JP2008173064A - Method for producing erlose - Google Patents

Method for producing erlose Download PDF

Info

Publication number
JP2008173064A
JP2008173064A JP2007010137A JP2007010137A JP2008173064A JP 2008173064 A JP2008173064 A JP 2008173064A JP 2007010137 A JP2007010137 A JP 2007010137A JP 2007010137 A JP2007010137 A JP 2007010137A JP 2008173064 A JP2008173064 A JP 2008173064A
Authority
JP
Japan
Prior art keywords
erulose
producing
reaction
microorganism
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010137A
Other languages
Japanese (ja)
Other versions
JP5001016B2 (en
Inventor
Kazumasa Konishi
一誠 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2007010137A priority Critical patent/JP5001016B2/en
Publication of JP2008173064A publication Critical patent/JP2008173064A/en
Application granted granted Critical
Publication of JP5001016B2 publication Critical patent/JP5001016B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing erlose by which the erlose is selectively obtained by using a microorganism catalyst without requiring complicated purification of enzyme in the production of the erlose. <P>SOLUTION: The method for producing the erlose includes using a raw material containing sucrose, and utilizing the microorganism catalyst obtained by culturing a microorganism belonging to Geobacillus stearothermophilus. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スクロースを含む原料を用い、Geobacillus stearothermophilus由来の微生物触媒を利用して、高選択的にエルロースを製造する方法に関する。   The present invention relates to a method for highly selective production of erulose using a raw material containing sucrose and using a microbial catalyst derived from Geobacillus stearothermophilus.

近年、食生活・社会生活が多様化する中で、健康に対する意識向上から消費者の食品や食品素材等への関心が高まっている。その中でエルロースは抗う触性を有することから機能性食品素材として期待されており、さらに、スクロースに近い味質を有することから新しいタイプの甘味料としても注目されている。   In recent years, with the diversification of eating habits and social life, consumers' interest in foods, food ingredients, etc. is increasing due to the improvement of health awareness. Among them, erulose is expected as a functional food material because it has anti-tactile properties, and also has attracted attention as a new type of sweetener because it has a taste similar to sucrose.

これまでに試みられている、実験的あるいは工業的なエルロースの製造方法としては、精製酵素を使用するエルロースの製造方法が挙げられ、蜜蜂由来の精製α−グルコシダーゼを用いたスクロース転移糖の製造方法(非特許文献1)やKluyveromyces marxianus 由来の精製α-グルコシダーゼを用いた転移反応による合成法等(非特許文献2)が報告されている。この他には、エルロース製造触媒として、Bacillus属に属する微生物を培養して得られた菌体を酵素精製等の煩雑な工程を経ることなくそのまま利用するスクロース転移糖(エルロースを含む)の製造方法が挙げられる(特許文献1)。   Examples of experimental or industrial methods for producing erulose that have been attempted so far include a method for producing erulose using a purified enzyme, and a method for producing sucrose transfer sugar using purified bee-derived α-glucosidase. (Non-patent document 1) and a synthesis method by a transfer reaction using purified α-glucosidase derived from Kluyveromyces marxianus (non-patent document 2) have been reported. In addition to this, a method for producing sucrose-transferred sugars (including erulose), which uses cells obtained by culturing microorganisms belonging to the genus Bacillus as it is without using complicated steps such as enzyme purification. (Patent Document 1).

特開平4-30796号公報Japanese Unexamined Patent Publication No. 4-30796 Agric. Biol. Chem., 51(7), 1859-1864, 1987Agric. Biol. Chem., 51 (7), 1859-1864, 1987 早稲田大学理工学研究所報告第117輯, 56-61, 1987Waseda University Institute of Science and Engineering Report 117, 56-61, 1987

精製酵素を用いたエルロースの製造方法は、生成三糖中のエルロース含有率を向上させるという点で有効な方法である。しかしながら、エルロース製造酵素を含有する生物から目的酵素を精製する酵素精製工程が必要となり、プロセスが非常に煩雑なものとなってしまうため、本手法を用いた製法は工業的には実施困難である。さらにその上、蜜蜂由来の精製α−グルコシダーゼを用いたエルロースの製造方法では、エルロース合成反応初期(3時間後)に酵素反応を停止させないと著しくエルロースの分解が進んでしまう上、酵素原料となる蜜蜂を大量に取得することも微生物由来の酵素とは異なり困難である(非特許文献1)。また、Kluyveromyces marxianus 由来の精製α-グルコシダーゼを用いたエルロース合成反応においても蜜蜂由来の精製α−グルコシダーゼと同様の傾向があり、反応初期(3時間後)に酵素反応を停止させないと著しくエルロースの分解が進んでしまう(非特許文献2)。   The method for producing erulose using a purified enzyme is an effective method in terms of improving the erulose content in the produced trisaccharide. However, since an enzyme purification step for purifying a target enzyme from an organism containing an elulose-producing enzyme is required and the process becomes very complicated, the production method using this method is difficult to implement industrially. . Furthermore, in the method for producing erulose using the purified α-glucosidase derived from bees, if the enzyme reaction is not stopped at the beginning of the erulose synthesis reaction (after 3 hours), the decomposition of erulose will proceed remarkably and become an enzyme raw material. It is also difficult to acquire a large amount of bees, unlike microorganism-derived enzymes (Non-patent Document 1). In addition, there is a tendency similar to that of purified α-glucosidase derived from bees in the elulose synthesis reaction using purified α-glucosidase derived from Kluyveromyces marxianus. (Non-Patent Document 2).

