JP2008168488A - Reflection-proof electroconductive film - Google Patents

Reflection-proof electroconductive film Download PDF

Info

Publication number
JP2008168488A
JP2008168488A JP2007002510A JP2007002510A JP2008168488A JP 2008168488 A JP2008168488 A JP 2008168488A JP 2007002510 A JP2007002510 A JP 2007002510A JP 2007002510 A JP2007002510 A JP 2007002510A JP 2008168488 A JP2008168488 A JP 2008168488A
Authority
JP
Japan
Prior art keywords
film
reflection
antireflection
layer
antireflection layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007002510A
Other languages
Japanese (ja)
Other versions
JP4928274B2 (en
Inventor
Rei Nishio
玲 西尾
Koji Kubo
耕司 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2007002510A priority Critical patent/JP4928274B2/en
Publication of JP2008168488A publication Critical patent/JP2008168488A/en
Application granted granted Critical
Publication of JP4928274B2 publication Critical patent/JP4928274B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transparent reflection-proof electroconductive film which uses a polyester film as a base film and has high rate of light beam permeability and excellent reflection proofness while featuring dimensional stability, especially the usefulness as a solar cell base film. <P>SOLUTION: This reflection-proof electroconductive film comprises a biaxially oriented polyester film, a reflection-proof layer formed on the biaxially oriented polyester film and a transparent electroconductive layer formed on the reflection-proof layer. In addition, the reflection-proof layer contains a metallic compound and has a refractive index and a thickness which can meet the conditions of the following formulae (1) and (2): (1) 105-40.0×N≤d≤180-40.0×N, (2) 1.75≤N≤2.0 (in the formulae (1) and (2), N is the refractive index of the reflection-proof layer and d is the thickness (nm) of the reflection-proof layer). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、反射防止導電性フィルムに関する。   The present invention relates to an antireflection conductive film.

ポリエステルフィルムは、従来様々な用途に用いられ、近年は太陽電池用の部材としても用いられるようになってきている。
太陽電池には、ガラスを基板材料とするリジットタイプと、フィルムを基板材料とするフレキシブルタイプがある。最近では、時計や携帯電話、携帯端末のような移動体通信機器の補助電源として、フレキシブルタイプの太陽電池が多く用いられるようになってきている。
Polyester films have been conventionally used for various applications, and in recent years, they have also been used as members for solar cells.
Solar cells include a rigid type using glass as a substrate material and a flexible type using a film as a substrate material. Recently, a flexible type solar cell has been widely used as an auxiliary power source for mobile communication devices such as watches, mobile phones, and mobile terminals.

特開平1−198081号公報Japanese Patent Laid-Open No. 1-198081 特開平2−260577号公報JP-A-2-260577 特公平6−5782号公報Japanese Patent Publication No. 6-5782 特開2005−216504号公報JP 2005-216504 A 特開2005−158727号公報JP 2005-158727 A 特開2003−31272号公報Japanese Patent Laid-Open No. 2003-3272 特開平6−318728号公報JP-A-6-318728 特開2003−257509号公報Japanese Patent Laid-Open No. 2003-257509 特開2001−077396号公報Japanese Patent Laid-Open No. 2001-077396 特開2005−244073号公報JP 2005-244073 A

太陽電池の発電効率向上のためには、光電変換素子への入射光量を十分とる必要があるため、反射率を低減することが重要である。
本発明は、ベースフィルムとしてポリエステルフィルムを用い、寸法安定性を備えながら、高い光線透過率と、優れた反射防止性を備える透明な反射防止導電性フィルムを提供すること、特に、太陽電池用ベースフィルムとして有用な反射防止導電性フィルムを提供することを課題とする。
In order to improve the power generation efficiency of the solar cell, it is necessary to take a sufficient amount of light incident on the photoelectric conversion element, so it is important to reduce the reflectance.
The present invention provides a transparent antireflection conductive film having a high light transmittance and excellent antireflection properties while using a polyester film as a base film and having dimensional stability, in particular, a solar cell base. It is an object of the present invention to provide an antireflection conductive film useful as a film.

すなわち本発明は、二軸延伸ポリエステルフィルムおよびその上に設けられた反射防止層、ならびに該反射防止層の上に設けられた透明導電層からなり、反射防止層は金属化合物を含み反射防止層の屈折率と厚みが下記式(1)および式(2)の条件を満たすことを特徴とする反射防止導電性フィルムである。
105−40.0×N≦d≦180−40.0×N (1)
1.75≦N≦2.0 (2)
(式中、Nは反射防止層の屈折率、dは反射防止層の厚み(nm)である。)
また本発明は太陽電池の部材として用いられる上記の反射防止導電性フィルムである。
That is, the present invention comprises a biaxially stretched polyester film, an antireflection layer provided thereon, and a transparent conductive layer provided on the antireflection layer. The antireflection conductive film is characterized in that the refractive index and the thickness satisfy the conditions of the following formulas (1) and (2).
105-40.0 × N ≦ d ≦ 180-40.0 × N (1)
1.75 ≦ N ≦ 2.0 (2)
(In the formula, N is the refractive index of the antireflection layer, and d is the thickness (nm) of the antireflection layer.)
Moreover, this invention is said antireflection electroconductive film used as a member of a solar cell.

