the coating booth.

(比較例1)
比較例1では、ブース循環水中に何も添加しなかった。
(Comparative Example 1)
In Comparative Example 1, nothing was added to the booth circulating water.

(比較例2)
比較例2では、カチオン凝結剤としてジメチルアミン−エピクロルヒドリン縮合物(平均分子量5000、固形分50%:長瀬産業(株)製「ワイステックスT−101−50」)を用い、これを塗装ブースで噴霧された水性塗料に対して2重量%の割合で添加した。また、ノボラック型フェノール樹脂として前記一般式(1)において、nが3の樹脂を水酸化ナトリウムに溶解させたもの(樹脂分20%)を用い、これを塗装ブースで噴霧された塗料に対して10重量%の割合で添加した。また、凝集剤は添加しなかった。
(Comparative Example 2)
In Comparative Example 2, dimethylamine-epichlorohydrin condensate (average molecular weight 5000, solid content 50%: “Wytex T-101-50” manufactured by Nagase Sangyo Co., Ltd.) was used as a cationic coagulant and sprayed at a coating booth. It was added at a ratio of 2% by weight based on the finished water-based paint. In addition, as a novolac type phenol resin, a resin in which n is 3 dissolved in sodium hydroxide (resin content: 20%) in the general formula (1) is used, and this is applied to the paint sprayed at the coating booth. 10% by weight was added. Also, no flocculant was added.

(比較例3)
比較例3では、比較例2と同じカチオン凝結剤及びノボラック型フェノール樹脂を同じ量だけ添加し、凝集剤としてアクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体(分子量800万:三井サイテック(株)製「スーパーフロック3390」)を塗装ブースで噴霧された塗料に対して0.5重量%の割合で添加した。
(Comparative Example 3)
In Comparative Example 3, the same cationic coagulant and novolac type phenol resin as in Comparative Example 2 were added in the same amount, and an acrylamide-acrylaminoethyltrimethylammonium chloride copolymer (molecular weight: 8 million, manufactured by Mitsui Cytec Co., Ltd.) as a flocculant. “Super Flock 3390”) was added at a ratio of 0.5% by weight to the paint sprayed in the paint booth.

(比較例4)
比較例4では、比較例2と同じカチオン凝結剤を同じ量だけ添加し、ノボラック型フェノール樹脂として、前記一般式(1)において、nが2の樹脂を水酸化ナトリウムに溶解させたもの(樹脂分20%)を用い、これを塗装ブースで噴霧された塗料に対して10重量%の割合で添加した。また、凝集剤は比較例3と同じ凝集剤を同じ量だけ添加した。
(Comparative Example 4)
In Comparative Example 4, the same cationic coagulant as in Comparative Example 2 was added in the same amount, and a novolac type phenol resin in which n is 2 in the general formula (1) was dissolved in sodium hydroxide (resin This was added at a rate of 10% by weight to the paint sprayed in the paint booth. Further, as the flocculant, the same amount of the same flocculant as in Comparative Example 3 was added.

(比較例5)
比較例5では、比較例2と同じカチオン凝結剤を同じ量だけ添加し、比較例2と同じノボラック型フェノール樹脂を比較例2の3倍量となるよう添加した。また、凝集剤は比較例3と同じ凝集剤を同じ量だけ添加した。
(Comparative Example 5)
In Comparative Example 5, the same cationic coagulant as in Comparative Example 2 was added in the same amount, and the same novolak type phenolic resin as in Comparative Example 2 was added in an amount three times that in Comparative Example 2. Further, as the flocculant, the same amount of the same flocculant as in Comparative Example 3 was added.

(比較例6)
比較例6では、カチオン凝結剤は添加せず、ノボラック型フェノール樹脂として前記一般式(1)において、nが4の樹脂を水酸化ナトリウムに溶解させたもの(樹脂分20%)を用い、これを塗装ブースで噴霧された塗料に対して10重量%の割合で添加した。また、凝集剤は比較例2と同じ凝集剤を同じ量だけ添加した。
(Comparative Example 6)
In Comparative Example 6, a cationic coagulant was not added, and a novolak type phenol resin obtained by dissolving a resin having n of 4 in sodium hydroxide in the general formula (1) (resin content: 20%) was used. Was added at a ratio of 10% by weight to the paint sprayed in the painting booth. Further, as the flocculant, the same amount of the same flocculant as in Comparative Example 2 was added.

