JP2008172253A - Electrode for plasma etching - Google Patents

Electrode for plasma etching Download PDF

Info

Publication number
JP2008172253A
JP2008172253A JP2008012528A JP2008012528A JP2008172253A JP 2008172253 A JP2008172253 A JP 2008172253A JP 2008012528 A JP2008012528 A JP 2008012528A JP 2008012528 A JP2008012528 A JP 2008012528A JP 2008172253 A JP2008172253 A JP 2008172253A
Authority
JP
Japan
Prior art keywords
plasma etching
electrode
iron
silicon wafer
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008012528A
Other languages
Japanese (ja)
Inventor
Takayuki Suzuki
孝幸 鈴木
Kojiro Ota
幸次郎 太田
Mitsuji Kamata
充志 鎌田
Kazumi Kokaji
和己 小鍜治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008012528A priority Critical patent/JP2008172253A/en
Publication of JP2008172253A publication Critical patent/JP2008172253A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vitreous carbon-made electrode for plasma etching which can significantly reduce the contamination of a silicon wafer with metal impurities. <P>SOLUTION: The vitreous carbon-made electrode for plasma etching is one in which the iron adhering amount adhered on the whole surface, including through-hole inner walls, is 2 μg/cm<SP>2</SP>or smaller, with respect to the entire surface area. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体デバイス製造工程のドライエッチング装置に用いられるガラス状炭素製プラズマエッチング用電極に関する。   The present invention relates to a glassy carbon plasma etching electrode used in a dry etching apparatus in a semiconductor device manufacturing process.

半導体デバイス製造工程の一つに、シリコンウエハに回路パターンを形成するエッチングの工程がある。このうち平行平板型のプラズマエッチング装置では、下部電極にシリコンウエハを配置し、これと平行な、反応ガスを流通させるための多数の貫通孔を有する上部電極との間に、高周波プラズマを発生させ、シリコンウエハのエッチングを行う。この上部電極は、シリコンウエハのエッチング時にそれ自身もプラズマによりエッチングを受ける。   One of the semiconductor device manufacturing processes is an etching process for forming a circuit pattern on a silicon wafer. Among these, in the parallel plate type plasma etching apparatus, a silicon wafer is disposed on the lower electrode, and high-frequency plasma is generated between the silicon wafer and the upper electrode having a large number of through holes for circulating the reaction gas. Then, the silicon wafer is etched. The upper electrode itself is etched by plasma when the silicon wafer is etched.

従来、上部電極(プラズマエッチング用電極)には、特開昭57−185982号公報などに示されるように導電性があり、化学的安定性に優れ、金属不純物でシリコンウエハを汚染することのない、高純度化された黒鉛材料が使用されてきた。しかし黒鉛材料は、骨材及びマトリックスからなる粒子の集合体であるため、プラズマによるエッチングにより、構成粒子が脱落し、消耗が大きくなったり、シリコンウエハ上に粒子が落下し、回路パータン形成の障害になるなどの問題があった。このような問題を解決するために、近年、特開昭62−109317号公報などに示されるようにプラズマエッチング用電極にガラス状炭素が使用されるようになってきた。   Conventionally, the upper electrode (electrode for plasma etching) has conductivity as shown in Japanese Patent Application Laid-Open No. 57-185982, etc., has excellent chemical stability, and does not contaminate a silicon wafer with metal impurities. Highly purified graphite materials have been used. However, because graphite material is an aggregate of particles composed of aggregate and matrix, the constituent particles fall off due to etching by plasma, the wear increases, and the particles fall on the silicon wafer, which impedes circuit pattern formation. There were problems such as becoming. In order to solve such problems, glassy carbon has recently been used for plasma etching electrodes as disclosed in JP-A-62-109317.

