JP2008169430A - Heat treatment apparatus and heat-treatment method for steel ball - Google Patents

Heat treatment apparatus and heat-treatment method for steel ball Download PDF

Info

Publication number
JP2008169430A
JP2008169430A JP2007003638A JP2007003638A JP2008169430A JP 2008169430 A JP2008169430 A JP 2008169430A JP 2007003638 A JP2007003638 A JP 2007003638A JP 2007003638 A JP2007003638 A JP 2007003638A JP 2008169430 A JP2008169430 A JP 2008169430A
Authority
JP
Japan
Prior art keywords
steel ball
steel
magnetic flux
heat treatment
induction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007003638A
Other languages
Japanese (ja)
Inventor
Yoshimichi Hino
善道 日野
Yasumasa Hirai
康正 平井
Takaaki Toyooka
高明 豊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007003638A priority Critical patent/JP2008169430A/en
Publication of JP2008169430A publication Critical patent/JP2008169430A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lumply perform an induction-heating to a plurality of steel balls without accompanying the generation of leaning heat and to prevent the melted stickiness of both of the steel balls. <P>SOLUTION: A spiral-state steel ball guiding passage 8 rounding the axis almost coinciding with the direction of a magnetic flux 3 generated with an induction-heating coil 2 is arranged and the steel balls 1 are induction-heated while rotating the steel balls 1 on the steel ball guiding passage 8 so as not to coincide the direction of the magnetic flux 3 with the rotating axis 5 in the magnetic flux 3 generated with the induction-heating coil 2 by rotating on the steel ball 1 on the guiding passage 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は鋼球の熱処理装置および鋼球の熱処理方法に関し、特に、誘導加熱による鋼球の熱処理方法に適用して好適なものである。   The present invention relates to a steel ball heat treatment apparatus and a steel ball heat treatment method, and is particularly suitable for application to a steel ball heat treatment method by induction heating.

軸受鋼は、軸受外輪や鋼球などの軸受を構成する部品に加工された後、焼き入れや焼き戻しが施されることにより硬さが調整され、軸受に重要な特性である転動疲労寿命について所望の性能が得られるようにされている。
例えば、特許文献1には、転動疲労寿命を向上させるために、軸受鋼の焼き入れの際に急速加熱を行うことにより、旧オーステナイト粒径を4μm以下にまで微細化させる方法が開示されている。
Bearing steel is processed into parts that make up the bearing, such as bearing outer rings and steel balls, and then the hardness is adjusted by quenching and tempering. Desired performance can be obtained.
For example, Patent Document 1 discloses a method of reducing the prior austenite grain size to 4 μm or less by performing rapid heating during quenching of the bearing steel in order to improve the rolling fatigue life. Yes.

また、軸受を構成する部品のうち鋼球についても、転動疲労寿命は重要な特性であることから、旧オーステナイト粒径を微細化させるために、急速加熱を行う方法は有用であると考えられる。
ここで、鋼球の急速加熱を行う代表的な方法としては、誘導加熱コイルを用いた誘導加熱を挙げることができる。
In addition, the rolling fatigue life is also an important characteristic for steel balls among the components that make up the bearing, so it is thought that the method of rapid heating is useful in order to refine the prior austenite grain size. .
Here, as a typical method for performing rapid heating of a steel ball, induction heating using an induction heating coil can be exemplified.

例えば、特許文献2には、半径方向に沿って放射状に延びる複数のスリットが形成された金属製の円筒体の外周に配設される螺旋状の高周波誘導加熱コイルの中央部で、鋼球の表面を磁気変態点以上の温度に予備加熱し、次いでこの鋼球を上方に移動させて電磁力にて浮揚状態として水平軸を中心に自転を生ぜしめた状態の下で高周波誘導加熱することにより、鋼球の表面を均一加熱する方法が開示されている。   For example, Patent Document 2 discloses that a steel ball is formed at the center of a spiral high-frequency induction heating coil disposed on the outer periphery of a metal cylinder formed with a plurality of slits extending radially along the radial direction. By preheating the surface to a temperature above the magnetic transformation point and then moving the steel ball upwards to levitate by electromagnetic force and subjecting it to rotation around a horizontal axis, high-frequency induction heating A method for uniformly heating the surface of a steel ball is disclosed.

図5(a)は、従来の鋼球の熱処理方法を示す斜視図、図5(b)は、従来の鋼球の熱処理方法による磁束の方向と発熱領域との関係を示す断面図である。
図5(a)において、鋼球101の周囲には誘導加熱コイル102が配置されている。そして、誘導加熱コイル102にコイル電流を流すことにより、誘導加熱コイル102の周回面と直交する方向に磁束103が発生する。そして、磁束103が鋼球101を貫通すると、鋼球101には、磁束103と直交する周回面を流れる誘導電流104が発生する。そして、鋼球101に誘導電流104が発生すると、誘導電流104が流れる領域106が発熱し、鋼球101の急速加熱が行われる。
FIG. 5A is a perspective view showing a conventional steel ball heat treatment method, and FIG. 5B is a cross-sectional view showing the relationship between the direction of magnetic flux and the heat generation region by the conventional steel ball heat treatment method.
In FIG. 5A, an induction heating coil 102 is arranged around a steel ball 101. A magnetic flux 103 is generated in a direction orthogonal to the circumferential surface of the induction heating coil 102 by causing a coil current to flow through the induction heating coil 102. Then, when the magnetic flux 103 penetrates the steel ball 101, an induced current 104 that flows on the circumferential surface orthogonal to the magnetic flux 103 is generated in the steel ball 101. When the induced current 104 is generated in the steel ball 101, the region 106 through which the induced current 104 flows generates heat, and the steel ball 101 is rapidly heated.