一方、エルロース製造触媒として、微生物を培養して得られた菌体を酵素精製等の煩雑な工程を経ることなくそのまま利用する方法は、精製酵素を利用する方法と比べてプロセスを簡素化できるため非常に有効な方法である。しかしながら、従来知られている微生物を用いた場合、微生物菌体などを煩雑な酵素精製工程を経ることなくそのまま利用すると、エルロース製造酵素以外の夾雑酵素の影響により、エルロースを主成分として得ることができず、生成三糖中にケスト−ス等のエルロース以外の夾雑三糖が生成してしまい、最終製品からの夾雑三糖の分離が困難になるだけでなく、夾雑酵素による原料の浪費といった問題も生じてしまう。   On the other hand, the method of using the cells obtained by culturing microorganisms as it is without any complicated steps such as enzyme purification can simplify the process compared to the method using purified enzymes. This is a very effective method. However, when conventionally known microorganisms are used, if microbial cells are used as they are without going through complicated enzyme purification steps, it is possible to obtain erulose as a main component due to the influence of contaminating enzymes other than erulose-producing enzyme. Not possible, and the production of trisaccharides other than erulose such as kestose in the produced trisaccharide will not only make it difficult to separate the contaminated trisaccharide from the final product, but also waste of raw materials due to contaminating enzymes. Will also occur.

本発明は、こうした状況のもとに、エルロースの製造において煩雑な酵素精製を必要としない微生物触媒を用い、選択的にエルロースを得ることのできるエルロースの製造方法を提供することを目的とするものである。   An object of the present invention is to provide a method for producing erulose, which can selectively obtain erulose using a microbial catalyst that does not require complicated enzyme purification in erulose production under such circumstances. It is.

これらの課題を解決するため鋭意検討を重ねた結果、本発明者らは、酵素の精製工程を経ることなく微生物そのものを触媒として利用し、エルロース以外の夾雑三糖の生成を抑制したエルロースの製造方法を見出し、本発明を完成するに至った。   As a result of intensive investigations to solve these problems, the present inventors have used the microorganism itself as a catalyst without going through an enzyme purification step, and produced erulose with suppressed production of contaminating trisaccharides other than erulose. The method has been found and the present invention has been completed.

すなわち、本発明は以下の(1)〜(8)に示すエルロースの製造方法である。
(1) スクロースを含む原料を用い、Geobacillus stearothermophilus に属する微生物を培養して得た微生物触媒を利用することを特徴とするエルロースの製造方法。
(2) 微生物が、Geobacillus stearothermophilus AKC-007株(受託番号FERM P−21112)、AKC-008株(受託番号FERM P−21113)またはAKC-009株(受託番号FERM P−21114)である、(1)に記載のエルロースの製造方法。
That is, this invention is a manufacturing method of the erulose shown to the following (1)-(8).
(1) A method for producing erulose, comprising using a microbial catalyst obtained by culturing microorganisms belonging to Geobacillus stearothermophilus using a raw material containing sucrose.
(2) The microorganism is Geobacillus stearothermophilus AKC-007 strain (Accession No. FERM P-21112), AKC-008 strain (Accession No. FERM P-21113) or AKC-009 strain (Accession No. FERM P-21114). The method for producing elulose according to 1).

(3) 生成三糖中のエルロース含有率が50%以上である、(1)又は(2)に記載のエルロースの製造方法。
(4) 生成三糖中のエルロース含有率が75%以上である、(1)又は(2)に記載のエルロースの製造方法。
(3) The method for producing erulose according to (1) or (2), wherein the erulose content in the produced trisaccharide is 50% or more.
(4) The method for producing erulose according to (1) or (2), wherein the erulose content in the produced trisaccharide is 75% or more.

(5) 反応液中のエルロース濃度が2重量%以上である、(1)から(4)の何れかに記載のエルロースの製造法。
(6) 反応液中のエルロース濃度が5重量%以上である、(1)から(4)の何れかに記載のエルロースの製造法。
(5) The method for producing erulose according to any one of (1) to (4), wherein the erulose concentration in the reaction solution is 2% by weight or more.
(6) The method for producing erulose according to any one of (1) to (4), wherein the erulose concentration in the reaction solution is 5% by weight or more.

(7) 原料中のスクロース濃度が15重量%以上である、(1)から(6)の何れかに記載のエルロースの製造法。
(8) 原料中のスクロース濃度が50重量%以上である、(1)から(6)の何れかに記載のエルロースの製造法。
(7) The method for producing erulose according to any one of (1) to (6), wherein the sucrose concentration in the raw material is 15% by weight or more.
(8) The method for producing erulose according to any one of (1) to (6), wherein the sucrose concentration in the raw material is 50% by weight or more.

本発明を用いることにより、酵素精製といった煩雑な工程を経ることなく、エルロースを選択的に製造することが可能である。   By using the present invention, it is possible to selectively produce erulose without going through complicated steps such as enzyme purification.