黒鉛材料などの、一般の炭素材料が骨材及びマトリックスからなる粒子の集合体であるのに対し、熱硬化性樹脂を炭化焼成して得られるガラス状炭素は、ガラス状の非常に均質、緻密な構造を有する。このため、ガラス状炭素は化学的安定性、耐熱性、自己潤滑性等に加え、構成粒子の脱落がないという、一般の炭素材料にない優れた特徴を有する。このため、ガラス状炭素は半導体製造装置部材に好適であるとされている。   Whereas a general carbon material such as a graphite material is an aggregate of particles composed of an aggregate and a matrix, glassy carbon obtained by carbonizing and baking a thermosetting resin is a glassy, very homogeneous and dense material. It has a simple structure. For this reason, glassy carbon has excellent characteristics that are not found in general carbon materials, such as chemical stability, heat resistance, self-lubricating property, and the like, and that constituent particles do not fall off. For this reason, it is supposed that glassy carbon is suitable for a semiconductor manufacturing apparatus member.

半導体デバイスの製造においては、金属不純物によるシリコンウエハの汚染は、特性の劣化を引き起こし、デバイスの歩留り低下を引き起こす。このため、プラズマエッチング用電極は、金属、特に鉄・鉛等の重金属の含有量が少ない、高純度であることが必要とされる。しかし、全体としては高純度の場合でも又は表面への金属付着は、全体の不純物量からみて微量であっても、電極使用の初期段階で、シリコンウエハ汚染への影響が著しい。
特開昭57−185982号公報 特開昭62−109317号公報
In the manufacture of semiconductor devices, contamination of a silicon wafer with metal impurities causes deterioration of characteristics and a reduction in device yield. For this reason, the plasma etching electrode is required to have a high purity with a low content of metals, particularly heavy metals such as iron and lead. However, even in the case of high purity as a whole, or even if the amount of metal attached to the surface is very small in view of the total amount of impurities, the influence on silicon wafer contamination is significant at the initial stage of electrode use.
JP 57-185982 A JP 62-109317 A

本発明は、金属不純物でシリコンウエハの汚染を大幅に少なくすることが可能なガラス状炭素製プラズマエッチング用電極を提供するものである。   The present invention provides a glassy carbon plasma etching electrode capable of significantly reducing contamination of a silicon wafer with metal impurities.

本発明は、貫通孔内壁を含む全表面に付着した鉄付着量が、全表面積に対し、2μg/cm以下であるガラス状炭素製プラズマエッチング用電極に関する。 The present invention relates to a glassy carbon plasma etching electrode in which the amount of iron attached to the entire surface including the inner wall of the through hole is 2 μg / cm 2 or less with respect to the total surface area.

本発明になるプラズマエッチング用電極は、金属不純物によるシリコンウエハの汚染を大幅に少なくすることができるため、デバイスの歩留りを向上させ、安定したプラズマエッチング加工を行うことが可能になり、産業上極めて好適である。   The plasma etching electrode according to the present invention can greatly reduce the contamination of the silicon wafer by metal impurities, so that the device yield can be improved and stable plasma etching processing can be performed, which is extremely industrially difficult. Is preferred.

本発明におけるガラス状炭素とは、熱硬化性樹脂硬化物を炭化、焼成して得られる炭素材料であり、該熱硬化性樹脂硬化物を得るのに用いられる熱硬化性樹脂としては特に制限はないが、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、フラン樹脂、メラミン樹脂、アルキッド樹脂、キシレン樹脂等を挙げることができる。また、これらの樹脂の混合物を用いてもよい。好ましくはフラン樹脂及び/又はフェノール樹脂である。   The glassy carbon in the present invention is a carbon material obtained by carbonizing and firing a thermosetting resin cured product, and there is no particular limitation on the thermosetting resin used to obtain the thermosetting resin cured product. Although there are no phenol resins, epoxy resins, unsaturated polyester resins, furan resins, melamine resins, alkyd resins, xylene resins, and the like. A mixture of these resins may also be used. A furan resin and / or a phenol resin are preferable.

