JP2008169779A - パルスプラズマスラスタ - Google Patents

パルスプラズマスラスタ Download PDF

Info

Publication number
JP2008169779A
JP2008169779A JP2007004867A JP2007004867A JP2008169779A JP 2008169779 A JP2008169779 A JP 2008169779A JP 2007004867 A JP2007004867 A JP 2007004867A JP 2007004867 A JP2007004867 A JP 2007004867A JP 2008169779 A JP2008169779 A JP 2008169779A
Authority
JP
Japan
Prior art keywords
discharge chamber
ppt
propellant
discharge
thruster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007004867A
Other languages
English (en)
Inventor
Koichi Tawara
弘一 田原
Wataru Matsuura
亘 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2007004867A priority Critical patent/JP2008169779A/ja
Publication of JP2008169779A publication Critical patent/JP2008169779A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)

Abstract

【課題】 推進剤の効率的な利用を図り、総発生力積を増加させて長寿命化を図るとともに、簡便な構成によって推進効率の高いパルスプラズマスラスタを提供すること。
【解決手段】 スラスタユニット1に、推進剤8によって形成された放電室2、放電室2の一端部2aに近接して設けられた陽極3、放電室2の他端部2bあるいは他端部2bに近接するノズル5を介して設けられた陰極4、およびイグナイタ6を有するパルスプラズマスラスタであって、放電室2の形状が、その中心軸Mに対する垂直断面が一端部2aから他端部2bへ漸次拡大し、略円錐形状を形成することを特徴とする。
【選択図】 図1