本発明によれば、ベースフィルムとしてポリエステルフィルムを用い、寸法安定性を備えながら、高い光線透過率と、優れた反射防止性を備える透明な反射防止導電性フィルムを提供すること、特に、太陽電池用ベースフィルムとして有用な反射防止導電性フィルムを提供することができる。   According to the present invention, a polyester film is used as a base film, and a transparent antireflection conductive film having high light transmittance and excellent antireflection properties while providing dimensional stability is provided. An antireflection conductive film useful as a base film can be provided.

[ポリエステル]
本発明において、導電層を支えるベースフィルムとして二軸延伸ポリエステルフィルムを用いる。この二軸延伸ポリエステルフィルムを構成するポリエステルは、芳香族二塩基酸またはそのエステル形成性誘導体とジオールまたはそのエステル形成性誘導体とから合成される線状飽和ポリエステルである。
[polyester]
In the present invention, a biaxially stretched polyester film is used as the base film that supports the conductive layer. The polyester constituting the biaxially stretched polyester film is a linear saturated polyester synthesized from an aromatic dibasic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof.

かかるポリエステルの具体例として、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ(1,4−シクロヘキシレンジメチレンテレフタレート)、ポリエチレン−2,6−ナフタレートを例示することができる。ポリエステルは、ホモポリマーでも、第三成分を共重合したコポリマーでもよいが、ホモポリマーが好ましい。これらのポリエステルのうち、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが力学的物性や光学物性等のバランスが良いので好ましい。ポリエチレン−2,6−ナフタレートは、機械的強度が大きく、熱収縮率が小く、加熱時のオリゴマー発生量が少ないことから特に好ましい。   Specific examples of the polyester include polyethylene terephthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), and polyethylene-2,6-naphthalate. The polyester may be a homopolymer or a copolymer obtained by copolymerizing the third component, but a homopolymer is preferred. Among these polyesters, polyethylene terephthalate and polyethylene-2,6-naphthalate are preferable because of a good balance between mechanical properties and optical properties. Polyethylene-2,6-naphthalate is particularly preferable because it has a high mechanical strength, a low thermal shrinkage rate, and a small amount of oligomer generated during heating.

ポリエチレンテレフタレートとしては、エチレンテレフタレート単位を好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは97モル%以上有するものを用いることが好ましい。ポリエチレン−2,6−ナフタレートとしては、ポリエチレン−2,6−ナフタレート単位を好ましくは90モル%以上、さらに好ましくは95モル%以上、特に好ましくは97モル%以上有するものを用いることが好ましい。   As the polyethylene terephthalate, those having an ethylene terephthalate unit of preferably 90 mol% or more, more preferably 95 mol% or more, particularly preferably 97 mol% or more are preferably used. As polyethylene-2,6-naphthalate, it is preferable to use those having polyethylene-2,6-naphthalate units of preferably 90 mol% or more, more preferably 95 mol% or more, particularly preferably 97 mol% or more.

ポリエステルの固有粘度は、好ましくは0.40dl/g以上、さらに好ましくは0.40〜0.90dl/gである。固有粘度が0.40dl/g未満であると工程切断が多発することがあり好ましくなく、0.90dl/gを超えると溶融粘度が高いため溶融押出しが困難になり、重合時間が長く不経済であり好ましくない。   The intrinsic viscosity of the polyester is preferably 0.40 dl / g or more, more preferably 0.40 to 0.90 dl / g. If the intrinsic viscosity is less than 0.40 dl / g, process cutting may occur frequently, which is not preferable. If it exceeds 0.90 dl / g, melt extrusion becomes difficult because of high melt viscosity, and the polymerization time is long and uneconomical. There is not preferable.

ポリエステルは、従来公知の方法で得ることができる。例えば、ジカルボン酸とグリコールの反応で直接低重合度ポリエステルを得る方法で得ることができる。また、ジカルボン酸の低級アルキルエステルとグリコールとをエステル交換反応触媒を用いて反応させた後、重合反応触媒の存在下で重合反応を行う方法で得ることができる。エステル交換反応触媒としては、従来公知のもの、例えばナトリウム、カリウム、マグネシウム、カルシウム、亜鉛、ストロンチウム、チタン、ジルコニウム、マンガン、コバルトを含む化合物を用いることができる。重合反応触媒としては、従来公知のもの、例えば三酸化アンチモン、五酸化アンチモンのようなアンチモン化合物、二酸化ゲルマニウムで代表されるようなゲルマニウム化合物、テトラエチルチタネート、テトラプロピルチタネート、テトラフェニルチタネートまたはこれらの部分加水分解物、蓚酸チタニルアンモニウム、蓚酸チタニルカリウム、チタントリスアセチルアセトネートのようなチタン化合物を用いることができる。エステル交換反応を経由して重合を行う場合は、重合反応前にエステル交換触媒を失活させる目的でトリメチルホスフェート、トリエチルホスフェート、トリ−n−ブチルホスフェート、正リン酸等のリン化合物が通常は添加されるが、リン元素としてのポリエステル中の含有量が20〜100ppmであることが熱安定性の点から好ましい。なお、ポリエステルは、溶融重合後これをチップ化し、加熱減圧下または窒素などの不活性気流中においてさらに固相重合を施してもよい。   Polyester can be obtained by a conventionally known method. For example, it can be obtained by a method of directly obtaining a low-polymerization degree polyester by reaction of dicarboxylic acid and glycol. Alternatively, it can be obtained by a method in which a lower alkyl ester of dicarboxylic acid and glycol are reacted with each other using a transesterification catalyst, and then a polymerization reaction is performed in the presence of a polymerization reaction catalyst. As the transesterification reaction catalyst, conventionally known compounds such as sodium, potassium, magnesium, calcium, zinc, strontium, titanium, zirconium, manganese, and cobalt can be used. Examples of the polymerization reaction catalyst include those conventionally known, for example, antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds represented by germanium dioxide, tetraethyl titanate, tetrapropyl titanate, tetraphenyl titanate, or a portion thereof. Titanium compounds such as hydrolysates, titanyl ammonium oxalate, potassium titanyl oxalate, and titanium trisacetylacetonate can be used. When polymerization is performed via a transesterification reaction, a phosphorus compound such as trimethyl phosphate, triethyl phosphate, tri-n-butyl phosphate, or normal phosphoric acid is usually added for the purpose of deactivating the transesterification catalyst before the polymerization reaction. However, the content in the polyester as the phosphorus element is preferably 20 to 100 ppm from the viewpoint of thermal stability. The polyester may be converted into chips after melt polymerization, and further subjected to solid phase polymerization under heating under reduced pressure or in an inert gas stream such as nitrogen.