本発明に用いられる熱硬化性樹脂は、硬化前に目的とする形状に応じて各種の成形方法で成形されるが、その成形方法については特に制限はない。所定の形状に成形した後、更に130〜200℃の温度で硬化処理する。熱硬化性樹脂の成形硬化は縮合水などが外部に抜け易い加熱条件及び昇温速度で行うか又は硬化の為の触媒量を適正な量に設定して安定した樹脂板を得る。   Although the thermosetting resin used for this invention is shape | molded with various shaping | molding methods according to the target shape before hardening, there is no restriction | limiting in particular about the shaping | molding method. After forming into a predetermined shape, it is further cured at a temperature of 130 to 200 ° C. The thermosetting resin is molded and cured at a heating condition and a temperature rising rate at which condensed water easily escapes to the outside, or a catalyst amount for curing is set to an appropriate amount to obtain a stable resin plate.

次いで、電極板の形状にするため所定の加工を行った後、高純度の治具及び炉を用い不活性雰囲気中(通常、ヘリウム、アルゴン等の不活性ガスや窒素、水素、ハロゲンガス等の非酸化性ガスの少なくも1種の気体からなる酸素を含まない雰囲気、減圧又は真空下)において約1000℃の温度で焼成炭化する。更に1300℃以上の温度、好ましくは2000℃以上の温度で高温処理しガラス状炭素からなるプラズマエッチング用電極が得られる。プラズマエッチング用電極を得る方法は、前記の方法以外にガラス状炭素を得た後、放電加工あるいは超音波加工で所定の形状の電極板に加工してもよい。また、プラズマエッチング用電極は、必要に応じて表面研磨等の仕上げ加工を行う。   Next, after performing predetermined processing to form the electrode plate, in an inert atmosphere (usually inert gas such as helium and argon, nitrogen, hydrogen, halogen gas, etc.) using a high-purity jig and furnace Calcination carbonization is performed at a temperature of about 1000 ° C. in an oxygen-free atmosphere composed of at least one non-oxidizing gas (under reduced pressure or under vacuum). Further, a plasma etching electrode made of glassy carbon is obtained by high-temperature treatment at a temperature of 1300 ° C. or higher, preferably 2000 ° C. or higher. As a method for obtaining an electrode for plasma etching, glassy carbon may be obtained in addition to the above method, and then processed into an electrode plate having a predetermined shape by electric discharge machining or ultrasonic machining. In addition, the electrode for plasma etching is subjected to finish processing such as surface polishing if necessary.

ガラス状炭素全体に含有される金属不純物が多い場合、表面の汚染に関わらずシリコンウエハが汚染する。従ってガラス状炭素全体に含有される金属不純物量は50ppm以下が好ましく、20ppm以下がより好ましい。なお金属不純物量は、ガラス状炭素を酸素を含む雰囲気で焼成して得られる灰分量から求められる。   When there are many metal impurities contained in the entire glassy carbon, the silicon wafer is contaminated regardless of the surface contamination. Therefore, the amount of metal impurities contained in the entire glassy carbon is preferably 50 ppm or less, and more preferably 20 ppm or less. The amount of metal impurities is determined from the amount of ash obtained by firing glassy carbon in an atmosphere containing oxygen.

本発明のプラズマエッチング用電極の表面に付着する鉄付着量は、貫通孔内壁を含む全表面積に対し、2μg/cm以下、好ましくは1.8μg/cm以下、より好ましくは1μg/cm以下とされ、2μg/cmを超えるとプラズマエッチングに使用する際、シリコンウエハの汚染が顕著になり、製品歩留りが低下する。なお、鉄付着量は、通常0.09μg/cmが限度であり、これ以上にすることは困難である。 Iron deposition amount adhered to the surface of the plasma etching electrode of the present invention, the total surface area including the through-hole inner walls, 2 [mu] g / cm 2 or less, preferably 1.8μg / cm 2 or less, more preferably 1 [mu] g / cm 2 If it exceeds 2 μg / cm 2 , the silicon wafer is significantly contaminated when used for plasma etching, and the product yield decreases. The iron adhesion amount is usually 0.09 μg / cm 2 , and it is difficult to make it more.