以下、本発明について具体的に説明する。
本発明を利用した場合、生成三糖中のエルロース含有率を50%以上に向上することができ、より好ましい条件では75%以上に、さらに好ましい条件では90%以上にすることができる。生成三糖中のエルロース含有率が低い場合、生成物からのエルロースの精製が著しく困難となるだけでなく、夾雑三糖生成に伴う原料スクロースの無駄な消費も重大な問題となる。さらに、本発明を利用した場合、反応液中のエルロース濃度は0.3重量%以上にすることができ、より好ましい条件では2重量%以上に、さらに好ましい条件では5重量%以上にすることができ、反応液からの分離が容易となる。
Hereinafter, the present invention will be specifically described.
When the present invention is used, the content of erulose in the produced trisaccharide can be improved to 50% or more, 75% or more under more preferable conditions, and 90% or more under more preferable conditions. When the content of erulose in the produced trisaccharide is low, not only is it difficult to purify erulose from the product, but also wasteful consumption of raw sucrose accompanying the production of contaminated trisaccharide becomes a serious problem. Furthermore, when the present invention is used, the concentration of erulose in the reaction solution can be 0.3% by weight or more, more preferably 2% by weight or more, and even more preferably 5% by weight or more. And can be easily separated from the reaction solution.

本発明における夾雑三糖とは、エルロース以外の三糖オリゴ糖であって、例えば、マルトトリオース、イソマルトトリオース、メレジトース、パノース、イソパノース、セロトリオース、ケストースなどが挙げられる。   The contaminated trisaccharide in the present invention is a trisaccharide oligosaccharide other than elulose, and examples thereof include maltotriose, isomaltotriose, melezitose, panose, isopanose, cellotriose, and kestose.

エルロースの製造に用いる微生物触媒としては、通常行われる培養方法によって得られる微生物そのものを利用することができ、エルロースの合成酵素を微生物から精製する必要はない。また、場合によっては、微生物培養液、微生物培養上清を利用することもできる。一方、培養法により得られた微生物は必要に応じて、水や緩衝液等で洗浄した後、利用することもできる。例えば、培養した微生物の培養液、または遠心分離、バッファーによる洗浄等により得た微生物懸濁液、微生物または微生物の処理物(例えば微生物の破砕物等)を懸濁または溶解させた水溶液、あるいは微生物または微生物処理物を包括法、架橋法、又は担体結合法によって固定化したものを用いることができる。固定化する際の固定化担体の例としては、ガラスビーズ、シリカゲル、ポリウレタン、ポリアクリルアミド、ポリビニルアルコール、カラギーナン、アルギン酸等が挙げられるが、これらに限定されるものではない。   As the microbial catalyst used for the production of erulose, microorganisms obtained by a usual culture method can be used, and it is not necessary to purify erulose synthase from the microorganisms. In some cases, a microorganism culture solution or a microorganism culture supernatant can be used. On the other hand, the microorganisms obtained by the culturing method can be used after washing with water or a buffer as required. For example, a culture solution of a cultured microorganism, a microorganism suspension obtained by centrifugation, washing with a buffer, an aqueous solution in which a microorganism or a processed microorganism product (for example, crushed microorganisms) is suspended or dissolved, or a microorganism Alternatively, a product obtained by immobilizing a processed microorganism product by a comprehensive method, a crosslinking method, or a carrier binding method can be used. Examples of the immobilization carrier used for immobilization include, but are not limited to, glass beads, silica gel, polyurethane, polyacrylamide, polyvinyl alcohol, carrageenan, alginic acid and the like.

本発明に用いる微生物としては、Geobacillus stearothermophilusに属する微生物であればどのようなものを用いてもよく、スクロースからエルロースを合成する活性を有する任意の微生物を用いることができる。好ましくは、Geobacillus stearothermophilus AKC-007株、AKC-008株、AKC-009株が挙げられる。また、本発明における微生物は、Geobacillus stearothermophilusに属する微生物を親株として得られる変異株であってもかまわない。Geobacillus stearothermophilus AKC-007株、AKC-008株、AKC-009株は、それぞれ、平成18年11月30日に独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東一丁目1番地1 中央第6)に寄託されている。受託番号は以下の通りである。
AKC-007株(FERM P−21112)
AKC-008株(FERM P−21113)
AKC-009株(FERM P−21114)
As the microorganism used in the present invention, any microorganism belonging to Geobacillus stearothermophilus may be used, and any microorganism having an activity of synthesizing erulose from sucrose can be used. Preferably, Geobacillus stearothermophilus AKC-007 strain, AKC-008 strain, and AKC-009 strain are mentioned. In addition, the microorganism in the present invention may be a mutant obtained by using a microorganism belonging to Geobacillus stearothermophilus as a parent strain. Geobacillus stearothermophilus AKC-007, AKC-008, and AKC-009 were respectively registered on November 30, 2006 by the National Institute of Advanced Industrial Science and Technology Patent Biology Center (Higashi 1-chome Tsukuba, Ibaraki, Japan). It is deposited at address 1 center 6). The accession numbers are as follows.
AKC-007 strain (FERM P-21112)
AKC-008 strain (FERM P-21113)
AKC-009 strain (FERM P-21114)