(比較例7)
比較例7では、カチオン凝結剤としてジメチルアミン−エピクロルヒドリン−アンモニア縮合物(平均分子量30000、固形分45%:長瀬産業(株)製「ワイステックスH−90」)を用い、これを塗装ブースで噴霧された水性塗料に対して2.5重量%の割合で添加し、比較例6と同じノボラックフェノール樹脂を同じ量だけ添加し、凝集剤は添加しなかった。
(Comparative Example 7)
In Comparative Example 7, dimethylamine-epichlorohydrin-ammonia condensate (average molecular weight 30000, solid content 45%: “Wastex H-90” manufactured by Nagase Sangyo Co., Ltd.) was used as a cationic coagulant and sprayed at a coating booth. The same amount of the same novolak phenol resin as that of Comparative Example 6 was added, and no flocculant was added.

<ブース循環水の処理試験>
上記実施例1〜10及び比較例1〜7の処理方法により、ブース循環水の処理試験を行った。試験に用いた湿式塗装ブースは、図1に示すように、塗装を行うための塗装ブース本体1と、塗装ブース本体1を流下するブース循環水を受ける循環水槽2と、循環水槽2で浮上した塗料スラッジを含む循環水を濃縮して回収する濃縮回収槽3を備えている。塗装ブース本体1でスプレーされた塗料はブース循環水に捕集され、循環水槽2で浮上分離される。浮上した塗料スラッジはポンプ4で濃縮回収槽3へ送られる。また、循環水槽2の底部からポンプ5によって塗装ブース本体1へブース循環水が送られる。濃縮回収槽3は加圧浮上槽となっており、浮上した塗料スラッジは回収除去され、処理されたブース循環水は循環水槽2へ送られる。カチオン凝結剤はポンプ5と塗装ブース本体1との間である添加場所Aに添加し、ノボラック型フェノール樹脂は添加場所Aの少し上流側である添加場所Bに添加し、凝集剤は濃縮回収槽3とポンプ4との間の添加場所Cに添加した。この湿式塗装ブースの保有水量は500Lであり、ポンプ5によるブース循環水の水量は100L/分とし、ポンプ4による濃縮回収槽への水量は30L/分とした。
<Treatment test of booth circulating water>
The treatment test of the booth circulating water was performed by the treatment methods of Examples 1 to 10 and Comparative Examples 1 to 7. As shown in FIG. 1, the wet painting booth used for the test surfaced in the painting booth body 1 for painting, the circulating water tank 2 receiving the booth circulating water flowing down the painting booth body 1, and the circulating water tank 2. A concentration collection tank 3 is provided for concentrating and collecting circulating water containing paint sludge. The paint sprayed in the painting booth body 1 is collected in the booth circulating water and floated and separated in the circulating water tank 2. The floating paint sludge is sent to the concentration recovery tank 3 by the pump 4. Further, the booth circulating water is sent from the bottom of the circulating water tank 2 to the painting booth main body 1 by the pump 5. The concentration recovery tank 3 is a pressurized floating tank, and the paint sludge that has floated is recovered and removed, and the treated booth circulating water is sent to the circulating water tank 2. The cationic coagulant is added to the addition site A between the pump 5 and the painting booth body 1, the novolac type phenol resin is added to the addition site B slightly upstream of the addition site A, and the coagulant is concentrated and recovered. The addition was made at the addition place C between 3 and the pump 4. The amount of water held in this wet painting booth was 500 L, the amount of booth circulating water by the pump 5 was 100 L / min, and the amount of water to the concentration recovery tank by the pump 4 was 30 L / min.