本発明で、ガラス状炭素製プラズマエッチング用電極の貫通孔内壁を含む全表面に付着する鉄付着量とは、プラズマエッチング用電極表面から酸抽出される鉄成分量をいい、具体的には濃塩酸中にプラズマエッチング用電極を浸漬し、この濃塩酸中に溶出した鉄の濃度を測定して求められる。濃塩酸中への浸漬時間は、鉄の濃度が実質的に飽和するまでの時間である。鉄の濃度の分析は、原子吸光分析、ICP法、電位差ストリッピング法等の電気化学分析など公知の方法で行い、得られた鉄の濃度から、プラズマエッチング用電極に付着していた鉄の量を算出する。   In the present invention, the amount of iron adhering to the entire surface including the inner wall of the through-hole of the glassy carbon plasma etching electrode refers to the amount of iron component that is acid extracted from the surface of the plasma etching electrode. It is obtained by immersing the electrode for plasma etching in hydrochloric acid and measuring the concentration of iron eluted in the concentrated hydrochloric acid. The immersion time in concentrated hydrochloric acid is the time until the iron concentration is substantially saturated. The analysis of the iron concentration is performed by a known method such as electrochemical analysis such as atomic absorption analysis, ICP method, potentiometric stripping method, and the amount of iron adhering to the electrode for plasma etching from the obtained iron concentration. Is calculated.

本発明で得られるプラズマエッチング用電極の貫通孔内壁を含む全表面に付着する鉄付着量が全表面積に対して2μg/cmを超える場合、酸洗浄又は加熱処理を行うことにより鉄付着量を減少させることができる。 When the amount of iron adhering to the entire surface including the inner wall of the through-hole of the plasma etching electrode obtained in the present invention exceeds 2 μg / cm 2 , the amount of iron adhering can be reduced by performing acid cleaning or heat treatment. Can be reduced.

酸洗浄とは、塩酸、硫酸、硝酸、フッ酸等の酸又はこれらの混合液若しくはその水溶液(以下これらを総称して洗浄液とする)にプラズマエッチング用電極を浸漬させて行うものであり、浸漬時間は1時間以上が好ましい。洗浄液の濃度は、種類によって異なるが、2重量%以上が好ましく。5重量%以上がより好ましく、10〜60重量%の範囲がさらに好ましい。2重量%未満では鉄成分の除去能力が低下し、効果が発揮できなくなる傾向がある。また、洗浄の効果を上げるため、過酸化水素を添加してもよい。その添加量は洗浄液に対して10重量%以上が好ましく、20重量%以上がより好ましく、25〜40重量%の範囲がさらに好ましい。さらに、より酸洗浄を効果的にするには必要に応じて超音波振動を加えるなどの方法で洗浄を行ってもよい。超音波振動をかける時間は1分以上が好ましく、5分以上がより好ましい。   Acid cleaning is performed by immersing the electrode for plasma etching in an acid such as hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid or a mixture thereof or an aqueous solution thereof (hereinafter collectively referred to as a cleaning solution). The time is preferably 1 hour or longer. The concentration of the cleaning liquid varies depending on the type, but is preferably 2% by weight or more. 5 weight% or more is more preferable, and the range of 10-60 weight% is further more preferable. If it is less than 2% by weight, the ability to remove the iron component tends to be reduced, and the effect tends not to be exhibited. Further, hydrogen peroxide may be added in order to improve the cleaning effect. The addition amount is preferably 10% by weight or more, more preferably 20% by weight or more, and further preferably in the range of 25 to 40% by weight with respect to the cleaning liquid. Furthermore, in order to make acid cleaning more effective, cleaning may be performed by a method such as applying ultrasonic vibration as necessary. The time for applying the ultrasonic vibration is preferably 1 minute or more, and more preferably 5 minutes or more.