本発明に用いる微生物の培養方法としては、通常の通気攪拌培養あるいは固体培養が用いられ、一般的に行われている微生物の培養方法が適応できる。培地としては、当該微生物が良好に生育し且つ、微生物中のエルロース合成酵素を順調に生産するために必要な炭素源、窒素源、無機塩、必要な栄養源等を含有する合成培地または天然培地が挙げられる。例えば、炭素源としては、グルコース、グリセロール、スクロース、ガラクトース、ラクトース、ラフィノース、セロビオース、エルロース、有機酸、澱粉、オリーブ油、大豆油等を用いることができる。窒素源としては、例えば、硫安、硝安、尿素、アミノ酸、アミン類、アンモニア、各種無機酸や有機酸のアンモニウム塩、その他含窒素化合物、ペプトン、トリプトン、ポリペプトン、肉エキス、酵母エキス、綿実粕、コーンスティープリカー、および大豆粕等があげられる。また、無機塩類としては、第一リン酸カリウム、第二リン酸カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸マンガン、硫酸銅、硫酸鉄、炭酸カルシウム等が用いられる。培養温度は25〜80℃が好ましく、より好ましくは40〜65℃、さらに好ましくは50〜60℃である。また、培地のPHは広範囲で選択可能であり、例えば3〜9が好ましい。   As a method for culturing microorganisms used in the present invention, ordinary aeration and agitation cultures or solid cultures are used, and generally used microorganism cultivation methods can be applied. As the medium, a synthetic medium or a natural medium containing a carbon source, a nitrogen source, an inorganic salt, a necessary nutrient source and the like necessary for the microorganism to grow well and to smoothly produce erulose synthase in the microorganism. Is mentioned. For example, as the carbon source, glucose, glycerol, sucrose, galactose, lactose, raffinose, cellobiose, erulose, organic acid, starch, olive oil, soybean oil and the like can be used. Examples of nitrogen sources include ammonium sulfate, ammonium nitrate, urea, amino acids, amines, ammonia, ammonium salts of various inorganic and organic acids, other nitrogen-containing compounds, peptone, tryptone, polypeptone, meat extract, yeast extract, cottonseed meal , Corn steep liquor, and soybean meal. Moreover, as inorganic salts, primary potassium phosphate, dibasic potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, manganese sulfate, copper sulfate, iron sulfate, calcium carbonate and the like are used. The culture temperature is preferably 25 to 80 ° C, more preferably 40 to 65 ° C, still more preferably 50 to 60 ° C. Moreover, PH of a culture medium can be selected in a wide range, for example, 3-9 are preferable.

本発明において、微生物触媒によるエルロース合成反応直後の反応液中のエルロース濃度を向上させるには、原料糖液のスクロース濃度が高い方が有利である。原料スクロース濃度は15重量%以上が好ましく、より好ましくは50重量%以上であり、さらに好ましくは70重量%以上である。   In the present invention, in order to improve the erulose concentration in the reaction solution immediately after the erulose synthesis reaction by the microbial catalyst, it is advantageous that the sucrose concentration of the raw sugar solution is higher. The raw sucrose concentration is preferably 15% by weight or more, more preferably 50% by weight or more, and still more preferably 70% by weight or more.

反応温度は、5〜90℃、より好ましくは30〜80℃であり、さらに好ましくは50〜70℃である。反応温度が5℃未満である場合、反応速度が極めて小さく、90℃を超える温度領域では酵素活性の失活が早く大量の微生物触媒を要するため好ましくない。反応pHは広範囲で調整可能であり、好ましくはpH3〜10、より好ましくはpH4.5〜8.5である。反応pHが3未満、あるいは10より大きい場合、触媒の失活が著しく早くなるため好ましくない。本発明においては反応後期にエルロースの分解が著しく進むということは見られないが、工業的利用を考慮すると、反応時間は好ましくは20分〜200時間、より好ましくは、1〜120時間である。しかしながら、本発明は以上の反応条件や反応形態に限定されるものではなく、適宜選択することができる。   Reaction temperature is 5-90 degreeC, More preferably, it is 30-80 degreeC, More preferably, it is 50-70 degreeC. When the reaction temperature is less than 5 ° C, the reaction rate is extremely low, and in the temperature range exceeding 90 ° C, the enzyme activity is rapidly deactivated and a large amount of microbial catalyst is required, which is not preferable. The reaction pH can be adjusted in a wide range, preferably pH 3 to 10, more preferably pH 4.5 to 8.5. A reaction pH of less than 3 or greater than 10 is not preferable because the deactivation of the catalyst is significantly accelerated. In the present invention, it is not seen that the decomposition of erulose proceeds significantly in the late stage of the reaction, but considering industrial use, the reaction time is preferably 20 minutes to 200 hours, more preferably 1 to 120 hours. However, the present invention is not limited to the above reaction conditions and reaction forms, and can be appropriately selected.

本発明において得られるエルロースは以下の方法により測定される。
[生成三糖中のエルロース含有率の測定方法]
エルロース合成反応終了後、反応液を25倍希釈して、99℃で10分間保持することで反応を停止した。反応停止後、遠心分離により微生物を除去し、得られた反応溶液を高速液体クロマトグラフィー(HPLC)を用いて定量した。測定には、サーモエレクトロン社製 Hypercarbカラム、検出器はRIを用いた。生成三糖中のエルロース含有率は、HPLC分析チャートに検出された各々のピーク面積比から(エルロースのピーク面積)/(生成三糖のピーク面積)×100により算出した。
Elulose obtained in the present invention is measured by the following method.
[Measurement method of erulose content in the produced trisaccharide]
After completion of the erulose synthesis reaction, the reaction solution was diluted 25 times and held at 99 ° C. for 10 minutes to stop the reaction. After the reaction was stopped, microorganisms were removed by centrifugation, and the resulting reaction solution was quantified using high performance liquid chromatography (HPLC). For the measurement, a Hypercarb column manufactured by Thermo Electron was used, and RI was used as a detector. The erulose content in the produced trisaccharide was calculated from (the peak area of erulose) / (peak area of the produced trisaccharide) × 100 from the ratio of the peak areas detected in the HPLC analysis chart.

