JP2008170313A - Falling weight impact tester - Google Patents

Falling weight impact tester Download PDF

Info

Publication number
JP2008170313A
JP2008170313A JP2007004382A JP2007004382A JP2008170313A JP 2008170313 A JP2008170313 A JP 2008170313A JP 2007004382 A JP2007004382 A JP 2007004382A JP 2007004382 A JP2007004382 A JP 2007004382A JP 2008170313 A JP2008170313 A JP 2008170313A
Authority
JP
Japan
Prior art keywords
falling weight
hydraulic oil
hydraulic
damper
lower chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007004382A
Other languages
Japanese (ja)
Other versions
JP4848291B2 (en
Inventor
Satoshi Tokiyama
智 時山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2007004382A priority Critical patent/JP4848291B2/en
Publication of JP2008170313A publication Critical patent/JP2008170313A/en
Application granted granted Critical
Publication of JP4848291B2 publication Critical patent/JP4848291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a falling weight impact tester having a falling weight stopping means, capable of restricting compression of a specimen by stopping drop of a falling weight in the middle, and dispensing with the replacement of the falling weight stopping means in each test. <P>SOLUTION: This falling weight impact tester for performing an impact test of the specimen by the falling weight is equipped with a damper as the falling weight stopping means for restricting compression of the specimen by stopping the dropping falling weight in the middle. The falling weight impact tester has a characteristic, wherein the damper has a hydraulic cylinder equipped with a piston rod projecting upward, wherein a hydraulic oil is filled into an upper chamber on the upside of a piston and into a lower chamber on the downside thereof; a hydraulic oil communication circuit for communicating the hydraulic oil movably between the lower chamber and the upper chamber; a hydraulic oil narrowing means for restricting the moving quantity of the hydraulic oil in the hydraulic oil communication circuit; and a damper initial height resetting means for energizing so that the piston rod is positioned on the upper limit position, in a state where falling weight is not applied. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、落錘により供試体の衝撃試験を行なう落錘衝撃試験機に関し、特に落錘の落下を途中で止めて供試体の圧縮を制限するダンパーを有する落錘衝撃試験機に関する。   The present invention relates to a drop weight impact tester that performs an impact test of a specimen with a drop weight, and more particularly, to a drop weight impact test machine having a damper that stops the fall of the fall weight and restricts compression of the specimen.

従来、自動車部品等の衝撃試験を行なうには、図4に模式的な説明図を示すように、落錘(ウエイト)3を図示しない適宜の手段で吊り上げ、落錘衝撃試験機1の架構2内の所定の高さAにストッパ4で位置させたのち、ストッパ4を開放(図4中破線)して、落錘3を架構2に取り付けた図示しない鉛直方向のスライダにガイドさせて図中白抜き矢印のように落下させ、その直下の載置台5上の所定の位置に設置しておいた供試体6に衝突させて、供試体6の状態の検証等を行なう。   Conventionally, in order to perform an impact test on automobile parts and the like, as shown in a schematic explanatory view in FIG. 4, a falling weight (weight) 3 is lifted by an appropriate means (not shown), and a frame 2 of the falling weight impact tester 1 is used. After the stopper 4 is positioned at a predetermined height A, the stopper 4 is opened (broken line in FIG. 4), and the falling weight 3 is guided by a vertical slider (not shown) attached to the frame 2 in the figure. The sample is dropped as indicated by a white arrow and collided with a specimen 6 installed at a predetermined position on the mounting table 5 immediately below it, and the state of the specimen 6 is verified.

しかし、落錘3の自由落下で、仮に100km/hの衝突速度を得ようとすれば、落錘3の最上停止位置Aと、落錘3と供試体6の接触位置Bとの距離、すなわち落下高さaは、約40mを要すことになり、落錘衝撃試験機が大型化する問題があった。また、落下高さaは設定した衝突速度と供試体4の寸法等の関係から、ストッパ4の位置と載置台5の設定で調整されるが、その調整は煩雑であった。   However, if it is attempted to obtain a collision speed of 100 km / h by the free fall of the falling weight 3, the distance between the uppermost stop position A of the falling weight 3 and the contact position B of the falling weight 3 and the specimen 6, that is, The drop height a required about 40 m, and there was a problem that the drop weight impact tester was enlarged. Further, the fall height a is adjusted by the position of the stopper 4 and the setting of the mounting table 5 from the relationship between the set collision speed and the size of the specimen 4, and the adjustment is complicated.

その問題に対しては、特開2005−233910号公報に記載されるように、架構2上に油圧駆動系を有する加速装置7を設け、加速装置7は設定した油圧を油圧ピストンに与えるためのアキュムレータを備え、油圧ピストン7aの先端に落錘の保持、切離しが可能な落錘保持装置8を取付けるものが提案されている。   In order to solve the problem, as described in JP-A-2005-233910, an acceleration device 7 having a hydraulic drive system is provided on the frame 2, and the acceleration device 7 is used to apply a set hydraulic pressure to the hydraulic piston. It has been proposed to include an accumulator and to attach a falling weight holding device 8 capable of holding and separating the falling weight to the tip of the hydraulic piston 7a.

そのような加速装置7を用いれば、制御装置で加速装置7の油圧駆動系と落錘保持装置8とストッパ4を制御し、油圧ピストン7aを下方に所定の圧力で加圧し落錘3を押し込むとともに、ストッパ4を開放し、落錘保持装置8を解除して、所定の初速で落錘3を下方に押し出すので、落錘3は押し込みによる外力と自重とにより加速して落下し、供試体6に衝突させることができ、落下高さaを短縮でき、かつ、衝突速度の調整も加速装置7の押し出し速度の調整で容易になるとしている。   If such an acceleration device 7 is used, the control device controls the hydraulic drive system of the acceleration device 7, the falling weight holding device 8 and the stopper 4, pressurizes the hydraulic piston 7 a downward with a predetermined pressure, and pushes the falling weight 3. At the same time, the stopper 4 is opened, the falling weight holding device 8 is released, and the falling weight 3 is pushed downward at a predetermined initial speed, so that the falling weight 3 is accelerated and dropped by the external force and its own weight due to the pushing, and the specimen 6, the drop height a can be shortened, and the collision speed can be easily adjusted by adjusting the extrusion speed of the acceleration device 7.

一方、そのような場合においても、落錘衝撃試験機1としては供試体6の衝撃を受けたときの挙動を計測することが目的であって落錘3の落下に任せて完全に供試体6に圧縮を与える必要がない場合があり、また、一定の圧縮状態が生じる範囲内で衝撃試験を行う必要がある場合があった。さらに、自動車部品等を供試体6とする場合、落錘3は例えば、平面寸法1m×1m程度、重さ1トン程度のものとなり、落下に任せて制限無く供試体6に衝突させた場合、落錘3自体の損傷、変形を来たす恐れがあり、落錘3の繰り返し使用のためには、落錘3を緩衝して停止させ、供試体6の圧縮を制限することが求められていた。   On the other hand, even in such a case, the drop weight impact tester 1 is intended to measure the behavior of the specimen 6 when it receives an impact. There is a case where it is not necessary to apply compression to the case, and there is a case where it is necessary to conduct an impact test within a range where a certain compression state occurs. Further, when the automobile part or the like is used as the specimen 6, the falling weight 3 is, for example, a plane dimension of about 1 m × 1 m and a weight of about 1 ton, and when it is allowed to drop and collides with the specimen 6 without restriction, The drop weight 3 itself may be damaged or deformed, and in order to repeatedly use the drop weight 3, it has been required to buffer and stop the drop weight 3 to limit the compression of the specimen 6.

そのような場合、従来は図4に示すように、落錘3と供試体6の接触位置Bよりも、圧縮試験範囲高さbだけ下方の緩衝材位置Cに、鉛柱やアルミ柱等の緩衝材9の頂部を位置させて設置し(例えば、供試体6を囲んで4基設け、落錘3を4隅で受け止めるようにする)、落下してきた落錘3が供試体6と衝突して図中B位置からC位置までの圧縮試験範囲高さbの圧縮がなされた後は、落錘3は緩衝材9と衝突して緩衝材9の圧縮によるダンピング作用を受け衝撃が緩和されて緩衝距離c下方の落錘停止位置Dで停止するようにしていた。緩衝距離c、落錘停止位置Dは、落錘衝撃試験機1の寸法、落錘3の重量、供試体6の仕様、衝突速度等から、緩衝材9の種類、寸法等との関係で設定される
しかし、そのような従来の緩衝材9による落錘3の停止手段を用いた落錘衝撃試験機では、鉛柱やアルミ柱等の緩衝材9は衝突による圧縮変形後、自然には元の寸法形状に復帰しないので、1回の衝撃試験毎に交換を要すことになり、コスト的にも、作業効率的にも問題が多かった。
特開2005−233910号公報(第4、5頁、図1、2)
In such a case, as shown in FIG. 4, a lead column, an aluminum column, or the like is conventionally provided at a buffer material position C lower than the contact position B between the falling weight 3 and the specimen 6 by a compression test range height b. The top of the buffer material 9 is positioned (for example, four units are provided so as to surround the specimen 6 and the falling weights 3 are received at the four corners), and the falling weight 3 that has fallen collides with the specimen 6. After compression of the compression test range height b from the B position to the C position in the figure, the falling weight 3 collides with the cushioning material 9 and receives a damping action due to the compression of the cushioning material 9 to reduce the impact. It was made to stop at the falling weight stop position D below the buffer distance c. The buffer distance c and the falling weight stop position D are set in relation to the type and size of the cushioning material 9 based on the dimensions of the falling weight impact tester 1, the weight of the falling weight 3, the specifications of the specimen 6, the collision speed, and the like. However, in such a falling weight impact tester using the conventional means for stopping the falling weight 3 by the cushioning material 9, the cushioning material 9 such as a lead column or an aluminum column is naturally original after compressive deformation due to a collision. Therefore, replacement was required for each impact test, and there were many problems in terms of cost and work efficiency.
JP-A-2005-233910 (4th and 5th pages, FIGS. 1 and 2)

本発明は、上記の従来の落錘衝撃試験機の問題を解決するためになされたものであり、特に落錘の落下を途中で止めて供試体の圧縮を制限することができる落錘の停止手段を有し、落錘の停止手段が従来のように試験毎に交換を要しない落錘衝撃試験機を提供することを目的とする。   The present invention has been made to solve the above-described problems of the conventional drop weight impact tester, and in particular, stopping the drop weight that can stop the fall of the drop weight and limit the compression of the specimen. It is an object of the present invention to provide a falling weight impact testing machine having a means and a falling weight stopping means that does not require replacement for each test as in the prior art.