熱処理は、1000℃以上の温度で加熱処理することが好ましく、1000〜2000℃の温度で加熱処理することがさらに好ましい。1000℃未満の温度では目的とする鉄成分の除去能力が低下し、効果が発揮できなくなる傾向がある。この方法は、貫通孔内壁を含む全表面に付着した鉄を加熱して蒸発させ除去する方法であり、例えば、窒素ガス、アルゴンガス等の不活性ガス雰囲気中、真空(減圧)中などの非酸化性雰囲気中で加熱処理することが好ましい。   The heat treatment is preferably heat-treated at a temperature of 1000 ° C. or higher, and more preferably heat-treated at a temperature of 1000 to 2000 ° C. If the temperature is lower than 1000 ° C., the removal ability of the target iron component is lowered, and the effect tends not to be exhibited. This method is a method of heating and evaporating and removing the iron adhering to the entire surface including the inner wall of the through hole. For example, in an inert gas atmosphere such as nitrogen gas or argon gas, or in a vacuum (reduced pressure) Heat treatment is preferably performed in an oxidizing atmosphere.

以下、本発明を実施例にて詳細に説明する。
実施例1〜6及び比較例1〜3
フラン樹脂(日立化成工業(株)製、商品名VF−303)100重量部に、パラトルエンスルホン酸0.3重量部及びエチレングリコール0.3重量部を添加し、十分混合した後、混合物を成形型に注入し、50℃で3日、70℃で3日及び90℃で3日間保持して乾燥硬化した後、160℃までを5℃/時間の速度で昇温し、160℃で3日間保持し硬化処理を行い、厚さが4mmで、直径が250mmの円盤状樹脂成形体を得た。
Hereinafter, the present invention will be described in detail with reference to examples.
Examples 1-6 and Comparative Examples 1-3
To 100 parts by weight of furan resin (manufactured by Hitachi Chemical Co., Ltd., trade name VF-303), 0.3 parts by weight of paratoluenesulfonic acid and 0.3 parts by weight of ethylene glycol are added and mixed thoroughly. After pouring into a mold and drying and curing by holding at 50 ° C for 3 days, 70 ° C for 3 days and 90 ° C for 3 days, the temperature was increased up to 160 ° C at a rate of 5 ° C / hour, and 3 hours at 160 ° C. It was kept for a day and cured to obtain a disk-shaped resin molded body having a thickness of 4 mm and a diameter of 250 mm.

該成形体を予め焼成の寸法収縮(20%収縮)を見込んだ所定の形状に加工した後、160℃までを5℃/時間の速度で昇温し、160℃で3日間保持し硬化処理を行い円盤状樹脂硬化体を得た。該硬化体を電気炉に入れ窒素気流中で1000℃までを5℃/時間の速度で昇温し、1000℃の温度で10時間保持して焼成炭化した後、高純度の治具及び雰囲気炉を用い窒素雰囲気中で2000℃までを30℃/時間の速度で昇温し、2000℃の温度で6時間保持して高温処理を行い、厚さが3.5mmで、直径が200mmのガラス状炭素を得た。   The molded body is processed into a predetermined shape that allows for dimensional shrinkage (20% shrinkage) in advance, and then heated up to 160 ° C. at a rate of 5 ° C./hour and held at 160 ° C. for 3 days for curing treatment. A disk-shaped resin cured product was obtained. The cured body is placed in an electric furnace, heated up to 1000 ° C. at a rate of 5 ° C./hour in a nitrogen stream, and held at 1000 ° C. for 10 hours for firing and carbonization, and then a high-purity jig and atmosphere furnace Is heated to 2000 ° C. at a rate of 30 ° C./hour in a nitrogen atmosphere and is subjected to a high temperature treatment at a temperature of 2000 ° C. for 6 hours, having a thickness of 3.5 mm and a diameter of 200 mm. Got carbon.

