JP5356704B2 - Method for producing disaccharides containing rare sugars - Google Patents

Method for producing disaccharides containing rare sugars Download PDF

Info

Publication number
JP5356704B2
JP5356704B2 JP2008075680A JP2008075680A JP5356704B2 JP 5356704 B2 JP5356704 B2 JP 5356704B2 JP 2008075680 A JP2008075680 A JP 2008075680A JP 2008075680 A JP2008075680 A JP 2008075680A JP 5356704 B2 JP5356704 B2 JP 5356704B2
Authority
JP
Japan
Prior art keywords
disaccharide
reaction
rare sugar
rare
sugar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008075680A
Other languages
Japanese (ja)
Other versions
JP2009225727A (en
Inventor
健 何森
兼司 森本
浩二 近藤
剛 下西
健 濱本
一 寺澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Tobacco Inc
Izumoring Co Ltd
Original Assignee
Japan Tobacco Inc
Izumoring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc, Izumoring Co Ltd filed Critical Japan Tobacco Inc
Priority to JP2008075680A priority Critical patent/JP5356704B2/en
Publication of JP2009225727A publication Critical patent/JP2009225727A/en
Application granted granted Critical
Publication of JP5356704B2 publication Critical patent/JP5356704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a rare-sugar-bound disaccharide with at least one rare sugar as a constituent monosaccharide. <P>SOLUTION: The method is characterized by comprising producing the objective rare-sugar-bound disaccharide by using a disaccharide as the raw material (substrate) and converting a monosaccharide as a constituent saccharide into a rare sugar with the disaccharide as it is. The above conversion to monosaccharide as a constituent saccharide into a rare sugar with the disaccharide as it is such a reaction as to proceed via a 3-ketodisaccharide. This reaction includes such a reaction as to form the 3-ketodisaccharide by oxidizing the 3-site of the disaccharide as the raw material (substrate) by microbial reaction, and this reaction is such a reaction as to form the 3-ketodisaccharide followed by reducing it. The above microbial reaction is such as oxidation reaction as to subject an oxidase derived from a microorganism belonging to the genus Agrobacterium having the property to make the 3-ketodisaccharide to the 3-site of the disaccharide, wherein the above microorganism is Agrobacterium tumefaciens. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法に関する。   The present invention relates to a method for producing a rare sugar-linked disaccharide having at least one rare sugar as a constituent monosaccharide.

従来の二糖類の製造方法は、工業的に用いられている方法としては、主に以下の二つがあるといえる。第一に、多糖を加水分解酵素を用いて分解することで二糖を作る方法であり、これはデンプンを、βーアミラーゼを用いて分解し、マルトースを作る方法に代表される。同様の方法でセルロースからセロビオースを生産可能である。第二に、糖加水分解酵素の転移活性を用いての製造である。これは各種のオリゴ糖の生産に広く用いられている。例えば、ガラクトースまたはガラクトースを含む物質にα−ガラクトシダーゼを作用させて得られたα−ガラクトシル基を含むオリゴ糖中の還元糖の分解、分離操作からなるα−ガラクトシル基を含む非還元性二糖の製造方法、およびガラクトースとグルコースを含む物質に前記と同様にして得られるα−ガラクトシル基を含むオリゴ糖中に混在するGal1α−1βGalの加水分解、還元糖の分解、分離操作からなるα−ガラクトシル基を含む非還元性二糖の製造方法が示されている(特許文献1)。   Conventional methods for producing disaccharides can be said to have the following two main methods used industrially. The first is a method of producing a disaccharide by degrading a polysaccharide using a hydrolase, which is represented by a method of degrading starch using β-amylase to produce maltose. Cellobiose can be produced from cellulose in a similar manner. The second is production using the transfer activity of sugar hydrolase. This is widely used for the production of various oligosaccharides. For example, decomposition of reducing sugar in oligosaccharide containing α-galactosyl group obtained by allowing α-galactosidase to act on galactose or a substance containing galactose, separation of non-reducing disaccharide containing α-galactosyl group Production method, and α-galactosyl group comprising hydrolysis of Gal1α-1βGal mixed in oligosaccharide containing α-galactosyl group obtained in the same manner as described above in a substance containing galactose and glucose, decomposition of reducing sugar, and separation operation A method for producing a non-reducing disaccharide containing glycan is shown (Patent Document 1).

一方、希少糖を含む二糖類の生産法として、上記二つの方法が使用できるかどうかについては以下のように考えられる。第一の方法、すなわち多糖を分解することでの、二糖類の生産法は用いることはできない。これは希少糖を構成糖とした多糖が存在しないからである。第二の方法は、希少糖を受容体として用いることで、希少糖を含む二糖を生産することは可能である。例えば、キシラナーゼを用いてキシランのD−キシロースを希少糖へ転移する反応は、既に実施されている(特許文献2)。
第一および第二の方法以外の方法として、既に特許出願をしているものとして、シュークロース・フォスフォリラーゼの逆反応を用いる方法で、シュークロースのD−フラクトースをD−プシコースにした二糖類の製造に成功している(特許文献3)。
On the other hand, whether or not the above two methods can be used as a method for producing disaccharides containing rare sugars is considered as follows. The first method, that is, the method for producing disaccharides by decomposing polysaccharides cannot be used. This is because there is no polysaccharide comprising rare sugars as constituent sugars. The second method can produce a disaccharide containing a rare sugar by using the rare sugar as a receptor. For example, a reaction for transferring xylan D-xylose to a rare sugar using xylanase has already been carried out (Patent Document 2).
As a method other than the first and second methods, a disaccharide in which sucrose D-fructose is converted to D-psicose by a method using a reverse reaction of sucrose phosphorylase Has been successfully manufactured (Patent Document 3).

特開2003−160594号公報JP 2003-160594 A 特開2006−169124号公報JP 2006-169124 A 特開2007−91667号公報JP 2007-91667 A

本発明は、少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法を提供することを目的とする。   An object of the present invention is to provide a method for producing a rare sugar-linked disaccharide having at least one rare sugar as a constituent monosaccharide.