Description

本発明は、パルスプラズマスラスタに関し、具体的には、人工衛星などの宇宙機に利用可能なパルスプラズマスラスタに関する。
パルスプラズマスラスタ(Pulsed Plasma Thruster、以下「PPT」という。)は、一般に固体/昇華性物質を推進剤とする電気推進機であり、近年、人工衛星等の研究開発の活発化に伴い、例えば、宇宙での人工衛星の姿勢制御や軌道補償を行うための小型・軽量の推進手段として注目されている。固体燃料を用いることからタンクやバルブ等が不要であり、構造が単純で信頼性が高く、初期エネルギーや放電間隔を任意に変化させることにより、数10μNs〜数mNsの広い範囲でパルス的に推カを発生させることが可能であるという優れた特性を有している。一方、人工衛星等においては、その重量低減および長期間の使用などの要請から、推進剤をより効率的に利用できるPPTが求められている。
図10に、一般的なPPTの模式的な構成図を示し、以下その推力発生原理を説明する(例えば非特許文献1参照)。
(1)イグナイタ6に印加されるパルス状の高電圧放電により、露出面から少量のテフロン(登録商標、以下同じ)61を昇華させ、その一部をプラズマ化させる(図10(A))。
(2)プラズマは、陽極3と陰極4の間に広がり、高導電性の領域をつくる。これにより両電極間が短絡され、両電極につながれたキャパシタ10内の電荷が一斉に流れ、主放電が形成される(図10(B))。
(3)この主放電による電流がジュール加熱および輻射によってテフロン61にエネルギーを与え昇華させる。昇華したテフロン61は、高エンタルピー気体の膨張による気体力学的加速を受ける。また、一部は電離してプラズマとなり、主放電電流とその自己誘起磁場が作る電磁力による電磁力学的加速を受ける(図10(C))。
(4)電磁力学的・気体力学的加速を受けたプラズマは、下流方向に加速され、その放電領域を広げつつ、スラスタ外へ放出される。
(5)放電によりテフロン61が昇華し、その表面が後退するのに対応し、テフロン61がスプリングで自動的に放電チャンネル内の所定の位置に供給され、新たな放電チャンネルを形成する。
具体的な使用を目的としたPPTとしては、推進剤の有効利用のために、図11(A)および(B)に示すPPT推進剤供給機構が提案されている(例えば特許文献1参照)。具体的には、円盤状に形成されたPPT推進剤75を用いたPPT推進剤供給機構70であって、PPT推進剤75の中心に設けられた挿通孔76に挿通されPPT推進剤75を回転自在に支持する固定軸77、PPT推進剤75の外周面に端部を向け周方向の間隔を開けて平行に配置された陽極72aと陰極72b、陽極72aと陰極72bとを固定軸77の中心方向に付勢する引っ張り機構、PPT推進剤75をその周面が固定軸77回りに陽極72a側から陰極72b側へと回転移動するように付勢する回転機構を備えてなるように構成したPPT推進剤供給機構70である。推進剤75を有効に使い切れず、無効推進剤が残ることを防止し、実効の推進剤消費率(比推力)の向上を図っている。
また、PPTの性能向上を目的とする研究についても、種々の研究機関からの報告がされており、その1つとして、電熱加速型PPTを用いた本発明者を含む研究報告においては、次のような報告がされている(例えば非特許文献2参照)。具体的には、放電室形状の形状については、上記の図11に例示したるような平行平板型と、図12に例示するような同軸型の放電室形状が検討されている。今日実用化されている衛星には平行平板型が搭載されているが、同軸型に関しても種々の性能向上の検討がなされている。図12におけるキャビティ82が短い時は、電磁加速型PPT(低インパルスビット・高比推力)の特性に近づき、逆に長い時は電熱加速型PPT(高インパルスビット・低比推力)の性能を示すことが知られている。また推進効率は,キャビティ82の長さ14〜29mmにピークを有するとの報告がされている。また、こうした陽極83から陰極84まで一定の直径dとなるストレートな放電室82を有したPPT(以下、「Straight−PPT」という)におけるエネルギー変換効率は、10%程度であった。
栗木恭一、荒川義博著「電気推進ロケット入門」159−160頁(東京大学出版会、2003年5月) 竹ケ原春貴、荒川義博、都木恭一郎、橘武史、田原弘一、枝光敏章著「マイクロパルスプラズマスラスタ」(「日本航空宇宙学会誌」第52巻第610号292−296頁(日本航空宇宙学会、2004年11月)) 特開2002−332000号公報
しかしながら、従来のPPTでは、実際の使用時にいくつかの課題があり、実用化されないことも多くあった。
例えば、比較的高インパルスビットを発生できるPPTにおいては、燃料供給技術の確立が課題であった。また、人工衛星の使用期間の長期化に伴う、PPTの長寿命化が重要な課題であった。
また、上記のPPT推進剤供給機構については、無効推進剤の低減には有効であるが、機構のコンパクト化、簡便さの面では更なる改善が求められ、エネルギー効率の面においても、更なる推進剤の有効利用が求められている。
さらに、人工衛星等においては、その人工衛星の姿勢の修正や軌道の補償のために推進力の微妙な調整が必要となり、単純な宇宙機ではなく、推進力を複数レベルで調整しかつ瞬間的な強度を制御することができる精密な機能が必要されてきている。こうした様々なミッションに対応するためには、PPTのさらなる推進力、推進効率の向上が必要となっている。
そこで、この発明の目的は、こうした要請に対応し、推進剤の効率的な利用を図り、総発生力積を増加させて長寿命化を図るとともに、簡便な構成によって推進効率の高いPPTを提供することにある。
本発明者は、鋭意研究を重ねた結果、以下に示すPPTによって、上記目的を達成できることを見出し、本発明を完成するに到った。
本発明は、スラスタユニットに、推進剤によって形成された放電室、該放電室の一端部に近接して設けられた陽極、該放電室の他端部あるいは該他端部に近接するノズルを介して設けられた陰極、およびイグナイタを有するパルスプラズマスラスタであって、前記放電室の形状が、その中心軸に対する垂直断面が前記一端部から他端部へ漸次拡大し、略円錐形状を形成することを特徴とする。