次いでガラス状炭素に直径が0.8mmの貫通小孔を3mmのピッチで多数穿孔し、ダイヤモンドラップマシンで厚さが3.0mmまで研磨し、鏡面仕上げしてプラズマエッチング用電極を得た。このプラズマエッチング用電極の貫通孔を含む全表面積は、950cmであった。得られたプラズマエッチング用電極の物理特性の平均値はそれぞれ、かさ密度が1.50g/cm、気孔率が0.5体積%、電気比抵抗が42.5μΩm、曲げ強度が135MPa及びショア硬度が123であった。また、同一ロットで作製したプラズマエッチング用電極の全不純物量(灰分)は15ppmであった。 Next, a large number of small through-holes having a diameter of 0.8 mm were drilled in glassy carbon at a pitch of 3 mm, polished to a thickness of 3.0 mm with a diamond lap machine, and mirror-finished to obtain an electrode for plasma etching. The total surface area including the through holes of the plasma etching electrode was 950 cm 2 . The average values of physical properties of the obtained plasma etching electrode were as follows: bulk density 1.50 g / cm 2 , porosity 0.5 volume%, electrical resistivity 42.5 μΩm, bending strength 135 MPa and Shore hardness Was 123. The total impurity amount (ash content) of the plasma etching electrode produced in the same lot was 15 ppm.

次にプラズマエッチング用電極を表1に示す各条件で各々2枚ずつ酸洗浄した後、その内の1枚を濃塩酸に10時間浸漬した。この濃塩酸中の鉄の濃度を原子吸光分析により測定し、貫通孔内壁を含む全表面に付着していた鉄付着量を算出した。その結果も表1に示す。次にそれぞれ残った1枚のプラズマエッチング用電極をプラズマエッチング装置にセットし、反応ガス:トリフロロメタン(CHF)キャリアガス:アルゴン(Ar)、反応チャンバー内のガス圧:1Torr、電源周波数:13.5MHzの条件で直径6インチのシリコンウエハの酸化膜エッチングを行った。このときのシリコンウエハから得られた半導体デバイスの製品歩留りを併せて表1に示す。 Next, two plasma etching electrodes were each acid-washed under the conditions shown in Table 1, and one of them was immersed in concentrated hydrochloric acid for 10 hours. The concentration of iron in the concentrated hydrochloric acid was measured by atomic absorption analysis, and the amount of iron adhered to the entire surface including the inner wall of the through hole was calculated. The results are also shown in Table 1. Next, the remaining one plasma etching electrode was set in the plasma etching apparatus, and the reaction gas: trifluoromethane (CHF 3 ) carrier gas: argon (Ar), the gas pressure in the reaction chamber: 1 Torr, the power frequency: Oxide film etching of a 6-inch diameter silicon wafer was performed under the condition of 13.5 MHz. The product yield of the semiconductor device obtained from the silicon wafer at this time is also shown in Table 1.

Figure 2008172253
Figure 2008172253

実施例7〜12及び比較例4〜6
実施例1〜6及び比較例1〜3と同様の材料を使用し、実施例1〜6及び比較例1〜3と、同様の工程を経て厚さが5.5mmで、直径が350mmの円盤状樹脂成形体を得た。該成形体を実施例1〜6及び比較例1〜3と同様の工程を経て焼成炭化を行った後、高純度の治具及び雰囲気炉を用い窒素雰囲気中で2300℃までを30℃/時間の速度で昇温し、2300℃の温度で6時間保持して高温処理を行い、厚さが4.4mmで、直径が280mmのガラス状炭素を得た。
Examples 7-12 and Comparative Examples 4-6
A disk having a thickness of 5.5 mm and a diameter of 350 mm through the same steps as in Examples 1 to 6 and Comparative Examples 1 to 3, using the same materials as in Examples 1 to 6 and Comparative Examples 1 to 3. A molded resin molded body was obtained. The molded body was fired and carbonized through the same steps as in Examples 1 to 6 and Comparative Examples 1 to 3, and then up to 2300 ° C. in a nitrogen atmosphere using a high-purity jig and an atmospheric furnace at 30 ° C./hour. The temperature was raised at a speed of 2300 ° C. and kept at a temperature of 2300 ° C. for 6 hours to carry out a high temperature treatment to obtain glassy carbon having a thickness of 4.4 mm and a diameter of 280 mm.