図6(a)は、従来の鋼球の熱処理方法のその他の例を示す断面図、図6(b)は、図6(a)の方法にて熱処理された鋼球の状態を示す側面図、図7は、図6の鋼球の熱処理方法における誘導電流の経路を示す斜視図である。
図6(a)および図7において、保持具205には複数の鋼球201が接触された状態で収容されるとともに、保持具205の周囲には誘導加熱コイル202が配置されている。そして、誘導加熱コイル202にコイル電流を流すことにより、誘導加熱コイル202の周回面と直交する方向に磁束203が発生する。そして、磁束203が鋼球201を貫通すると、鋼球201には、磁束203と直交する周回面を流れる誘導電流204が発生する。そして、鋼球201に誘導電流204が発生すると、鋼球201が発熱し、鋼球201の急速加熱が行われる。
特開2006−152407号公報 特開平6−116646号公報
6A is a cross-sectional view showing another example of the conventional heat treatment method for steel balls, and FIG. 6B is a side view showing the state of the steel balls heat-treated by the method of FIG. 6A. FIG. 7 is a perspective view showing a path of an induced current in the steel ball heat treatment method of FIG.
In FIG. 6A and FIG. 7, a plurality of steel balls 201 are accommodated in the holder 205 and an induction heating coil 202 is disposed around the holder 205. Then, by supplying a coil current to the induction heating coil 202, a magnetic flux 203 is generated in a direction orthogonal to the circumferential surface of the induction heating coil 202. Then, when the magnetic flux 203 penetrates the steel ball 201, an induced current 204 that flows on the circumferential surface orthogonal to the magnetic flux 203 is generated in the steel ball 201. When the induced current 204 is generated in the steel ball 201, the steel ball 201 generates heat and the steel ball 201 is rapidly heated.
JP 2006-152407 A JP-A-6-116646

しかしながら、特許文献2に開示された方法では、鋼球の急速加熱が1個づつ個別に行われ、複数の鋼球を一度に熱処理することができないことから、生産効率が悪いという問題があった。
また、図5(b)に示すように、鋼球101を誘導加熱する時に鋼球101が静止している場合には、鋼球101の特定の領域106しか発熱せず、偏熱を生じることから、転動疲労寿命について所望の性能が得られないという問題があった。
However, the method disclosed in Patent Document 2 has a problem that production efficiency is poor because rapid heating of steel balls is performed individually one by one and a plurality of steel balls cannot be heat treated at a time. .
In addition, as shown in FIG. 5B, when the steel ball 101 is stationary when the steel ball 101 is induction-heated, only a specific region 106 of the steel ball 101 generates heat, resulting in uneven heat. Therefore, there has been a problem that desired performance cannot be obtained for the rolling fatigue life.

また、図6に示すように、複数の鋼球201を接触させた状態でこれらの鋼球201を誘導加熱すると、図7に示すように、接触した複数の鋼球201の最外周を周回するように誘導電流204が流れることから、鋼球201間にスパークが生じて表面が溶融し、鋼球201同士が溶着するという問題があった。
そこで、本発明の目的は、偏熱の発生を伴うことなく、複数の鋼球を一括して誘導加熱するとともに、鋼球同士の溶着を防止することが可能な鋼球の熱処理装置および鋼球の熱処理方法を提供することである。
Moreover, as shown in FIG. 6, when these steel balls 201 are induction-heated in a state in which the plurality of steel balls 201 are in contact with each other, as shown in FIG. Thus, there is a problem that sparks are generated between the steel balls 201, the surfaces are melted, and the steel balls 201 are welded together.
Accordingly, an object of the present invention is to provide a heat treatment apparatus and a steel ball for a steel ball capable of collectively heating a plurality of steel balls and preventing welding of the steel balls without causing the occurrence of uneven heat. The heat treatment method is provided.

上述した課題を解決するために、請求項1記載の鋼球の熱処理装置によれば、鋼球の誘導加熱を行う誘導加熱コイルと、前記誘導加熱コイルにて発生される磁束中において前記磁束の方向と回転軸が一致しないように鋼球を回転させながら前記鋼球を案内する案内手段とを備えることを特徴とする。
また、請求項2記載の鋼球の熱処理装置によれば、前記案内手段は、前記磁束と交差するように配置された直線状の案内路と、前記案内路に前記鋼球を送り出す送り手段とを備えることを特徴とする。
In order to solve the above-described problem, according to the steel ball heat treatment apparatus according to claim 1, an induction heating coil that performs induction heating of the steel ball, and a magnetic flux generated in the induction heating coil Guiding means for guiding the steel ball while rotating the steel ball so that the direction does not coincide with the rotation axis is provided.
Further, according to the heat treatment apparatus for steel balls according to claim 2, the guide means includes a linear guide path arranged so as to intersect the magnetic flux, and a feed means for sending the steel ball to the guide path. It is characterized by providing.

また、請求項3記載の鋼球の熱処理装置によれば、前記案内手段は、前記磁束の方向と略一致する軸を周回する螺旋状の案内路であることを特徴とする。
また、請求項4記載の鋼球の熱処理装置によれば、前記案内路は互いに並行に配置されるようにして複数個設けられていることを特徴とする。
また、請求項5記載の鋼球の熱処理装置によれば、前記案内手段は、前記磁束と交差する軸の周りを回転自在に配置され、前記鋼球を内面に沿って周回させる円筒と、前記円筒を周方向に回転させる駆動手段とを備えることを特徴とする。
The steel ball heat treatment apparatus according to claim 3 is characterized in that the guide means is a spiral guide path that goes around an axis substantially coinciding with the direction of the magnetic flux.
The steel ball heat treatment apparatus according to claim 4 is characterized in that a plurality of the guide paths are provided so as to be arranged in parallel to each other.
Further, according to the steel ball heat treatment apparatus according to claim 5, the guide means is rotatably arranged around an axis intersecting with the magnetic flux, and the cylinder that circulates the steel ball along the inner surface; And a driving means for rotating the cylinder in the circumferential direction.

また、請求項6記載の鋼球の熱処理装置によれば、前記円筒の内面には、鋼球を1個ずつ通すように鋼球の進路を規定するガイド部材が形成されていることを特徴とする。
また、請求項7記載の鋼球の熱処理装置によれば、前記円筒は互いに並行に配置されるようにして複数個設けられていることを特徴とする。
また、請求項8記載の鋼球の熱処理方法によれば、誘導加熱コイルにて発生される磁束の方向と回転軸が一致しないように鋼球を回転移動させながら、前記磁束中において前記鋼球を誘導加熱することを特徴とする。
The steel ball heat treatment apparatus according to claim 6 is characterized in that a guide member for defining a course of the steel ball is formed on the inner surface of the cylinder so that the steel balls pass one by one. To do.
The steel ball heat treatment apparatus according to claim 7 is characterized in that a plurality of the cylinders are provided so as to be arranged in parallel to each other.
According to the method for heat treating a steel ball according to claim 8, the steel ball is moved in the magnetic flux while rotating the steel ball so that the direction of the magnetic flux generated by the induction heating coil does not coincide with the rotation axis. It is characterized by induction heating.