以上のように構成された試験用湿式塗装ブースを用い、実施例あるいは比較例に示した上記薬品の所定量を添加しつつ、塗装ブース内でブース循環水に向けて水性塗料と油性塗料とを各5g/分で連続して5時間噴霧した。水性塗料としては、自動車用水性上塗り塗料(日本ペイント(株)製)を用い、油性塗料としては、自動車用溶剤クリア塗料(日本ペイント(株)製)を用いた。また、塗料を噴霧している間、ブース循環水の電荷を測定し、電荷が−50〜+200(μeq/L−ブース循環水)になるようにカチオン凝結剤の添加量を調節した。ブース循環水の電荷量はコロイド滴定により測定した。   Using the test wet paint booth configured as described above, while adding a predetermined amount of the above-mentioned chemicals shown in the examples or comparative examples, water paint and oil paint are directed toward the booth circulating water in the paint booth. Spraying was continued for 5 hours at 5 g / min. As the water-based paint, a water-based top coat for automobiles (manufactured by Nippon Paint Co., Ltd.) was used, and as the oil-based paint, a solvent clear paint for automobiles (manufactured by Nippon Paint Co., Ltd.) was used. Moreover, while spraying the paint, the charge of the booth circulating water was measured, and the addition amount of the cationic coagulant was adjusted so that the charge was −50 to +200 (μeq / L-booth circulating water). The amount of charge in the booth circulating water was measured by colloid titration.

<評 価>
噴霧終了後、ブース循環水を採取し、濁度と発泡性を測定した。また、浮上した塗料スラッジの不粘着化性を測定評価した。濁度はJIS K 0101に準じて評価した。また、発泡性は循環水50mlを共栓付シリンダーに取り、上下に20回振とう後静置し、15秒後の泡高を測定評価した。さらに、塗料スラッジの不粘着化性は指触判定で実施し、強く押さえても全く粘着性がないものを「◎」、強く押さえると少し粘着性があるものを「○」、軽く押さえて粘着性があるものを「△」、触れただけで強い粘着性があるものを「×」とした。結果を表1に示す。
<Evaluation>
After spraying, booth circulating water was collected and turbidity and foamability were measured. In addition, the tack-free property of the floating paint sludge was measured and evaluated. Turbidity was evaluated according to JIS K 0101. For foaming, 50 ml of circulating water was taken in a cylinder with a stopper, shaken up and down 20 times and allowed to stand, and the foam height after 15 seconds was measured and evaluated. Furthermore, the non-tackiness of the paint sludge is determined by touch, and “◎” indicates that there is no stickiness even when pressed hard, “○” indicates that it is slightly sticky when pressed hard, and lightly presses to stick. “△” indicates that the material is sticky, and “×” indicates that the material has strong tackiness simply by touching. The results are shown in Table 1.

Figure 2008173562
上記表1における処理薬品の記号は以下の薬品を示す。
(カチオン凝結剤)
A−1:ジメチルアミン−エピクロルヒドリン−アンモニア縮合物
A−2:ジメチルアミン−エピクロルヒドリン縮合物
A−3:ジアリルジメチルアンモニウムクロライド(DADMAC)重合体
A−4:ジアリルジメチルアンモニウムクロライド(DADMAC)-アクリルアミド重合体
A−5:ポリエチレンイミン
(ノボラック型フェノール樹脂)
B−1:上記一般式(1)において、n=4のノボラック型フェノール樹脂
B−2:上記一般式(1)において、n=6のノボラック型フェノール樹脂
B−3:上記一般式(1)において、n=8のノボラック型フェノール樹脂
B−4:上記一般式(1)において、n=3のノボラック型フェノール樹脂
B−5:上記一般式(1)において、n=2のノボラック型フェノール樹脂
(凝集剤)
C−1:アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重
合体
C−2:アクリルアミド−アクリル酸共重合体
C−3:アクリルアミド−[2−(アクリロイルオキシ)エチル]ベンジルジメチルアンモ
ニウムクロライド・[2−(アクリロイルオキシ)エチル]トリメチルアンモニウ
ム共重合体
Figure 2008173562
The symbols for treatment chemicals in Table 1 above indicate the following chemicals.
(Cationic coagulant)
A-1: Dimethylamine-epichlorohydrin-ammonia condensate A-2: Dimethylamine-epichlorohydrin condensate A-3: Diallyldimethylammonium chloride (DADMAC) polymer A-4: Diallyldimethylammonium chloride (DADMAC) -acrylamide polymer A-5: Polyethyleneimine (novolak type phenolic resin)
B-1: In the above general formula (1), n = 4 novolac type phenol resin B-2: In the above general formula (1), n = 6 novolac type phenol resin B-3: In the above general formula (1) N = 8 novolac type phenol resin B-4: in the above general formula (1), n = 3 novolac type phenol resin B-5: in the above general formula (1), n = 2 novolac type phenol resin (Flocculant)
C-1: Acrylamide-acrylaminoethyltrimethylammonium chloride copolymer C-2: Acrylamide-acrylic acid copolymer C-3: Acrylamide- [2- (acryloyloxy) ethyl] benzyldimethylammonium chloride [2- (Acryloyloxy) ethyl] trimethylammonium copolymer