[二軸延伸ポリエステルフィルム]
本発明においてベースフィルムとして用いる二軸延伸ポリエステルフィルムは、その面内屈折率の平均が1.63〜1.78であることが好ましい。面内屈折率の平均が1.63未満であると十分にポリマーが配向しておらず十分な熱寸法安定性が得られないため好ましくない。他方、1.78を越えるとフィルムの十分な靭性が得られず、取り扱いが困難となるため好ましくない。
[Biaxially stretched polyester film]
The biaxially stretched polyester film used as the base film in the present invention preferably has an in-plane refractive index of 1.63 to 1.78. An average in-plane refractive index of less than 1.63 is not preferable because the polymer is not sufficiently oriented and sufficient thermal dimensional stability cannot be obtained. On the other hand, if it exceeds 1.78, sufficient toughness of the film cannot be obtained and handling becomes difficult, which is not preferable.

本発明における二軸延伸ポリエステルフィルムは、200℃で10分処理したときのフィルムの長手方向と幅方向における熱収縮率の差の絶対値が、好ましくは0.8%以下、さらに好ましくは0.5%以下、特に好ましくは0.3%以下である。熱収縮率の差の絶対値が0.8%を越えると、電池作成の加熱工程において寸法変化し、光電変換層等との密着性が悪化し安定な光発電性能が得られないため好ましくない。   In the biaxially stretched polyester film of the present invention, the absolute value of the difference in thermal shrinkage between the longitudinal direction and the width direction of the film when treated at 200 ° C. for 10 minutes is preferably 0.8% or less, more preferably 0.8. 5% or less, particularly preferably 0.3% or less. If the absolute value of the difference in heat shrinkage ratio exceeds 0.8%, it is not preferable because the dimensional change occurs in the heating process for battery preparation, the adhesiveness with the photoelectric conversion layer, etc. deteriorates and stable photovoltaic power generation performance cannot be obtained. .

また、本発明における二軸延伸ポリエステルフィルムを200℃で10分処理したときのフィルムの長手方向の熱収縮率は、フィルム上に設置した層との密着性を良好にするために小さいほうが好ましく、好ましくは0〜0.5%、さらに好ましくは0〜0.3%である。   In addition, the thermal shrinkage in the longitudinal direction of the film when the biaxially stretched polyester film in the present invention is treated at 200 ° C. for 10 minutes is preferably smaller in order to improve the adhesion with the layer placed on the film, Preferably it is 0-0.5%, More preferably, it is 0-0.3%.

本発明における二軸延伸ポリエステルフィルムは、波長370nmにおける光線透過率が好ましくは3%以下、400nmでの光線透過率が好ましくは70%以上である。なお、光線透過率は、(株)島津製作所製分光光度計MPC3100を用いて測定した数値である。この光線透過率は、2,6−ナフタレンジカルボン酸のような紫外線を吸収するモノマーを構成成分とするポリエステルを用いることにより、また、紫外線吸収剤をポリエステルに含有させることにより得ることができる。   The biaxially stretched polyester film of the present invention preferably has a light transmittance at a wavelength of 370 nm of 3% or less, and a light transmittance at 400 nm of preferably 70% or more. The light transmittance is a numerical value measured using a spectrophotometer MPC3100 manufactured by Shimadzu Corporation. This light transmittance can be obtained by using a polyester containing a monomer that absorbs ultraviolet rays, such as 2,6-naphthalenedicarboxylic acid, or by incorporating an ultraviolet absorber in the polyester.