また、請求項9記載の鋼球の熱処理方法によれば、誘導加熱コイルにて発生される磁束と交差するように配置された直線状の案内路に沿って前記鋼球を転がしながら、前記鋼球を誘導加熱することを特徴とする。
また、請求項10記載の鋼球の熱処理方法によれば、誘導加熱コイルにて発生される磁束の方向と略一致する軸を周回する螺旋状の案内路に沿って前記鋼球を転がしながら、前記鋼球を誘導加熱することを特徴とする。
また、請求項11記載の鋼球の熱処理方法によれば、誘導加熱コイルにて発生される磁束と交差する軸の周りを回転する円筒の内面に沿って前記鋼球を周回させながら、前記鋼球を誘導加熱することを特徴とする。
Further, according to the heat treatment method for steel balls according to claim 9, the steel balls are rolled while rolling the steel balls along a linear guide path arranged so as to intersect with the magnetic flux generated by the induction heating coil. It is characterized by inductively heating the sphere.
Moreover, according to the heat treatment method of the steel ball according to claim 10, while rolling the steel ball along a spiral guide path that goes around an axis substantially coinciding with the direction of the magnetic flux generated by the induction heating coil, The steel ball is induction-heated.
According to the method for heat treating a steel ball according to claim 11, the steel ball is circulated along an inner surface of a cylinder rotating around an axis intersecting with a magnetic flux generated by the induction heating coil. It is characterized by inductively heating the sphere.

また、請求項12記載の鋼球の熱処理方法によれば、前記円筒の内面に形成されたガイド部材によって個々の鋼球が接触しないように分離された状態で前記鋼球を周回させることを特徴とする。
また、請求項13記載の鋼球の熱処理方法によれば、並行に配置された複数個の円筒にそれぞれ沿って鋼球を周回させながら、前記鋼球を誘導加熱することを特徴とする。
また、請求項14記載の鋼球の熱処理方法によれば、前記誘導加熱された鋼球を冷却して焼き入れを行う工程をさらに備えることを特徴とする。
The steel ball heat treatment method according to claim 12 is characterized in that the steel balls are circulated in a state where the steel balls are separated so as not to contact each other by a guide member formed on the inner surface of the cylinder. And
The steel ball heat treatment method according to claim 13 is characterized in that the steel ball is induction-heated while rotating around the steel ball along a plurality of cylinders arranged in parallel.
The steel ball heat treatment method according to claim 14 further includes a step of cooling and quenching the induction-heated steel ball.

以上説明したように、本発明によれば、誘導加熱コイルにて発生される磁束の方向と回転軸が一致しないように鋼球を回転移動させながら鋼球を誘導加熱することができ、鋼球に流れる誘導電流を全表面に分散させることが可能となるとともに、複数の鋼球が静止したまま接触した状態で誘導加熱されるのを防止することができる。このため、偏熱の発生を伴うことなく、複数の鋼球を一括して急速加熱することが可能となるとともに、鋼球同士の溶着を防止することが可能となり、製造効率を劣化させることなく、鋼球の転動疲労寿命について所望の性能を得ることが可能となる。   As described above, according to the present invention, the steel ball can be induction-heated while rotating the steel ball so that the direction of the magnetic flux generated by the induction heating coil does not coincide with the rotation axis. It is possible to disperse the induced current flowing through the entire surface, and it is possible to prevent the plurality of steel balls from being induction-heated in contact with each other while still. For this reason, it is possible to rapidly heat a plurality of steel balls in a lump without generating uneven heat, and it is possible to prevent welding between the steel balls, without deteriorating the production efficiency. It becomes possible to obtain a desired performance for the rolling fatigue life of the steel ball.

以下、本発明の実施形態に係る鋼球の熱処理装置について図面を参照しながら説明する。
図1(a)は、本発明の第1実施形態に係る鋼球の熱処理装置の概略構成を示す断面図、図1(b)は、磁束の方向と鋼球の回転軸との関係を示す側面図、図1(c)は、本発明の第1実施形態に係る鋼球の熱処理装置のその他の概略構成を示す断面図である。
Hereinafter, a heat treatment apparatus for steel balls according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1A is a cross-sectional view showing a schematic configuration of a heat treatment apparatus for steel balls according to a first embodiment of the present invention, and FIG. 1B shows a relationship between the direction of magnetic flux and the rotation axis of the steel balls. A side view and FIG.1 (c) are sectional drawings which show the other schematic structure of the heat processing apparatus of the steel ball based on 1st Embodiment of this invention.

図1(a)および図1(b)において、鋼球1の熱処理装置には、鋼球1の誘導加熱を行う誘導加熱コイル2、誘導加熱コイル2にて発生された磁束3の方向と略一致する軸を周回する螺旋状の鋼球案内路8および誘導加熱された鋼球1を冷却して焼き入れを行う水焼き入れ装置9が設けられている。ここで、鋼球案内路8は、誘導加熱コイル2にて発生される磁束3中において磁束3の方向と回転軸5が一致しないように鋼球1を回転させながら鋼球1を水焼き入れ装置9に案内することができる。   1A and 1B, the heat treatment apparatus for the steel ball 1 includes an induction heating coil 2 that performs induction heating of the steel ball 1, and the direction of the magnetic flux 3 generated by the induction heating coil 2. A water-quenching device 9 is provided that cools and quenches the spiral steel ball guide path 8 and the induction-heated steel ball 1 that go around the corresponding axes. Here, the steel ball guide path 8 water quenches the steel ball 1 while rotating the steel ball 1 so that the direction of the magnetic flux 3 does not coincide with the rotation axis 5 in the magnetic flux 3 generated by the induction heating coil 2. The device 9 can be guided.

なお、誘導加熱コイル2は、略水平面内でコイル電流が周回するように構成することができ、誘導加熱コイル2内の上下方向に磁束3を発生させることができる。また、鋼球案内路8は、セラミックなどの絶縁性材料にて構成することができ、レール状や溝状あるいはパイプ状の形状であってもよい。
そして、鋼球1の誘導加熱を行う場合、誘導加熱コイル2にて磁束3を発生させながら、鋼球案内路8の上端から鋼球1を順次供給し、鋼球案内路8に沿って鋼球1を転がらせる。そして、鋼球案内路8に沿って鋼球1が転がると、回転軸5が磁束3の方向と一致しないように鋼球1が回転しながら磁束3が鋼球1を貫通し、磁束3と直交する周回面を流れる誘導電流iが鋼球1に発生して、鋼球1が誘導加熱される。そして、誘導加熱された鋼球1が鋼球案内路8の下端に到達すると、水焼き入れ装置9に落下し、水焼き入れ装置9にて冷却されることにより、鋼球1の焼き入れを行うことができる。
The induction heating coil 2 can be configured such that the coil current circulates in a substantially horizontal plane, and the magnetic flux 3 can be generated in the vertical direction in the induction heating coil 2. The steel ball guide path 8 can be made of an insulating material such as ceramic, and may be rail-shaped, groove-shaped, or pipe-shaped.
When induction heating of the steel ball 1 is performed, the steel ball 1 is sequentially supplied from the upper end of the steel ball guide path 8 while generating the magnetic flux 3 by the induction heating coil 2, and the steel ball 1 is steel along the steel ball guide path 8. Roll ball 1. Then, when the steel ball 1 rolls along the steel ball guide path 8, the magnetic flux 3 penetrates the steel ball 1 while the steel ball 1 rotates so that the rotating shaft 5 does not coincide with the direction of the magnetic flux 3. An induction current i flowing through the orthogonal circumferential surfaces is generated in the steel ball 1 and the steel ball 1 is induction-heated. And when the steel ball 1 induction-heated reaches | attains the lower end of the steel ball guide path 8, it falls to the water quenching apparatus 9 and is quenched with the water quenching apparatus 9, thereby quenching the steel ball 1 It can be carried out.