本発明は以下の(1)ないし()に記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法を要旨としている。
(1)原料(基質)として二糖類を用い、該二糖類の3位を微生物反応で酸化して3ケト二糖類を生成させ、これをさらに還元する反応により、希少糖を含む二糖類を生成させること、
上記の微生物反応が、3ケト二糖類を作る性質を有するアグロバクテリウム属微生物に由来する酸化酵素を作用させる酸化反応であること、
を特徴とする少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。
)上記の微生物が、アグロバクテリウム ツメファシエンス(Agrobacterium tumefaciens)である(1)記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。
)3ケト二糖類を還元する反応が有機化学的な還元反応による(1)または(2)記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。
)3ケト二糖類が、ラクチトールまたはラクトースを微生物酸化して得られたものであり、希少糖結合二糖が、希少糖D−グロースを構成単糖とするものである()ないし()のいずれかに記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。
)さらに反応混合物から希少糖を含む二糖類を分離する(1)ないし()のいずれかに記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。
The gist of the present invention is a method for producing a rare sugar-linked disaccharide having at least one rare sugar as described in (1) to ( 5 ) below as a constituent monosaccharide.
(1) Using a disaccharide as a raw material (substrate), the 3-position of the disaccharide is oxidized by a microbial reaction to produce a 3-keto disaccharide, which is further reduced to produce a disaccharide containing a rare sugar. Letting
The above microbial reaction is an oxidative reaction in which an oxidase derived from an Agrobacterium having the property of producing a 3-keto disaccharide is allowed to act ;
A method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as a constituent monosaccharide.
( 2 ) The method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as a constituent monosaccharide according to (1 ), wherein the microorganism is Agrobacterium tumefaciens .
( 3 ) The method for producing a rare sugar-linked disaccharide comprising the at least one rare sugar as described in (1) or (2), wherein the reaction for reducing the 3-keto disaccharide is an organic chemical reduction reaction.
( 4 ) The 3-keto disaccharide is obtained by microbial oxidation of lactitol or lactose, and the rare sugar-binding disaccharide comprises the rare sugar D-gulose as a constituent monosaccharide ( 1 ) to ( 3 ) A method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as defined in any one of 3 ) as a constituent monosaccharide.
( 5 ) The method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as a constituent monosaccharide according to any one of (1) to ( 4 ), wherein disaccharide containing the rare sugar is further separated from the reaction mixture.

本発明により、少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法を提供することができる。   The present invention can provide a method for producing a rare sugar-linked disaccharide having at least one rare sugar as a constituent monosaccharide.

[本発明の特徴]
希少糖を含有する二糖類の生産法として、背景技術の項に記載の方法以外新規方法を開発した。すなわち、これまでの方法は単糖である希少糖をアクセプター(受容体)して使用する方法である。従って、まず、遊離の単糖としての希少糖を製造し、それに他の単糖を各種の方法で結合させるものであった。本発明の新規方法は以下の特徴の全く新しい発想によるものである。
本発明の新規方法では、原料として二糖類を用いること、そして、二糖類を加水分解することなく、二糖類のままで構成糖である単糖を希少糖へ変換するという方法である。この方法では、希少糖を生産してから結合するということがないため、希少糖を含む二糖の生産に有効な方法である。
[Features of the present invention]
As a method for producing disaccharides containing rare sugars, a new method other than the method described in the background section has been developed. That is, the conventional method is a method of using a rare saccharide, which is a monosaccharide, as an acceptor. Therefore, first, a rare saccharide as a free monosaccharide was produced, and another monosaccharide was bound thereto by various methods. The novel method of the present invention is based on a completely new idea of the following characteristics.
In the novel method of the present invention, a disaccharide is used as a raw material, and a monosaccharide that is a constituent sugar is converted into a rare sugar without hydrolyzing the disaccharide. This method is effective for the production of disaccharides containing rare sugars, since rare sugars are not bound after production.

[新規方法の原理]
原料(基質)として二糖類を用い、二糖類のままで構成糖である単糖を希少糖へ変換する反応による本発明の新規方法の原理を図1ないし図3に示す。
3ケト二糖類を経由する反応であり、原料(基質)である二糖類の3位を微生物反応で酸化して3ケト二糖類を生成させる反応を包含する。より具体的には原料(基質)である二糖類の3位を微生物反応で酸化して3ケト二糖類を生成させ、これをさらに還元する反応である。原料(基質)としてラクチトール、ラクトース、トレハロースの酸化と還元反応をそれぞれ図1ないし図3に示す。
化1はラクチトールの場合の反応を示している。非還元側のD−ガラクトースの3位を酸化して(ii)、3―ケト・ラクチトールを生産することが可能である。すなわち、3ケト二糖類が、ラクチトールまたはラクトースを微生物酸化して得られたものであり、希少糖結合二糖が、希少糖D−グロースを構成単糖とするものである。二糖類ラクチトールは、そのままで構成糖である単糖が希少糖D−グロースへ変換するが、3ケト二糖類3−ケト−ラクチトールを経由する反応である(図1参照)。
[Principle of new method]
The principle of the novel method of the present invention using a disaccharide as a raw material (substrate) and converting a monosaccharide, which is a constituent saccharide without changing the disaccharide, into a rare sugar is shown in FIGS.
It is a reaction via a 3-keto disaccharide, and includes a reaction in which the 3-position of a disaccharide as a raw material (substrate) is oxidized by a microbial reaction to produce a 3-keto disaccharide. More specifically, it is a reaction in which the 3-position of a disaccharide as a raw material (substrate) is oxidized by a microbial reaction to produce a 3-keto disaccharide, which is further reduced. The oxidation and reduction reactions of lactitol, lactose, and trehalose as raw materials (substrates) are shown in FIGS.
Chemical formula 1 shows the reaction in the case of lactitol. It is possible to oxidize the 3-position of non-reducing D-galactose to produce (ii) 3-keto lactitol. That is, the 3-keto disaccharide is obtained by microbial oxidation of lactitol or lactose, and the rare sugar-binding disaccharide uses the rare sugar D-gulose as a constituent monosaccharide. The disaccharide lactitol is a reaction through which the monosaccharide, which is a constituent sugar, is converted into the rare sugar D-gulose as it is but via the 3-keto disaccharide 3-keto-lactitol (see FIG. 1).