紫外線吸収剤を用いる場合、紫外線吸収剤としては、例えば2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(6−メチル−3,1−ベンゾオキサジン−4−オン)、2,2’−p−フェニレンビス(6−クロロ−3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2,6−ナフチレン)ビス(3,1−ベンゾオキサジン−4−オン)などの環状イミノエステル化合物を用いることができる。   When an ultraviolet absorber is used, examples of the ultraviolet absorber include 2,2′-p-phenylenebis (3,1-benzoxazin-4-one) and 2,2′-p-phenylenebis (6-methyl-). 3,1-benzoxazin-4-one), 2,2′-p-phenylenebis (6-chloro-3,1-benzoxazin-4-one), 2,2 ′-(4,4′-diphenylene) And cyclic imino ester compounds such as bis (3,1-benzoxazin-4-one) and 2,2 ′-(2,6-naphthylene) bis (3,1-benzoxazin-4-one). it can.

本発明におけるポリエステルフィルムの厚みは、機械的強度と生産性を両立する観点から、好ましくは10〜500μm、さらに好ましくは20〜400μm、特に好ましくは50〜300μmである。   The thickness of the polyester film in the present invention is preferably 10 to 500 μm, more preferably 20 to 400 μm, and particularly preferably 50 to 300 μm, from the viewpoint of achieving both mechanical strength and productivity.

次に、本発明のおける二軸延伸ポリエステルフィルムの好ましい製造方法について説明する。なお、ガラス転位温度をTgと略記する。まず、ポリエステルをフィルム状に溶融押出し、キャスティングドラムで冷却固化させて未延伸フィルムとし、この未延伸フィルムをTg〜(Tg+60)℃で長手方向に1回もしくは2回以上合計の倍率が3倍〜6倍になるよう延伸し、その後Tg〜(Tg+60)℃で幅方向に倍率が3〜5倍になるように延伸し、必要に応じてさらに、160〜255℃で1〜60秒間熱処理を行うことにより得ることができる。二軸延伸ポリエステルフィルムの長手方向と幅方向における熱収縮率の差を小さくし、さらに長手方向の熱収縮を小さくするためには、例えば、特開平57−57628号公報に示される熱処理工程で縦方向に収縮せしめる方法や、特開平1−275031号公報に示されるフィルムを懸垂状態で弛緩熱処理する方法を用いることができる。   Next, the preferable manufacturing method of the biaxially stretched polyester film in this invention is demonstrated. The glass transition temperature is abbreviated as Tg. First, polyester is melt-extruded into a film shape, cooled and solidified with a casting drum to form an unstretched film, and this unstretched film is once or twice or more in the longitudinal direction at Tg to (Tg + 60) ° C. The film is stretched to 6 times, and then stretched so that the magnification is 3 to 5 times in the width direction at Tg to (Tg + 60) ° C., and further heat-treated at 160 to 255 ° C. for 1 to 60 seconds as necessary. Can be obtained. In order to reduce the difference between the heat shrinkage rates in the longitudinal direction and the width direction of the biaxially stretched polyester film and to further reduce the heat shrinkage in the longitudinal direction, for example, in the heat treatment step disclosed in JP-A-57-57628, It is possible to use a method of shrinking in the direction or a method of relaxing heat treatment in a suspended state as disclosed in JP-A-1-275031.

[反射防止層]
本発明の反射防止導電性フィルムにおいて、反射防止層は、ポリエステルフィルムの上に設けられる。すなわち、反射防止層は、ポリエステルフィルムと透明導電層との間に設けられる。そして、本発明の反射防止導電性フィルムにおいては、反射防止層の屈折率および厚みが下記の式(1)および式(2)の条件を満たすことが必要である。
105−40.0×N≦d≦180−40.0×N (1)
1.75≦N≦2.0 (2)
(式中、Nは反射防止層の屈折率、dは反射防止層の厚み(nm)である。)
[Antireflection layer]
In the antireflection conductive film of the present invention, the antireflection layer is provided on the polyester film. That is, the antireflection layer is provided between the polyester film and the transparent conductive layer. In the antireflection conductive film of the present invention, it is necessary that the refractive index and thickness of the antireflection layer satisfy the conditions of the following formulas (1) and (2).
105-40.0 × N ≦ d ≦ 180-40.0 × N (1)
1.75 ≦ N ≦ 2.0 (2)
(In the formula, N is the refractive index of the antireflection layer, and d is the thickness (nm) of the antireflection layer.)

屈折率Nが1.75未満であると反射防止層−フィルム間の反射が十分に抑制されず、他方、屈折率Nが2.0を超えると反射防止層−透明導電層間の反射が十分に抑制されず目的とする低反射率が達成されない。屈折率Nは好ましくは1.78〜1.95である。   When the refractive index N is less than 1.75, the reflection between the antireflection layer and the film is not sufficiently suppressed, and when the refractive index N exceeds 2.0, the reflection between the antireflection layer and the transparent conductive layer is sufficient. The target low reflectance is not achieved without being suppressed. The refractive index N is preferably 1.78 to 1.95.