表1に示すように、前記一般式(1)においてn=4あるいはn=6あるいはn=8のノボラック型フェノール樹脂とカチオン凝結剤とを添加し、さらにブース循環水の電荷が−50〜+200(μeq/L−ブース循環水)になるようにカチオン凝結剤の添加量を調節した実施例1〜10では、濁度が100度以下、発泡性が10mm以下と、ともに低く、ブース循環水中の塗料の分離ならびに循環水の発泡抑制が効率よくなされていることが分かる。また、不粘着化性も○又は◎の評価であり、ブース循環水の配管等に塗料が付着することを充分防止できることが分かった。   As shown in Table 1, a novolak type phenol resin of n = 4, n = 6 or n = 8 and a cationic coagulant in the general formula (1) are added, and the charge of the booth circulating water is −50 to +200. In Examples 1 to 10 in which the addition amount of the cationic coagulant was adjusted so as to be (μeq / L-booth circulating water), the turbidity was 100 degrees or less and the foaming property was 10 mm or less. It can be seen that the separation of the paint and the suppression of foaming of the circulating water are efficiently performed. Further, the tack-free property was evaluated as “Good” or “Excellent”, and it was found that the paint could be sufficiently prevented from adhering to the booth circulating water piping.

これに対して、前記一般式(1)においてn=3あるいはn=2のノボラック型フェノール樹脂を用いた比較例2〜4では、ブース循環水の電荷を適正範囲に調節しても濁度が420〜610度、発泡性も34〜42mmと高く、ブース循環水中の塗料の分離が極めて不十分であるとともに、循環水の発泡抑制が不十分であった。また、不粘着化性も×の評価であり、ブース循環水の配管等に塗料の付着が確認された。
比較例5は、前記一般式(1)においてn=3のノボラック型フェノール樹脂の添加量を高めたものであるが、発泡抑制効果はやや高まるが、いまだ不十分であり、固液分離効果及び不粘着化効果も不十分であることが分かる。
比較例6は、本発明における特定のノボラック型フェノール樹脂と凝集剤を添加し、カチオン凝結剤を添加しなかったものであるが、水性塗料の固液分離が不十分であり、発泡抑制も不十分であった。
比較例7は、本発明におけるカチオン凝結剤と特定のノボラック型フェノール樹脂を添加し、凝集剤を添加しなかったものであるが、微細な塗料粒子が循環水中に分散して高い濁度となった。塗料粒子の分散は塗料スラッジの回収量低下となるほか、泡の安定化に作用して発泡性も高まった。
比較例5は、本発明における特定のノボラック型フェノール樹脂と凝集剤を添加し、カチオン凝結剤を添加しなかったものであるが、水性塗料の固液分離が不十分であり、発泡抑制も不十分であった。
比較例6は、本発明におけるカチオン凝結剤と特定のノボラック型フェノール樹脂を添加し、凝集剤を添加しなかったものであるが、微細な塗料粒子が循環水中に分散して高い濁度となった。塗料粒子の分散は塗料スラッジの回収量低下となるほか、泡の安定化に作用して発泡性も高まった。
以上の結果から、発泡抑制効果はノボラック型フェノール樹脂の重合度によって大きく影響され、nが4〜8の範囲の場合に発泡抑制効果が優れていることが分かった。
On the other hand, in Comparative Examples 2 to 4 using the novolak type phenol resin of n = 3 or n = 2 in the general formula (1), the turbidity is maintained even when the charge of the booth circulating water is adjusted to an appropriate range. The foaming property was as high as 420 to 610 degrees and 34 to 42 mm, and the separation of the paint in the booth circulating water was extremely insufficient, and the suppression of foaming of the circulating water was insufficient. Moreover, the tack-free property was also evaluated as x, and adhesion of the paint to the booth circulating water piping and the like was confirmed.
In Comparative Example 5, the amount of addition of the novolak type phenol resin of n = 3 in the general formula (1) is increased, but the foaming suppression effect is slightly increased, but is still insufficient, and the solid-liquid separation effect and It can be seen that the detackifying effect is also insufficient.
In Comparative Example 6, the specific novolak type phenol resin and the flocculant in the present invention were added and the cationic coagulant was not added. However, the solid-liquid separation of the water-based paint was insufficient, and foaming suppression was not effective. It was enough.
In Comparative Example 7, the cationic coagulant and the specific novolac type phenol resin in the present invention were added, and the flocculant was not added. However, the fine paint particles were dispersed in the circulating water to give high turbidity. It was. Dispersion of the paint particles reduced the amount of paint sludge collected, and also acted to stabilize the foam, increasing foamability.
In Comparative Example 5, the specific novolak type phenol resin and the flocculant in the present invention were added, and the cationic coagulant was not added. However, the solid-liquid separation of the water-based paint was insufficient, and foaming suppression was not effective. It was enough.
In Comparative Example 6, the cationic coagulant and the specific novolac type phenol resin in the present invention were added, and the flocculant was not added, but the fine paint particles were dispersed in the circulating water and became high turbidity. It was. Dispersion of the paint particles reduced the amount of paint sludge collected, and also acted to stabilize the foam, increasing foamability.
From the above results, it was found that the foam suppression effect is greatly influenced by the degree of polymerization of the novolak type phenol resin, and the foam suppression effect is excellent when n is in the range of 4-8.