本発明は、上記の課題を解決するためになされ、下記の(1)から(7)の手段を提供するものであり、以下、特許請求の範囲に記載の順に説明する。   The present invention has been made to solve the above-described problems, and provides the following means (1) to (7), which will be described below in the order of the claims.

(1)その第1の手段として、落錘により供試体の衝撃試験を行なう落錘衝撃試験機において、落下する前記落錘を途中で止めて前記供試体の圧縮を制限するダンパーを具備し、同ダンパーは、上向きに突出するピストンロッドを備えピストンの上側の上室と下側の下室とに作動油を充填した油圧シリンダと、前記下室と上室との間を前記作動油が移動可能に連通する作動油連通回路と、同作動油連通回路の作動油の移動量を制限する作動油絞り手段と、前記落錘の作用しない状態で前記ピストンロッドがその上限位置に位置するように付勢するダンパー初期高さ復帰手段とを有してなることを特徴とする落錘衝撃試験機を提供する。   (1) As a first means, in a falling weight impact testing machine that performs an impact test of a specimen with a falling weight, a damper is provided that stops the falling weight halfway and restricts compression of the specimen. The damper includes a piston rod that protrudes upward, a hydraulic cylinder that is filled with hydraulic oil in an upper chamber and a lower chamber on the upper side of the piston, and the hydraulic oil moves between the lower chamber and the upper chamber. The hydraulic fluid communication circuit that communicates with the hydraulic fluid, the hydraulic oil throttle means that restricts the amount of hydraulic fluid movement in the hydraulic fluid communication circuit, and the piston rod is positioned at the upper limit position without the falling weight. There is provided a falling weight impact tester characterized by having a damper initial height return means for biasing.

(2)第2の手段としては、第1の手段の落錘衝撃試験機において、前記作動油連通回路は、前記下室から前記油圧シリンダの外に開口する下室作動油開口と、前記上室から前記油圧シリンダの外に開口する上室作動油開口と、同下室作動油開口と上室作動油開口を連通する連通管路とを備えて構成されることを特徴とする落錘衝撃試験機を提供する。   (2) As a second means, in the falling weight impact tester of the first means, the hydraulic fluid communication circuit includes a lower chamber hydraulic fluid opening that opens from the lower chamber to the outside of the hydraulic cylinder, and the upper chamber A falling weight impact comprising: an upper chamber hydraulic oil opening that opens from the chamber to the outside of the hydraulic cylinder; and a communication conduit that communicates the lower chamber hydraulic oil opening and the upper chamber hydraulic oil opening. Providing a testing machine.

(3)また、第3の手段として、第1の手段の落錘衝撃試験機において、前記作動油連通回路は、前記油圧シリンダの側面を囲み上下端が閉塞した二重管構造を形成する外筒と同油圧シリンダの外周面との間に形成された環状断面空間と、前記下室から同環状断面空間に開口する下室作動油開口と、前記上室から同環状断面空間に開口する上室作動油開口とを備えて構成されることを特徴とする落錘衝撃試験機を提供する。   (3) Further, as a third means, in the drop weight impact tester of the first means, the hydraulic fluid communication circuit is an outer part that forms a double pipe structure that surrounds the side surface of the hydraulic cylinder and closes the upper and lower ends. An annular sectional space formed between the cylinder and the outer peripheral surface of the hydraulic cylinder, a lower chamber hydraulic oil opening that opens from the lower chamber to the annular sectional space, and an upper that opens from the upper chamber to the annular sectional space. A falling weight impact testing machine characterized by comprising a chamber hydraulic oil opening is provided.

(4)第4の手段として、第2の手段の落錘衝撃試験機において、前記作動油絞り手段が前記連通管路に介装された絞り弁によって構成されてなることを特徴とする落錘衝撃試験機を提供する。   (4) As a fourth means, in the drop weight impact tester of the second means, the hydraulic oil throttle means is constituted by a throttle valve interposed in the communication pipe line. Provide impact testing machine.

(5)第5の手段として、第2または第3の手段の落錘衝撃試験機において、前記作動油絞り手段が前記下室作動油開口によって構成されてなることを特徴とする落錘衝撃試験機を提供する。   (5) As a fifth means, in the falling weight impact test machine of the second or third means, the working oil throttle means is constituted by the lower chamber working oil opening. Provide a machine.

(6)第6の手段として、第1ないし第5のいずれかの手段の落錘衝撃試験機において、前記ダンパー初期高さ復帰手段は、前記落錘の作用しない状態で前記ピストンロッドをその上限位置に位置させる付勢力を備え、且つ落錘の作用による前記ピストンロッドの下降によって前記付勢力を強めるように設定されたバネを備えてなることを特徴とする落錘衝撃試験機を提供する。   (6) As a sixth means, in the drop weight impact tester according to any one of the first to fifth means, the damper initial height return means sets the piston rod to an upper limit in a state where the drop weight does not act. There is provided a falling weight impact tester characterized by comprising an urging force positioned at a position and a spring set to strengthen the urging force by lowering of the piston rod by the action of the falling weight.

(7)第7の手段として、第1ないし第5のいずれかの手段の落錘衝撃試験機において、前記ダンパー初期高さ復帰手段は、前記作動油絞り手段と前記上室との間において前記作動油連通回路と連通し内部に作動油と与圧気体を封入したスカベンジタンクを備えて構成され、前記油圧シリンダは前記ピストンロッドの昇降に対する下室の容積変化が上室の容積変化より大きく、前記与圧気体の初期圧力は前記落錘の作用しない状態で前記作動油を介して前記油圧シリンダに作用し前記ピストンロッドをその上限位置に位置させる圧力とし、且つスカベンジタンクは、落錘の作用による前記ピストンロッドの下降によって前記油圧シリンダからスカベンジタンクに移動する作動油により前記与圧気体の気体領域が狭められるように構成されてなることを特徴とする落錘衝撃試験機を提供する。   (7) As a seventh means, in the falling weight impact tester of any one of the first to fifth means, the damper initial height return means is located between the hydraulic oil throttle means and the upper chamber. The hydraulic cylinder is configured to include a scavenge tank that communicates with the hydraulic fluid communication circuit and encloses hydraulic oil and pressurized gas therein, and the hydraulic cylinder has a larger volume change of the lower chamber than the upper chamber volume change with respect to the lifting and lowering of the piston rod, The initial pressure of the pressurized gas is a pressure that acts on the hydraulic cylinder via the hydraulic oil in a state where the falling weight does not act, and positions the piston rod at its upper limit position, and the scavenge tank acts on the falling weight. The gas region of the pressurized gas is narrowed by the hydraulic oil that moves from the hydraulic cylinder to the scavenge tank when the piston rod descends due to Providing falling weight impact tester, characterized in that.

(1)特許請求の範囲に記載の請求項1の発明によれば、落錘衝撃試験機を上記第1の手段のように構成したので、特別な操作無しで、落錘の停止手段としてのダンパーは再び初期ダンパー高さに復帰するため、次の落錘衝撃試験の準備された状態となり、従来装置のような落錘の停止手段である緩衝材の交換、再設置が不要となり、落錘衝撃試験の試験コスト的、作業効率的な負担を著しく軽減することができる。   (1) According to the first aspect of the present invention, the falling weight impact tester is configured as the first means, so that it can be used as a falling weight stopping means without any special operation. Since the damper returns to the initial damper height again, it will be ready for the next drop weight impact test, and it will not be necessary to replace or re-install the cushioning material, which is a means to stop the drop weight as in the conventional device. The burden of test cost and work efficiency of the impact test can be remarkably reduced.

(2)請求項2の発明によれば、落錘衝撃試験機を上記第2の手段のように構成したので、請求項1の発明の作用効果を奏するとともに、油圧シリンダに特別な構造を要さず作動油連通回路を簡易に構成できる。   (2) According to the invention of claim 2, since the falling weight impact tester is configured as the second means, the effects of the invention of claim 1 can be obtained and a special structure is required for the hydraulic cylinder. In addition, the hydraulic fluid communication circuit can be simply configured.

(3)請求項3の発明によれば、落錘衝撃試験機を上記第3の手段のように構成したので、請求項1の発明の作用効果を奏するとともに、作動油連通回路の構造が一体にまとまったコンパクトな態様にできる。また、請求項7の発明のように、スカベンジタンクを接続する場合は、流路抵抗の少ない大径の連通部で接続することが容易となる。   (3) According to the invention of claim 3, since the falling weight impact tester is configured as the third means, the function and effect of the invention of claim 1 are achieved and the structure of the hydraulic fluid communication circuit is integrated. A compact and compact aspect can be achieved. Moreover, when connecting a scavenge tank like invention of Claim 7, it becomes easy to connect by the large diameter communication part with little flow path resistance.

(4)請求項4の発明によれば、落錘衝撃試験機を上記第4の手段のように構成したので、請求項2の発明の作用効果を奏するとともに、作動油絞り手段を簡易に取付けられる。   (4) According to the invention of claim 4, since the falling weight impact tester is configured as the fourth means, the operational effect of the invention of claim 2 is achieved and the hydraulic oil throttle means is simply attached. It is done.

(5)請求項5の発明によれば、落錘衝撃試験機を上記第5の手段のように構成したので、請求項2または請求項3の発明の作用効果を奏するとともに、下室作動油開口の外側には、ダンピング作用時に下室内に発生する高圧が作用せず、作動油連通回路等、落錘衝撃試験機の機械的仕様を軽減することができる。   (5) According to the invention of claim 5, since the falling weight impact tester is configured as the fifth means, the operational effect of the invention of claim 2 or claim 3 is obtained, and the lower chamber hydraulic oil is provided. The high pressure generated in the lower chamber at the time of damping action does not act on the outside of the opening, and the mechanical specifications of the falling weight impact tester such as a hydraulic fluid communication circuit can be reduced.

(6)請求項6の発明によれば、落錘衝撃試験機を上記第6の手段のように構成したので、請求項1ないし請求項5のいずれかの発明の作用効果を奏するとともに、ダンパー初期高さ復帰手段がバネで構成されるため、装置構成を簡易にできる。   (6) According to the invention of claim 6, since the falling weight impact tester is configured as the sixth means, the effect of the invention of any one of claims 1 to 5 can be achieved, and the damper Since the initial height return means is constituted by a spring, the device configuration can be simplified.