本発明の方法により製造されるエルロースを精製、分離する方法としては、一般的に用いられている精製処理方法を利用することができる。すなわち、例えば、遠心分離、MF膜やUF膜等による膜処理、フィルタープレス等により微生物触媒を除き、陽イオン交換クロマトグラフィーや陰イオン交換クロマトグラフィー等のクロマト処理や透析等の脱塩処理により緩衝液や培地等から持ち込まれる塩類等を除去し、さらに、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィー、高速液体クロマトグラフィー、活性炭クロマトグラフィー等のクロマト処理や溶解度の差等を利用した結晶化処理、その他の常法に従ってエルロースを分離、精製することができる。クロマト処理はこれらの方法を単独で用いても良いし、組み合わせて用いても良く、移動層方式や擬似移動層方式、多成分分離擬似移動層方式、多成分分離循環方式等を適宜利用することができる。これらの分離、精製方法を利用した場合、エルロースをその他の夾雑オリゴ糖成分から分離することができるだけではなく、様々な結合形態あるいは異なる分子量を有する複数のオリゴ糖から分離することもできる。これらのエルロースの精製、分離処理方法は、バッチ式で行っても良いしカラムを利用するなどして連続的に行っても良い。   As a method for purifying and separating the erulose produced by the method of the present invention, a commonly used purification method can be used. That is, for example, centrifugation, MF membrane or UF membrane treatment, filter press etc. removes the microbial catalyst, and buffering by chromatographic treatment such as cation exchange chromatography or anion exchange chromatography or desalting treatment such as dialysis. Removes salts, etc. brought in from liquids and culture media, and further uses cation exchange chromatography, anion exchange chromatography, high performance liquid chromatography, activated carbon chromatography, etc., and crystallization treatment using differences in solubility, etc. Elulose can be separated and purified according to other conventional methods. For chromatographic treatment, these methods may be used alone or in combination, and a moving bed method, a pseudo moving bed method, a multi-component separation simulated moving bed method, a multi-component separation circulation method, etc. may be used as appropriate. Can do. When these separation and purification methods are used, it is possible not only to separate erulose from other contaminating oligosaccharide components, but also from a plurality of oligosaccharides having various binding forms or different molecular weights. These purification methods of elulose and separation may be performed batchwise or continuously using a column or the like.

以下、実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。   Hereinafter, although an example explains concretely, the present invention is not limited at all by these examples.

実施例1
Geobacillus stearothermophilus AKC-007株(受託番号FERM P−21112:寄託機関;独立行政法人産業技術総合研究所特許生物寄託センター)をTBAB(Tryptose Blood Agar Base)プレート (Difco)で、55℃、1日間培養してコロニーを形成させる。その1白金耳を培地-X (表1、並びに表2〜4参照) 30mLを150mL容三角フラスコに分注したものに接種して、55℃、150rpmで1日間培養した。
Example 1
Geobacillus stearothermophilus AKC-007 strain (Accession No. FERM P-21112: Depositary; National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center) cultured on TBAB (Tryptose Blood Agar Base) plate (Difco) at 55 ° C for 1 day To form colonies. The 1 platinum loop was inoculated into a medium-X (see Table 1 and Tables 2 to 4) 30 mL dispensed into a 150 mL Erlenmeyer flask and cultured at 55 ° C. and 150 rpm for 1 day.

Figure 2008173064
Figure 2008173064

Figure 2008173064
Figure 2008173064

Figure 2008173064
Figure 2008173064

Figure 2008173064
Figure 2008173064

本培養1日後、培養菌体10mL分を15mL容チューブに回収した。培養液を回収した15mL容チューブを10000rpmで遠心後、上清を除去した。次に、100mM酢酸Na buffer (pH5)を1mL添加し、再懸濁した後、懸濁液を2mL容エッペンに移した。再度、エッペンを遠心し、上清を除去した後、原料糖液S80(スクロース 80重量%, 100mM酢酸Na buffer (pH5))を300μL添加し、菌体をボルテックスミキサーでよく懸濁させ、糖合成反応をスタートした。本糖合成反応は反応温度60℃、回転数1200rpmで行った。糖合成反応開始2時間および21時間後に、反応液20μLを回収し、蒸留水480μLとよく混合し、99℃で10分間酵素の熱失活を行った。それぞれの希釈糖液は常温に戻した後、HPLC分析(Hypercarbカラム)した。表5にそれぞれの反応液中のエルロース濃度及び生成三糖中のエルロース含有率を示した。また、反応21時間のHPLCチャートを図.1に示した。図1におけるPeak-2に対応する画分を分取し、13C-NMRで解析した結果、Peak-2はエルロースに対応することを確認した。その他のピークは夾雑オリゴ糖であった。   One day after the main culture, 10 mL of cultured cells were collected in a 15 mL tube. The 15 mL tube from which the culture solution was collected was centrifuged at 10,000 rpm, and the supernatant was removed. Next, 1 mL of 100 mM Na acetate buffer (pH 5) was added and resuspended, and then the suspension was transferred to a 2 mL eppen. After centrifuging the eppen again and removing the supernatant, add 300 μL of the raw sugar solution S80 (80% by weight of sucrose, 100 mM Na acetate (pH5)) and suspend the cells well with a vortex mixer to synthesize the sugar. The reaction was started. The sugar synthesis reaction was performed at a reaction temperature of 60 ° C. and a rotation speed of 1200 rpm. Two and 21 hours after the start of the sugar synthesis reaction, 20 μL of the reaction solution was recovered, mixed well with 480 μL of distilled water, and the enzyme was heat-inactivated at 99 ° C. for 10 minutes. Each diluted sugar solution was returned to room temperature and then subjected to HPLC analysis (Hypercarb column). Table 5 shows the erulose concentration in each reaction solution and the erulose content in the produced trisaccharide. In addition, the HPLC chart of the reaction for 21 hours is shown in FIG. Fractions corresponding to Peak-2 in FIG. 1 were collected and analyzed by 13C-NMR. As a result, it was confirmed that Peak-2 corresponds to erulose. The other peaks were contaminated oligosaccharides.