反射防止層の厚みdは、上記式(1)で表わされる範囲にあることが必要である。この範囲にあることによって、目的とする太陽電池の吸収波長での反射率を低下させるために、反射防止層−大気間での反射と反射防止層―フィルム間の反射が干渉しあって打ち消しあい、反射防止の機能を得ることができる。なお、厚みdが式(1)で規定される範囲を外れると光の干渉により反射率の低下が十分行われない。
反射防止層の層の数は、経済性・生産性の点から、好ましくは3層以下。さらに好ましくは1層からなる。
The thickness d of the antireflection layer needs to be in the range represented by the above formula (1). In this range, in order to reduce the reflectance at the absorption wavelength of the target solar cell, the reflection between the antireflection layer-atmosphere and the reflection between the antireflection layer-film interfere and cancel each other. Thus, an antireflection function can be obtained. If the thickness d is outside the range defined by the formula (1), the reflectance is not sufficiently lowered due to light interference.
The number of antireflection layers is preferably 3 or less from the viewpoint of economy and productivity. More preferably, it consists of one layer.

本発明において反射防止層は、金属化合物を含む。金属化合物としては、酸化亜鉛、硫化亜鉛、酸化チタン、酸化ジルコニウム、酸化タングステン、酸化鉄、酸化銅酸化カルシウム、酸化アルミニウム、酸化シリコン、チタン酸バリウム、酸化バリウム、酸化マグネシウム、フッ化マグネシウム、チタン酸ストロンチウム、酸化インジウムおよびこれらの合金を例示することができる。金属化合物は1種類で用いてもよく、また屈折率調整のため複数の組み合わせで用いてもよい。   In the present invention, the antireflection layer contains a metal compound. As metal compounds, zinc oxide, zinc sulfide, titanium oxide, zirconium oxide, tungsten oxide, iron oxide, copper oxide calcium oxide, aluminum oxide, silicon oxide, barium titanate, barium oxide, magnesium oxide, magnesium fluoride, titanic acid Examples include strontium, indium oxide, and alloys thereof. One kind of metal compound may be used, or a plurality of combinations may be used for adjusting the refractive index.

本発明においては、反射防止層の好ましくは10重量%以上、さらに好ましくは20重量%以上が金属化合物からなる。反射防止層における金属化合物の含有量が10重量%未満であると必要な屈折率が得られないため好ましくない。   In the present invention, the antireflection layer preferably comprises 10% by weight or more, more preferably 20% by weight or more of a metal compound. If the content of the metal compound in the antireflection layer is less than 10% by weight, the necessary refractive index cannot be obtained, which is not preferable.

反射防止層は上述のように金属化合物を含有するが、これ以外にポリマー成分や添加剤等を含んでもよい。特にコーティングにより反射防止層を設ける場合には、ポリマー成分を用いると、こればバインダーとして働きより、良好な塗膜、すなわち反射防止層を得ることができる。   The antireflection layer contains a metal compound as described above, but may further contain a polymer component, an additive, or the like. In particular, when an antireflection layer is provided by coating, when a polymer component is used, a good coating film, that is, an antireflection layer can be obtained rather than acting as a binder.

ポリマー成分としては、ポリエステル樹脂、アクリル樹脂、ウレタンアクリル樹脂、ウレタン樹脂、シリコンアクリル樹脂、メラミン樹脂、ポリシロキサン樹脂、ポリメタクリル樹脂及びポリスチレン樹脂、ポリイミド樹脂、UV硬化系樹脂、エポキシ系樹脂およびこれらの架橋物を挙げることができる。これらの樹脂は、単独、または2種以上の混合物として用いることができる。
ポリマー成分は、溶液の状態・微粒子の状態で用いてもよくまた前躯体の状態でフィルム上に塗布し、反応させてもよい。
Examples of the polymer component include polyester resin, acrylic resin, urethane acrylic resin, urethane resin, silicon acrylic resin, melamine resin, polysiloxane resin, polymethacrylic resin and polystyrene resin, polyimide resin, UV curable resin, epoxy resin, and these Cross-linked products can be mentioned. These resins can be used alone or as a mixture of two or more.
The polymer component may be used in the form of a solution or in the form of fine particles, or may be applied and reacted on the film in the form of a precursor.

添加剤としては、例えばオキサゾリン基含有化合物、界面活性剤を挙げることができる。これらは併用してもよい。併用することによって反射防止層とベースフィルムとの密着性が高くなり好ましい。   Examples of the additive include an oxazoline group-containing compound and a surfactant. These may be used in combination. By using together, the adhesiveness of an antireflection layer and a base film becomes high, and it is preferable.

反射防止層を、ポリエステルフィルムのうえに設ける方法、場合により複数積層する方法としては、例えば真空蒸着法、スパッタリング法、CVD法、イオンプレーテイング法などのドライコーティング法を用いることができ、また例えばグラビア方式、リバース方式、ダイ方式などのウェットコーティング法を用いることができる。   As a method of providing an antireflection layer on a polyester film, and a method of laminating a plurality of layers in some cases, for example, a dry coating method such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, etc. can be used. A wet coating method such as a gravure method, a reverse method, or a die method can be used.

反射防止層の形成に先立って、ポリエステルフィルムにコロナ放電処理、プラズマ処理、スパッタエッチング処理、電子線照射処理、紫外線照射処理、プライマ処理、易接着処理などの前処理を施してもよい。   Prior to the formation of the antireflection layer, the polyester film may be subjected to pretreatment such as corona discharge treatment, plasma treatment, sputter etching treatment, electron beam irradiation treatment, ultraviolet ray irradiation treatment, primer treatment, and easy adhesion treatment.