PPTの推進力および推進効率に対し、その放電室の容積が大きな影響を与えることは従前からよく知られていたが、放電室の形状がこれらの特性にどのような影響を与えるかは不明であった。そこでPPTの種々の形状におけるプラズマの発生状態や電子温度、昇華率あるいは圧力などを検証の結果、平行平板形状や同軸形状(円筒形状)の放電室においては、陽極付近から加速放出されたプラズマと陰極付近での壁面との相互作用によって運動量の損失が生じることを見出した。本発明は、放電室の形状を陽極から陰極にかけて空間を大きくすることによって、こうした運動量の損失を低減するもので、具体的には、放電室の中心軸に対する垂直断面が前記一端部から他端部へ漸次拡大し、略円錐形状を形成することを特徴とした。また、放電室を推進剤によって形成することによって、推進源を分散し寿命までの総発生力積を従来よりも増加させ、長寿命化を図ることができる。このようにして、本発明は、推進剤の効率的な利用を図り、総発生力積を増加させて長寿命化を図るとともに、推進効率の高いPPTを提供することを可能とした。なお、ここでいう「スラスタユニット」とは、放電室や電極などを設ける固体(媒体)をいい、PPTの筐体を構成する。
本発明は、上記パルスプラズマスラスタであって、前記放電室が、一端部を上面とし他端部を底面とする正円錐台形状を形成することを特徴とする。
上記のように、本発明は、放電室の内面形状を、陽極に近接する一端部から発散状に拡大することを特徴とする。このとき、放電室の中心軸を含む縦断面の側線が直線である場合、つまり放電室が一端部を上面とし他端部を底面とする正円錐台形状を形成する場合には、放電室の内面の拡大率は一定となり、理論的にプラズマの発生・移動・放出という流れに対して壁面との相互作用は殆どない状態となる。従って、プラズマと陰極付近での壁面との相互作用による運動量の損失を低減することができるとともに、プラズマの加速された流れの撹乱を防止する機能によって、推進効率の高いPPTを提供することが可能となった。
本発明は、上記パルスプラズマスラスタであって、前記放電室の中心軸を含む縦断面の側線が、1つの変曲点を有し中心軸に接近する曲線を形成するとともに、該変曲点が、該側線の中央よりも一端部側にあることを特徴とする。
前項の形状は、理想的にはプラズマと壁面との相互作用は殆どない。しかし、実際に検証した結果では、放電を繰り返した後の放電室の内面は、陽極より所定の距離が離れかつその中心軸の中央よりも陽極側に推進剤の比較的大きな減少範囲があった。つまり、繰り返し行う放電によって生じる推進剤の昇華による減少は、陽極に近いほど多く陰極に近いほど少なくなることによるものと推定されるが、長期的にはこうした状態は、陰極側でのプラズマと壁面との相互作用を発生させる誘因となる。そこで、本発明は逆に減少が激しい範囲の推進剤を僅かに盛り上がり状態にすることによって、こうした部分的な減少の影響を補完し、長期的に推進効率の高い状態を維持することができるPPTを提供することが可能となった。
本発明は、上記パルスプラズマスラスタであって、前記放電室の内面が、前記一端部を基点として他端部側に対して半頂角が0°超15°以内に開口する形状を形成することを特徴とする。
上記のように、放電室の形状を陽極から陰極にかけて空間を拡大することによって、プラズマと壁面との相互作用を低減することができる一方、拡大しすぎると推進力が低下する。本発明は、放電室を、一端部を基点として他端部側に対して所定の半頂角に開口する形状によって規制し、同一容積の放電室について検証した結果、半頂角が0°超15°以内に開口する形状を形成する放電室が最適な形状であることを見出した。これによって、高い推進効率を確保することができるPPTを提供することが可能となった。
本発明は、上記パルスプラズマスラスタであって、前記スラスタユニットに、前記放電室を複数設けるとともに、該放電室の内の少なくとも2以上を連通する誘発路を設けることを特徴とする。
従来のPPTにおいては、1つの放電室(キャビティ)を基本としてパルスの周期あるいは印加電圧などによって推進力の制御を行い、推進力の増大等のために複数の放電室を設けた場合にも放電室ごとに独立して制御する方法が実施されていた。この場合、各放電室にイグナイタを設けると、イグナイタおよびその駆動用回路(イグニッション回路)が複数必要となり、PPT全体として負荷が過大なものとなる。本発明は、スラスタユニットに、推進剤によって形成された複数の放電室を設けるとともに、隣接する放電室を連通する誘発路を設け、イグナイタを単数とすることによって、1つのイグナイタで複数の放電室を略同時に作動させることを可能とした。これによって、複数の放電室による長期の使用が可能で、高い推進効率を確保・維持することができるPPTを提供することが可能となった。
以上のように、本発明によれば、推進剤の効率的な利用を図り、総発生力積を増加させて長寿命化を図るとともに、簡便な構成によって推進効率の高いPPTを提供することが可能となった。また、従来困難であった長寿命化の要請にも対応可能で、簡便な構成によって長期の使用が可能で、高い推進効率を確保・維持することが可能となった。
以下、本発明の実施の形態について、図面を参照しながら説明する。
<本発明に係るPPTの基本的な構成>
本発明に係るPPTは、スラスタユニットに、推進剤によって形成された放電室、放電室の一端部に近接して設けられた陽極、放電室の他端部あるいは他端部に近接するノズルを介して設けられた陰極、およびイグナイタを有するPPTであって、放電室の形状が、その中心軸に対する垂直断面が前記一端部から他端部へ漸次拡大し、略円錐形状を形成することを特徴とする。
図1は、この発明に係るPPTの基本的な構成(第1構成例)を例示している。スラスタユニット1に、一端部2aおよび他端部2bに開口部を有し所定の半頂角αを有する放電室2を設け、その両端2a,2bに近接して陽極(アノード)3と陰極(カソード)4を配設する。図1では、陽極3側を放電室2の一端部2a、陰極4側を他端部2bとし、陽極3の一部として放電室2からの気流に対し広がりを有するノズル5を設け、陽極3の一部にイグナイタ6を配設する構成としている。また、放電室2は、推進剤8の一部によって形成されている。
稼動状態においては、図10および既述の推進発生原理と同様、以下の(1)〜(4)のステップによって1ショットが形成され、これを繰り返すことによって、PPTを搭載した推進機(例えば宇宙機)の推進機能を確保することができる。
(1)イグナイタ6にパルス状の電圧を印加し、高電圧のパルス状の放電を発生させることによって、まず放電室2の表面を形成する推進剤8を昇華させ、その一部をプラズマ化させる。
(2)推進剤8によって形成されたプラズマは、陽極3と陰極4の間に広がり高導電性の領域をつくる。これにより陽極3と陰極4の間が短絡され、両電極3,4につながれた放電室2内の電荷が一斉に陰極4に流れ、主放電が形成される。