次いでガラス状炭素に直径が0.5mmの貫通小孔を7mmのピッチで多数穿孔し、ダイヤモンドラップマシンで厚さが4.0mmまで研磨し、鏡面仕上げしてプラズマエッチング用電極を得た。このプラズマエッチング用電極の貫通孔を含む全表面積は、1300cmであった。得られたプラズマエッチング用電極の物理特性の平均値はそれぞれ、かさ密度が1.51g/cm、気孔率が0.1体積%、電気比抵抗が42.5μΩm、曲げ強度が145MPa及びショア硬化が123であった。また、同一ロットで作製したプラズマエッチング用電極の全不純物量(灰分)は15ppmであった。 Next, a large number of through-holes having a diameter of 0.5 mm were formed in glassy carbon at a pitch of 7 mm, polished to a thickness of 4.0 mm with a diamond wrap machine, and mirror-finished to obtain an electrode for plasma etching. The total surface area including the through holes of this plasma etching electrode was 1300 cm 2 . The average physical properties of the obtained plasma etching electrode were as follows: bulk density of 1.51 g / cm 2 , porosity of 0.1% by volume, electrical resistivity of 42.5 μΩm, bending strength of 145 MPa, and shore hardening Was 123. The total impurity amount (ash content) of the plasma etching electrode produced in the same lot was 15 ppm.

次にプラズマエッチング用電極を表2に示す条件で各々2枚ずつ加熱処理した後、その内の1枚を濃塩酸に10時間浸漬した。この濃塩酸中の鉄の濃度を原子吸光分析により測定し、貫通孔内壁を含む全表面に付着していた鉄付着量を算出した。その結果も表2に示す。次にそれぞれ残った1枚のプラズマエッチング用電極をプラズマエッチング装置にセットし、反応ガス:トリフロロメタン(CHF)キャリアガス:アルゴン(Ar)、反応チャンバー内のガス圧:1Torr、電源周波数:13.5MHzの条件で直径6インチのシリコンウエハの酸化膜エッチングを行った。このときのシリコンウエハから得られたデバイスの製品歩留りを併せて表2に示す。 Next, two plasma etching electrodes were each heat-treated under the conditions shown in Table 2, and one of them was immersed in concentrated hydrochloric acid for 10 hours. The concentration of iron in the concentrated hydrochloric acid was measured by atomic absorption analysis, and the amount of iron adhered to the entire surface including the inner wall of the through hole was calculated. The results are also shown in Table 2. Next, the remaining one plasma etching electrode was set in the plasma etching apparatus, and the reaction gas: trifluoromethane (CHF 3 ) carrier gas: argon (Ar), the gas pressure in the reaction chamber: 1 Torr, the power frequency: Oxide film etching of a 6-inch diameter silicon wafer was performed under the condition of 13.5 MHz. Table 2 also shows the product yield of devices obtained from the silicon wafer at this time.

Figure 2008172253
Figure 2008172253

表1及び表2に示されるように、本発明になるプラズマエッチング用電極は、鉄付着量が1.90μg/cm以下と少なく、デバイスの製品歩留りのよいことが示される。これに対し比較例のプラズマエッチング用電極は、鉄付着量が2.20μg/cm以上と多く、デバイスの製品歩留りの悪いことが示される。 As shown in Tables 1 and 2, the plasma etching electrode according to the present invention has a low iron adhesion amount of 1.90 μg / cm 2 or less, which indicates that the product yield of the device is good. On the other hand, the electrode for plasma etching of the comparative example has a large iron adhesion amount of 2.20 μg / cm 2 or more, indicating that the product yield of the device is poor.

本発明になるプラズマエッチング用電極は、金属不純物によるシリコンウエハの汚染を大幅に少なくすることができるため、デバイスの歩留りを向上させ、安定したプラズマエッチング加工を行うことが可能になり、産業上極めて好適である。   The plasma etching electrode according to the present invention can greatly reduce the contamination of the silicon wafer by metal impurities, so that the device yield can be improved and stable plasma etching processing can be performed, which is extremely industrially difficult. Is preferred.