二糖類の非還元側の単糖の3位を酸化して、3ケト二糖類を作る性質がアグロバクテリウム属微生物には存在する。アグロバクテリウム属微生物は、ラクチトールの場合、非還元側のD−ガラクトースの3位を酸化して(ii)、3―ケト・ラクチトールを生産する。
本発明の新規方法は、この3ケトの二糖類を還元することによって、ラクチトールの場合は、D−グロシルーD−ソルビトールを生産する方法である。この還元は不斉的には反応は進行する方法は現在のところ存在しないので、反応後の溶液中にはラクチトールも存在することになる。
Agrobacterium microorganisms have the property of oxidizing the 3-position of the monosaccharide on the non-reducing side of the disaccharide to produce a 3-keto disaccharide. In the case of lactitol, the Agrobacterium microorganism oxidizes the 3rd position of non-reducing D-galactose to produce (ii) 3-keto lactitol.
The novel method of the present invention is a method for producing D-grosyl-D-sorbitol in the case of lactitol by reducing the 3-keto disaccharide. Since this reduction is asymmetric, there is currently no method for the reaction to proceed, so that lactitol is also present in the solution after the reaction.

[原料(基質)として二糖類]
この基本的原理は微生物の3位を酸化する二糖類であれば、どのような二糖類にも適用が可能である。すなわち、本発明によって希少糖を含む二糖類は、非還元側の単糖の3位が酸化されるものであれば各種の二糖類が利用できる。
ラクチトール、ラクトース、シュークロース、マルトース、マルチトール、トレハロース、などはその例である。それぞれの二糖類から、酸化される単糖の3位がエピ化した希少糖と結合した二糖類を生産することが可能である。
化2ではトレハロースの場合を示している。この場合は酸化する場所が二箇所存在することとなり、一つ酸化したものである3−ケトトレハロース、両方が酸化された3−ジケトトレハロースが得られることとなる。この酸化3ケトトレハロースを還元することにより、三種の二糖類が得られることとなる。すなわち、D−グルコースが二つ結合した原料であるトレハロース、一つのD−グルコースがD−アロースに還元されたD−アロースとD−グルコースとの結合した二糖類、さらに、D−アロースとD−アロースが結合した二糖類が生産されることとなる(図3参照)。
[Disaccharides as raw material (substrate)]
This basic principle can be applied to any disaccharide as long as it is a disaccharide that oxidizes the 3-position of a microorganism. That is, as the disaccharide containing a rare sugar according to the present invention, various disaccharides can be used as long as the 3-position of the non-reducing monosaccharide is oxidized.
Examples include lactitol, lactose, sucrose, maltose, maltitol, trehalose, and the like. From each disaccharide, it is possible to produce a disaccharide bound to a rare sugar that is epimerized at position 3 of the monosaccharide to be oxidized.
Chemical formula 2 shows the case of trehalose. In this case, there are two places to oxidize, and 3-ketotrehalose which has been oxidized once and 3-diketotrehalose in which both have been oxidized will be obtained. By reducing this oxidized 3-ketotrehalose, three types of disaccharides are obtained. That is, trehalose which is a raw material in which two D-glucoses are combined, one D-glucose is reduced to D-allose, a disaccharide in which D-allose and D-glucose are combined, and D-allose and D-glucose. A disaccharide to which allose is bound will be produced (see FIG. 3).

本発明の方法は、反応混合物から希少糖を含む二糖類を分離する工程を包含する。
反応終了後、必要に応じて希少糖を含む二糖類を既知の方法により分離することができる。その後、所望により、ゲル濾過クロマトグラフィー、活性炭カラムクロマトグラフィー等の精製手段を適用することにより希少糖を含む二糖類を精製することができる。
The method of the invention includes the step of separating disaccharides, including rare sugars, from the reaction mixture.
After completion of the reaction, a disaccharide containing a rare sugar can be separated by a known method as necessary. Thereafter, if desired, disaccharides containing rare sugars can be purified by applying purification means such as gel filtration chromatography or activated carbon column chromatography.

[微生物]
本発明で使用する3ケト二糖類を作る性質を有する微生物はアグロバクテリウム属に属する微生物である。
二糖類を酸化して非還元側の糖の3位を酸化する微生物の分離について以下に記述する。
分離場所:香川大学農学部内の土壌
株名:M31
菌種同定:アグロバクテリウム・ツメファシエンス(英名 Agrobacterium tumefaciens)(寄託番号NITE −489)
すなわち、菌株 Agrobacterium tumefaciens M31 は、日本国独立行政法人産業技術総合研究所 特許生物寄託センター(日本国茨城県つくば市東1−1−1 中央第6)に2008年2月15日に国内寄託している(寄託番号NITE −489)
[Microorganisms]
The microorganism having the property of producing the 3-keto disaccharide used in the present invention is a microorganism belonging to the genus Agrobacterium.
The separation of microorganisms that oxidize disaccharides to oxidize the 3-position of non-reducing sugars is described below.
Isolation place: Soil in Faculty of Agriculture, Kagawa University Strain name: M31
Species identification: Agrobacterium tumefaciens (Deposit number NITE P- 489)
That is, the strain Agrobacterium tumefaciens M31 was deposited domestically on February 15, 2008 at the Patent Organism Depositary Center of the National Institute of Advanced Industrial Science and Technology (1-1-1 Higashi 1-1-1 Tsukuba City, Japan). (Deposit number NITE P- 489)