(3)これらの主放電による電流が、ジュール加熱および輻射によって推進剤8にエネルギーを与え、さらに昇華させる。昇華した推進剤8は、高エンタルピー気体の膨張による気体力学的加速を受け、加速された流れを形成する。また、一部は電離してプラズマとなり、主放電電流とその自己誘起磁場が作る電磁力による電磁力学的加速を受け、同様に加速された流れを形成する。
(4)電磁力学的・気体力学的加速を受けたプラズマは、下流方向に加速され、その放電領域を広げつつ、陰極4の内面に形成されたノズル5を介してスラスタユニット1の外部へ噴出される。
ここで、PPTの特性は、放電室2の内容積に関係するとともに、放電室2の形状に関係する。本発明においては、略円錐形状を形成することを特徴とするとともに、図2に例示するように、一端部2aからの半頂角αおよび放電室長Dを選択することによって、後述するように最適な形状を形成することができる。具体的には、放電室2の陽極3側の一端部2aの内径dが1〜5mm程度、一端部2aからの半頂角αが0〜15°程度、放電室長Dが10〜30mm程度にピークを有すると推算している。実機においては、さらに、寿命までの総発生力積などを考慮して形状設定が行われる。図2に、一端部2aの内径d(陽極3の平端面の外径に相当)を1mm、一端部2aからの半頂角αが10°、放電室長Dが20mmのときの断面構造を例示する。
略円錐形状における半頂角αについては、0〜15°よりも5〜15°が好適であり、さらに5〜10°がより好適である。放電に伴い発生するプラズマと壁面との相互作用を減少させるために効果的な略円錐形状を確保するとともに、開口の過剰な拡大による加速機能の減衰を防止することが可能となる。検証結果の詳細については後述する。
また、図1では、放電室2の形状を、一端部2aを上面とし他端部2bを底面とする正円錐台形状を形成する場合を例示している。放電室2の内面形状を、陽極3に近接する一端部2aから発散状に拡大し陰極付近でのプラズマと壁面との相互作用によって運動量の損失を低減するとともに、放電室2の内面の拡大率を一定とすることによって、略円錐形状と比較してプラズマの加速された流れの撹乱を防止する機能をより強く有することができる。特に、一端部2aの開口部に陽極3の平端面を近接させることによって、陽極3から陰極4へのプラズマの流れを均一にすることが可能となり、相乗的にプラズマの加速を促進することができる。
なお、放電室2の形状については、放電室2を長期使用する場合には、図3(A)に例示するように、放電室2の中心軸Mを含む縦断面の側線が、1つの変曲点Tを有し中心軸Mに接近する曲線を形成するとともに、変曲点Tが、該側線の中央よりも一端部側にある形状を選択することも好ましい。図1に例示された放電室2の形状のPPTを用いて多数回放電を繰り返した状態を検証したところ、放電室2の内面における推進剤8の減少が均一ではなく、中心軸Mの中央よりも陽極3側に近い方が比較的大きな減少が生じていた。陽極3に近いほど放電エネルギーが強く、陰極4に近づくほど放電室2内部での放電エネルギーの減少があることから、放電を繰り返した後の放電室2の内面での昇華量の僅かな差異の累積として生じるもの推定できる。従って、逆に予め印加エネルギー(つまり印加電力と放電の繰り返し回数の積)と推進剤8の減少量の差異およびその差異が最大となる位置との関係を求め、放電室2の内面形状を補正することによって、長期的にプラズマと壁面との相互作用あるいはプラズマの加速された流れの撹乱を防止することができる。
図3(B)に、中心軸Mを含む縦断面の側線の状態を拡大して示す。具体的には、図1に例示される略円錐形状の内側面を一点鎖線Loとし、そのときの繰り返し放電後の推進剤8の減少状態を示す曲線を破線Ldとした場合に、実線Laで示すように、1つの変曲点Tを有し中心軸Mに接近する補正曲線を有する内面を形成する。このときの補正量を、繰り返し放電後の推進剤8の減少状態の全量ではなく、例えばその半分の量とすることによって、補正された内面形状による長期的にプラズマと壁面との相互作用あるいはプラズマの加速された流れの撹乱の発生を軽減することができる。
陽極3は、材質および構造について特に限定されるものではないが、長期の使用に対する強度や耐性、推進剤8への固定の確実などを考慮するとタングステン電極が好ましい。つまり、陽極3においては、電流密度が高くなるので、エロージョンと呼ばれる侵食現象が発生するため、金属の中でも融点が高く、化学的にも安定なタングステンを用いることが好ましいためである。構造は、図1のように、放電室2の一端部2aに対して平面を近接することが可能で、推進剤8の交換等保守も可能な棒状体などが好ましい。また、上記のように陽極3が放電室2と近接する端部は平端面とすることが好ましい。
陰極4は、陽極3のような侵食作用が少なく、材質および構造について特に限定されるものではないが、長期の使用に対する強度や耐性等を考慮するとステンレス製の電極が好ましい。ただし、ステンレスよりも融点が高い金属ならば代替が可能である。また、図1に例示するように、機能の共有化による部品点数の削減効果からノズル5が陰極4の内面に形成された構造が好ましい。むろん、これに限定されるものではなくノズル5を別体で形成することが可能である。ノズル5の形状は、放電室2の加速機能を損なわずにその推進能力を維持するために、放電室2の略円錐形状をそのまま延長する内面を形成することが好ましい。
イグナイタ6は、高電圧のパルス状放電を発生させる機能があれば、特に限定されるものではないが、長期の使用に対する強度や耐性等を考慮すると陽極3と同様にタングステンが好ましい。また、図1においては陰極4の側面に配設された構造を例示しているが、放電室2に近接し、主放電を誘因することができる位置であれば特に限定されるものではない。
推進剤8は、別途放電室に順次供給する手段を設けるよりも、その全てによって放電室2を形成することが好ましい。放電室2の表面の推進剤8の昇華に伴う新規推進剤8の供給が可能となり、駆動部を設けることによるエネルギー供給の必要性やPPTの機能の複雑化を防止することができる。