実施例2
Geobacillus stearothermophilus AKC-008株(受託番号FERM P−21113:寄託機関;独立行政法人産業技術総合研究所特許生物寄託センター)をTBAB(Tryptose Blood Agar Base)プレート (Difco)で、55℃、1日間培養してコロニーを形成させる。その1白金耳を培地-X (表.1参照) 30mLを150mL容三角フラスコに分注したものに接種して、55℃、150rpmで1日間培養した。
Example 2
Geobacillus stearothermophilus AKC-008 strain (Accession number FERM P-21113: Depositary; National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center) is cultured on TBAB (Tryptose Blood Agar Base) plate (Difco) at 55 ° C for 1 day To form colonies. The one platinum loop was inoculated into a medium-X (see Table. 1) 30 mL dispensed into a 150 mL Erlenmeyer flask and cultured at 55 ° C. and 150 rpm for 1 day.

本培養1日後、培養菌体10mL分を15mL容チューブに回収した。培養液を回収した15mL容チューブを10000rpmで遠心後、上清を除去した。次に、100mM酢酸Na buffer (pH5)を1mL添加し、再懸濁した後、懸濁液を2mL容エッペンに移した。再度、エッペンを遠心し、上清を除去した後、原料糖液S80(スクロース 80重量%, 100mM酢酸Na buffer (pH5))を300μL添加し、菌体をボルテックスミキサーでよく懸濁させ、糖合成反応をスタートした。本糖合成反応は反応温度60℃、回転数1200rpmで行った。糖合成反応開始2時間および21時間後に、反応液20μLを回収し、蒸留水480μLとよく混合し、99℃で10分間酵素の熱失活を行った。それぞれの希釈糖液は常温に戻した後、HPLC分析(Hypercarbカラム)した。表5にそれぞれの反応液中のエルロース濃度及び生成三糖中のエルロース含有率を示した。  One day after the main culture, 10 mL of cultured cells were collected in a 15 mL tube. The 15 mL tube from which the culture solution was collected was centrifuged at 10,000 rpm, and the supernatant was removed. Next, 1 mL of 100 mM Na acetate buffer (pH 5) was added and resuspended, and then the suspension was transferred to a 2 mL eppen. After centrifuging the eppen again and removing the supernatant, add 300 μL of the raw sugar solution S80 (80% by weight of sucrose, 100 mM Na acetate (pH5)) and suspend the cells well with a vortex mixer to synthesize the sugar. The reaction was started. The sugar synthesis reaction was performed at a reaction temperature of 60 ° C. and a rotation speed of 1200 rpm. Two and 21 hours after the start of the sugar synthesis reaction, 20 μL of the reaction solution was recovered, mixed well with 480 μL of distilled water, and the enzyme was heat-inactivated at 99 ° C. for 10 minutes. Each diluted sugar solution was returned to room temperature and then subjected to HPLC analysis (Hypercarb column). Table 5 shows the erulose concentration in each reaction solution and the erulose content in the produced trisaccharide.

実施例3
Geobacillus stearothermophilus AKC-009株(受託番号FERM P−21114:寄託機関;独立行政法人産業技術総合研究所特許生物寄託センター)をTBAB(Tryptose Blood Agar Base)プレート (Difco)で、55℃、1日間培養してコロニーを形成させる。その1白金耳を培地-X (表1参照) 30mLを150mL容三角フラスコに分注したものに接種して、55℃、150rpmで1日間培養した。
Example 3
Geobacillus stearothermophilus AKC-009 strain (Accession No. FERM P-21114: Depositary Institution; National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center) is cultured on TBAB (Tryptose Blood Agar Base) plate (Difco) at 55 ° C for 1 day To form colonies. One platinum loop was inoculated into a medium-X (see Table 1) 30 mL dispensed into a 150 mL Erlenmeyer flask and cultured at 55 ° C. and 150 rpm for 1 day.