[培養条件]
M31株の単離のために、2%(w/w)の ラクチトール(D-ガラクトシルーD-ソルビトール)を単一炭素源として含む無機塩液体培地(表1)を用い30℃で微生物の分離を行った。この条件で生育し、なおかつ二糖の状態で酸化し、その酸化物を培養上精に蓄積する能力を持つ菌株を分離した。微生物の単離や保存に用いる寒天培地は、表2に示す2%のTSB(トリプティック ソイ ブロース)寒天培地を用いた。
[Culture conditions]
For isolation of the M31 strain, microorganisms were separated at 30 ° C. using an inorganic salt liquid medium (Table 1) containing 2% (w / w) lactitol (D-galactosyl-D-sorbitol) as a single carbon source. went. A strain having the ability to grow under these conditions, oxidize in a disaccharide state, and accumulate the oxide in the fines on culture was isolated. As the agar medium used for the isolation and storage of microorganisms, the 2% TSB (tryptic soy broth) agar medium shown in Table 2 was used.

分離した菌株についてその酵素生産能力や、酵素生産条件を検討した。その結果、ラクチトールより安価な炭素源であるスクロースを添加することにより、目的の酵素が安定して誘導され産出できることを見出した。すなわち、2%TSBにD-リキソースを少量(0.1%〜3%、望ましい濃度は1%)添加した液体培地で酵素を大量に生産することを見出した。これよりもより安価な0.5%酵母エキス、0.5%ポリペプトン、0.5%塩化ナトリウム、1%スクロースにおいても安定に酵素が産出されることも確認している。他の二糖でも活性が生じるが、スクロース添加が最も効果が高かった。培養炭素源の影響を図4に示す。   The isolated bacterial strain was examined for its enzyme production capacity and enzyme production conditions. As a result, it was found that the target enzyme can be stably induced and produced by adding sucrose, which is a carbon source cheaper than lactitol. That is, it has been found that a large amount of enzyme is produced in a liquid medium in which a small amount of D-lyxose (0.1% to 3%, desirable concentration is 1%) is added to 2% TSB. It has also been confirmed that the enzyme can be stably produced even with cheaper 0.5% yeast extract, 0.5% polypeptone, 0.5% sodium chloride, and 1% sucrose. Activity was also produced with other disaccharides, but the addition of sucrose was most effective. The influence of the cultured carbon source is shown in FIG.

M31株の2%ラクチトール無機塩培地における3-ケト‐ラクチトールの生産量は、培養後24時間後が最も適した条件であった。また図5に1%ラクチトールを用いた洗浄菌体反応の結果を示した(A)。40時間でほぼ100%3−ケトーラクチトールに変換されているが、目的産物以外にもピークが生じているが、現時点では不明である(B)。なお、洗浄菌体反応の条件は、50mMリン酸カリウム(pH7.0)、30度である。   The production amount of 3-keto-lacitol in the 2% lactitol mineral salt medium of the M31 strain was the most suitable condition after 24 hours from the culture. FIG. 5 shows the results of washing cell reaction using 1% lactitol (A). Although it is converted to almost 100% 3-ketolactitol in 40 hours, a peak is generated in addition to the target product, but it is unknown at this time (B). The washing cell reaction conditions were 50 mM potassium phosphate (pH 7.0), 30 degrees.

次に、表3にM31の同定結果、および表4に培養炭素源によるケトース生産量の結果を示した。
なお、ケトース量は、システインカルバゾール法にて測定した。酵素活性は先と同様に実施した。
Next, Table 3 shows the results of identification of M31, and Table 4 shows the results of ketose production by the cultured carbon source.
The amount of ketose was measured by the cysteine carbazole method. Enzyme activity was performed as before.

洗浄菌体反応によって、3ケト二糖類を生産する活性(グルコシド3−デハイドロゲナーゼ)の性質。
1)pH
pH6〜9で活性を示すが、7〜8が望ましい。
2)金属イオン
特に活性を増加させる金属イオンはなく、二価の銅イオンで大きく阻害を受ける。
3)酸素の影響
窒素条件下では、ほとんど酸化されないが、空気条件下で撹拌するだけで十分に酸化される。
Properties of activity (glucoside 3-dehydrogenase) to produce 3-keto disaccharides by washing cell reaction.
1) pH
Activity is shown at pH 6-9, but 7-8 is desirable.
2) Metal ions There are no metal ions that increase the activity in particular, and they are greatly inhibited by divalent copper ions.
3) Influence of oxygen Although it is hardly oxidized under nitrogen conditions, it is sufficiently oxidized only by stirring under air conditions.

[二糖類の転換反応(培養MSM-スクロース):ケトース生産量の推移(図6)]
図6に示されるように、
マルトース:すべて消費されてなくなる。
ラクトース:5時間後で反応が終了(100%)、32時間後にはプロダクト以外にピークが生じる。
マルチトール:5時間後で反応が終了(21min、100%)、32時間後では21minはなくなり、28minのピークが主となる。
ラクチトール:5時間後で反応が終了(18min、100%)、32時間後もほぼ安定、29minにピークが生じる。
[Disaccharide conversion reaction (cultured MSM-sucrose): Transition of ketose production (Fig. 6)]
As shown in FIG.
Maltose: All consumed.
Lactose: The reaction is completed after 5 hours (100%), and after 32 hours a peak other than the product is generated.
Maltitol: The reaction is completed after 5 hours (21 min, 100%), and after 32 hours, 21 min disappears, and the peak at 28 min is dominant.
Lactitol: The reaction is completed after 5 hours (18 min, 100%), almost stable after 32 hours, and a peak occurs at 29 min.