この発明は、上記発明の実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiments of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

本発明は、湿式塗装ブースのブース循環水中に水性塗料及び/又は油性塗料を含む場合におけるブース循環水の処理方法として好適に用いることができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used as a method for treating booth circulating water when a water-based paint and / or an oil-based paint are included in the booth circulating water of a wet painting booth.

実施例及び比較例で用いた試験用塗装ブース装置の模式図である。It is a schematic diagram of the coating booth apparatus for a test used by the Example and the comparative example.

符号の説明Explanation of symbols

1…塗装ブース本体
2…循環水槽
3…濃縮回収槽
4…濃縮回収槽送りポンプ
5…循環ポンプ
A…カチオン凝結剤添加場所
B…ノボラック型フェノール樹脂添加場所
C…凝集剤添加場所
DESCRIPTION OF SYMBOLS 1 ... Painting booth body 2 ... Circulating water tank 3 ... Concentration collection tank 4 ... Concentration collection tank feed pump 5 ... Circulation pump A ... Location of addition of cationic coagulant B ... Location of addition of novolac type phenol resin C ... Location of addition of flocculant

Claims (6)

水性塗料及び/又は油性塗料を含む湿式塗装ブースの循環水の処理方法であって、
該ブース循環水に下記一般式(1)(ただし、末端のベンゼン環にはメチロール基が結合していてもよい)であらわされるノボラック型フェノール樹脂とカチオン凝結剤と凝集剤とを添加することを特徴とする塗装ブース循環水の処理方法。
Figure 2008173562
A method for treating circulating water in a wet paint booth containing a water-based paint and / or an oil-based paint,
Adding a novolak-type phenol resin represented by the following general formula (1) (wherein a methylol group may be bonded to the terminal benzene ring), a cationic coagulant, and an aggregating agent to the booth circulating water. A characteristic method for treating circulating water in a painting booth.
Figure 2008173562
カチオン凝結剤は、ポリアクリルアミノエチルトリメチルアンモニウムクロライド、ジシアンジアミド−ホルムアルデヒド縮合物、ジシアンジアミド−ジエチレントリアミン縮合物、ジアリルジメチルアンモニウムクロライド−二酸化硫黄共重合体、ジメチルアミン−エピクロルヒドリン縮合物、ジメチルアミン−エピクロルヒドリン−アンモニア縮合物、ジアリルジメチルアンモニウムクロライド重合体、ジアリルジメチルアンモニウムクロライド−アクリルアミド共重合体及びポリエチレンイミンから選ばれる1種以上であることを特徴とする請求項1記載の塗装ブース循環水の処理方法。   Cationic coagulants include polyacrylaminoethyltrimethylammonium chloride, dicyandiamide-formaldehyde condensate, dicyandiamide-diethylenetriamine condensate, diallyldimethylammonium chloride-sulfur dioxide copolymer, dimethylamine-epichlorohydrin condensate, dimethylamine-epichlorohydrin-ammonia condensate. The processing method of the coating booth circulating water of Claim 1 characterized by being 1 or more types chosen from a product, diallyldimethylammonium chloride polymer, diallyldimethylammonium chloride-acrylamide copolymer, and polyethyleneimine. カチオン凝結剤の分子量は2,000〜500,000とされていることを特徴とする請求項2記載の塗装ブース循環水の処理方法。   The coating booth circulating water treatment method according to claim 2, wherein the cationic coagulant has a molecular weight of 2,000 to 500,000. 凝集剤は、ポリアクリルアミド、アクリルアミド−アクリル酸共重合体、アクリルアミド−アクリルアミノエチルトリメチルアンモニウムクロライド共重合体、アクリルアミド−メタクリルアミノエチルトリメチルアンモニウムクロライド共重合体、アクリルアミド−[2−(アクリロイルオキシ)エチル]ベンジルジメチルアンモニウムクロライド・[2−(アクリロイルオキシ)エチル]トリメチルアンモニウム共重合体から選ばれる1種以上であることを特徴とする請求項1乃至3のいずれか1項記載のブース循環水の処理方法。   The flocculant is polyacrylamide, acrylamide-acrylic acid copolymer, acrylamide-acrylaminoethyltrimethylammonium chloride copolymer, acrylamide-methacrylaminoethyltrimethylammonium chloride copolymer, acrylamide- [2- (acryloyloxy) ethyl]. 4. The method for treating booth circulating water according to claim 1, wherein the booth circulating water is one or more selected from benzyldimethylammonium chloride / [2- (acryloyloxy) ethyl] trimethylammonium copolymer. 5. . 凝集剤の分子量は2,000,000〜20,000,000とされていることを特徴とする請求項4記載のブース循環水の処理方法。   The booth circulating water treatment method according to claim 4, wherein the flocculant has a molecular weight of 2,000,000 to 20,000,000. ブース循環水中の電荷量が−50〜+200μeq/Lとなるようにカチオン凝結剤の添加量を調整することを特徴とする請求項1乃至5のいずれか1項記載のブース循環水の処理方法。   The method for treating booth circulating water according to any one of claims 1 to 5, wherein the addition amount of the cationic coagulant is adjusted so that the amount of charge in the booth circulating water becomes -50 to +200 µeq / L.