ここで、回転軸5が磁束3の方向と一致しないように鋼球1を回転させながら磁束3を鋼球1に貫通させることにより、磁束3の方向に対して鋼球1の向きを変化させることができ、鋼球1に流れる誘導電流iを全表面に分散させることが可能となるとともに、複数の鋼球1が静止したまま接触した状態で誘導加熱されるのを防止することができる。このため、偏熱の発生を伴うことなく、鋼球1を急速加熱することが可能となるとともに、鋼球1同士の溶着を防止することが可能となり、製造効率を劣化させることなく、鋼球1の転動疲労寿命について所望の性能を得ることが可能となる。   Here, the direction of the steel ball 1 is changed with respect to the direction of the magnetic flux 3 by passing the magnetic flux 3 through the steel ball 1 while rotating the steel ball 1 so that the rotating shaft 5 does not coincide with the direction of the magnetic flux 3. In addition, it is possible to disperse the induced current i flowing in the steel ball 1 over the entire surface, and it is possible to prevent the plurality of steel balls 1 from being inductively heated while in contact with each other. For this reason, it becomes possible to heat the steel balls 1 rapidly without causing the occurrence of uneven heat, and it is possible to prevent welding of the steel balls 1, and the steel balls can be produced without deteriorating the production efficiency. It becomes possible to obtain a desired performance for one rolling fatigue life.

また、鋼球案内路8の上端から鋼球1を連続的に供給することにより、複数の鋼球1を一括して誘導加熱することが可能となり、製造効率を向上させることができる。
なお、図1(c)に示すように、互いに並行に配置された複数の鋼球案内路8a〜8cを誘導加熱コイル2にて発生される磁束中に設け、これらの鋼球案内路8a〜8c上で鋼球1をそれぞれ転がすことにより、複数の鋼球1を一括して誘導加熱するようにしてもよい。
また、上述した実施形態では、鋼球案内路8は、磁束3の方向と略一致する軸を周回する螺旋状とする方法について説明したが、磁束3の方向と交差する軸を周回する螺旋状としてもよい。
In addition, by continuously supplying the steel balls 1 from the upper end of the steel ball guide path 8, a plurality of steel balls 1 can be collectively heated by induction, and the manufacturing efficiency can be improved.
In addition, as shown in FIG.1 (c), the several steel ball guide path 8a-8c arrange | positioned in parallel mutually is provided in the magnetic flux generated with the induction heating coil 2, and these steel ball guide paths 8a- A plurality of steel balls 1 may be collectively induction-heated by rolling the steel balls 1 on 8c.
In the above-described embodiment, the steel ball guide path 8 has been described as a spiral method of circling an axis that substantially coincides with the direction of the magnetic flux 3, but the spiral shape of circling an axis that intersects the direction of the magnetic flux 3. It is good.

図2は、本発明の第2実施形態に係る鋼球の熱処理装置の概略構成を示す斜視図である。
図2において、鋼球11の熱処理装置には、鋼球11の誘導加熱を行う誘導加熱コイル12、誘導加熱コイル12にて発生された磁束13と交差するように配置された直線状の鋼球案内路18、鋼球案内路18に鋼球11を送り出す送り装置10および誘導加熱された鋼球11を冷却して焼き入れを行う水焼き入れ装置19が設けられている。ここで、鋼球案内路18は、誘導加熱コイル12にて発生される磁束13中において磁束13の方向と回転軸が一致しないように鋼球11を回転させながら鋼球11を水焼き入れ装置19に案内することができ、例えば、鋼球11の回転軸が磁束13の方向と直交するように鋼球11を転がらせることができる。
FIG. 2 is a perspective view showing a schematic configuration of a heat treatment apparatus for steel balls according to a second embodiment of the present invention.
In FIG. 2, the heat treatment apparatus for the steel ball 11 includes an induction heating coil 12 that performs induction heating of the steel ball 11 and a linear steel ball that is arranged so as to intersect the magnetic flux 13 generated by the induction heating coil 12. A guide device 18, a feeding device 10 for feeding the steel ball 11 to the steel ball guide channel 18, and a water quenching device 19 for cooling and quenching the induction heated steel ball 11 are provided. Here, the steel ball guide path 18 is a water quenching device for rotating the steel ball 11 so that the direction of the magnetic flux 13 does not coincide with the rotation axis in the magnetic flux 13 generated by the induction heating coil 12. For example, the steel ball 11 can be rolled so that the rotation axis of the steel ball 11 is orthogonal to the direction of the magnetic flux 13.

なお、誘導加熱コイル12は、略水平面内でコイル電流が周回するように構成することができ、誘導加熱コイル12内の上下方向に磁束13を発生させることができる。また、鋼球案内路18は、セラミックなどの絶縁性材料にて構成することができ、レール状や溝状あるいはパイプ状の形状であってもよい。また、送り装置10は、鋼球案内路18に沿って前後に往復移動できるように構成することができ、送り装置10の送り速度を一定とすることにより、一定の速度で鋼球11を転がすことができる。   The induction heating coil 12 can be configured such that the coil current circulates in a substantially horizontal plane, and the magnetic flux 13 can be generated in the vertical direction in the induction heating coil 12. Further, the steel ball guide path 18 can be made of an insulating material such as ceramic, and may have a rail shape, a groove shape, or a pipe shape. Further, the feeding device 10 can be configured to reciprocate back and forth along the steel ball guide path 18, and the steel ball 11 is rolled at a constant speed by making the feeding speed of the feeding device 10 constant. be able to.