Claims (1)

貫通孔内壁を含む全表面に付着した鉄付着量が、全表面積に対し、2μg/cm以下であるガラス状炭素製プラズマエッチング用電極。 An electrode for plasma etching made of glassy carbon in which the amount of iron adhered to the entire surface including the inner wall of the through hole is 2 μg / cm 2 or less with respect to the total surface area.
JP2008012528A 2008-01-23 2008-01-23 Electrode for plasma etching Pending JP2008172253A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008012528A JP2008172253A (en) 2008-01-23 2008-01-23 Electrode for plasma etching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008012528A JP2008172253A (en) 2008-01-23 2008-01-23 Electrode for plasma etching

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP8338084A Division JPH10182229A (en) 1996-12-18 1996-12-18 Electrode for plasma etching

Publications (1)

Publication Number Publication Date
JP2008172253A true JP2008172253A (en) 2008-07-24

Family

ID=39699985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008012528A Pending JP2008172253A (en) 2008-01-23 2008-01-23 Electrode for plasma etching

Country Status (1)

Country Link
JP (1) JP2008172253A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214121A (en) * 1989-02-15 1990-08-27 Toshiba Ceramics Co Ltd Cleaning of sic jig and the like for semiconductor use
JPH06128762A (en) * 1992-10-21 1994-05-10 Hitachi Chem Co Ltd Electrode plate for plasma etching
JPH0878376A (en) * 1994-09-07 1996-03-22 Sumitomo Metal Ind Ltd Method of cleaning semiconductor treating jigs
WO1998008772A1 (en) * 1996-08-28 1998-03-05 Nisshinbo Industries, Inc. Glassy carbon and process for the preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214121A (en) * 1989-02-15 1990-08-27 Toshiba Ceramics Co Ltd Cleaning of sic jig and the like for semiconductor use
JPH06128762A (en) * 1992-10-21 1994-05-10 Hitachi Chem Co Ltd Electrode plate for plasma etching
JPH0878376A (en) * 1994-09-07 1996-03-22 Sumitomo Metal Ind Ltd Method of cleaning semiconductor treating jigs
WO1998008772A1 (en) * 1996-08-28 1998-03-05 Nisshinbo Industries, Inc. Glassy carbon and process for the preparation thereof

Similar Documents

Publication Publication Date Title
JP4086936B2 (en) Dummy wafer
JP5035796B2 (en) Cleaning method of plasma etching electrode plate
JP4290551B2 (en) Method for manufacturing sintered silicon carbide jig
JP4390872B2 (en) Semiconductor manufacturing apparatus member and method for manufacturing semiconductor manufacturing apparatus member
JP2007217215A (en) Silicon carbide sintered compact tool used for manufacturing semiconductor, and method of manufacturing the same
JPH06128762A (en) Electrode plate for plasma etching
JP2008172253A (en) Electrode for plasma etching
JP2002043397A (en) Susceptor
JPH10182229A (en) Electrode for plasma etching
JP4421251B2 (en) DLC film and vacuum chuck provided with the same
JPH07114198B2 (en) Electrode plate for plasma etching
JP2000247728A (en) Alumina ceramic sintered compact having excellent corrosion resistance
JPH11189471A (en) Roll made of vitrified carbon, its production, plasma generator, its chamber inner wall protecting member, protection of the chamber inner wall and plasma treatment
JPH10101432A (en) Part for dry etching device
JPH06120328A (en) Plate for chucking electrostatic wafer
JP2003023002A (en) Chamber inner wall protecting member and plasma processing equipment
JPH0955373A (en) Manufacture of electrode plate for plasma etching and electrode plate, for plasma etching, obtained by said manufacture
JPH07240455A (en) Semiconductor wafer size conversion holder and its production
JP2008187209A (en) Plasma etching electrode
JPH06128761A (en) Electrode plate for plasma etching
JPH07240401A (en) Semiconductor wafer dummy, its manufacturing and method of cleaning the inside of the plasma etching chamber with such wafer dummy
JPH07292484A (en) Electrode plate for plasma etching and its production
JP2000200778A (en) Plasma generation apparatus, its chamber inner wall protective member and its manufacture as well as protective method for chamber inner wall and plasma treatment method
JP3631368B2 (en) Plasma etching electrode and plasma etching apparatus using the same
JP2000040689A (en) Plasma etching electrode plate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110922