[透明導電層]
透明導電層としては、例えば導電性の金属酸化物、炭素材料を用いることができる。
導電性の金属酸化物としては、例えばガリウムドープ酸化亜鉛、アルミドープ酸化亜鉛、ゲルマニウムドープ酸化亜鉛、ホウ素ドープ酸化亜鉛、チタンドープ酸化亜鉛、フッ素ドープ酸化スズ、インジウム−スズ複合酸化物(ITO)、インジウム−亜鉛複合酸化物(IZO)、金属の薄膜(例えば、白金、金、銀、銅、アルミニウム)を用いることができる。
[Transparent conductive layer]
As the transparent conductive layer, for example, a conductive metal oxide or a carbon material can be used.
Examples of the conductive metal oxide include gallium-doped zinc oxide, aluminum-doped zinc oxide, germanium-doped zinc oxide, boron-doped zinc oxide, titanium-doped zinc oxide, fluorine-doped tin oxide, indium-tin composite oxide (ITO), An indium-zinc composite oxide (IZO) or a metal thin film (eg, platinum, gold, silver, copper, aluminum) can be used.

透明導電層は、単層であってもよく、2層以上の積層や、複合化構造のものであってもよい。透明導電層は好ましくはITOまたはIZOからなる。この場合には高い光線透過率と低い抵抗を得ることができる。   The transparent conductive layer may be a single layer, a laminate of two or more layers, or a composite structure. The transparent conductive layer is preferably made of ITO or IZO. In this case, high light transmittance and low resistance can be obtained.

透明導電層の表面抵抗は、好ましくは100Ω/□以下、さらに好ましくは40Ω/□以下である。100Ω/□を超えると電池内抵抗が大きくなりすぎて光発電効率が低下するため好ましくない。   The surface resistance of the transparent conductive layer is preferably 100Ω / □ or less, more preferably 40Ω / □ or less. If it exceeds 100Ω / □, the resistance in the battery becomes too large and the photovoltaic power generation efficiency decreases, which is not preferable.

透明導電層の厚みは、好ましくは100〜500nmである。100nm未満であると十分に表面抵抗値を低くすることができず好ましくなく、500nmを超えると光線透過率が低下するとともに、透明導電層がわれやすくなり好ましくない。   The thickness of the transparent conductive layer is preferably 100 to 500 nm. If the thickness is less than 100 nm, the surface resistance value cannot be lowered sufficiently, which is not preferable. If the thickness exceeds 500 nm, the light transmittance is lowered and the transparent conductive layer is easily broken.

透明導電層の形成は、例えば真空蒸着法、スパッタリング法、CVD法、イオンプレーテイング法などのドライコーティング法を用いて行うことができる、また、塗布法を用いてもよく、例えばグラビア方式、リバース方式、ダイ方式などのウェットコーティング法を用いることができる。   The transparent conductive layer can be formed using, for example, a dry coating method such as a vacuum deposition method, a sputtering method, a CVD method, an ion plating method, or a coating method, such as a gravure method, a reverse method, or the like. A wet coating method such as a method or a die method can be used.

[易接着層]
本発明の反射防止導電性フィルムは、好ましくは太陽電池用の部材に用いられる。製造工程でのハンドリング性、例えばフィルムをロールを用いた連続生産の際のハンドリング性の向上を目的として、また、他の部材との接着性向上を目的として、易接着層を積層してもよい。
[Easily adhesive layer]
The antireflection conductive film of the present invention is preferably used as a member for solar cells. An easy adhesion layer may be laminated for the purpose of improving the handleability in the manufacturing process, for example, the handleability in continuous production using a roll of film, and for the purpose of improving the adhesion to other members. .

この場合の易接着層を設ける場合、その厚みは、好ましくは1〜200nm、さらに好ましくは10〜150nmである。易接着層の厚みが1nm未満であると密着性を向上させる効果が乏しく、200nmを超えると易接着層の凝集破壊が発生しやすくなり密着性が低下することがあり好ましくない。   When providing the easily bonding layer in this case, the thickness becomes like this. Preferably it is 1-200 nm, More preferably, it is 10-150 nm. When the thickness of the easy-adhesion layer is less than 1 nm, the effect of improving the adhesion is poor, and when it exceeds 200 nm, the easy-adhesion layer tends to cause cohesive failure and the adhesion may be lowered.

易接着層の構成材としては、ポリエステルフィルムと、さらに上に積層する導電層や光電変換素子等との双方に優れた接着性を示すものを用いればよい。例えば、ポリエステル樹脂、アクリル樹脂、ウレタンアクリル樹脂、シリコンアクリル樹脂、メラミン樹脂、ポリシロキサン樹脂を例示することができる。これらの樹脂は、単独、または2種以上の混合物として用いてもよい。   As the constituent material of the easy-adhesion layer, a material exhibiting excellent adhesion to both the polyester film and the conductive layer, photoelectric conversion element, and the like laminated thereon may be used. For example, a polyester resin, an acrylic resin, a urethane acrylic resin, a silicon acrylic resin, a melamine resin, and a polysiloxane resin can be exemplified. These resins may be used alone or as a mixture of two or more.