(7)請求項7の発明によれば、落錘衝撃試験機を上記第7の手段のように構成したので、請求項1ないし請求項5のいずれかの発明の作用効果を奏するとともに、ダンピング
作用後にダンパーの位置を初期高さに戻す作用を、スカベンジタンク内で昇圧させられた与圧気体の圧力で行なうため、そのつどの加圧操作が不要で、繰り返し操作において損傷、損耗の恐れが少なく、バネのようにダンパーが受ける衝撃力によって徐々にバネの機械的特性に変化を来たす恐れもなく、ダンパーの初期高さ復帰機能がより優れたものとなる。
(7) According to the invention of claim 7, since the falling weight impact tester is configured as the seventh means, the function and effect of the invention of any one of claims 1 to 5 can be achieved and the damping can be achieved. After the action, the action of returning the damper position to the initial height is performed by the pressure of the pressurized gas raised in the scavenge tank, so there is no need for each pressurizing operation, and there is a risk of damage or wear in repeated operations. There is little fear that the mechanical characteristics of the spring will gradually change due to the impact force applied to the damper like a spring, and the initial height return function of the damper will be more excellent.

本発明を実施するための最良の形態として、以下に実施例1と実施例2を説明する。   As the best mode for carrying out the present invention, Examples 1 and 2 will be described below.

図1、図2により本発明の実施例1に係る落錘衝撃試験機を説明する。図1は本実施例の模式的な構成説明図であり、図2は本実施例におけるダンパーの模式的な断面説明図である。図1、図2において、従来例を示した図4と同じ部分には同じ符号を付して説明を簡略にし、本実施例において従来例と異なる部分を主に以下説明する。なお、図1は後述の実施例2の説明にも用いる。   A falling weight impact tester according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration explanatory view of the present embodiment, and FIG. 2 is a schematic cross-sectional explanatory view of a damper in the present embodiment. In FIG. 1 and FIG. 2, the same parts as those in FIG. 4 showing the conventional example are given the same reference numerals to simplify the description, and the parts different from the conventional example in this embodiment will be mainly described below. FIG. 1 is also used for the description of the second embodiment described later.

図1に模式的な説明図を示すように、本実施例の落錘衝撃試験機10は、図4に示した緩衝材9に代えて、落錘の落下を途中で止めて供試体6の圧縮を制限するダンパー11を、落錘3と供試体6の接触位置Bよりも、圧縮試験範囲高さbだけ下方のダンパー位置Cにその頂部を位置させ、供試体6を囲んで4基、落錘3を四隅で受け止めるように設けたことが異なり、他は図4に示した従来例と同様に構成される。   As shown schematically in FIG. 1, the falling weight impact test machine 10 of the present embodiment replaces the cushioning material 9 shown in FIG. The damper 11 that restricts compression is positioned at the top of the damper position C below the contact position B of the falling weight 3 and the specimen 6 by a compression test range height b, and surrounds the specimen 6 with four groups. The falling weight 3 is provided so as to be received at the four corners, and the rest is configured similarly to the conventional example shown in FIG.

落錘衝撃試験機10の架構2上には、油圧駆動系を有する加速装置7を設け、加速装置7の油圧ピストン7aの先端に、落錘3の保持、切離しが可能な落錘保持装置8を取付けている。   An accelerating device 7 having a hydraulic drive system is provided on the frame 2 of the falling weight impact testing machine 10, and a falling weight holding device 8 capable of holding and separating the falling weight 3 at the tip of the hydraulic piston 7 a of the accelerating device 7. Is installed.

自動車部品等の供試体6の衝撃試験を行なうには、落錘(ウエイト)3を図示しない適宜の手段で吊り上げ、落錘衝撃試験機10の架構2内の所定の高さ位置Aにストッパ4で位置させ、加速装置7の油圧ピストン7aの先端の落錘保持装置8に保持させる。   In order to perform an impact test on the specimen 6 such as an automobile part, the falling weight (weight) 3 is lifted by an appropriate means (not shown), and the stopper 4 is placed at a predetermined height position A in the frame 2 of the falling weight impact tester 10. And is held by the falling weight holding device 8 at the tip of the hydraulic piston 7a of the acceleration device 7.

その後、加速装置7の油圧駆動系と落錘保持装置8とストッパ4を図示されない制御装置によって制御し、ピストン7aを所定の圧力で下方に加圧し落錘3を押し込むとともに、ストッパ4を開放し(図1中破線)、落錘保持装置8を解除して、所定の初速で落錘3を下方に押し出して、架構2に取り付けた図示しない鉛直方向のスライダに落錘3をガイドさせて図中白抜き矢印のように落下させ、その直下の載置台5上の所定の位置に設置しておいた供試体6に衝突させて、供試体6の状態の検証等を行なう。   Thereafter, the hydraulic drive system of the accelerating device 7, the falling weight holding device 8 and the stopper 4 are controlled by a control device (not shown) to pressurize the piston 7a downward with a predetermined pressure to push the falling weight 3 and open the stopper 4. (Dotted line in FIG. 1), the falling weight holding device 8 is released, the falling weight 3 is pushed downward at a predetermined initial speed, and the falling weight 3 is guided by a vertical slider (not shown) attached to the frame 2. The sample is dropped as indicated by a hollow outline and is made to collide with a specimen 6 placed at a predetermined position on the mounting table 5 immediately below it, and the state of the specimen 6 is verified.

落錘3は押し込みによる外力と自重とにより加速して落下し、供試体6に衝突させることができ、落下高さaを短縮でき、かつ、衝突速度の調整も加速装置7の押し出し速度の調整で容易に行なえる。   The falling weight 3 is accelerated and dropped by the external force and its own weight due to the pushing, and can be made to collide with the specimen 6, the falling height a can be shortened, and the collision speed can be adjusted and the pushing speed of the acceleration device 7 can be adjusted. Easy to do.

また、落錘3と供試体6の接触位置Bよりも、圧縮試験範囲高さbだけ下方のダンパー位置C(ダンパー11の初期高さh)に、ダンパー11が頂部を位置させて設置されており(例えば、供試体6を囲んで4基設け、落錘3を4隅で受け止めるようにする)、落下してきた落錘3が供試体6と衝突して図中B位置からC位置までの圧縮試験範囲高さ(供試体6に圧縮を与えて検証しようとする圧縮高さ)bの圧縮がなされた後は、落錘3はダンパー11の頂部と衝突してダンパー11のダンピング作用を受け衝撃の緩和された制動を受けつつ下降し、緩衝距離c下方の落錘停止位置Dで停止する。緩衝距離cは、衝突速度、落錘3の重量、供試体6の大きさ等に対して適切な緩衝が得られるように設定されるが、具体的には、ダンパー11を構成する油圧ピストンのストロークとなる。 In addition, the damper 11 is installed with the top positioned at a damper position C (the initial height h 0 of the damper 11) that is lower than the contact position B between the falling weight 3 and the specimen 6 by the compression test range height b. (For example, four bases are provided surrounding the specimen 6 and the falling weights 3 are received at the four corners.) The falling weight 3 collides with the specimen 6 and moves from the B position to the C position in the figure. After the compression of the compression test range height (compression height to be verified by applying compression to the specimen 6) b, the falling weight 3 collides with the top of the damper 11 and the damping action of the damper 11 is performed. The vehicle descends while receiving braking with reduced impact, and stops at a falling weight stop position D below the buffer distance c. The buffering distance c is set so that an appropriate buffering can be obtained with respect to the collision speed, the weight of the falling weight 3, the size of the specimen 6, and the like. Stroke.

ダンパー11は、図2に示すように、油圧シリンダ12と、油圧シリンダ12内を上下に移動するピストン13と下部ピストンロッド14a、上部ピストンロッド14bを有し、下部ピストンロッド14aの下端は最も下降したとき油圧シリンダ12下端内面に当接してピストン13の下降限位置を規定し、上部ピストンロッド14bの上端は上向きに油圧シリンダ12から突出し、キャップ14cを装着している。   As shown in FIG. 2, the damper 11 has a hydraulic cylinder 12, a piston 13 that moves up and down in the hydraulic cylinder 12, a lower piston rod 14a, and an upper piston rod 14b. In this case, the lower end position of the piston 13 is defined by coming into contact with the inner surface of the lower end of the hydraulic cylinder 12, and the upper end of the upper piston rod 14b protrudes upward from the hydraulic cylinder 12 and is fitted with a cap 14c.

油圧シリンダ12内のピストン13の下部は下室12a、上部は上室12bを形成する。ピストン13は最も上昇したとき油圧シリンダ12の上端内面に当接しピストン13の上昇限位置を規定するようになっているが、油圧シリンダ12上限の内周面には拡径部12cが設けられ、ピストン13が上限位置にあるときにも上室12bの空間が維持されるように構成されている。なお、上記拡径部12cに代えて、あるいは加えてピストン13の上端外周面に小径部を設けることによって、ピストン13上限時の上室12bの空間を維持するようにしてもよい。   The lower portion of the piston 13 in the hydraulic cylinder 12 forms a lower chamber 12a, and the upper portion forms an upper chamber 12b. The piston 13 abuts against the inner surface of the upper end of the hydraulic cylinder 12 when the piston 13 is most raised, and defines the ascending limit position of the piston 13, but an enlarged diameter portion 12 c is provided on the inner peripheral surface of the upper end of the hydraulic cylinder 12. Even when the piston 13 is in the upper limit position, the space of the upper chamber 12b is maintained. Note that the space of the upper chamber 12b at the upper limit of the piston 13 may be maintained by providing a small-diameter portion on the outer peripheral surface of the upper end of the piston 13 instead of or in addition to the enlarged diameter portion 12c.

油圧シリンダ12の下室12a内には、ダンパー初期高さ復帰手段として、落錘3の作用しない状態で、ピストン13およびピストンロッド14a、bを上限位置まで移動させ、そこに位置させておけるように付勢する初期付勢力が設定されたバネ15が設けられている。   In the lower chamber 12a of the hydraulic cylinder 12, as a damper initial height return means, the piston 13 and the piston rods 14a, b can be moved to the upper limit position without the falling weight 3 being actuated, and can be positioned there. A spring 15 is provided in which an initial biasing force for biasing is set.