推進剤8としては、軽量で加工性も高く、取り扱いが容易であることから、4フッ化エチレン(以下「PTFE」という)を用いることが好適である。また、ポリエチレン(PE)は後述する比推力に優れ、4フッ化エチレン−エチレン共重合樹脂(ETFE)は後述する推進効率に優れていることから、これらを用いることも好適である。さらに、高密度の素材の方が推進剤8の減少が小さく、融点が低いほど高濃度の物質昇華による大きな推進力を期待することができることから、例えば低融点のガラス材を推進剤8として挙げることができ、同一の推進力を得るために必要な推進剤8の体積をPTFEに比べ少なくすることができる。推進剤8の減少によって生じる放電室の断面積増加を実質的に緩やかにすることができ、推進剤8の長寿命化を図ることが可能となる。ここで、低融点ガラスとは、例えば融点が100〜700℃程度で軟化するガラス材の総称をいい、具体的には、鉛ガラスなどを挙げることができる。本発明においては、特に300〜500℃程度で軟化する低融点ガラスが好ましい。また、後述するように、推進剤8としては、1種類の素材ではなく複数種の素材を組み合わせることも可能である。実施時においては、PPTの機能や要求仕様によって、推進剤8の選択を行うことが好ましい。
また、スラスタユニット1を、推進剤8によって形成することが好ましい。PPTは人工衛星のような人為的な保守が不可能な用途が主であり、構造の複雑化を排除することが好ましく、軽量化の要請にも対応可能である。つまり、所定の成形性・剛性あるいは強度を有する素材であれば、図1のように、スラスタユニット1を、推進剤8によって形成するとともに、簡単な加工処理によって放電室2を形成することが可能である。また、推進剤8の使用に伴うスラスタユニット1の減量によって、PPT自体の負荷の軽減にも役立つこととなる。また、スラスタユニット1を別素材とし、用途に応じた最適の推進剤8を選択することも可能である。例えば、スラスタユニット1の素材をセラミックとし、内部に放電室2を有する円形パイプ型のPTFE製の推進剤8を配設した構成例を挙げることができる。
<第1構成例に係るPPTの性能評価>
PPTの特性は、1ショット当たりの発生力積をインパルスビットI(Impulse Bit)、1ショット当たりの燃料消費量をマスショットΔm(Mass shot)、比推力Isp(Specific impulse)と推進効率η(Thrust efficiency)によって評価することができる。ここで、比推力Ispと推進効率ηは、重力加速度をg、初期エネルギーをEとすると、各々下式1および下式2の通り表される。他の要素が同一であれば、インパルスビットIが高いほど効率的であり、マスショットΔmが低いほど長寿命であり、PPTの総合的な評価としては、比推力Ispと推進効率ηが高いほど優れているといえる。
sp=I/(Δmg)・・(式1)
η=I /(2ΔmE)・・(式2)
上記第1構成例について、放電室の形状を変えて、PPTとしての基本特性である、インパルスビットI、マスショットΔm、比推力Ispおよび推進効率ηを検証した。
〔実施例1〕 Straight−PPTの特性の導入
(1)実験条件
図4(A)に例示するスラストスタンドに被験用Straight−PPTをセットし、Straight−PPTにおける放電室長Dを変化させたときのインパルスビットI、比推力Ispおよび推進効率ηを検証した。このとき、図4(B)に例示するように、100〜1200μNsの範囲においてインパルスビットIの正確な測定が可能である。
(2)実験結果
放電室長Dが短い条件では、主に主放電回路におけるジュール熱損失により輸送効率が下がり推進効率ηが低下し、放電室長Dが長い条件では、PPT本体におけるエネルギー損失により加速効率が下がり推進効率ηが低下することが判明した。つまり、図5に例示するように、推進効率ηを最大にする最適な放電室長Dが存在する判明し、14〜29mmのとき最大となった。
〔実施例2〕 第1構成例に係るPPTとStraight−PPTとの比較
(1)実験条件
実施例1と同様、第1構成例に係るPPTとStraight−PPTをセットし、下表1に示す条件によって、各PPTにおける放電室長Dを変化させたときのインパルスビットI、マスショットΔm、比推力Ispおよび推進効率ηを検証した。なお、第1構成例に係るPPTの半頂角αは10°とし、いずれのPPTの材質もPTFEとする。
Figure 2008169779
(2)実験結果
(2−1)インパルスビットIについて
第1構成例に係るPPTの初期性能(1〜200ショットまでの性能)としてインパルスビットIは820μNsであった。また、図6(A)に示すように、Straight−PPTに対し、同じ放電室長Dで50μNs程度のインパルスビットIの向上が確認された。放電室長が短くなるほど両者のインパルスビットIの差が大きくなるので、発散型の放電室形状がPPT全体の小型化に有効であることが示唆された。
(2−2)マスショットΔmについて
第1構成例に係るPPTのマスショットΔm、つまり1ショット当りのPTFEの昇華量が、図6(B)に示すように、Straight−PPTに対し、同じ放電室長Dで約50〜80μg程度の減少が確認された。推進剤の軽量化の可能性も示唆され、システム全体の小型化・軽量化も可能になると考えられる。
(2−3)比推力Ispについて
第1構成例に係るPPTの初期性能として比推力Ispは627sであった。また、図6(C)に示すように、Straight−PPTに対し、同じ放電室長で150〜200s程度の比推力Ispの向上が確認された。放電室長Dが短い条件でも、Straight−PPTよりも効果的にプラズマが加速されていることが確認された。
(2−4)推進効率ηについて
第1構成例に係るPPTの初期性能として推進効率ηは17.3%であった。また、図6(D)に示すように、Straight−PPTに対し、同じ放電室長Dで5%程度の推進効率ηの向上が確認された。放電室長Dが20mmの条件で最も良い値を示し、適正な放電室長Dについて実施例1とほぼ同じ結果が得られた。
〔実施例3〕 第1構成例に係るPPTにおける半頂角αの影響
(1)実験条件
実施例1と同様、第1構成例に係るPPTをセットし、下表2に示す条件によって、各PPTにおける半頂角αを変化させたときのインパルスビットI、マスショットΔm、比推力Ispおよび推進効率ηを検証した。
Figure 2008169779
(2)実験結果
図7(A)〜(D)に示すように、半頂角αが3.5°および5°において、インパルスビットI、マスショットΔm、比推力Ispおよび推進効率ηのいずれも放電室長に対しても、安定した作動が認められ、特に20〜30mmにおいて良い推進効率ηの値を示した。
〔実施例4〕 第1構成例に係るPPTにおける最適条件の検証
第1構成例に係るPPTの最適条件において、PPTとしての基本特性である、インパルスビットI、マスショットΔm、比推力Ispおよび推進効率ηを検証した。
(1)実験条件
被験用PPTとして、推進剤をPTFEとし、半頂角αを10°、放電室長Dを20mm、陽極平端面の外径dをφ1mmとする放電室を有するPPTに対し、実施例1〜3とどう条件で検証した。