[固定化微生物での一例]
スクロース培養菌体3.0g(w/w)、50mM Tris−HCl(pH7.0) 5mlにて懸濁、同量の4%アルギン酸ナトリウム水溶液と混合した。0.2MCaCl2溶液中に滴下し2時間放置。50mM Tris−HCl(pH7.0)で洗浄した。
反応(図7):1%ラクチトール、10mM Tris−HCl(pH7.0)
初速度はフリーの1/3〜1/2に低下するが、最終的に100%転換される。
[Example of immobilized microorganisms]
The suspension was suspended in 3.0 g (w / w) of sucrose cultured cells and 5 ml of 50 mM Tris-HCl (pH 7.0), and mixed with the same amount of 4% aqueous sodium alginate solution. Drop into 0.2MCaCl2 solution and leave for 2 hours. Washed with 50 mM Tris-HCl (pH 7.0).
Reaction (FIG. 7): 1% lactitol, 10 mM Tris-HCl (pH 7.0)
The initial speed drops to 1/3 to 1/2 of the free, but is eventually converted to 100%.

本発明の詳細を実施例で説明する。本発明はこれらの実施例によってなんら限定されるものではない。   Details of the present invention will be described in the examples. The present invention is not limited to these examples.

ラクチトールを用いた希少糖含有二糖類の生産の実施例を下記に記す。
[培養]
2%TSBに1%スクロースを添加した3mlの培地で30度、10時間、前培養した。全量を同組成の3Lの培地にて培養した。培養装置は5L、有効容積3Lのジャーファーメンターで通気量3L/min、400rpmの撹拌で行った。なお信越シリコーン製の消泡剤を3ml添加した。30度で15時間培養した。15時間後の菌体濃度はOD660=6.74であった。
Examples of production of rare sugar-containing disaccharides using lactitol are described below.
[culture]
The cells were pre-cultured in 3 ml of medium supplemented with 2% TSB and 1% sucrose at 30 degrees for 10 hours. The whole amount was cultured in a 3 L medium having the same composition. The culture apparatus was a jar fermenter with 5 L and effective volume of 3 L, with an aeration rate of 3 L / min and stirring at 400 rpm. In addition, 3 ml of anti-foaming agent made of Shin-Etsu silicone was added. The cells were cultured at 30 degrees for 15 hours. The cell density after 15 hours was OD 660 = 6.74.

[1]洗浄菌体反応(図8)
菌体を9000rpmで遠心分離後、10mMのリン酸緩衝液(pH7.5)で洗浄した。これをOD660=30、終濃度2%ラクチトールとなるように調製した。この条件だと今回は約630mlとなり、十分に通気させるために500ml用のバッフル付三角フラスコで約100ml入れ振とう培養機にて洗浄菌体反応を実施した。約27時間後に100%ラクチトールが3ケトーラクチトールに変換されていた。
[1] Washing cell reaction (FIG. 8)
The cells were centrifuged at 9000 rpm and washed with 10 mM phosphate buffer (pH 7.5). This was prepared so as to OD 660 = 30, final concentration 2% lactitol. Under this condition, this time was about 630 ml, and a washing cell reaction was carried out in a shaking culture machine containing about 100 ml of a 500 ml baffled Erlenmeyer flask for sufficient aeration. After about 27 hours, 100% lactitol had been converted to 3 ketolactitol.

この後、遠心分離機にて菌体および反応液を分離後、再度同条件にて反応を開始させた。およそ20時間後には100%3-ケトーラクチトールに変換されていた。同様にこれらの作業を計8回続けることが可能であった。計96gのラクチトールを100%の3-ケトーラクチトールを含む液に変換することができた。さらに洗浄菌体反応を続けることも可能であったが今回は8回(期間は1週間)で終了とした。これほど長期間反応が可能となった理由は、M31株はゆっくりラクチトールを代謝して栄養源を得ていたことであると推測している。実際希少糖を生産する場合にも洗浄菌体反応はよく使用される手段であるが、これほど長期間酵素活性を維持する例はこれまでにない。実際反応終了後の糖の回収率は65%の63gであった。図5に洗浄菌体反応の結果をHPLC分析結果で示す。   Thereafter, the cells and the reaction solution were separated using a centrifuge, and the reaction was started again under the same conditions. Approximately 20 hours later, it was converted to 100% 3-ketolactitol. Similarly, it was possible to continue these operations a total of 8 times. A total of 96 g of lactitol could be converted into a solution containing 100% 3-ketolactitol. Furthermore, it was possible to continue the washing cell reaction, but this time it was completed 8 times (period is 1 week). It is speculated that the reason why the reaction was possible for such a long time was that the M31 strain slowly metabolized lactitol to obtain a nutrient source. In fact, the washing cell reaction is a frequently used means for producing rare sugars, but there has never been an example of maintaining enzyme activity for such a long time. The recovery rate of the sugar after the actual reaction was 65 g (63 g). FIG. 5 shows the result of the washing cell reaction as a result of HPLC analysis.

[2]洗浄菌体反応後の精製(図9)
反応後の糖液には多くのタンパク質や菌体残渣が混在しているため、中空糸フィルターによる精製を実施した。旭化成製のマイクロモジュールSLP-1053(分画<分子量3000)を用いてタンパク質を除去した。この時点で相当する糖量は60g。
[2] Purification after washing cell reaction (FIG. 9)
Since a large amount of proteins and bacterial cell residues are mixed in the sugar solution after the reaction, purification using a hollow fiber filter was performed. Protein was removed using Asahi Kasei Micromodule SLP-1053 (fraction <molecular weight 3000). At this point, the corresponding amount of sugar is 60 g.