また、バネ15は、後述するように、ダンパー11が落下する落錘3を受けて油圧シリンダ12が作動し、そのピストン13が上限位置から下限位置に移動したとき、圧縮され、その圧縮に対する反発力を初期設定付勢力に加えて強め、ピストン13、ピストンロッド14a、bを上限位置に上昇させ、ダンパー初期高さhに復帰させる。 As will be described later, the spring 15 is compressed when the hydraulic cylinder 12 is actuated by receiving the falling weight 3 from which the damper 11 falls, and the piston 13 moves from the upper limit position to the lower limit position, and repulsion against the compression. strengthened by applying a force to the initial setting urging force, the piston 13, the piston rod 14a, b was raised to the upper limit position, it is returned to the damper initial height h 0.

なお、バネは図示のように下室12aに装備されるものに限らず、上室12bあるいは外部に設けてもよく、ピストンロッド14a、bを上限位置に復帰させるものであればよい。また、バネ15は引張側で作用させるものであってもよい。   The springs are not limited to those provided in the lower chamber 12a as shown, but may be provided in the upper chamber 12b or outside as long as the piston rods 14a and 14b are returned to the upper limit position. Further, the spring 15 may be operated on the tension side.

したがって、ピストン13が上限に位置した時のキャップ14cの頂部位置が上記ダンパー位置C(ダンパー11の初期高さh)となり、ピストン13が下降限位置にある時のキャップ14cの頂部位置が上記落錘停止位置Dとなる。 Therefore, the top position of the cap 14c when the piston 13 is located at the upper limit is the damper position C (the initial height h 0 of the damper 11), and the top position of the cap 14c when the piston 13 is at the lower limit position. This is the falling weight stop position D.

また、油圧シリンダ12の下室12aには下室作動油開口16aが、上室12bには上室作動油開口16bが設けられ、相互に連通管路16cで連通する作動油連通回路を形成しており、連通管路16cには作動油絞り手段として絞り弁16dが介装されている。   Further, a lower chamber hydraulic oil opening 16a is provided in the lower chamber 12a of the hydraulic cylinder 12, and an upper chamber hydraulic oil aperture 16b is provided in the upper chamber 12b to form a hydraulic fluid communication circuit that communicates with each other via a communication pipe line 16c. A throttle valve 16d is interposed in the communication pipe line 16c as hydraulic oil throttle means.

この作動油絞り手段は、ピストン13が急激に下降しようとしたときに、下室12aから上室12bへの作動油mの移動量を制限してピストンロッド14a、bにダンピング作用を与えるものであり、上記作動油連通回路に設ければよく、連通管路16cに介装した絞り弁16dに限らず、下室作動油開口16aを絞り作用を与える程度の狭めた開口径に形成したものでもよい。また、連通管路16cは一般的な管路の形でなく油圧シリンダ12を囲み上下端が閉塞した二重管の形で形成されても良い。ただし、作動油連通回路を本実施例1のように構成すれば、油圧シリンダ12に特別な構造を要さず簡易に構成できる。また、作動油絞り手段を本実施例1のように絞り弁16cで構成すれば、作動油絞り手段を簡易に取付けられる。   This hydraulic oil squeezing means limits the amount of movement of hydraulic oil m from the lower chamber 12a to the upper chamber 12b when the piston 13 is about to descend rapidly, and gives a damping action to the piston rods 14a, b. Yes, it may be provided in the hydraulic fluid communication circuit, and is not limited to the throttle valve 16d interposed in the communication conduit 16c, but may be one in which the lower chamber hydraulic fluid aperture 16a is formed to have a narrowed opening diameter that gives a throttle action. Good. The communication pipe 16c may be formed in the form of a double pipe that surrounds the hydraulic cylinder 12 and is closed at the upper and lower ends, instead of a general pipe. However, if the hydraulic fluid communication circuit is configured as in the first embodiment, the hydraulic cylinder 12 can be easily configured without requiring a special structure. Further, if the hydraulic oil throttle means is constituted by the throttle valve 16c as in the first embodiment, the hydraulic oil throttle means can be easily attached.

また、下室12aはピストン13下降時に油圧シリンダ12の内径に従う作動油mを排出するが、上室12aは常時上部ピストンロッド14bが存在し受け入れる作動油はそれより少なく、余剰の作動油が生じる。また、逆工程ではその逆が生じる。   The lower chamber 12a discharges the hydraulic oil m according to the inner diameter of the hydraulic cylinder 12 when the piston 13 descends. However, the upper chamber 12a always has the upper piston rod 14b and receives less hydraulic oil, and surplus hydraulic oil is generated. . The reverse occurs in the reverse process.

すなわち、ピストン13、ピストンロッド14a、bの昇降に対する下室12a、上室12bの容積変化が異なり、下室12aの容積変化量が大きい。そこで、上記の作動油絞り手段と上室作動油開口16bとの間には作動油溜め17が接続されており、ピストン13の移動による下室12aと上室12bの作動油量の合計量の変動をカバーしている。   That is, the volume changes of the lower chamber 12a and the upper chamber 12b with respect to the raising and lowering of the piston 13 and the piston rods 14a, b are different, and the volume change amount of the lower chamber 12a is large. Therefore, a hydraulic oil reservoir 17 is connected between the hydraulic oil throttle means and the upper chamber hydraulic oil opening 16b, and the total amount of hydraulic oil in the lower chamber 12a and the upper chamber 12b due to the movement of the piston 13 is calculated. Covers fluctuations.

上記のような本実施例の落錘衝撃試験機10においては、落錘3が落下し、供試体6に所定の圧縮試験範囲高さbの圧縮がなされた後は、図2中白抜き矢印のようにダンパー位置C(ダンパー11の初期高さh)において落錘3はダンパー11の上部ピストンロッド14bの頂部のキャップ14cと衝突する。そのため、ピストン13が白抜き矢印のように急激に下降し油圧シリンダ12内の作動油mが下室12aから上室12bへ、下室作動油開口16a、連通管路16c、上室作動油開口16bからなる作動油連通回路を通り移動しようとするが、作動油絞り手段としての絞り弁16dにより流量が絞られ、ピストンロッド14a、bの下降動作にダンピング作用を与える。このとき、下室12aから排出される作動油mのうち上室12bに移動した余剰は作動油溜め17へ送り込まれる。 In the falling weight impact test machine 10 of the present embodiment as described above, after the falling weight 3 falls and the specimen 6 is compressed to a predetermined compression test range height b, the white arrow in FIG. Thus, at the damper position C (initial height h 0 of the damper 11), the falling weight 3 collides with the cap 14 c at the top of the upper piston rod 14 b of the damper 11. Therefore, the piston 13 rapidly descends as indicated by the white arrow, and the hydraulic oil m in the hydraulic cylinder 12 moves from the lower chamber 12a to the upper chamber 12b, the lower chamber hydraulic oil opening 16a, the communication conduit 16c, and the upper chamber hydraulic oil opening. Although it tries to move through the hydraulic fluid communication circuit comprising 16b, the flow rate is throttled by the throttle valve 16d as hydraulic fluid throttle means, and a damping action is given to the downward movement of the piston rods 14a, b. At this time, surplus that has moved to the upper chamber 12 b out of the hydraulic oil m discharged from the lower chamber 12 a is sent to the hydraulic oil reservoir 17.

したがって、落錘3はダンパー11によって緩衝された制動を受け、緩衝距離cにおいて過度な衝撃を避けて急速に制動されて、最終的には落錘停止位置Dに停止する。   Therefore, the falling weight 3 receives the braking buffered by the damper 11, is rapidly braked avoiding an excessive impact at the buffering distance c, and finally stops at the falling weight stop position D.

その間、下室12a内のバネ15は図2中2点鎖線で示すように下降するピストン13により圧縮を受けるが、試験後、落錘3が引き上げられると、バネ15は初期設定の付勢力に圧縮に対する反発力を加えてピストン13を上方に押し上げ、上部ピストンロッド14bのキャップ14cの頂部がダンパー位置Cになるように戻る。このとき、ピストン13の上昇によって下室12aに戻る作動油mのうち、上室12bから移動する作動油では不足する分は作動油溜め17から下室12aに移動する。   In the meantime, the spring 15 in the lower chamber 12a is compressed by the descending piston 13 as shown by a two-dot chain line in FIG. 2, but when the falling weight 3 is pulled up after the test, the spring 15 is set to the initial biasing force. Applying a repulsive force against compression, the piston 13 is pushed upward, and the top portion of the cap 14c of the upper piston rod 14b returns to the damper position C. At this time, of the hydraulic oil m that returns to the lower chamber 12a due to the rise of the piston 13, the amount that is insufficient for the hydraulic oil that moves from the upper chamber 12b moves from the hydraulic oil reservoir 17 to the lower chamber 12a.

そのため、特別な操作無しで、ダンパー11は再び初期ダンパー高さhに復帰するので、次の落錘衝撃試験の準備された状態となり、上述した従来装置のような緩衝材9の交換、再設置が不要となり、落錘衝撃試験の試験コスト的、作業効率的な負担を著しく軽減することができる。特に本実施例においては、ダンパー初期高さ復帰手段としてバネ15を用いているので、装置構成を簡易にできる。 For this reason, the damper 11 returns to the initial damper height h 0 again without any special operation, so that it is ready for the next drop weight impact test. Installation is unnecessary, and the burden of test cost and work efficiency of the drop weight impact test can be remarkably reduced. In particular, in this embodiment, since the spring 15 is used as the damper initial height return means, the apparatus configuration can be simplified.

次に、図1、図3により本発明の実施例2に係る落錘衝撃試験機を説明する。図1は本実施例の模式的な構成説明図であり、図3は本実施例におけるダンパーの断面説明図である。図3において、実施例1を示した図2と同じ部分には同じ符号を付して説明を省略し、本実施例において実施例1と異なる部分を主に以下説明する。   Next, a falling weight impact tester according to Embodiment 2 of the present invention will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of the present embodiment, and FIG. 3 is a cross-sectional diagram of a damper in the present embodiment. In FIG. 3, the same parts as those in FIG. 2 showing the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. In the present embodiment, parts different from the first embodiment are mainly described below.