(2)実験結果
初期性能を下表3に示す。20.1%という高い推進効率ηを得ることができた。
Figure 2008169779
〔実施例5〕 多数のショット後の放電室内側面の形状の検証
(1)実験条件
被験用PPTとして、第1構成例に係るPPTおよびStraight−PPTについて推進剤をPTFEとし、実施例1〜3と同条件で350ショット後の各放電室の表面形状の変化を検証した。
(2)実験結果
(2−1)図8(A)および(B)に、初期性能測定後の放電室の断面写真を示す。実験後スラスタユニットを切断し、放電室の表面形状の変化を比較すると、それぞれの写真の右側で特に黒い部分が見られるが、これは陽極に付着した汚れによるものだと考えられる。図8(A)に示すStraight−PPTの燃料表面では、放電室の前面に渡って凹凸と、テフロンが焦げたと思われる黒い点の様な汚れが見られた。一方、図8(B)に示す第1構成例に係るPPTの表面では、陽極付近に多少の汚れはあったものの、表面全体としては滑らかで、Straight−PPTの様な凹凸は見られなかった。推進剤が均一に昇華していると考えられる。
(2−2)また、この結果から、両者の推進剤の減少が最も大きい部分を盛り上げた放電室を有するPPTによって、多数のショット後に対しても部分的に推進剤の減少が生じることを軽減することが示唆され、長期間安定な比推力Ispおよび推進効率ηの維持が可能なPPTとすることができと考えられる。
<複数の放電室を有するPPT(第2構成例)の機能>
第1構成例に係るPPTにおいては、1つの放電室を有する場合を例示したが、むろん2以上の放電室を有するPPTを構成することができる。また、その配置についても特に制限はなく、PPTの使用条件などによって最適な推進効率となる配置が選定される。例えば、図9に示すように、3つの放電室21,22および23を、誘発路7を介して並列的に配置した場合などを挙げることができる(第2構成例)。ストレート型と同程度のインパルスを保ちつつ、1ショット当たりの燃料の消費量を減少させることが可能になることから、宇宙空間で同じミッションを行う際に、PPTに搭載する燃料を軽量化することができる。そのため、衛星の小型・軽量化にも寄与することが可能となる。
本発明においては、上記PPTの基本構成、およびこれを駆動するキャパシタに加え、電力供給機能あるいはPPTを制御する機能も重要な役割を果たしている。つまり、上記のような、誘発路7の配設によって、イグナイタ6の低減とともに、イグニッション回路の低減を図ることができる。つまり、図9に示す構成において、電極間に印加する高電圧についても、陽極3a−陰極4a間、陽極3b−陰極4bおよび陽極3c−陰極4c間において、安価なダイオード20a、20bおよび20cを用いた電気回路20により各放電室へのエネルギーを均等に分散させることができる。また、高電圧スイッチなどを一切使わずに、イグナイタ6の制御のみで、放電室21、22および23を放電させることができる。隣り合う放電室21、22および23の間をノズル5a、5bおよび5cの出口付近において貫通する誘発路7aを,第1の主放電で生成された荷電粒子が通過し,放電室22における主放電を誘発する。その後同様にして、放電室23で主放電が誘発される。
キャパシタ10は,通常のPPTにおけるキャパシタブロックを3つのブロックに均等に分割し,それぞれのキャパシタブロック10a、10bおよび10cで蓄えられたエネルギーがそれぞれ1つずつの放電室21、22および23に供給されるよう接続される。通常、PPT用に用いられる高耐電圧のキャパシタは、容量が非常に小さいため複数のキャパシタを並列に接続して用いられる場合が多く、キャパシタブロックを分割することは多くの場合可能である。
充電回路中にダイオード20a、20bおよび20cが使用されているのは,第1の主放電が誘発される放電室21に,3つのキャパシタ内の全エネルギーが投入されるのを防ぐためである。これらのダイオード20a、20bおよび20cは数1000Vの高い逆電圧に耐え得るものでなければならないが、非常に小型・軽量であるため、ダイオードの追加による重量・体積増加分は、推進系全体の重量・体積と比較すると無視できる。
以上の構造を応用して,さらに多くの放電室を1つのイグナイタ6で誘発することが可能であり、イグナイタ6の数を増やせば、数10個以上の放電室を有するスラスタユニットを構成することができる。
以上、単一のスラスタユニットにおいて、1つまたは複数の放電室を有する単一のPPTを作動させる場合について説明したが、さらに、本発明では、単一のスラスタユニットにおいて、複数のPPTを作動させることが可能である。つまり、単一のスラスタユニットにおいて、複数のスラスタユニットを用いた場合と同様、多軸方向のPPTの作動を制御することが可能となり、これによって、宇宙機の小型化・軽量化を図ることが可能となる。
また、1つまたは複数のPPTを配設した複数のスラスタユニットを適用することによって、推進力を複数レベルで調整しかつ瞬間的な強度を制御することができる、人工衛星などの宇宙機を構成することが可能となる。
本発明に係るPPTの基本的な構成を例示する説明図。 本発明に係るPPTの放電室の断面構造を例示する説明図。 使用による放電室の形状の変化およびその補正方法を例示する説明図。 PPT実験用のスラストスタンドの構成を例示する説明図。 Straight−PPTの特性を例示する説明図。 第1構成例に係るPPTとStraight−PPTとの比較試験の結果を例示する説明図。 第1構成例に係るPPTとStraight−PPTとの比較試験の結果を例示する説明図。 第1構成例に係るPPTにおける半頂角αの影響特性を例示する説明図。 第1構成例に係るPPTにおける半頂角αの影響特性を例示する説明図。 多数のショット後の放電室内側面の形状の検証結果を例示する説明図。 本発明に係る複数の放電室を有するPPTの構成を例示する説明図。 一般的なPPTの模式的な構成を例示する説明図。 従来技術に係るPPT推進剤供給機構の構成例を概略的に示す説明図。 同軸型の放電室を有する従来技術に係るPPTの構成例を示す説明図。
符号の説明
1 スラスタユニット
2、21、22、23 放電室(放電室)
2a 一端部
2b 他端部
3、3a、3b、3c 陽極(アノード)
4 陰極(カソード)
5、5a、5b、5c ノズル
6 イグナイタ
7a、7b 誘発路
8 推進剤
10 キャパシタ
10a、10b、10c キャパシタブロック
20 電気回路
20a、20b、20c ダイオード
D 放電室長
d 一端部の内径
M 中心軸
T 変曲点
α 半頂角