次に、実施例により本発明をさらに詳細に説明する。
なお、例中の各特性値は、下記の方法により測定した。「部」は重量部を表わす。
(1)固有粘度
固有粘度([η]dl/g)は、35℃のo−クロロフェノール溶液で測定した。
Next, the present invention will be described in more detail with reference to examples.
In addition, each characteristic value in an example was measured with the following method. “Parts” represents parts by weight.
(1) Intrinsic viscosity Intrinsic viscosity ([η] dl / g) was measured with an o-chlorophenol solution at 35 ° C.

(2)フィルム厚み
マイクロメーター(アンリツ(株)製K−402B型)を用い、フィルムの連続製膜方向および幅方向に各々10cm間隔で測定を行い、全部で300ヶ所のフィルム厚みを測定した。得られた300ヶ所のフィルム厚みの平均値を算出してフィルム厚みとした。
(2) Film thickness Using a micrometer (K-402B type manufactured by Anritsu Co., Ltd.), measurements were made at 10 cm intervals in the continuous film forming direction and in the width direction of the film, and the film thicknesses at 300 locations were measured in total. The average value of the film thicknesses of the obtained 300 locations was calculated and used as the film thickness.

(3)熱収縮率
200℃に温度設定されたオーブンの中に無緊張状態で10分間フィルムを保持し、フィルム長手方向(MD)および幅方向(TD)について各々の加熱処理前後での寸法変化を熱収縮率として下式により算出し、長手方向(MD)と幅方向(TD)の熱収縮率を求めた。ただし、Lは熱処理前の標点間距離、Lは熱処理後の漂点間距離である。
熱収縮率%=((L−L)/L)×100
(3) Heat shrinkage rate The film was held in an oven set at 200 ° C. for 10 minutes in an unstrained state, and the dimensional change before and after each heat treatment in the film longitudinal direction (MD) and width direction (TD) Was calculated by the following equation as the heat shrinkage rate, and the heat shrinkage rate in the longitudinal direction (MD) and the width direction (TD) was obtained. However, L 0 is the distance between the gauge marks before heat treatment, L is漂点distance after heat treatment.
Thermal shrinkage% = ((L 0 −L) / L 0 ) × 100

(4)反射防止層の厚み
フィルムの小片をエポキシ樹脂(リファインテック(株)製エポマウント)中に包埋し、Reichert−Jung社製Microtome2050を用いて包埋樹脂ごと50nm厚さにスライスし、透過型電子顕微鏡(LEM−2000)にて加速電圧100KV、倍率10万倍にて観察し、塗膜層の厚みを測定した。
(4) Thickness of antireflection layer A small piece of film is embedded in an epoxy resin (Refotech Co., Ltd. Epomount) and sliced to 50 nm thickness together with the embedded resin using Microtome 2050 manufactured by Reichert-Jung. The film was observed with a transmission electron microscope (LEM-2000) at an acceleration voltage of 100 KV and a magnification of 100,000, and the thickness of the coating layer was measured.

(5)光線透過率
(株)島津製作所製分光光度計MPC3100を用い、波長300nm〜800nmの光線透過率を2nm刻みで測定した。光線透過量の評価としては550nmの光線透過率及び400〜800nmの平均光線透過率を用いた。
(5) Light transmittance Using a spectrophotometer MPC3100 manufactured by Shimadzu Corporation, light transmittance at a wavelength of 300 nm to 800 nm was measured in increments of 2 nm. For evaluation of the amount of light transmission, a light transmittance of 550 nm and an average light transmittance of 400 to 800 nm were used.

(6)反射防止層の屈折率
Metricon社製のレーザー屈折率計プリズムカプラ、モデル2010を用い、633nmの波長を用いて測定を行った。反射防止層の屈折率は反射防止層用塗液の乾固物の測定値を用いた。
(6) Refractive Index of Antireflection Layer Using a laser refractometer prism coupler, model 2010, manufactured by Metricon, measurement was performed using a wavelength of 633 nm. As the refractive index of the antireflection layer, the measured value of the dried product of the coating liquid for the antireflection layer was used.

(7)フィルムの面内屈折率の平均
Metricon社製のレーザー屈折率計プリズムカプラ、モデル2010を用い、633nmの波長を用いて測定を行った。フィルムの面内屈折率の平均は、フィルムのMD方向での面内屈折率とTD方向での面内屈折率との平均値である。
(7) Average in-plane refractive index of film Measurement was performed using a laser refractometer prism coupler, model 2010, manufactured by Metricon, using a wavelength of 633 nm. The average of the in-plane refractive index of the film is an average value of the in-plane refractive index in the MD direction and the in-plane refractive index in the TD direction of the film.