図1に模式的な説明図を示すように、本実施例の落錘衝撃試験機20は、図1、図2に示したダンパー11に代えて、ダンパー21を設けたことが異なり、他は図1、図2に示した実施例1と同様に構成される。   As shown schematically in FIG. 1, the falling weight impact test machine 20 of the present embodiment is different from the damper 11 shown in FIGS. 1 and 2 in that a damper 21 is provided. The configuration is the same as that of the first embodiment shown in FIGS.

図1に示すように、本実施例の落錘衝撃試験機20は、実施例1と同様に、架構2上には、油圧駆動系を有する加速装置7を設け、加速装置7の油圧ピストン7aの先端に、落錘3の保持、切離しが可能な落錘保持装置8を取付けている。   As shown in FIG. 1, in the falling weight impact test machine 20 of the present embodiment, an acceleration device 7 having a hydraulic drive system is provided on the frame 2 as in the first embodiment, and the hydraulic piston 7a of the acceleration device 7 is provided. A falling weight holding device 8 capable of holding and separating the falling weight 3 is attached to the tip of the falling weight.

自動車部品等の供試体6の衝撃試験は落錘3を用いて同様に行なわれる。   The impact test of the specimen 6 such as an automobile part is similarly performed using the falling weight 3.

本実施例のダンパー21も、落錘3と供試体6の接触位置Bよりも、圧縮試験範囲高さbだけ下方のダンパー位置C(ダンパー21の初期高さh)に、ダンパー21が頂部を位置させて設置されており(例えば、供試体6を囲んで4基設け、落錘3を4隅で受け止めるようにする)、図中白抜き矢印のように落下してきた落錘3が供試体6と衝突して図中B位置からC位置までの圧縮試験範囲高さbの圧縮がなされた後は、図3中白抜き矢印のように落錘3はダンパー21の頂部と衝突してダンパー21のダンピング作用を受け衝撃の緩和された制動を受けつつ下降し、緩衝距離c下方の落錘停止位置Dで停止する。緩衝距離cは、衝突速度、落錘3の重量、供試体6の大きさ等に対して適切な緩衝が得られるように設定されるが、具体的には、ダンパー21を構成する油圧ピストンのストロークとなる。 The damper 21 of the present embodiment also has a damper 21 at the top at a damper position C (the initial height h 0 of the damper 21) that is lower than the contact position B of the falling weight 3 and the specimen 6 by the compression test range height b. (For example, four bases are provided so as to surround the specimen 6 and the falling weights 3 are received at the four corners), and the falling weight 3 that has fallen as indicated by the white arrow in the figure is provided. After collision with the specimen 6 and compression of the compression test range height b from the B position to the C position in the figure, the falling weight 3 collides with the top of the damper 21 as indicated by the white arrow in FIG. Due to the damping action of the damper 21, the vehicle descends while receiving braking with reduced impact, and stops at a falling weight stop position D below the buffer distance c. The buffer distance c is set so as to obtain an appropriate buffer with respect to the collision speed, the weight of the falling weight 3, the size of the specimen 6, and the like. Stroke.

ダンパー21は、図3に示すように、油圧シリンダ22と、油圧シリンダ22内を上下に移動するピストン23と下部ピストンロッド24a、上部ピストンロッド24bを有し、下部ピストンロッド24aの下端は最も下降したとき油圧シリンダ22の下端内面に当接してピストン23の下降限位置を規定し、上部ピストンロッド24bの上端は上向きに油圧シリンダ22から突出し、キャップ24cを装着している。   As shown in FIG. 3, the damper 21 has a hydraulic cylinder 22, a piston 23 that moves up and down in the hydraulic cylinder 22, a lower piston rod 24a, and an upper piston rod 24b, and the lower end of the lower piston rod 24a is lowered most. Then, the lower end inner surface of the hydraulic cylinder 22 is brought into contact with the lower limit position of the piston 23, and the upper end of the upper piston rod 24b protrudes upward from the hydraulic cylinder 22 and is fitted with a cap 24c.

油圧シリンダ22内のピストン23の下部は下室22a、上部は上室22bを形成する。ピストン23は最も上昇したとき油圧シリンダ22に上端内面に当接しピストン23の上昇限位置を規定するようになっているが、油圧シリンダ22上限の内周面には拡径部22cが設けられ、ピストン23が上限位置にあるときにも上室22bの空間が維持されるように構成されている。なお、上記拡径部22cに代えて、あるいは加えてピストン23の上端外周面に小径部を設けることによって、ピストン23上限時の上室22bの空間を維持するようにしてもよい。   The lower part of the piston 23 in the hydraulic cylinder 22 forms a lower chamber 22a, and the upper part forms an upper chamber 22b. The piston 23 comes into contact with the inner surface of the upper end of the hydraulic cylinder 22 when the piston 23 rises the most, and defines the ascending limit position of the piston 23. However, an enlarged diameter portion 22c is provided on the inner peripheral surface of the upper limit of the hydraulic cylinder 22, Even when the piston 23 is at the upper limit position, the space of the upper chamber 22b is maintained. Note that the space of the upper chamber 22b at the upper limit of the piston 23 may be maintained by providing a small-diameter portion on the outer peripheral surface of the upper end of the piston 23 instead of or in addition to the enlarged diameter portion 22c.

したがって、ピストン23が上限に位置する時のキャップ24cの頂部位置が上記ダンパー位置C(ダンパー21の初期高さh)となり、ピストン23が下降限位置にある時のキャップ24cの頂部位置が上記落錘停止位置Dとなる。 Accordingly, the top position of the cap 24c when the piston 23 is located at the upper limit is the damper position C (the initial height h 0 of the damper 21), and the top position of the cap 24c when the piston 23 is at the lower limit position. This is the falling weight stop position D.

油圧シリンダ22には、その側面を囲み上下端が閉塞した二重管構造を形成する外筒28が取付けられており、油圧シリンダ22外周面と外筒28の間に環状断面空間26cが形成されている。油圧シリンダ22の側部には下室22aと環状断面空間26cとを連通する下室作動油開口26aが、上室22bと環状断面空間26cを連通する上室作動油開口26bが設けられている。   The hydraulic cylinder 22 is attached with an outer cylinder 28 that forms a double-pipe structure that surrounds the side surface and closes the upper and lower ends, and an annular cross-sectional space 26 c is formed between the outer peripheral surface of the hydraulic cylinder 22 and the outer cylinder 28. ing. On the side of the hydraulic cylinder 22, a lower chamber hydraulic oil opening 26a that communicates the lower chamber 22a and the annular sectional space 26c is provided, and an upper chamber hydraulic oil opening 26b that communicates the upper chamber 22b and the annular sectional space 26c. .

また、下室作動油開口26aは、ピストン23が白抜き矢印のように急激に下降しようとしたときに、下室22aから環状断面空間26cへの作動油mの移動量を制限してピストンロッド24a、bにダンピング作用を与えるように、その開口径が設定されている。また、複数箇所設けられ、ピストン23が下降するに従って連通する下室作動油開口26aの数をピストン23によって減じてダンピング作用を増加するように配置されることが好ましい。   Further, the lower chamber hydraulic oil opening 26a restricts the amount of movement of the hydraulic oil m from the lower chamber 22a to the annular cross-section space 26c when the piston 23 is going to descend rapidly as indicated by the white arrow. The opening diameter is set so as to give a damping action to 24a and b. Moreover, it is preferable that the number of lower chamber hydraulic oil openings 26a that are provided at a plurality of locations and communicate with each other as the piston 23 descends is reduced by the piston 23 to increase the damping action.

したがって、油圧シリンダ22の下室22aは、下室作動油開口26a、環状断面空間26c、上室作動油開口26bが形成する作動油連通回路で連通しており、下室作動油開口26aは作動油絞り手段として機能する。   Accordingly, the lower chamber 22a of the hydraulic cylinder 22 communicates with a hydraulic fluid communication circuit formed by the lower chamber hydraulic fluid opening 26a, the annular sectional space 26c, and the upper chamber hydraulic fluid opening 26b, and the lower chamber hydraulic fluid opening 26a operates. Functions as oil squeezing means.

なお、作動油絞り手段は、ピストン23が急激に下降しようとしたときに、作動油mが下室22aから環状断面空間26cへの移動量を制限してピストンロッド24a、bにダンピング作用を与えるものであり、上記作動油連通回路に設ければよく、上記二重管構造による環状断面空間26cに代えて、実施例1に示したような連通管路16cを設けて下室作動油開口26aと上室作動油開口26bを連通させた場合には、作動油絞り手段として適宜な絞り弁16dを連通管路16cに介装しても良い。   The hydraulic oil throttle means limits the amount of movement of the hydraulic oil m from the lower chamber 22a to the annular cross-sectional space 26c when the piston 23 is going to drop rapidly, and gives a damping action to the piston rods 24a, b. The hydraulic fluid communication circuit may be provided, and instead of the annular sectional space 26c having the double pipe structure, the communication fluid passage 16c as shown in the first embodiment is provided to provide the lower chamber hydraulic oil opening 26a. When the upper chamber hydraulic oil opening 26b is communicated, an appropriate throttle valve 16d may be interposed in the communication pipe line 16c as hydraulic oil throttle means.

また、実施例1で述べたように、下室22aはピストン23下降時に油圧シリンダ22内径に従う作動油mを排出するが、上室22bは常時上部ピストンロッド24bが存在し受け入れる作動油mはそれより少なく、余剰の作動油mが生じる。また、逆工程ではその逆が生じる。   Further, as described in the first embodiment, the lower chamber 22a discharges the hydraulic oil m according to the inner diameter of the hydraulic cylinder 22 when the piston 23 descends, but the upper chamber 22b always has the upper piston rod 24b and the hydraulic oil m to be received is Less surplus hydraulic oil m is produced. The reverse occurs in the reverse process.

すなわち、ピストン23、ピストンロッド24a、bの昇降に対する下室22a、上室22bの容積変化が異なり、下室22aの容積変化量が大きい。そこで、実施例1ではピストン13の移動による下室12aと上室12bの作動油量の合計量の変動をカバーするため、作動油絞り手段と上室作動油開口16bとの間に作動油溜め17を接続しているが、本実施例では、作動油絞り手段としての下室作動油開口26aと上室作動油開口26bとの間を接続する環状断面空間26cに、スカベンジタンク30を連通して設けている。   That is, the volume changes of the lower chamber 22a and the upper chamber 22b with respect to the elevation of the piston 23 and the piston rods 24a, b are different, and the volume change amount of the lower chamber 22a is large. Therefore, in the first embodiment, in order to cover the change in the total amount of hydraulic oil in the lower chamber 12a and the upper chamber 12b due to the movement of the piston 13, a hydraulic oil reservoir is provided between the hydraulic oil throttle means and the upper chamber hydraulic oil opening 16b. In this embodiment, the scavenge tank 30 is communicated with an annular sectional space 26c that connects between the lower chamber hydraulic oil opening 26a and the upper chamber hydraulic oil opening 26b as hydraulic oil throttle means. Provided.