そして、鋼球11の誘導加熱を行う場合、誘導加熱コイル12にて磁束13を発生させながら、送り装置10にて鋼球11を鋼球案内路18に順次送り出し、鋼球案内路18に沿って鋼球11を転がらせる。そして、鋼球案内路18に沿って鋼球11が転がると、回転軸が磁束13の方向と一致しないように鋼球11が回転しながら磁束13が鋼球11を貫通し、磁束13と直交する周回面を流れる誘導電流が鋼球11に発生して、鋼球11が誘導加熱される。そして、誘導加熱された鋼球11が鋼球案内路18の端に到達すると、水焼き入れ装置19に落下し、水焼き入れ装置19にて冷却されることにより、鋼球11の焼き入れを行うことができる。   When induction heating of the steel ball 11 is performed, the steel ball 11 is sequentially sent to the steel ball guide path 18 by the feeding device 10 while generating the magnetic flux 13 by the induction heating coil 12, and along the steel ball guide path 18. The steel ball 11 is rolled. When the steel ball 11 rolls along the steel ball guide path 18, the magnetic ball 13 passes through the steel ball 11 while being rotated so that the rotation axis does not coincide with the direction of the magnetic flux 13, and is orthogonal to the magnetic flux 13. An induced current flowing through the rotating surface is generated in the steel ball 11 and the steel ball 11 is induction-heated. And when the steel ball 11 heated by induction reaches the end of the steel ball guide path 18, it falls to the water quenching device 19 and is cooled by the water quenching device 19, thereby quenching the steel ball 11. It can be carried out.

ここで、回転軸が磁束13の方向と一致しないように鋼球11を回転させながら磁束13を鋼球11に貫通させることにより、磁束13の方向に対して鋼球11の向きを変化させることができ、鋼球11に流れる誘導電流を全表面に分散させることが可能となるとともに、複数の鋼球11が静止したまま接触した状態で誘導加熱されるのを防止することができる。このため、偏熱の発生を伴うことなく、鋼球11を急速加熱することが可能となるとともに、鋼球11同士の溶着を防止することが可能となり、製造効率を劣化させることなく、鋼球11の転動疲労寿命について所望の性能を得ることが可能となる。   Here, the direction of the steel ball 11 is changed with respect to the direction of the magnetic flux 13 by passing the magnetic flux 13 through the steel ball 11 while rotating the steel ball 11 so that the rotation axis does not coincide with the direction of the magnetic flux 13. It is possible to disperse the induced current flowing in the steel balls 11 over the entire surface, and it is possible to prevent the plurality of steel balls 11 from being induction-heated in a contacted state while still. For this reason, it becomes possible to rapidly heat the steel balls 11 without causing the occurrence of uneven heat, and it becomes possible to prevent welding of the steel balls 11, and the steel balls can be produced without deteriorating the production efficiency. The desired performance can be obtained for the rolling fatigue life of 11.

また、送り装置10にて鋼球11を鋼球案内路18に連続的に送り出すことにより、複数の鋼球11を一括して誘導加熱することが可能となり、製造効率を向上させることができる。
なお、鋼球案内路18は、互いに並行に配置された複数の鋼球案内路であってもよく、これら複数の鋼球案内路上で鋼球11をそれぞれ転がすことにより、複数の鋼球11を一括して誘導加熱するようにしてもよい。
In addition, by continuously feeding the steel balls 11 to the steel ball guide path 18 with the feeding device 10, it is possible to collectively heat the plurality of steel balls 11 and improve the manufacturing efficiency.
The steel ball guide path 18 may be a plurality of steel ball guide paths arranged in parallel to each other. By rolling the steel balls 11 on each of the plurality of steel ball guide paths, the plurality of steel balls 11 are moved. You may make it carry out induction heating collectively.

図3(a)は、本発明の第3実施形態に係る鋼球の熱処理装置の概略構成を示す斜視図、図3(b)は、図3(a)の円筒28の内部構成の一例を示す斜視図である。
図3において、鋼球21の熱処理装置には、鋼球21の誘導加熱を行う誘導加熱コイル22、誘導加熱コイル22にて発生された磁束23と略直交する軸の周りを回転自在に配置され、鋼球21を内面に沿って周回させる円筒28、円筒28を円周方向に回転させる駆動部25、駆動部25に駆動力を与えるモータ26および誘導加熱された鋼球21を冷却して焼き入れを行う水焼き入れ装置29が設けられている。ここで、円筒28は、誘導加熱コイル22にて発生される磁束23中において磁束23の方向と回転軸が一致しないように鋼球21を回転させながら鋼球21を水焼き入れ装置29に案内することができる。
3A is a perspective view showing a schematic configuration of a heat treatment apparatus for steel balls according to a third embodiment of the present invention, and FIG. 3B is an example of an internal configuration of the cylinder 28 in FIG. 3A. It is a perspective view shown.
In FIG. 3, the heat treatment apparatus for the steel ball 21 is rotatably arranged around an induction heating coil 22 that performs induction heating of the steel ball 21 and an axis that is substantially orthogonal to the magnetic flux 23 generated by the induction heating coil 22. The cylinder 28 that rotates the steel ball 21 along the inner surface, the drive unit 25 that rotates the cylinder 28 in the circumferential direction, the motor 26 that applies drive force to the drive unit 25, and the induction-heated steel ball 21 are cooled and baked. A water quenching device 29 for performing the filling is provided. Here, the cylinder 28 guides the steel ball 21 to the water quenching device 29 while rotating the steel ball 21 so that the direction of the magnetic flux 23 does not coincide with the rotation axis in the magnetic flux 23 generated by the induction heating coil 22. can do.

なお、誘導加熱コイル22は、略水平面内でコイル電流が周回するように構成することができ、誘導加熱コイル22内の上下方向に磁束23を発生させることができる。また、円筒28は、セラミックなどの絶縁性材料にて構成することができ、円筒28の回転に合わせてその内面に沿って鋼球21が周回できるようにするために、円筒28の回転軸を略水平に保つことができる。   The induction heating coil 22 can be configured such that the coil current circulates in a substantially horizontal plane, and the magnetic flux 23 can be generated in the vertical direction in the induction heating coil 22. The cylinder 28 can be made of an insulating material such as ceramic. In order to allow the steel ball 21 to circulate along the inner surface in accordance with the rotation of the cylinder 28, the rotation axis of the cylinder 28 is set. It can be kept almost horizontal.