精製後の3-ケトーラクチトール 30gを含有した液を500ml(6% w/v)に調製し、ラネーニッケル水素添加法によって3-ケトーラクチトールを還元させた。耐圧硝子工業株式会社製のTEM-1000Mを用いて50度で加温しつつ水素圧1.2Mpa(ゲージ圧)で700rpmに攪拌速度を保ち6時間反応を行った。ラネーニッケルの活性化は、以下のように実施した。50%ラネーニッケル(ナカライテスク(株)製)10gに対し、20%NaOH水溶液を100g添加した。添加後80℃、8時間の加温を行った。気泡の発生が止まったことを確認した後、デカンテーションにより蒸留水で触媒を洗浄した。洗浄は、洗浄液がpH9.2になるまで行った。図9に洗浄菌体反応後の精製の結果をHPLC分析結果で示す。   A liquid containing 30 g of purified 3-ketolactitol was prepared to 500 ml (6% w / v), and 3-ketolactitol was reduced by Raney nickel hydrogenation method. The reaction was carried out for 6 hours while maintaining the stirring speed at 700 rpm at a hydrogen pressure of 1.2 MPa (gauge pressure) while heating at 50 degrees using TEM-1000M manufactured by Pressure Glass Industrial Co., Ltd. Raney nickel was activated as follows. 100 g of 20% NaOH aqueous solution was added to 10 g of 50% Raney nickel (manufactured by Nacalai Tesque). After the addition, heating was performed at 80 ° C. for 8 hours. After confirming that the generation of bubbles stopped, the catalyst was washed with distilled water by decantation. The washing was performed until the washing solution reached pH 9.2. FIG. 9 shows the results of purification after washing cell reaction as HPLC analysis results.

(理論上、もとのラクチトールとD-グルシル-D-ソルビトールが1:1で生じるが、17.46分(ラクチトールのRT)のみで、構造が非常に類似するために、二者はこのカラムでは分離できないものと考えられる。26.39分はD-ソルビトール。3-ケトーラクチトールもしくはD-グルシル-D-ソルビトールが不安定なのか分解されているものと推定される。)
ラクチトールとD-グルシル-D-ソルビトールは脱塩樹脂によって異性化、もしくは二糖間の結合が切断される現象が見られた。これについての理由は明らかにしていないが、糖によっては脱塩処理を長時間処理した場合、異性化などの変化を受けてしまうことが一般的に知られている。本発明の3-ケトーラクチトール、D-グルシル-D-ソルビトールは新規物質であり、その性質については未知な部分が多い。しかし、この原因の解明は本発明の主眼とははずれるため実施しなかった。次のステップの支障となるためにD-ソルビトールの除去を実施した。ワンパス方式クロマト分離装置(日進機械(株)製 NK-26)を用いて上記した糖混合液27g相当を分離した。表5に分離条件および図10に分離後のHPLCの結果を以下に示す。
(Theoretically, the original lactitol and D-glucyl-D-sorbitol occur at 1: 1, but the two are separated on this column because the structure is very similar only at 17.46 min (RT of lactitol). 26.39 minutes is D-sorbitol. It is estimated that 3-ketolactitol or D-glucyl-D-sorbitol is unstable or decomposed.)
Lactitol and D-glucyl-D-sorbitol were isomerized by the desalting resin, or the bond between disaccharides was cleaved. Although the reason for this has not been clarified, it is generally known that some sugars undergo changes such as isomerization when desalting is performed for a long time. The 3-ketolactitol and D-glucyl-D-sorbitol of the present invention are novel substances, and many of the properties are unknown. However, the elucidation of this cause is not carried out because it is out of the scope of the present invention. D-sorbitol removal was performed to hinder the next step. Using a one-pass chromatographic separation apparatus (NK-26, manufactured by Nisshin Kikai Co., Ltd.), 27 g of the above sugar mixture was separated. Table 5 shows the separation conditions, and FIG. 10 shows the HPLC results after the separation.

上記の20画分のうちNo.6〜No.10までをラクチトールとD-グルシル-D-ソルビトールの100%画分として回収した。   Of the 20 fractions, No. 6 to No. 10 were collected as 100% fractions of lactitol and D-glucyl-D-sorbitol.

回収量は9.6gであった。27gのうち約1/3がソルビトールであったため残り18gがラクチトールとD-グルシル-D-ソルビトールであるので回収率は約53%であった。   The recovered amount was 9.6 g. Since about 1/3 of 27 g was sorbitol, the remaining 18 g was lactitol and D-glucyl-D-sorbitol, and the recovery rate was about 53%.

[4] ラクチトールとD-グルシル-D-ソルビトールの組成確認
前記の[3]で得られた糖がどのような糖から構成されているかを調べた。希塩酸を用いて酸加水分解を実施した。糖液を2%(w/v)濃度の480mlとし1Nの塩酸を等量混合させ、80度で6時間処理した。処理後、中和脱塩したのちHPLCで組成を分析した。その分析結果を図11に示す。
図11に示すように、
10分あたりのピークは除去しきれなかった塩
17.53分のピーク:D-ガラクトース
21.27分のピーク:D-グロース
26.45分のピーク:D-ソルビトール
これらの構成比はD-ガラクトース:D-グロース:D-ソルビトール=3.7:1.3:5であった。このことから得られた3-ケトーラクチトールから水素添加した際に生じる糖はラクチトール75%、D-グルシル-D-ソルビトール25%であることがわかった。
[4] Confirmation of composition of lactitol and D-glucyl-D-sorbitol It was investigated what kind of sugar the sugar obtained in [3] above was composed. Acid hydrolysis was performed using dilute hydrochloric acid. The sugar solution was adjusted to 480 ml with a 2% (w / v) concentration, mixed with an equal amount of 1N hydrochloric acid, and treated at 80 ° C. for 6 hours. After the treatment, the solution was neutralized and desalted and analyzed by HPLC. The analysis result is shown in FIG.
As shown in FIG.
The peak per 10 minutes could not be removed
17.53 min peak: D-galactose
21.27 minute peak: D-growth
Peak at 26.45 minutes: D-sorbitol The composition ratio thereof was D-galactose: D-growth: D-sorbitol = 3.7: 1.3: 5. From this, it was found that the sugar produced when hydrogenating 3-ketolactitol obtained was 75% lactitol and 25% D-glucyl-D-sorbitol.