スカベンジタンク30は、ダンパー初期高さ復帰手段として機能するものであり、環状断面空間26cと流路抵抗の少ない大径の連通部30aで接続し、連通部30aを介して油圧タンク内と移動しあう作動油mが充填され、作動油mの液面の上部には所定の圧力(例えば5気圧)の与圧気体n(空気、または希ガス)が封入された密閉タンクである。   The scavenge tank 30 functions as a damper initial height return means, and is connected to the annular cross-sectional space 26c through a large-diameter communication portion 30a having a small flow resistance, and moves to the inside of the hydraulic tank via the communication portion 30a. This is a closed tank filled with the corresponding hydraulic oil m and filled with a pressurized gas n (air or rare gas) having a predetermined pressure (for example, 5 atm) at the top of the liquid level of the hydraulic oil m.

与圧気体の圧力は、スカベンジタンク30内の作動油mを介して油圧シリンダ22内に作用するが、ピストン23の下室22a側は油圧シリンダ22全径が受圧面であり、上室22b側は上部ピストンロッド24bを除く面が受圧面のため、圧力差によってピストン23を上方に付勢する。そこで、与圧気体の圧力は、落錘3の作用しない状態で、ピストン23とピストンロッド24a、bをその上限位置に移動させ、位置させておける圧力に設定されている。   The pressure of the pressurized gas acts on the hydraulic cylinder 22 via the hydraulic oil m in the scavenge tank 30, but the lower chamber 22a side of the piston 23 is the pressure receiving surface of the entire hydraulic cylinder 22 and the upper chamber 22b side. Since the surface excluding the upper piston rod 24b is the pressure receiving surface, the piston 23 is urged upward by the pressure difference. Therefore, the pressure of the pressurized gas is set to a pressure at which the piston 23 and the piston rods 24a, b are moved to their upper limit positions in a state where the falling weight 3 does not act.

また、スカベンジタンク30は、ダンパー21が落下する落錘3を受けて停止させるとき、油圧シリンダ22が作動し、そのピストン23が上限位置から下限位置に下降したとき、下室22aから上室22bへ移動する作動油mの余剰量を受け入れるものであり、油圧シリンダ22からスカベンジタンク30への作動油mの移動によるスカベンジタンク30内の作動油液面の上昇(図3中、位置Eから位置Fへの上昇)によって、密封された与圧気体nの気体領域31を狭め、その結果として、与圧気体nの圧力を高める構成となっている。   Further, the scavenge tank 30 receives the falling weight 3 from which the damper 21 is dropped and stops, and when the hydraulic cylinder 22 is operated and its piston 23 is lowered from the upper limit position to the lower limit position, the lower chamber 22a is changed to the upper chamber 22b. The surplus amount of hydraulic oil m moving to the scavenge tank 30 is received by the movement of the hydraulic oil m from the hydraulic cylinder 22 to the scavenge tank 30 (from position E in FIG. The gas region 31 of the pressurized pressurized gas n is narrowed by the rise to F), and as a result, the pressure of the pressurized gas n is increased.

上記のような本実施例の落錘衝撃試験機20においては、落錘3が落下し、供試体6に所定の圧縮試験範囲高さbの圧縮がなされた後は、図3中白抜き矢印のようにダンパー位置C(ダンパー21の初期高さh)において落錘3はダンパー21の上部ピストンロッド24bの頂部のキャップ24cと衝突する。 In the falling weight impact testing machine 20 of the present embodiment as described above, after the falling weight 3 falls and the specimen 6 is compressed to a predetermined compression test range height b, the white arrow in FIG. Thus, at the damper position C (initial height h 0 of the damper 21), the falling weight 3 collides with the cap 24 c at the top of the upper piston rod 24 b of the damper 21.

そのため、ピストン23が急激に下降し油圧シリンダ22内の作動油mが下室22aから上室22bへ、下室作動油開口26a、環状断面空間26c、上室作動油開口26bからなる作動油連通回路を通り移動しようとするが、作動油絞り手段としての下室作動油開口26aにより流量が絞られ、ピストンロッド24a、bの下降動作にダンピング作用を与える。   Therefore, the piston 23 suddenly descends, and the hydraulic oil m in the hydraulic cylinder 22 communicates from the lower chamber 22a to the upper chamber 22b through the hydraulic fluid communication comprising the lower chamber hydraulic oil opening 26a, the annular cross-sectional space 26c, and the upper chamber hydraulic oil opening 26b. While trying to move through the circuit, the flow rate is throttled by the lower chamber hydraulic oil opening 26a as the hydraulic oil throttle means, and a damping action is given to the downward movement of the piston rods 24a, b.

したがって、落錘3はダンパー21によって緩衝された制動を受け、緩衝距離cにおいて過度な衝撃を避けて急速に制動され、最終的には落錘停止位置Dに停止する。   Therefore, the falling weight 3 receives the braking buffered by the damper 21, is rapidly braked at the buffering distance c while avoiding an excessive impact, and finally stops at the falling weight stop position D.

このとき、下室22aから排出される作動油mのうち上室22bに移動した余剰はスカベンジタンク30へ送り込まれ、スカベンジタンク30内の作動油面は、図3に示すように、初期油面位置Eから、最大油面位置Fまで、高さeだけ上昇し、その分、上部の気体領域31を狭め、与圧気体nの圧力が上昇する(例えば初期5気圧だったものが8〜10気圧へと上昇)。   At this time, surplus that has moved to the upper chamber 22b out of the hydraulic oil m discharged from the lower chamber 22a is sent to the scavenge tank 30, and the hydraulic oil surface in the scavenge tank 30 has an initial oil level as shown in FIG. From the position E to the maximum oil level position F, the height e is increased, and the upper gas region 31 is narrowed accordingly, and the pressure of the pressurized gas n is increased (for example, 8 to 10 at the initial pressure of 5 atm). To atmospheric pressure).

試験後、落錘3が引き上げられると、スカベンジタンク30内の作動油mは、昇圧された与圧気体nの圧力により、連通部30a、環状断面空間26cを経由し、下室作動油開口26aから油圧シリンダ22の下室22aへと、また、上室作動油開口26bから上室22bへと押し戻されるが、下室22aは油圧シリンダ22全径が受圧面であり、上室22bは上部ピストンロッド24bを除く面が受圧面のため、圧力差によってピストン23は上昇し、油圧シリンダ22の上限位置で停止し、上部ピストンロッド24bのキャップ24cの頂部がダンパー位置Cになるように戻る。   After the test, when the falling weight 3 is pulled up, the hydraulic oil m in the scavenge tank 30 passes through the communication portion 30a and the annular sectional space 26c by the pressure of the pressurized pressurized gas n, and the lower chamber hydraulic oil opening 26a. The hydraulic chamber 22 is pushed back to the lower chamber 22a and from the upper chamber hydraulic oil opening 26b to the upper chamber 22b. The lower chamber 22a has the entire diameter of the hydraulic cylinder 22 as a pressure receiving surface, and the upper chamber 22b has an upper piston. Since the surface excluding the rod 24b is the pressure receiving surface, the piston 23 rises due to the pressure difference, stops at the upper limit position of the hydraulic cylinder 22, and returns so that the top of the cap 24c of the upper piston rod 24b reaches the damper position C.

そのため、特別な操作無しで、ダンパー21は再び初期ダンパー高さhに復帰するので、次の落錘衝撃試験の準備された状態となり、上述した従来装置のような緩衝材9の交換、再設置が不要となり、落錘衝撃試験の試験コスト的、作業効率的な負担を著しく軽減することができる。 For this reason, the damper 21 returns to the initial damper height h 0 again without any special operation, so that it is ready for the next drop weight impact test. Installation is unnecessary, and the burden of test cost and work efficiency of the drop weight impact test can be remarkably reduced.

特に本実施例は、ダンパー21の位置を初期状態に戻す作用を、スカベンジタンク30内で昇圧させられた与圧気体nの圧力で行なうため、そのつどの加圧操作が不要で、繰り返し操作において損傷、損耗の恐れが少なく、実施例1の場合のようにバネ15でダンパー11を初期の状態に戻す機構の場合は、ダンパー11が受ける衝撃力によっては、徐々にバネ15の機械的特性に変化を来たし、ピストンロッド14a、bを初期の高さh(位置C)に戻せなくなり、いずれバネ15の交換を要する懸念があったが、実施例2の場合はそのような恐れがなく、ダンパー21の初期状態復帰機能がより優れたものとなる。 In particular, in this embodiment, the operation of returning the position of the damper 21 to the initial state is performed by the pressure of the pressurized gas n increased in pressure in the scavenge tank 30, so that each pressurizing operation is unnecessary, and in repeated operations. In the case of a mechanism in which the damper 11 is returned to the initial state by the spring 15 as in the case of the first embodiment, the mechanical characteristics of the spring 15 are gradually increased depending on the impact force that the damper 11 receives. There was a concern that the piston rods 14a, b could not be returned to the initial height h 0 (position C) and the spring 15 had to be replaced. However, in the case of Example 2, there was no such fear. The function of returning the initial state of the damper 21 becomes more excellent.

また、スカベンジタンク30は環状断面空間26cと流路抵抗の少ない大径の連通部30aで接続しているため、接続部での圧力差は実質的に無く、ダンピング作用時、及び初期状態復帰時の作動油mの移動に支障が無い。   Further, since the scavenge tank 30 is connected to the annular cross-sectional space 26c through the large-diameter communication portion 30a having a small flow resistance, there is substantially no pressure difference at the connection portion, and during the damping operation and when the initial state is restored. There is no hindrance to the movement of the hydraulic oil m.