本培養1日後、培養菌体10mL分を15mL容チューブに回収した。培養液を回収した15mL容チューブを10000rpmで遠心後、上清を除去した。次に、100mM酢酸Na buffer (pH5)を1mL添加し、再懸濁した後、懸濁液を2mL容エッペンに移した。再度、エッペンを遠心し、上清を除去した後、原料糖液S80(スクロース 80重量%, 100mM酢酸Na buffer (pH5))を300μL添加し、菌体をボルテックスミキサーでよく懸濁させ、糖合成反応をスタートした。本糖合成反応は反応温度60℃、回転数1200rpmで行った。糖合成反応開始2時間および21時間後に、反応液20μLを回収し、蒸留水480μLとよく混合し、99℃で10分間酵素の熱失活を行った。それぞれの希釈糖液は常温に戻した後、HPLC分析(Hypercarbカラム)した。表5にそれぞれの反応液中のエルロース濃度及び生成三糖中のエルロース含有率を示した。  One day after the main culture, 10 mL of cultured cells were collected in a 15 mL tube. The 15 mL tube from which the culture solution was collected was centrifuged at 10,000 rpm, and the supernatant was removed. Next, 1 mL of 100 mM Na acetate buffer (pH 5) was added and resuspended, and then the suspension was transferred to a 2 mL eppen. After centrifuging the eppen again and removing the supernatant, add 300 μL of the raw sugar solution S80 (80% by weight of sucrose, 100 mM Na acetate (pH5)) and suspend the cells well with a vortex mixer to synthesize the sugar. The reaction was started. The sugar synthesis reaction was performed at a reaction temperature of 60 ° C. and a rotation speed of 1200 rpm. Two and 21 hours after the start of the sugar synthesis reaction, 20 μL of the reaction solution was recovered, mixed well with 480 μL of distilled water, and the enzyme was heat-inactivated at 99 ° C. for 10 minutes. Each diluted sugar solution was returned to room temperature and then subjected to HPLC analysis (Hypercarb column). Table 5 shows the erulose concentration in each reaction solution and the erulose content in the produced trisaccharide.

実施例4
原料糖液として、原料糖液S80に加えて、原料糖液S62.5(スクロース 62.5重量%, 100mM酢酸Na buffer (pH5))、原料糖液S40(スクロース 40.0重量%, 100mM酢酸Na buffer (pH5))、原料糖液S20(スクロース 20.0重量%, 100mM酢酸Na buffer (pH5))をそれぞれ用いる以外は実施例1と同様の手法を用いて、糖合成反応を実施した。各原料糖液を用いて行った糖合成反応は、それぞれ糖合成反応開始42時間後に、反応液20μLを回収し、蒸留水480μLとよく混合し、99℃で10分間酵素の熱失活を行った。希釈糖液は常温に戻した後、それぞれHPLC分析(Hypercarbカラム)を行った。本結果を表6に示す。
Example 4
In addition to the raw sugar solution S80, the raw sugar solution S62.5 (sucrose 62.5% by weight, 100 mM Na acetate buffer (pH5)), the raw sugar solution S40 (sucrose 40.0% by weight, 100 mM Na acetate buffer (pH 5) )), And a raw sugar solution S20 (sucrose 20.0% by weight, 100 mM Na acetate buffer (pH 5)) was used to carry out a sugar synthesis reaction in the same manner as in Example 1. In the sugar synthesis reaction performed using each raw sugar solution, 42 μl after the start of the sugar synthesis reaction, 20 μL of the reaction solution was collected, mixed well with 480 μL of distilled water, and the enzyme was heat-inactivated at 99 ° C for 10 minutes It was. The diluted sugar solution was returned to room temperature and then subjected to HPLC analysis (Hypercarb column). The results are shown in Table 6.

実施例5
原料糖液として、原料糖液S80に加えて、原料糖液S62.5(スクロース 62.5重量%, 100mM酢酸Na buffer (pH5))、原料糖液S40(スクロース 40.0重量%, 100mM酢酸Na buffer (pH5))、原料糖液S20(スクロース 20.0重量%, 100mM酢酸Na buffer (pH5))をそれぞれ用いる以外は実施例2と同様の手法を用いて、糖合成反応を実施した。各原料糖液を用いて行った糖合成反応は、それぞれ糖合成反応開始114時間後に、反応液20μLを回収し、蒸留水480μLとよく混合し、99℃で10分間酵素の熱失活を行った。希釈糖液を常温に戻した後、それぞれHPLC分析(Hypercarbカラム)を行った。本結果を表7に示す。
Example 5
In addition to the raw sugar solution S80, the raw sugar solution S62.5 (sucrose 62.5% by weight, 100 mM Na acetate buffer (pH5)), the raw sugar solution S40 (sucrose 40.0% by weight, 100 mM Na acetate buffer (pH 5) )), A raw sugar solution S20 (sucrose 20.0 wt%, 100 mM Na acetate (pH 5)) was used, and a sugar synthesis reaction was carried out in the same manner as in Example 2. In the sugar synthesis reaction performed using each raw sugar solution, 20 μL of the reaction solution was collected 114 hours after the start of the sugar synthesis reaction, mixed well with 480 μL of distilled water, and the enzyme was heat-inactivated at 99 ° C. for 10 minutes. It was. The diluted sugar solution was returned to room temperature and then subjected to HPLC analysis (Hypercarb column). The results are shown in Table 7.

Figure 2008173064
Figure 2008173064

Figure 2008173064
Figure 2008173064

Figure 2008173064
Figure 2008173064

図1は、AKC-007株によるエルロース合成液HPLCチャート(反応21h)を示す。FIG. 1 shows an HPLC chart of erulose synthesis solution by AKC-007 strain (reaction 21h).