そして、鋼球21の誘導加熱を行う場合、誘導加熱コイル22にて磁束23を発生させながら、円筒28の一端から鋼球21を順次供給し、円筒28を円周方向に回転させる。そして、円筒28が円周方向に回転させられると、円筒28の内面に沿って鋼球21が転がり、回転軸が磁束23の方向と一致しないように鋼球21が回転しながら磁束23が鋼球21を貫通し、磁束23と直交する周回面を流れる誘導電流が鋼球21に発生して、鋼球21が誘導加熱される。そして、誘導加熱された鋼球21が円筒28の他端に到達すると、水焼き入れ装置29に落下し、水焼き入れ装置29にて冷却されることにより、鋼球21の焼き入れを行うことができる。   When the induction heating of the steel balls 21 is performed, the steel balls 21 are sequentially supplied from one end of the cylinder 28 while the magnetic flux 23 is generated by the induction heating coil 22, and the cylinder 28 is rotated in the circumferential direction. When the cylinder 28 is rotated in the circumferential direction, the steel ball 21 rolls along the inner surface of the cylinder 28, and the magnetic ball 23 rotates while the steel ball 21 rotates so that the rotation axis does not coincide with the direction of the magnetic flux 23. An induction current that passes through the sphere 21 and flows on the circumferential surface orthogonal to the magnetic flux 23 is generated in the steel ball 21, and the steel ball 21 is induction-heated. When the steel ball 21 that has been induction-heated reaches the other end of the cylinder 28, the steel ball 21 falls to the water quenching device 29 and is cooled by the water quenching device 29, thereby quenching the steel ball 21. Can do.

ここで、回転軸が磁束23の方向と一致しないように鋼球21を回転させながら磁束23を鋼球21に貫通させることにより、磁束23の方向に対して鋼球21の向きを変化させることができ、鋼球21に流れる誘導電流を全表面に分散させることが可能となるとともに、複数の鋼球21が静止したまま接触した状態で誘導加熱されるのを防止することができる。このため、偏熱の発生を伴うことなく、鋼球1を急速加熱することが可能となるとともに、鋼球21同士の溶着を防止することが可能となり、製造効率を劣化させることなく、鋼球21の転動疲労寿命について所望の性能を得ることが可能となる。   Here, the direction of the steel ball 21 is changed with respect to the direction of the magnetic flux 23 by passing the magnetic flux 23 through the steel ball 21 while rotating the steel ball 21 so that the rotation axis does not coincide with the direction of the magnetic flux 23. It is possible to disperse the induced current flowing through the steel balls 21 over the entire surface, and it is possible to prevent the plurality of steel balls 21 from being induction-heated in contact with the steel balls 21 being stationary. For this reason, it becomes possible to rapidly heat the steel balls 1 without causing uneven heat generation, and it is possible to prevent welding of the steel balls 21, and the steel balls can be produced without deteriorating the production efficiency. The desired performance can be obtained for the rolling fatigue life of 21.

また、円筒28の一端から鋼球21を連続的に供給することにより、複数の鋼球21を一括して誘導加熱することが可能となり、製造効率を向上させることができる。
なお、図3(b)に示すように、円筒28の内面には鋼球21を1個ずつ通すように鋼球21の進路を規定する案内溝24を設け、個々の鋼球21が接触しないように分離された状態で鋼球21を周回させるとともに、鋼球21の前進や後退を調節できるようにしてもよい。また、下端が円筒28の一端に接続され、上方から鋼球21を円筒28に挿入可能な挿入案内部27を設け、鋼球21を円筒28に連続して挿入できるようにしてもよい。
In addition, by continuously supplying the steel balls 21 from one end of the cylinder 28, the plurality of steel balls 21 can be collectively heated by induction, and the manufacturing efficiency can be improved.
As shown in FIG. 3B, a guide groove 24 that defines the course of the steel balls 21 is provided on the inner surface of the cylinder 28 so that the steel balls 21 pass through one by one so that the individual steel balls 21 do not come into contact with each other. The steel balls 21 may be circulated in such a separated state, and the forward or backward movement of the steel balls 21 may be adjusted. Moreover, the lower end is connected to one end of the cylinder 28, and an insertion guide part 27 that can insert the steel ball 21 into the cylinder 28 from above is provided, so that the steel ball 21 can be continuously inserted into the cylinder 28.

また、円筒28は、互いに並行に配置された複数の円筒であってもよく、これら複数の円筒の内面に沿って鋼球21をそれぞれ転がすことにより、複数の鋼球21を一括して誘導加熱するようにしてもよい。
また、上述した実施形態では、磁束23と略直交する軸の周りに円筒28を回転させる方法について説明したが、磁束23と交差する軸の周りに円筒28を回転させるようにしてもよい。
The cylinder 28 may be a plurality of cylinders arranged in parallel with each other, and the plurality of steel balls 21 are collectively induction-heated by rolling the steel balls 21 along the inner surfaces of the plurality of cylinders. You may make it do.
In the above-described embodiment, the method of rotating the cylinder 28 around the axis substantially orthogonal to the magnetic flux 23 has been described. However, the cylinder 28 may be rotated around the axis intersecting the magnetic flux 23.

図4は、本発明の一実施形態に係る熱処理方法にて熱処理された鋼球の表面から中心に至る深さ方向の硬度を従来例と比較して示す図である。
図4(b)において、図5の方法にて誘導加熱が行われた後、水冷して焼き入れが行われた鋼球101では、発熱部分を含む深さ方向(A´)と発熱部分を含まない深さ方向(B´)とでは、硬度分布が大きく異なるようになり、硬度に異方性が認められた。
一方、図4(a)において、図1の方法にて誘導加熱が行われた後、水冷して焼き入れが行われた鋼球1では、鋼球断面で45°ごとの深さ方向(A、B、C)において硬度分布に違いは認められることはなく、全ての方向において鋼球1の表層の1mm程度の部分に均一な焼き入れが施されていることが確認できた。
FIG. 4 is a diagram showing the hardness in the depth direction from the surface to the center of the steel ball heat-treated by the heat treatment method according to one embodiment of the present invention, as compared with the conventional example.
In FIG. 4B, in the steel ball 101 that has been subjected to induction heating by the method of FIG. 5 and then quenched with water, the depth direction (A ′) including the heat generation portion and the heat generation portion are changed. In the depth direction (B ′) not including the hardness distribution, the hardness distribution is greatly different, and anisotropy is recognized in the hardness.
On the other hand, in FIG. 4 (a), in the steel ball 1 subjected to induction heating by the method of FIG. 1 and then quenched by water cooling, the depth direction (A , B, C), there was no difference in hardness distribution, and it was confirmed that uniform quenching was performed on the surface layer of the steel ball 1 in about 1 mm in all directions.