そして、下室作動油開口26aを作動油絞り手段としたので、ダンピング作用時に下室22a内に発生する高圧がその外側には作用せず、下室作動油開口26aの外側となる作動油連通回路等、落錘衝撃試験機の機械的仕様を軽減することができる。本実施例の場合は、環状断面空間26c、スカベンジタンク30には、初期気体圧からダンピング時の作動油流入による昇圧まで(例えば上述した例では、5気圧程度より、8〜10気圧程度への昇圧まで)に耐える強度でよいので、機械的衝撃が緩和され落錘衝撃試験機の機械的仕様を軽減することができる。   Since the lower chamber hydraulic oil opening 26a is used as the hydraulic oil throttle means, the high pressure generated in the lower chamber 22a during the damping operation does not act on the outside of the lower chamber hydraulic oil opening 26a. The mechanical specifications of the falling weight impact tester such as a circuit can be reduced. In the case of the present embodiment, the annular cross-sectional space 26c and the scavenge tank 30 are from the initial gas pressure to the pressure increase due to the hydraulic oil inflow at the time of damping (for example, from about 5 atm to about 8 to 10 atm in the above example). Therefore, the mechanical shock can be reduced and the mechanical specifications of the falling weight impact tester can be reduced.

なお、実施例2において、作動油連通回路として上述のような外筒28による二重管構造をとらず、実施例1のように連通管路16cを設けて、作動油絞り手段として適宜な絞り弁16dを連通管路16cに介装する場合は、絞り弁16dと上室作動油開口26bとの間の連通管路16cにスカベンジタンク30を接続すればよい。ただし、本実施例2のように作動油連通回路として外筒28による二重管構造をとれば、作動油連通回路の構造が一体にまとまったコンパクトな態様にでき、また、スカベンジタンク30と流路抵抗の少ない大径の連通部30aで接続することが容易となる。   In the second embodiment, the hydraulic oil communication circuit does not have the double pipe structure formed by the outer cylinder 28 as described above, and the communication pipe 16c is provided as in the first embodiment, so that an appropriate throttle is provided as the hydraulic oil throttle means. When the valve 16d is interposed in the communication pipe 16c, the scavenge tank 30 may be connected to the communication pipe 16c between the throttle valve 16d and the upper chamber hydraulic oil opening 26b. However, if the double pipe structure with the outer cylinder 28 is used as the hydraulic fluid communication circuit as in the second embodiment, the hydraulic fluid communication circuit can be integrated into a compact form and can be connected to the scavenge tank 30. It becomes easy to connect with the large-diameter communication portion 30a with little road resistance.

以上、本発明を図示の実施例について説明したが、本発明は上記の実施例に限定されず、本発明の範囲内でその具体的構造、構成に種々の変更を加えてよいことはいうまでもない。   The present invention has been described with reference to the illustrated embodiments. However, the present invention is not limited to the above-described embodiments, and various modifications may be made to the specific structure and configuration within the scope of the present invention. Nor.

たとえば、上記両実施例は、加速装置7を設けて落錘3を押し出す落錘衝撃試験機を例に説明したが、本発明は加速装置7を備えない自然落下による落錘衝撃試験機においても同様に用いることができることは言うまでも無い。   For example, although both the above embodiments have been described with respect to an example of a falling weight impact tester that provides the acceleration device 7 and pushes out the falling weight 3, the present invention can also be applied to a falling weight impact test device that does not include the acceleration device 7. Needless to say, it can be used in the same manner.

本発明の実施例1および実施例2に係る落錘衝撃試験機の模式的な構成説明図である。It is typical structure explanatory drawing of the falling weight impact tester based on Example 1 and Example 2 of this invention. 実施例1におけるダンパーの模式的な断面説明図であるIt is typical sectional explanatory drawing of the damper in Example 1. FIG. 実施例2におけるダンパーの断面説明図である。FIG. 6 is a cross-sectional explanatory view of a damper in Example 2. 従来の落錘衝撃試験機の模式的な構成説明図である。It is typical structure explanatory drawing of the conventional falling weight impact tester.

符号の説明Explanation of symbols

1 落錘衝撃試験機
2 架構
3 落錘
4 ストッパ
5 載置台
6 供試体
7 加速装置
7a 油圧ピストン
8 落錘保持装置
9 緩衝材
10 落錘衝撃試験機
11 ダンパー
12 油圧シリンダ
12a 下室
12b 上室
12c 拡径部
13 ピストン
14a 下部ピストンロッド
14b 上部ピストンロッド
14c キャップ
15 バネ
16a 下室作動油開口
16b 上室作動油開口
16c 連通管路
16d 絞り弁
17 作動油溜め
20 落錘衝撃試験機
21 ダンパー
22 油圧シリンダ
22a 下室
22b 上室
22c 拡径部
23 ピストン
24a 下部ピストンロッド
24b 上部ピストンロッド
24c キャップ
26a 下室作動油開口
26b 上室作動油開口
26c 環状断面空間
28 外筒
30 スカベンジタンク
30a 連通部
31 気体領域
DESCRIPTION OF SYMBOLS 1 Drop weight impact test machine 2 Frame 3 Drop weight 4 Stopper 5 Mounting stand 6 Specimen 7 Acceleration device 7a Hydraulic piston 8 Drop weight holding device 9 Buffer material 10 Drop weight impact test machine 11 Damper 12 Hydraulic cylinder 12a Lower chamber 12b Upper chamber 12c Expanded part 13 Piston 14a Lower piston rod 14b Upper piston rod 14c Cap 15 Spring 16a Lower chamber hydraulic oil opening 16b Upper chamber hydraulic oil opening 16c Communication pipe line 16d Throttle valve 17 Hydraulic oil reservoir 20 Drop weight impact tester 21 Damper 22 Hydraulic cylinder 22a Lower chamber 22b Upper chamber 22c Expanded portion 23 Piston 24a Lower piston rod 24b Upper piston rod 24c Cap 26a Lower chamber working oil opening 26b Upper chamber working oil opening 26c Annular section space 28 Outer cylinder 30 Scavenge tank 30a Communication portion 31 Gas region

Claims (7)

落錘により供試体の衝撃試験を行なう落錘衝撃試験機において、落下する前記落錘を途中で止めて前記供試体の圧縮を制限するダンパーを具備し、同ダンパーは、上向きに突出するピストンロッドを備えピストンの上側の上室と下側の下室とに作動油を充填した油圧シリンダと、前記下室と上室との間を前記作動油が移動可能に連通する作動油連通回路と、同作動油連通回路の作動油の移動量を制限する作動油絞り手段と、前記落錘の作用しない状態で前記ピストンロッドがその上限位置に位置するように付勢するダンパー初期高さ復帰手段とを有してなることを特徴とする落錘衝撃試験機。   In a drop weight impact tester for performing an impact test of a specimen with a drop weight, the drop rod is provided with a damper that stops the falling weight halfway to limit the compression of the specimen, and the damper is a piston rod protruding upward A hydraulic cylinder filled with hydraulic oil in an upper chamber and a lower chamber on the upper side of the piston, and a hydraulic fluid communication circuit in which the hydraulic fluid is movably communicated between the lower chamber and the upper chamber, Hydraulic oil throttle means for limiting the amount of hydraulic oil movement in the hydraulic oil communication circuit, and damper initial height return means for biasing the piston rod to be positioned at its upper limit position when the falling weight is not applied; A falling weight impact tester characterized by comprising: 請求項1に記載の落錘衝撃試験機において、前記作動油連通回路は、前記下室から前記油圧シリンダの外に開口する下室作動油開口と、前記上室から前記油圧シリンダの外に開口する上室作動油開口と、同下室作動油開口と上室作動油開口を連通する連通管路とを備えて構成されることを特徴とする落錘衝撃試験機。   2. The falling weight impact tester according to claim 1, wherein the hydraulic fluid communication circuit includes a lower chamber hydraulic fluid opening that opens from the lower chamber to the outside of the hydraulic cylinder, and an opening from the upper chamber to the outside of the hydraulic cylinder. A falling weight impact tester comprising: an upper chamber hydraulic oil opening, and a communication pipe line communicating the lower chamber hydraulic oil opening and the upper chamber hydraulic oil opening. 請求項1に記載の落錘衝撃試験機において、前記作動油連通回路は、前記油圧シリンダの側面を囲み上下端が閉塞した二重管構造を形成する外筒と同油圧シリンダの外周面との間に形成された環状断面空間と、前記下室から同環状断面空間に開口する下室作動油開口と、前記上室から同環状断面空間に開口する上室作動油開口とを備えて構成されることを特徴とする落錘衝撃試験機。   2. The falling weight impact tester according to claim 1, wherein the hydraulic fluid communication circuit includes an outer cylinder that forms a double pipe structure that surrounds a side surface of the hydraulic cylinder and has upper and lower ends closed, and an outer peripheral surface of the hydraulic cylinder. An annular sectional space formed therebetween, a lower chamber hydraulic oil opening that opens from the lower chamber to the annular sectional space, and an upper chamber hydraulic oil opening that opens from the upper chamber to the annular sectional space. A falling weight impact tester characterized by that. 請求項2に記載の落錘衝撃試験機において、前記作動油絞り手段が前記連通管路に介装された絞り弁によって構成されてなることを特徴とする落錘衝撃試験機。   3. The falling weight impact testing machine according to claim 2, wherein the hydraulic oil throttle means is constituted by a throttle valve interposed in the communication pipe. 請求項2または請求項3に記載の落錘衝撃試験機において、前記作動油絞り手段が前記下室作動油開口によって構成されてなることを特徴とする落錘衝撃試験機。   4. The falling weight impact testing machine according to claim 2, wherein the hydraulic oil throttle means is constituted by the lower chamber working oil opening. 請求項1ないし請求項5のいずれかに記載の落錘衝撃試験機において、前記ダンパー初期高さ復帰手段は、前記落錘の作用しない状態で前記ピストンロッドをその上限位置に位置させる付勢力を備え、且つ落錘の作用による前記ピストンロッドの下降によって前記付勢力を強めるように設定されたバネを備えてなることを特徴とする落錘衝撃試験機。   6. The drop weight impact tester according to claim 1, wherein the damper initial height return means applies a biasing force to position the piston rod at an upper limit position in a state where the drop weight does not act. A drop weight impact tester comprising: a spring configured to strengthen the biasing force by lowering the piston rod by the action of a drop weight. 請求項1ないし請求項5のいずれかに記載の落錘衝撃試験機において、前記ダンパー初期高さ復帰手段は、前記作動油絞り手段と前記上室との間において前記作動油連通回路と連通し内部に作動油と与圧気体を封入したスカベンジタンクを備えて構成され、前記油圧シリンダは前記ピストンロッドの昇降に対する下室の容積変化が上室の容積変化より大きく、前記与圧気体の初期圧力は前記落錘の作用しない状態で前記作動油を介して前記油圧シリンダに作用し前記ピストンロッドをその上限位置に位置させる圧力とし、且つスカベンジタンクは落錘の作用による前記ピストンロッドの下降によって前記油圧シリンダからスカベンジタンクに移動する作動油により前記与圧気体の気体領域が狭められるように構成されてなることを特徴とする落錘衝撃試験機。   6. The falling weight impact tester according to claim 1, wherein the damper initial height return means communicates with the hydraulic fluid communication circuit between the hydraulic fluid throttle means and the upper chamber. The hydraulic cylinder includes a scavenge tank that encloses hydraulic oil and pressurized gas. The hydraulic cylinder has a volume change in the lower chamber larger than a volume change in the upper chamber with respect to the lifting and lowering of the piston rod, and an initial pressure of the pressurized gas. Is a pressure that acts on the hydraulic cylinder via the hydraulic oil in a state where the falling weight does not act to position the piston rod at its upper limit position, and the scavenge tank is moved by the lowering of the piston rod due to the falling weight. The gas region of the pressurized gas is configured to be narrowed by hydraulic oil that moves from a hydraulic cylinder to a scavenge tank. Weight impact test machine.
JP2007004382A 2007-01-12 2007-01-12 Drop weight impact tester Active JP4848291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004382A JP4848291B2 (en) 2007-01-12 2007-01-12 Drop weight impact tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004382A JP4848291B2 (en) 2007-01-12 2007-01-12 Drop weight impact tester