JP2007008723A 2007-01-18 2007-01-18 Booth circulating water treatment method Active JP4717837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008723A JP4717837B2 (en) 2007-01-18 2007-01-18 Booth circulating water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008723A JP4717837B2 (en) 2007-01-18 2007-01-18 Booth circulating water treatment method

Publications (2)

Publication Number Publication Date
JP2008173562A true JP2008173562A (en) 2008-07-31
JP4717837B2 JP4717837B2 (en) 2011-07-06

Family

ID=39700996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008723A Active JP4717837B2 (en) 2007-01-18 2007-01-18 Booth circulating water treatment method

Country Status (1)

Country Link
JP (1) JP4717837B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129491A (en) * 2000-08-03 2002-05-09 Hymo Corp Method for suppressing fouling of paper
JP2009240928A (en) * 2008-03-31 2009-10-22 Hakuto Co Ltd Method of treating circulating water for the wet coating booth
JP2011072866A (en) * 2009-09-29 2011-04-14 Kurita Water Ind Ltd Treatment method of wet coating booth circulating water
EP2465593A1 (en) * 2009-08-11 2012-06-20 Kurita Water Industries Ltd. Water treatment method and water treatment flocculant
CN103359812A (en) * 2012-04-06 2013-10-23 成都环川科技有限公司 Efficient spray processing method for spray room
JP2014155916A (en) * 2013-02-18 2014-08-28 Kurita Water Ind Ltd Method of treating wet coating booth circulating water
CN105236533A (en) * 2015-09-30 2016-01-13 成都环川科技有限公司 High efficient paint mist processing agent for spray booth
WO2016013586A1 (en) * 2014-07-23 2016-01-28 栗田工業株式会社 Treatment method and treatment device for circulating water of wet type coating booth
JP2016079365A (en) * 2014-10-22 2016-05-16 アイカSdkフェノール株式会社 Binder base material for inner wall substrate material
CN105692844A (en) * 2016-04-21 2016-06-22 苏州云舒新材料科技有限公司 High-chromaticity/high-turbidity wastewater treatment material and usage thereof
CN105753128A (en) * 2016-04-19 2016-07-13 兰州交通大学 Polyacrylamide heavy metal flocculating agent and method for preparing same
JP6389978B1 (en) * 2018-07-10 2018-09-12 伯東株式会社 Wet paint booth circulating water treatment agent and treatment method
WO2018173722A1 (en) * 2017-03-21 2018-09-27 栗田工業株式会社 Treatment device for circulating water in wet type coating booth
CN109678220A (en) * 2019-01-10 2019-04-26 深圳市浩天源环保科技有限公司 A kind of decolorising agent and its preparation method and application
WO2019208535A1 (en) * 2018-04-23 2019-10-31 栗田工業株式会社 Processing method for wet paint booth circulating water
US10463757B2 (en) 2015-01-09 2019-11-05 Hyundai Motor Company Agent for removing malodor from painting booth, and method of removing malodor
JP2019202280A (en) * 2018-05-24 2019-11-28 栗田工業株式会社 Chemical feed control method of wet coating both circulation water treatment agent and control device
WO2019225353A1 (en) * 2018-05-24 2019-11-28 栗田工業株式会社 Chemical injection control method and control device of chemical for treating circulating water in wet-type painting booth
CN113557216A (en) * 2019-03-05 2021-10-26 栗田工业株式会社 Treatment device and treatment method for circulating water of wet coating chamber
CN114286805A (en) * 2020-07-21 2022-04-05 栗田工业株式会社 Treatment device and treatment method for circulating water of wet coating chamber