図1(a)は、本発明の第1実施形態に係る鋼球の熱処理装置の概略構成を示す断面図、図1(b)は、磁束の方向と鋼球の回転軸との関係を示す側面図、図1(c)は、本発明の第1実施形態に係る鋼球の熱処理装置のその他の概略構成を示す断面図である。FIG. 1A is a cross-sectional view showing a schematic configuration of a heat treatment apparatus for steel balls according to a first embodiment of the present invention, and FIG. 1B shows a relationship between the direction of magnetic flux and the rotation axis of the steel balls. A side view and FIG.1 (c) are sectional drawings which show the other schematic structure of the heat processing apparatus of the steel ball based on 1st Embodiment of this invention. 本発明の第2実施形態に係る鋼球の熱処理装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the heat processing apparatus of the steel ball which concerns on 2nd Embodiment of this invention. 図3(a)は、本発明の第3実施形態に係る鋼球の熱処理装置の概略構成を示す斜視図、図3(b)は、図3(a)の円筒28の内部構成の一例を示す斜視図である。3A is a perspective view showing a schematic configuration of a heat treatment apparatus for steel balls according to a third embodiment of the present invention, and FIG. 3B is an example of an internal configuration of the cylinder 28 in FIG. 3A. It is a perspective view shown. 本発明の一実施形態に係る熱処理方法にて熱処理された鋼球の表面から中心に至る深さ方向の硬度を従来例と比較して示す図である。It is a figure which shows the hardness of the depth direction from the surface of the steel ball heat-processed with the heat processing method which concerns on one Embodiment of this invention to a center compared with a prior art example. 図5(a)は、従来の鋼球の熱処理方法を示す斜視図、図5(b)は、従来の鋼球の熱処理方法による磁束の方向と発熱領域との関係を示す断面図である。FIG. 5A is a perspective view showing a conventional steel ball heat treatment method, and FIG. 5B is a cross-sectional view showing the relationship between the direction of magnetic flux and the heat generation region by the conventional steel ball heat treatment method. 図6(a)は、従来の鋼球の熱処理方法のその他の例を示す断面図、図6(b)は、図6(a)の方法にて熱処理された鋼球の状態を示す側面図である。6A is a cross-sectional view showing another example of a conventional heat treatment method for steel balls, and FIG. 6B is a side view showing a state of the steel balls heat treated by the method of FIG. 6A. It is. 図6の鋼球の熱処理方法における誘導電流の経路を示す斜視図である。It is a perspective view which shows the path | route of the induced current in the heat processing method of the steel ball of FIG.

符号の説明Explanation of symbols

1、11、21 鋼球
2、12、22 誘導加熱コイル
3、13、23 磁束
5 回転軸
8、8a〜8c、18 鋼球案内路
9、19、29 水焼き入れ装置
10 送り装置
24 案内溝
25 駆動部
26 モータ
27 挿入案内部
28 円筒
DESCRIPTION OF SYMBOLS 1, 11, 21 Steel ball 2, 12, 22 Induction heating coil 3, 13, 23 Magnetic flux 5 Rotating shaft 8, 8a-8c, 18 Steel ball guide way 9, 19, 29 Water quenching apparatus 10 Feed apparatus 24 Guide groove 25 Drive part 26 Motor 27 Insertion guide part 28 Cylinder

Claims (14)

鋼球の誘導加熱を行う誘導加熱コイルと、
前記誘導加熱コイルにて発生される磁束中において前記磁束の方向と回転軸が一致しないように鋼球を回転させながら前記鋼球を案内する案内手段とを備えることを特徴とする鋼球の熱処理装置。
An induction heating coil for induction heating of a steel ball;
Heat treatment of a steel ball, characterized by comprising guide means for guiding the steel ball while rotating the steel ball so that the direction of the magnetic flux does not coincide with the rotation axis in the magnetic flux generated by the induction heating coil apparatus.
前記案内手段は、
前記磁束と交差するように配置された直線状の案内路と、
前記案内路に前記鋼球を送り出す送り手段とを備えることを特徴とする請求項1記載の鋼球の熱処理装置。
The guiding means includes
A linear guide path arranged to intersect the magnetic flux;
The steel ball heat treatment apparatus according to claim 1, further comprising a feeding unit that feeds the steel ball to the guide path.
前記案内手段は、前記磁束の方向と略一致する軸を周回する螺旋状の案内路であることを特徴とする請求項1記載の鋼球の熱処理装置。   2. The heat treatment apparatus for steel balls according to claim 1, wherein the guide means is a spiral guide path that goes around an axis substantially coinciding with the direction of the magnetic flux. 前記案内路は互いに並行に配置されるようにして複数個設けられていることを特徴とする請求項2または3記載の鋼球の熱処理装置。   4. The heat treatment apparatus for steel balls according to claim 2, wherein a plurality of the guide paths are provided so as to be arranged in parallel to each other. 前記案内手段は、
前記磁束と交差する軸の周りを回転自在に配置され、前記鋼球を内面に沿って周回させる円筒と、
前記円筒を周方向に回転させる駆動手段とを備えることを特徴とする請求項1記載の鋼球の熱処理装置。
The guiding means includes
A cylinder which is rotatably arranged around an axis intersecting with the magnetic flux and circulates the steel ball along an inner surface;
The steel ball heat treatment apparatus according to claim 1, further comprising a driving unit that rotates the cylinder in a circumferential direction.
前記円筒の内面には、鋼球を1個ずつ通すように鋼球の進路を規定するガイド部材が形成されていることを特徴とする請求項5記載の鋼球の熱処理装置。   6. The steel ball heat treatment apparatus according to claim 5, wherein a guide member for defining a course of the steel ball is formed on an inner surface of the cylinder so as to pass the steel balls one by one. 前記円筒は互いに並行に配置されるようにして複数個設けられていることを特徴とする請求項5または6記載の鋼球の熱処理装置。   7. The steel ball heat treatment apparatus according to claim 5, wherein a plurality of the cylinders are provided in parallel with each other. 誘導加熱コイルにて発生される磁束の方向と回転軸が一致しないように鋼球を回転移動させながら、前記磁束中において前記鋼球を誘導加熱することを特徴とする鋼球の熱処理方法。   A method for heat treating a steel ball, characterized in that the steel ball is induction-heated in the magnetic flux while rotating the steel ball so that the direction of the magnetic flux generated by the induction heating coil does not coincide with the rotation axis. 誘導加熱コイルにて発生される磁束と交差するように配置された直線状の案内路に沿って前記鋼球を転がしながら、前記鋼球を誘導加熱することを特徴とする請求項8記載の鋼球の熱処理方法。   9. The steel according to claim 8, wherein the steel ball is induction-heated while rolling the steel ball along a linear guide path arranged so as to intersect with the magnetic flux generated by the induction heating coil. Sphere heat treatment method. 誘導加熱コイルにて発生される磁束の方向と略一致する軸を周回する螺旋状の案内路に沿って前記鋼球を転がしながら、前記鋼球を誘導加熱することを特徴とする請求項8記載の鋼球の熱処理方法。   9. The steel ball is induction-heated while rolling the steel ball along a spiral guide path that goes around an axis substantially coinciding with the direction of magnetic flux generated by the induction heating coil. Heat treatment method for steel balls. 誘導加熱コイルにて発生される磁束と交差する軸の周りを回転する円筒の内面に沿って前記鋼球を周回させながら、前記鋼球を誘導加熱することを特徴とする請求項8記載の鋼球の熱処理方法。   9. The steel according to claim 8, wherein the steel ball is induction-heated while circling the steel ball along an inner surface of a cylinder rotating around an axis intersecting with a magnetic flux generated by the induction heating coil. Sphere heat treatment method. 前記円筒の内面に形成されたガイド部材によって個々の鋼球が接触しないように分離された状態で前記鋼球を周回させることを特徴とする請求項11記載の鋼球の熱処理方法。   The steel ball heat treatment method according to claim 11, wherein the steel balls are circulated in a state where the steel balls are separated so as not to contact each other by a guide member formed on an inner surface of the cylinder. 並行に配置された複数個の円筒にそれぞれ沿って鋼球を周回させながら、前記鋼球を誘導加熱することを特徴とする請求項11または12記載の鋼球の熱処理方法。   The method for heat-treating a steel ball according to claim 11 or 12, wherein the steel ball is induction-heated while circulating the steel ball along each of a plurality of cylinders arranged in parallel. 前記誘導加熱された鋼球を冷却して焼き入れを行う工程をさらに備えることを特徴とする請求項8から13のいずれか1項記載の鋼球の熱処理方法。   The method for heat-treating a steel ball according to any one of claims 8 to 13, further comprising a step of cooling and quenching the induction-heated steel ball.
JP2007003638A 2007-01-11 2007-01-11 Heat treatment apparatus and heat-treatment method for steel ball Pending JP2008169430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007003638A JP2008169430A (en) 2007-01-11 2007-01-11 Heat treatment apparatus and heat-treatment method for steel ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007003638A JP2008169430A (en) 2007-01-11 2007-01-11 Heat treatment apparatus and heat-treatment method for steel ball