Claims (5)

  1. スラスタユニットに、推進剤によって形成された放電室、該放電室の一端部に近接して設けられた陽極、該放電室の他端部あるいは該他端部に近接するノズルを介して設けられた陰極、およびイグナイタを有するパルスプラズマスラスタであって、前記放電室の形状が、その中心軸に対する垂直断面が前記一端部から他端部へ漸次拡大し、略円錐形状を形成することを特徴とするパルスプラズマスラスタ。
  2. 前記放電室が、一端部を上面とし他端部を底面とする正円錐台形状を形成することを特徴とする請求項1記載のパルスプラズマスラスタ。
  3. 前記放電室の中心軸を含む縦断面の側線が、1つの変曲点を有し中心軸に接近する曲線を形成するとともに、該変曲点が、該側線の中央よりも一端部側にあることを特徴とする請求項1記載のパルスプラズマスラスタ。
  4. 前記放電室の内面が、前記一端部を基点として他端部側に対して半頂角が0°超15°以内に開口する形状を形成することを特徴とする請求項1〜3のいずれかに記載のパルスプラズマスラスタ。
  5. 前記スラスタユニットに、前記放電室を複数設けるとともに、該放電室の内の少なくとも2以上を連通する誘発路を設けることを特徴とする請求項1〜4のいずれかに記載のパルスプラズマスラスタ。
JP2007004867A 2007-01-12 2007-01-12 パルスプラズマスラスタ Pending JP2008169779A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007004867A JP2008169779A (ja) 2007-01-12 2007-01-12 パルスプラズマスラスタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007004867A JP2008169779A (ja) 2007-01-12 2007-01-12 パルスプラズマスラスタ