Claims (8)

スクロースを含む原料を用い、Geobacillus stearothermophilus に属する微生物を培養して得た微生物触媒を利用することを特徴とするエルロースの製造方法。 A method for producing erulose, comprising using a microbial catalyst obtained by culturing microorganisms belonging to Geobacillus stearothermophilus using a raw material containing sucrose. 微生物が、Geobacillus stearothermophilus AKC-007株(受託番号FERM P−21112)、AKC-008株(受託番号FERM P−21113)またはAKC-009株(受託番号FERM P−21114)である、請求項1に記載のエルロースの製造方法。 The microorganism is Geobacillus stearothermophilus AKC-007 strain (Accession number FERM P-21112), AKC-008 strain (Accession number FERM P-21113) or AKC-009 strain (Accession number FERM P-21114). The manufacturing method of the elulose of description. 生成三糖中のエルロース含有率が50%以上である、請求項1又は2に記載のエルロースの製造方法。 The method for producing erulose according to claim 1 or 2, wherein the erulose content in the produced trisaccharide is 50% or more. 生成三糖中のエルロース含有率が75%以上である、請求項1又は2に記載のエルロースの製造方法。 The method for producing erulose according to claim 1 or 2, wherein the erulose content in the produced trisaccharide is 75% or more. 反応液中のエルロース濃度が2重量%以上である、請求項1から4の何れかに記載のエルロースの製造法。 The method for producing erulose according to any one of claims 1 to 4, wherein the erulose concentration in the reaction solution is 2% by weight or more. 反応液中のエルロース濃度が5重量%以上である、請求項1から4の何れかに記載のエルロースの製造法。 The method for producing erulose according to any one of claims 1 to 4, wherein the erulose concentration in the reaction solution is 5% by weight or more. 原料中のスクロース濃度が15重量%以上である、請求項1から6の何れかに記載のエルロースの製造法。 The method for producing erulose according to any one of claims 1 to 6, wherein the sucrose concentration in the raw material is 15% by weight or more. 原料中のスクロース濃度が50重量%以上である、請求項1から6の何れかに記載のエルロースの製造法。 The method for producing erulose according to any one of claims 1 to 6, wherein the sucrose concentration in the raw material is 50% by weight or more.
JP2007010137A 2007-01-19 2007-01-19 Manufacturing method of aerulose Active JP5001016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010137A JP5001016B2 (en) 2007-01-19 2007-01-19 Manufacturing method of aerulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010137A JP5001016B2 (en) 2007-01-19 2007-01-19 Manufacturing method of aerulose

Publications (2)

Publication Number Publication Date
JP2008173064A true JP2008173064A (en) 2008-07-31
JP5001016B2 JP5001016B2 (en) 2012-08-15

Family

ID=39700594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010137A Active JP5001016B2 (en) 2007-01-19 2007-01-19 Manufacturing method of aerulose

Country Status (1)

Country Link
JP (1) JP5001016B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243048A (en) * 2013-05-09 2013-08-14 华东理工大学 Culture medium for high-density cultivation of deep ocean thermophilic bacteria Geobacillus sp

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103889A (en) * 1984-10-24 1986-05-22 Hayashibara Biochem Lab Inc Crystalline erlose, honey-containing crystal containing said compound, their preparation and use

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103889A (en) * 1984-10-24 1986-05-22 Hayashibara Biochem Lab Inc Crystalline erlose, honey-containing crystal containing said compound, their preparation and use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243048A (en) * 2013-05-09 2013-08-14 华东理工大学 Culture medium for high-density cultivation of deep ocean thermophilic bacteria Geobacillus sp
CN103243048B (en) * 2013-05-09 2015-05-13 华东理工大学 Culture medium for high-density cultivation of deep ocean thermophilic bacteria Geobacillus sp

Also Published As

Publication number Publication date
JP5001016B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5997693B2 (en) Enzymes produced by Arthrobacter globiformis
AU2016368075B2 (en) Microbacterium SP. Strain and method for producing Psicose by using same
KR20070026823A (en) Method of producing theanine
EP2143785B1 (en) Method for producing glucuronic acid by glucuronic acid fermentation
EP3633023B1 (en) Strain in microbacterium and method for producing psicose using same
JP4922312B2 (en) Method for producing α-galactooligosaccharide
JP5001016B2 (en) Manufacturing method of aerulose
JP5255266B2 (en) Method for producing novel α-galactooligosaccharide
JPWO2010084972A1 (en) Method for producing D-lactic acid and method for increasing optical purity or yield to sugar in D-lactic acid in lactic acid
JP2010532992A (en) Microbial kinetic resolution of ethyl 3,4-epoxybutyrate
JPWO2008047674A1 (en) Β-Fructofuranosidase that selectively degrades nystose and method for producing 1-kestose high content solution using the same
JP6758499B2 (en) Method for producing D-psicose using microorganisms of the genus Kaistia
JP5275640B2 (en) Manufacturing method of melibiose
JP2009225705A (en) Method for producing theanine
JP2001292792A (en) Method for recovering n-acetylglucosamine
JP2012005401A (en) Method of producing carboxylic acid and/or carbohydrate carboxylic acid and/or salt thereof belonging to genus pantoea
JP5356704B2 (en) Method for producing disaccharides containing rare sugars
JP3840538B2 (en) Method for producing D-tagatose
JP2009148212A (en) Method for fermentatively producing mannitol and microorganism used for performance thereof
JP2007289128A (en) Method for producing 1-kestose, method for producing 1-kestose-producing enzyme, and 1-kestose-producing enzyme
Paranthaman et al. Production on tannin acyl hydrolase from pulse milling by-products using solid state fermentation
JP2008022844A (en) Method for producing optically active d-homoserine and d-homoserine lactone
JPH1042860A (en) Production of inositol and acquirement of hexachlorocyclohexane-resistant strain
JPS6228678B2 (en)
JP2002017396A (en) METHOD FOR MANUFACTURING ETHYL-alpha-GLUCOSIDE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120517

R150 Certificate of patent or registration of utility model

Ref document number: 5001016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350