Publications (1)

Publication Number Publication Date
JP2008169430A true JP2008169430A (en) 2008-07-24

Family

ID=39697806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007003638A Pending JP2008169430A (en) 2007-01-11 2007-01-11 Heat treatment apparatus and heat-treatment method for steel ball

Country Status (1)

Country Link
JP (1) JP2008169430A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221789A1 (en) * 2016-06-24 2017-12-28 Ntn株式会社 Induction heating apparatus and induction heating method
WO2018056066A1 (en) * 2016-09-21 2018-03-29 Ntn株式会社 Work piece conveyance jig and conveyance device provided with same, and induction heating device
WO2018155043A1 (en) * 2017-02-23 2018-08-30 Ntn株式会社 Heat treatment equipment and heat treatment method
KR101936491B1 (en) * 2017-01-25 2019-01-08 영남대학교 산학협력단 Device for induction heat treatment
CN109312420A (en) * 2016-06-24 2019-02-05 Ntn株式会社 Induction heating apparatus and induction heating method
RU2691354C1 (en) * 2019-01-22 2019-06-11 Общество с ограниченной ответственностью "НПП Система48" Installation for in-line induction axisymmetric heating of ball-shaped articles
CN111593193A (en) * 2020-06-28 2020-08-28 洛阳明臻轴承钢球有限公司 Resistance furnace operation method for tempering steel balls

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017221789A1 (en) * 2016-06-24 2017-12-28 Ntn株式会社 Induction heating apparatus and induction heating method
CN109312420A (en) * 2016-06-24 2019-02-05 Ntn株式会社 Induction heating apparatus and induction heating method
EP3476956A4 (en) * 2016-06-24 2019-12-11 NTN Corporation Induction heating apparatus and induction heating method
WO2018056066A1 (en) * 2016-09-21 2018-03-29 Ntn株式会社 Work piece conveyance jig and conveyance device provided with same, and induction heating device
KR101936491B1 (en) * 2017-01-25 2019-01-08 영남대학교 산학협력단 Device for induction heat treatment
WO2018155043A1 (en) * 2017-02-23 2018-08-30 Ntn株式会社 Heat treatment equipment and heat treatment method
RU2691354C1 (en) * 2019-01-22 2019-06-11 Общество с ограниченной ответственностью "НПП Система48" Installation for in-line induction axisymmetric heating of ball-shaped articles
WO2020153874A1 (en) * 2019-01-22 2020-07-30 Общество с ограниченной ответственностью "НПП Система48" Apparatus for the continuous axially symmetric induction heating of spherical articles
CN111593193A (en) * 2020-06-28 2020-08-28 洛阳明臻轴承钢球有限公司 Resistance furnace operation method for tempering steel balls

Similar Documents

Publication Publication Date Title
JP2008169430A (en) Heat treatment apparatus and heat-treatment method for steel ball
US4855556A (en) Method and apparatus for hardening gears and similar workpieces
JP6211364B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
JP6211366B2 (en) Heat treatment method for ring member and heat treatment equipment for ring member
US4757170A (en) Method and apparatus for induction heating gears and similar workpieces
KR20160132837A (en) Heat-treatment device and heat-treatment method
TWI743797B (en) Mobile quenching device and mobile quenching method
JP2009203498A (en) High frequency-induction heating method, heating apparatus and bearing
WO2017221963A1 (en) Method for manufacturing bearing parts
JP5179203B2 (en) Heat treatment equipment for cylindrical metal members
WO2015045822A1 (en) Method for thermally treating ring-shaped member
JP2008169431A (en) Heat-treatment apparatus and heat-treatment method for steel ball
JP4643614B2 (en) Induction gear quenching method for gears
JP2002235111A (en) Low strain hardening apparatus and hardening method
CN106061636B (en) Method of the manufacture for the guide rail of linear roller bearing
JP5096065B2 (en) High frequency induction heating coil and high frequency induction heating method
JPS63274713A (en) Heat treatment method for bar-like parts
JP2016089183A (en) Heat treatment method for workpiece
JP6438734B2 (en) Work heating and quenching methods
JP5089109B2 (en) Induction tempering method of crankshaft and induction induction apparatus used in this method
JP2004315851A (en) Method and apparatus for induction hardening of rack bar
JP6403960B2 (en) Heat treatment equipment
KR102390484B1 (en) High-frequency heat treatment apparatus
JP2019185882A (en) Induction heating apparatus and induction heating method
JP2008169432A (en) Heat-treatment method and heat-treatment apparatus for steel ball