Publications (2)

Publication Number Publication Date
JP2008170313A true JP2008170313A (en) 2008-07-24
JP4848291B2 JP4848291B2 (en) 2011-12-28

Family

ID=39698547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004382A Active JP4848291B2 (en) 2007-01-12 2007-01-12 Drop weight impact tester

Country Status (1)

Country Link
JP (1) JP4848291B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225724A (en) * 2011-04-19 2012-11-15 Futaba Kogyo Kk Method for fixing object to be tested in compression test
CN103234843A (en) * 2013-05-09 2013-08-07 昆山市创新科技检测仪器有限公司 Falling weight impact testing machine
CN105004619A (en) * 2015-05-06 2015-10-28 中国科学院寒区旱区环境与工程研究所 Freezing strength on-site fast detection device for backfill soil in frozen soil area
CN106198227A (en) * 2016-07-12 2016-12-07 辽宁工程技术大学 Accumulation of energy drop hammer type coupled static-dynamic loadingi assay device
CN106768781A (en) * 2017-01-10 2017-05-31 北京强度环境研究所 A kind of waveform generator for blocking impact test
CN108387461A (en) * 2018-03-22 2018-08-10 东北大学 A kind of drop hammer type dynamic impact testing machine and test method
CN108918253A (en) * 2018-08-01 2018-11-30 无锡洲翔成套焊接设备有限公司 The method for measuring drop hammer test material actual fracture energy
WO2019049304A1 (en) * 2017-09-08 2019-03-14 神栄テストマシナリー株式会社 Impact test device
CN110530741A (en) * 2019-09-25 2019-12-03 辽宁工业大学 It is a kind of can mass simultaneous test full-automatic drop hammer impact testing machine
CN113418803A (en) * 2021-06-21 2021-09-21 西安热工研究院有限公司 Method and device for testing impact toughness of pipe plate welding joint plug
CN113447230A (en) * 2021-07-21 2021-09-28 盐城蔚泽汽车零部件有限公司 Automobile parts buckle impact testing arrangement that moulds plastics
CN114034545A (en) * 2021-11-19 2022-02-11 中煤科工开采研究院有限公司 Ejection device and drop hammer impact tester
CN117087872A (en) * 2023-10-19 2023-11-21 中国飞机强度研究所 Buffer method and buffer system for dynamic response test of impact of blocking hook of carrier-based aircraft

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118941A (en) * 1978-03-09 1979-09-14 Kazuo Iguchi Buffer for industrial machine
JPS63161348A (en) * 1986-12-24 1988-07-05 Toshiba Corp Air conditioner
JPH02102941A (en) * 1988-10-07 1990-04-16 Mazda Motor Corp Suspension device of vehicle
JPH06173997A (en) * 1992-12-08 1994-06-21 Toppan Printing Co Ltd Damping stopper
JP2004324879A (en) * 2003-04-10 2004-11-18 Mitsubishi Electric Corp Hydraulic damper
JP2005062003A (en) * 2003-08-12 2005-03-10 Ishikawajima Harima Heavy Ind Co Ltd High-speed collision test method and device
JP2005233910A (en) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd Impact tester
JP2007322161A (en) * 2006-05-30 2007-12-13 Sumitomo Metal Ind Ltd Dropping weight body for impact test

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54118941A (en) * 1978-03-09 1979-09-14 Kazuo Iguchi Buffer for industrial machine
JPS63161348A (en) * 1986-12-24 1988-07-05 Toshiba Corp Air conditioner
JPH02102941A (en) * 1988-10-07 1990-04-16 Mazda Motor Corp Suspension device of vehicle
JPH06173997A (en) * 1992-12-08 1994-06-21 Toppan Printing Co Ltd Damping stopper
JP2004324879A (en) * 2003-04-10 2004-11-18 Mitsubishi Electric Corp Hydraulic damper
JP2005062003A (en) * 2003-08-12 2005-03-10 Ishikawajima Harima Heavy Ind Co Ltd High-speed collision test method and device
JP2005233910A (en) * 2004-02-23 2005-09-02 Mitsubishi Heavy Ind Ltd Impact tester
JP2007322161A (en) * 2006-05-30 2007-12-13 Sumitomo Metal Ind Ltd Dropping weight body for impact test

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225724A (en) * 2011-04-19 2012-11-15 Futaba Kogyo Kk Method for fixing object to be tested in compression test
CN103234843A (en) * 2013-05-09 2013-08-07 昆山市创新科技检测仪器有限公司 Falling weight impact testing machine
CN103234843B (en) * 2013-05-09 2016-03-30 昆山市创新科技检测仪器有限公司 A kind of drop hammer impact testing machine
CN105004619A (en) * 2015-05-06 2015-10-28 中国科学院寒区旱区环境与工程研究所 Freezing strength on-site fast detection device for backfill soil in frozen soil area
CN106198227B (en) * 2016-07-12 2023-01-24 辽宁工程技术大学 Energy storage drop hammer type dynamic and static combined loading test device
CN106198227A (en) * 2016-07-12 2016-12-07 辽宁工程技术大学 Accumulation of energy drop hammer type coupled static-dynamic loadingi assay device
CN106768781A (en) * 2017-01-10 2017-05-31 北京强度环境研究所 A kind of waveform generator for blocking impact test
CN106768781B (en) * 2017-01-10 2024-05-10 北京强度环境研究所 Waveform generator for blocking impact test
WO2019049304A1 (en) * 2017-09-08 2019-03-14 神栄テストマシナリー株式会社 Impact test device
JPWO2019049304A1 (en) * 2017-09-08 2020-03-26 神栄テクノロジー株式会社 Impact test equipment
CN108387461B (en) * 2018-03-22 2024-05-07 东北大学 Drop hammer type power impact testing machine and testing method
CN108387461A (en) * 2018-03-22 2018-08-10 东北大学 A kind of drop hammer type dynamic impact testing machine and test method
CN108918253B (en) * 2018-08-01 2021-02-02 无锡洲翔成套焊接设备有限公司 Method for measuring true fracture energy of drop weight tear test material
CN108918253A (en) * 2018-08-01 2018-11-30 无锡洲翔成套焊接设备有限公司 The method for measuring drop hammer test material actual fracture energy
CN110530741A (en) * 2019-09-25 2019-12-03 辽宁工业大学 It is a kind of can mass simultaneous test full-automatic drop hammer impact testing machine
CN113418803A (en) * 2021-06-21 2021-09-21 西安热工研究院有限公司 Method and device for testing impact toughness of pipe plate welding joint plug
CN113447230A (en) * 2021-07-21 2021-09-28 盐城蔚泽汽车零部件有限公司 Automobile parts buckle impact testing arrangement that moulds plastics
CN114034545A (en) * 2021-11-19 2022-02-11 中煤科工开采研究院有限公司 Ejection device and drop hammer impact tester
CN117087872B (en) * 2023-10-19 2024-01-05 中国飞机强度研究所 Buffer method and buffer system for dynamic response test of impact of blocking hook of carrier-based aircraft
CN117087872A (en) * 2023-10-19 2023-11-21 中国飞机强度研究所 Buffer method and buffer system for dynamic response test of impact of blocking hook of carrier-based aircraft

Also Published As

Publication number Publication date
JP4848291B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP4848291B2 (en) Drop weight impact tester
JP4325417B2 (en) Hydraulic shock absorber
JP5081066B2 (en) Hydraulic shock absorber for elevator
JP5197609B2 (en) Elevator hydraulic shock absorber
US7287626B2 (en) Buffer device for elevator
EP2088111A1 (en) Buffer of elevator
CN202175486U (en) Hydraulic buffer of gas reset throttling hole for elevator
CN109027096B (en) Thin-wall small-hole type hydraulic buffer
CN106704445A (en) Damper
JP3619110B2 (en) Elevator shock absorber
JP2013001481A (en) Oil-filled buffer of elevator
CN105358843B (en) Fluid-pressure cylinder
CN101539182B (en) Piston-type hydraulic buffer
JP6687158B2 (en) Elevator hydraulic shock absorber
KR100904530B1 (en) An impact absoption apparatus applying multi reduction oil cylinder form and elevator having this
JPWO2006033135A1 (en) Elevator shock absorber
JP2007010160A (en) Hydraulic damper
CN1613741A (en) Small-size hydraulic buffer for elevator
JP4020353B2 (en) Shock absorber
JP3960507B2 (en) Shock absorber
JP2012193969A (en) Impact testing apparatus with double hammering prevention mechanism and double hammering prevention method for impact testing apparatus
KR200166578Y1 (en) Shock absorber
KR101147825B1 (en) Oil-filled shock absorber for elevator
US1064204A (en) Fluid buffer device for elevators.
NL2025191B1 (en) Pile-driver and method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4848291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350