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342706A (en) * 1986-08-06 1988-02-23 Kurita Water Ind Ltd Treatment of water containing water-based paint
JP2004337671A (en) * 2003-05-13 2004-12-02 Kurita Water Ind Ltd Method of treating wet coating booth circulation water
JP2008149249A (en) * 2006-12-15 2008-07-03 Kurita Water Ind Ltd Treatment method of wet booth circulation water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6342706A (en) * 1986-08-06 1988-02-23 Kurita Water Ind Ltd Treatment of water containing water-based paint
JP2004337671A (en) * 2003-05-13 2004-12-02 Kurita Water Ind Ltd Method of treating wet coating booth circulation water
JP2008149249A (en) * 2006-12-15 2008-07-03 Kurita Water Ind Ltd Treatment method of wet booth circulation water

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002129491A (en) * 2000-08-03 2002-05-09 Hymo Corp Method for suppressing fouling of paper
JP2009240928A (en) * 2008-03-31 2009-10-22 Hakuto Co Ltd Method of treating circulating water for the wet coating booth
EP2465593A1 (en) * 2009-08-11 2012-06-20 Kurita Water Industries Ltd. Water treatment method and water treatment flocculant
EP2465593A4 (en) * 2009-08-11 2013-09-25 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
US9403704B2 (en) 2009-08-11 2016-08-02 Kurita Water Industries, Ltd. Water treatment method and water treatment flocculant
JP2011072866A (en) * 2009-09-29 2011-04-14 Kurita Water Ind Ltd Treatment method of wet coating booth circulating water
CN103359812A (en) * 2012-04-06 2013-10-23 成都环川科技有限公司 Efficient spray processing method for spray room
JP2014155916A (en) * 2013-02-18 2014-08-28 Kurita Water Ind Ltd Method of treating wet coating booth circulating water
WO2016013586A1 (en) * 2014-07-23 2016-01-28 栗田工業株式会社 Treatment method and treatment device for circulating water of wet type coating booth
CN106536422A (en) * 2014-07-23 2017-03-22 栗田工业株式会社 Treatment method and treatment device for circulating water of wet type coating booth
JP2016079365A (en) * 2014-10-22 2016-05-16 アイカSdkフェノール株式会社 Binder base material for inner wall substrate material
US10603397B2 (en) * 2015-01-09 2020-03-31 Hyundai Motor Company Agent for removing malodor from painting booth, and method of removing malodor
US10463757B2 (en) 2015-01-09 2019-11-05 Hyundai Motor Company Agent for removing malodor from painting booth, and method of removing malodor
CN105236533A (en) * 2015-09-30 2016-01-13 成都环川科技有限公司 High efficient paint mist processing agent for spray booth
CN105753128A (en) * 2016-04-19 2016-07-13 兰州交通大学 Polyacrylamide heavy metal flocculating agent and method for preparing same
CN105692844A (en) * 2016-04-21 2016-06-22 苏州云舒新材料科技有限公司 High-chromaticity/high-turbidity wastewater treatment material and usage thereof
CN105692844B (en) * 2016-04-21 2018-12-21 浙江绍肖印染有限公司 A kind of high chroma/high-turbidity sewage processing material and its application method
WO2018173722A1 (en) * 2017-03-21 2018-09-27 栗田工業株式会社 Treatment device for circulating water in wet type coating booth
JP2018153782A (en) * 2017-03-21 2018-10-04 栗田工業株式会社 Wet coating booth circulating water treatment device
CN112041276A (en) * 2018-04-23 2020-12-04 栗田工业株式会社 Treatment method of circulating water of wet coating chamber
WO2019208535A1 (en) * 2018-04-23 2019-10-31 栗田工業株式会社 Processing method for wet paint booth circulating water
JP2019188296A (en) * 2018-04-23 2019-10-31 栗田工業株式会社 Method of treating water circulated in wet coating booth