Publications (1)

Publication Number Publication Date
JP2008169779A true JP2008169779A (ja) 2008-07-24

Family

ID=39698096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007004867A Pending JP2008169779A (ja) 2007-01-12 2007-01-12 パルスプラズマスラスタ

Country Status (1)

Country Link
JP (1) JP2008169779A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027351A1 (de) 2008-06-30 2010-04-22 Hitachi, Ltd. Leistungshalbleitermodul
CN106304595A (zh) * 2016-08-26 2017-01-04 大连理工大学 表面等离子体共振与电子回旋共振双激励式微波推力器
CN106542122A (zh) * 2016-12-07 2017-03-29 兰州空间技术物理研究所 一种三环真空弧推力器
CN113371233A (zh) * 2021-07-29 2021-09-10 哈尔滨工业大学 一种阳极结构及会切场推力器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009027351A1 (de) 2008-06-30 2010-04-22 Hitachi, Ltd. Leistungshalbleitermodul
CN106304595A (zh) * 2016-08-26 2017-01-04 大连理工大学 表面等离子体共振与电子回旋共振双激励式微波推力器
CN106304595B (zh) * 2016-08-26 2019-02-05 大连理工大学 表面等离子体共振与电子回旋共振双激励式微波推力器
CN106542122A (zh) * 2016-12-07 2017-03-29 兰州空间技术物理研究所 一种三环真空弧推力器
CN113371233A (zh) * 2021-07-29 2021-09-10 哈尔滨工业大学 一种阳极结构及会切场推力器
CN113371233B (zh) * 2021-07-29 2022-08-30 哈尔滨工业大学 一种阳极结构及会切场推力器

Similar Documents

Publication Publication Date Title
US10107271B2 (en) Bi-modal micro cathode arc thruster
EP3472050B1 (en) Inline screw feeding vacuum arc thruster
US9517847B2 (en) Micro-cathode thruster and a method of increasing thrust output for a micro-cathode thruster
RU2748625C2 (ru) Импульсная катодно-дуговая двигательная установка с внутренним проволочным инициатором
JP6045607B2 (ja) ホール効果スラスタ
US6769241B2 (en) Description of methods to increase propellant throughput in a micro pulsed plasma thruster
JP2008169779A (ja) パルスプラズマスラスタ
US11465784B2 (en) Modular micro-cathode arc thruster
JP4425838B2 (ja) パルスプラズマ推進装置の点火部
WO2005029927A2 (en) Pulsed plasma accelerator and method
Aoyagi et al. Total impulse improvement of coaxial pulsed plasma thruster for small satellite
Schein et al. Low mass vacuum arc thruster system for station keeping missions
Ji et al. Recent progress in research on micro-cathode arc thrusters
Mitterauer Micropropulsion for small spacecraft: a new challenge for field effect electric propulsion and microstructured liquid metal ion sources
JP2007120343A (ja) パルスプラズマスラスタおよびこれを用いた宇宙機
Woodruff et al. Fiber-fed Pulsed Plasma Thruster (FPPT) for small satellites
Kronhaus et al. Axial Magnetic Field Effect on Vacuum Arc Thruster Performance
Ning et al. The ignition erosion mechanism of heatless hollow cathode
Toki Quasisteady MPD arcjet with hollow cathode
Miyagi et al. Characterization of a Liquid-propellant Pulsed Plasma Thruster Using Various Nozzle Configurations
Frankovich et al. Flight Metal Plasma Thruster (MPT) Development, Qualification, and Thrust Measurement Campaign
JP2019090551A (ja) 電磁飛翔体加速装置
Teel Development and Characterization of the Heated-Anode Cathode Arc Thruster (HA-CAT)
Glascock et al. Impulse measurements of electric solid propellant in an electrothermal ablation-fed pulsed plasma thruster
Mukai et al. Research and Development on Coaxial Pulsed Plasma Thruster for Small Satellites