理論上、もとのラクチトールとD-グルシル-D-ソルビトールが1:1で生じるはずであるが、実際の組成はおよそ3:1であった。この原因についてはさらに検討する必要がある。   Theoretically, the original lactitol and D-glucyl-D-sorbitol should occur at 1: 1, but the actual composition was approximately 3: 1. This cause needs further investigation.

[5]D-グロースのNMRによる確認
前記の[4]で得られた酸加水分解液を回収・濃縮して約8.5g相当の糖液を得た。上記のワンパス方式クロマト分離装置を用いてD-グロースを精製した。条件と結果を表6に示す。
[5] Confirmation by D-growth NMR The acid hydrolyzate obtained in [4] above was collected and concentrated to obtain a sugar solution corresponding to about 8.5 g. D-growth was purified using the above-mentioned one-pass chromatographic separation apparatus. Table 6 shows the conditions and results.

98%以上の純度の画分(No.10およびNo.11)を回収した。収量は0.42gであった。図12に13C NMR(Authentic,Product)の分析結果を示す。   Fractions (No. 10 and No. 11) with a purity of 98% or more were collected. The yield was 0.42g. FIG. 12 shows the analysis result of 13C NMR (Authentic, Product).

この加水分解物からD−グロースが確認されたことは、本発明の基本的構想が正しいことを示している。すなわち二糖類であるラクチトールの非還元末端のD−ガラクトースの3位を酸化し、3ケトラクチトールとする。それを還元することで、希少糖D−グロースを含む二糖が生産されていることを確実に示している。   The confirmation of D-growth from this hydrolyzate indicates that the basic concept of the present invention is correct. That is, the 3-position of D-galactose at the non-reducing end of lactitol, which is a disaccharide, is oxidized to 3 ketolactitol. By reducing it, it is reliably shown that disaccharides containing rare sugar D-gulose are produced.

希少糖の生産法に関しては、微生物反応や酵素反応を利用した研究が進められ全希少糖の生産戦略であるイズモリングを設計図として種々の研究が進められている。これらの単糖である各種希少糖は、量的にも多く生産できているため産業的な利用面での研究が進んでいる。
一方、希少糖を含む二糖に関する研究は、多糖の加水分解酵素の糖転移反応を用いた方法、シュークロースフォスフォリラーゼの逆反応を利用した方法などが開発されているが、何れも希少糖を作り、それを受容体として他の単糖を結合させるという方法である。そのため生産量も少なく、希少糖を原料として用いるためコストも高くなる欠点がある。本発明においては二糖類を原料として用いて、二糖に結合したまま構成糖である単糖を希少糖へ変換するという方法のため大量に生産が可能となる。
希少糖を含む二糖はこれまで十分量を得ることができなかったため、殆ど生理活性などの研究が行われていない。本発明によって量的に大量の生産が可能となる方法を確立できたことによって、今後、全く新しい糖質として、食品などへの用途の開発が期待できる。
With regard to the production method of rare sugars, research using microbial reactions and enzyme reactions has been advanced, and various researches have been carried out using Izumoring, which is a production strategy for all rare sugars, as a blueprint. Since various rare sugars, which are these monosaccharides, can be produced in large quantities, research on industrial use is progressing.
On the other hand, research on disaccharides containing rare sugars has been developed, such as a method using a glycosyltransferase of a polysaccharide hydrolase and a method using the reverse reaction of sucrose phosphorylase. And using it as a receptor to bind other monosaccharides. For this reason, there is a disadvantage that the production amount is small and the cost is increased because rare sugar is used as a raw material. In the present invention, a disaccharide is used as a raw material, and a monosaccharide which is a constituent sugar is converted to a rare sugar while being bound to the disaccharide, so that mass production is possible.
Since a sufficient amount of disaccharides containing rare sugars has not been obtained so far, little research has been conducted on physiological activity. With the establishment of a method that enables mass production in large quantities according to the present invention, development of applications for foods and the like as completely new carbohydrates can be expected in the future.

ラクチトールを用い、二糖類のままで構成糖である単糖を希少糖へ変換する酸化と還元反応を説明する化学式を示す図面である。It is drawing which shows the chemical formula explaining the oxidation and reduction | restoration reaction which convert the monosaccharide which is a constituent saccharide | sugar into a rare saccharide using lactitol. ラクトースを用い、二糖類のままで構成糖である単糖を希少糖へ変換する酸化と還元反応を説明する化学式を示す図面である。It is drawing which shows the chemical formula explaining the oxidation and reduction | restoration reaction which convert the monosaccharide which is a component saccharide | sugar into a rare saccharide using lactose as it is. トレハロースを用い、二糖類のままで構成糖である単糖を希少糖へ変換する酸化と還元反応を説明する化学式を示す図面である。It is drawing which shows the chemical formula explaining the oxidation and reduction | restoration reaction which convert the monosaccharide which is a component saccharide | sugar into a rare saccharide | sugar using trehalose. 分離した菌株について培養炭素源の影響を示す図面である。It is drawing which shows the influence of a culture carbon source about the isolate | separated strain. M31株の1%ラクチトールを用いた洗浄菌体反応の結果を示す図面である。It is drawing which shows the result of the washing | cleaning microbial cell reaction using 1% lactitol of M31 stock | strain. 二糖類の転換反応(培養MSM-スクロース):ケトース生産量の推移を示す図面である。It is drawing which shows transition of disaccharide conversion reaction (cultured MSM-sucrose): ketose production amount. 固定化微生物での相対活性の推移を示す図面である。It is drawing which shows transition of relative activity in the immobilized microorganism. 実施例1の洗浄菌体反応の結果をHPLC分析結果で示す図面である。It is drawing which shows the result of the washing | cleaning microbial cell reaction of Example 1 by a HPLC analysis result. 洗浄菌体反応後の精製の結果をHPLC分析結果で示す図面である。It is drawing which shows the result of the purification after washing | cleaning microbial cell reaction by a HPLC analysis result. 分離後のHPLC分析結果を示す図面である。It is drawing which shows the HPLC analysis result after isolation | separation. ラクチトールとD-グルシル-D-ソルビトールの組成確認HPLC分析結果を示す図面である。It is a drawing showing the composition confirmation HPLC analysis results of lactitol and D-glucyl-D-sorbitol. NMR(Authentic,Product)分析結果を示す図面である。It is drawing which shows a NMR (Authentic, Product) analysis result.