JP2019202280A (en) * 2018-05-24 2019-11-28 栗田工業株式会社 Chemical feed control method of wet coating both circulation water treatment agent and control device
WO2019225353A1 (en) * 2018-05-24 2019-11-28 栗田工業株式会社 Chemical injection control method and control device of chemical for treating circulating water in wet-type painting booth
WO2019225352A1 (en) * 2018-05-24 2019-11-28 栗田工業株式会社 Chemical injection control method and control device of chemical for treating circulating water in wet-type painting booth
CN112135798A (en) * 2018-05-24 2020-12-25 栗田工业株式会社 Dosing control method and device for circulating water treatment agent of wet coating chamber
JP2020006336A (en) * 2018-07-10 2020-01-16 伯東株式会社 Wet painting booth circulating water treatment agent and treatment method
JP6389978B1 (en) * 2018-07-10 2018-09-12 伯東株式会社 Wet paint booth circulating water treatment agent and treatment method
CN109678220A (en) * 2019-01-10 2019-04-26 深圳市浩天源环保科技有限公司 A kind of decolorising agent and its preparation method and application
CN113557216A (en) * 2019-03-05 2021-10-26 栗田工业株式会社 Treatment device and treatment method for circulating water of wet coating chamber
CN114286805A (en) * 2020-07-21 2022-04-05 栗田工业株式会社 Treatment device and treatment method for circulating water of wet coating chamber

Also Published As

Publication number Publication date
JP4717837B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4717837B2 (en) Booth circulating water treatment method
JP4697130B2 (en) Wet booth circulating water treatment method
JP2009022852A (en) Treatment method of wet coating booth circulating water
JP4697131B2 (en) Wet paint booth circulating water treatment agent and wet paint booth circulating water treatment method
EP3173383B1 (en) Treatment method for circulating water of wet type coating booth
JP2006525871A (en) Compositions and methods for paint overspray removal processes
WO2016088857A1 (en) System for collecting paint residue, and method for collecting paint residue
JP5880602B2 (en) Wet paint booth circulating water treatment agent
JP4451249B2 (en) Booth circulating water treatment method
JP4261039B2 (en) Wet paint booth circulating water management method
JP2016052639A (en) Wet coating booth circulation water treatment agent, and wet coating booth circulation water treatment method
JP6120470B2 (en) Wet paint booth circulating water treatment agent and treatment method
JP2015188846A (en) Water treatment agent, and water treatment method
JP6102318B2 (en) Wet paint booth circulating water treatment method
JP2011020084A (en) Method of treating wet coating booth circulating water containing aqueous coating material
JP5681828B1 (en) Wet paint booth circulating water treatment method
WO2019208535A1 (en) Processing method for wet paint booth circulating water
JP2016140805A (en) Apparatus and method for treating wet coating booth circulating water
TWI640497B (en) Wet coating room circulating water treatment agent and treatment method
JP2015221404A (en) Method for treating coating material waste liquid
JPH0370780A (en) Treating agent for wet spray booth
JP2676840B2 (en) Painting booth circulating water treatment method
JP2014226609A (en) Recovery system and recovery method of aqueous uncoated paint
JP2020151682A (en) Treatment agent for wet paint booth circulation water and treatment method
JP2017202485A (en) Apparatus for treating wet coating booth circulating water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Ref document number: 4717837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250