Claims (5)

原料(基質)として二糖類を用い、該二糖類の3位を微生物反応で酸化して3ケト二糖類を生成させ、これをさらに還元する反応により、希少糖を含む二糖類を生成させること、
上記の微生物反応が、3ケト二糖類を作る性質を有するアグロバクテリウム属微生物に由来する酸化酵素を作用させる酸化反応であること、
を特徴とする少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。
Using a disaccharide as a raw material (substrate), oxidizing the 3-position of the disaccharide by a microbial reaction to produce a 3-keto disaccharide, and further reducing this to produce a disaccharide containing a rare sugar,
The above microbial reaction is an oxidative reaction in which an oxidase derived from an Agrobacterium having the property of producing a 3-keto disaccharide is allowed to act;
A method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as a constituent monosaccharide.
上記の微生物が、アグロバクテリウム ツメファシエンス(Agrobacterium tumefaciens、寄託番号NITE P−489)である請求項に記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。The above microorganism, Agrobacterium tumefaciens (Agrobacterium tumefaciens, Accession No. NITE P-489) The method of producing a rare sugar binding disaccharide to constituent monosaccharide at least one rare saccharide according to claim 1. 3ケト二糖類を還元する反応が有機化学的な還元反応による請求項またはに記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。 The method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as a constituent monosaccharide according to claim 1 or 2 , wherein the reaction for reducing the 3-keto disaccharide is an organic chemical reduction reaction. 3ケト二糖類が、ラクチトールまたはラクトースを微生物酸化して得られたものであり、希少糖結合二糖が、希少糖D−グロースを構成単糖とするものである請求項ないしのいずれか一項に記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。 3 keto disaccharides, are those obtained by microbial oxidation of lactitol or lactose, a rare sugar binding disaccharide, any one of claims 1 to 3 in which the constituting monosaccharide rare sugar D- gulose A method for producing a rare sugar-linked disaccharide comprising at least one rare sugar according to one item as a constituent monosaccharide. さらに反応混合物から希少糖を含む二糖類を分離する請求項1ないしのいずれか一項に記載の少なくとも一の希少糖を構成単糖とする希少糖結合二糖の生産方法。 The method for producing a rare sugar-linked disaccharide comprising at least one rare sugar as a constituent monosaccharide according to any one of claims 1 to 4 , wherein a disaccharide containing the rare sugar is further separated from the reaction mixture.
JP2008075680A 2008-03-24 2008-03-24 Method for producing disaccharides containing rare sugars Active JP5356704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008075680A JP5356704B2 (en) 2008-03-24 2008-03-24 Method for producing disaccharides containing rare sugars

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008075680A JP5356704B2 (en) 2008-03-24 2008-03-24 Method for producing disaccharides containing rare sugars

Publications (2)

Publication Number Publication Date
JP2009225727A JP2009225727A (en) 2009-10-08
JP5356704B2 true JP5356704B2 (en) 2013-12-04

Family

ID=41241892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008075680A Active JP5356704B2 (en) 2008-03-24 2008-03-24 Method for producing disaccharides containing rare sugars

Country Status (1)

Country Link
JP (1) JP5356704B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6289053B2 (en) * 2013-11-22 2018-03-07 花王株式会社 Production method of sophorolipid

Also Published As

Publication number Publication date
JP2009225727A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
TWI471418B (en) Cellobiose 2-epimeraze, its preparation and uses
CN108350474B (en) Method for small molecule glycosylation
JP5118132B2 (en) Method for producing glucuronic acid by glucuronic acid fermentation
JP2009508518A (en) Method for producing sucrose-6-acetate with whole cell biocatalyst
JP5933321B2 (en) Novel α-glucosidase and production method and use thereof
JP5344466B2 (en) Microorganisms capable of producing deoxypolyol dehydrogenase and use thereof
JP5356704B2 (en) Method for producing disaccharides containing rare sugars
JP4922312B2 (en) Method for producing α-galactooligosaccharide
US8227232B2 (en) Thermostable L-ribose isomerase and method for producing same and use of same
KR101228975B1 (en) N-acyl-D-glucosamine 2-epimerase and Method for production of mannose from glucose using the same
Chi et al. Characterization of two thermostable β-agarases from a newly isolated marine agarolytic bacterium, Vibrio sp. S1
JP4132297B2 (en) Method for producing oligosaccharide
JP5255266B2 (en) Method for producing novel α-galactooligosaccharide
JP5418870B2 (en) Process for producing 1-O-α-glucopyranosyl D-psicose
JP4161181B2 (en) Novel process for producing carbohydrates including cordierigosaccharides and nigerooligosaccharides, and cells and enzymes used therefor, and processes for producing the same
JP4826824B2 (en) oligosaccharide
JP2001292792A (en) Method for recovering n-acetylglucosamine
JP5714241B2 (en) α-Glucosidase, production method and use thereof
KR101707928B1 (en) Method for production of maltoheptaose with high purity by CGTase mutant
JP5001016B2 (en) Manufacturing method of aerulose
JP2006067958A (en) Method for producing glycoside of fructose
WO2014171636A1 (en) Novel ribitol dehydrogenase and method for preparing l-ribulose using same
Won-Jae et al. Characterization of Two Thermostable β-agarases from a Newly Isolated Marine Agarolytic Bacterium, Vibrio sp. S1
JP4291442B2 (en) Arabinofuranosidase
JP5219068B2 (en) Method for producing glucuronic acid and / or glucuronolactone, and novel microorganism

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110301

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130829

R150 Certificate of patent or registration of utility model

Ref document number: 5356704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250