[実施例1]
<フィルム用ポリマーの作成>
ナフタレン−2,6−ジカルボン酸ジメチル100部、およびエチレングリコール60部を、エステル交換触媒として酢酸マンガン四水塩0.03部を使用し、150℃から238℃に徐々に昇温させながら120分間エステル交換反応を行なった。途中反応温度が170℃に達した時点で三酸化アンチモン0.024部を添加し、エステル交換反応終了後、リン酸トリメチル(エチレングリコール中で135℃、5時間0.11〜0.16MPaの加圧下で加熱処理した溶液:リン酸トリメチル換算量で0.023部)を添加した。その後反応生成物を重合反応器に移し、290℃まで昇温して、27Pa以下の高真空下にて重縮合反応を行って、固有粘度が0.62dl/gの、実質的に粒子を含有しない、ポリエチレン−2,6−ナフタレンジカルボキシレートを得た。
[Example 1]
<Creation of film polymer>
Using 100 parts of dimethyl naphthalene-2,6-dicarboxylate and 60 parts of ethylene glycol as a transesterification catalyst, 0.03 part of manganese acetate tetrahydrate, and gradually increasing the temperature from 150 ° C. to 238 ° C. for 120 minutes A transesterification reaction was performed. On the way, when the reaction temperature reached 170 ° C., 0.024 part of antimony trioxide was added, and after the transesterification reaction, trimethyl phosphate (135 ° C. in ethylene glycol, 0.11 to 0.16 MPa for 5 hours) was added. The solution heat-treated under pressure: 0.023 parts in terms of trimethyl phosphate was added. Thereafter, the reaction product is transferred to a polymerization reactor, heated to 290 ° C., subjected to a polycondensation reaction under a high vacuum of 27 Pa or less, and substantially contains particles having an intrinsic viscosity of 0.62 dl / g. No polyethylene-2,6-naphthalenedicarboxylate was obtained.

<易接着層用塗液>
2,6−ナフタレンジカルボン酸ジメチル66部、イソフタル酸ジメチル47部、5−ナトリウムスルホイソフタル酸ジメチル8部、エチレングリコール54部、ジエチレングリコール62部を反応器に仕込み、これにテトラブトキシチタン0.05部を添加して窒素雰囲気下で温度を230℃にコントロールして加熱し、生成するメタノールを留去させてエステル交換反応を行った。次いで反応系の温度を徐々に255℃まで上昇させ系内を1mmHgの減圧にして重縮合反応を行い、ポリエステルを得た。このポリエステル25部をテトラヒドロフラン75部に溶解させ、得られた溶液に10000回転/分の高速攪拌下で水75部を滴下して乳白色の分散体を得、次いでこの分散体を20mmHgの減圧下で蒸留し、テトラヒドロフランを留去して、固形分が25重量%のポリエステルの水分散体を得た。
<Coating liquid for easy adhesion layer>
66 parts of dimethyl 2,6-naphthalenedicarboxylate, 47 parts of dimethyl isophthalate, 8 parts of dimethyl 5-sodium sulfoisophthalate, 54 parts of ethylene glycol and 62 parts of diethylene glycol were charged into the reactor, and 0.05 parts of tetrabutoxy titanium Was added and heated under a nitrogen atmosphere while controlling the temperature at 230 ° C., and the produced methanol was distilled off to conduct a transesterification reaction. Subsequently, the temperature of the reaction system was gradually raised to 255 ° C., and the pressure inside the system was reduced to 1 mmHg to carry out a polycondensation reaction to obtain a polyester. 25 parts of this polyester was dissolved in 75 parts of tetrahydrofuran, and 75 parts of water was dropped into the resulting solution under high-speed stirring at 10,000 rpm to obtain a milky white dispersion. Then, this dispersion was subjected to a reduced pressure of 20 mmHg. Distillation was performed, and tetrahydrofuran was distilled off to obtain an aqueous dispersion of polyester having a solid content of 25% by weight.

次に、四つ口フラスコに、界面活性剤としてラウリルスルホン酸ナトリウム3部、およびイオン交換水181部を仕込んで窒素気流中で60℃まで昇温させ、次いで重合開始剤として過硫酸アンモニウム0.5部、亜硝酸水素ナトリウム0.2部を添加し、さらにモノマーである、メタクリル酸メチル30.1部、2−イソプロペニル−2−オキサゾリン21.9部、ポリエチレンオキシド(n=10)メタクリル酸39.4部、アクリルアミド8.6部の混合物を3時間にわたり、液温が60〜70℃になるよう調整しながら滴下した。滴下終了後も同温度範囲に2時間保持しつつ、攪拌下に反応を継続させ、次いで冷却して固形分が35%重量のアクリルの水分散体を得た。   Next, 3 parts of sodium lauryl sulfonate as a surfactant and 181 parts of ion-exchanged water are charged into a four-necked flask and the temperature is raised to 60 ° C. in a nitrogen stream, and then 0.5% ammonium persulfate is used as a polymerization initiator. Part, 0.2 part of sodium hydrogen nitrite was added, and further 30.1 parts of methyl methacrylate, 21.9 parts of 2-isopropenyl-2-oxazoline, polyethylene oxide (n = 10) methacrylic acid 39 A mixture of .4 parts and 8.6 parts of acrylamide was added dropwise over 3 hours while adjusting the liquid temperature to 60 to 70.degree. After completion of dropping, the reaction was continued with stirring while maintaining the same temperature range for 2 hours, and then cooled to obtain an acrylic aqueous dispersion having a solid content of 35% by weight.

一方で、シリカフィラー(平均粒径:100nm)(日産化学株式会社製 商品名スノーテックスZL)を0.2重量%、濡れ剤として、ポリオキシエチレン(n=7)ラウリルエーテル(三洋化成株式会社製 商品名ナロアクティーN−70)を0.3重量%添加した水溶液を作成した。
上記のポリエステルの水分散体8重量部、アクリルの水分散体7重量部、および上記の水溶液85重量部を混合して、易接着層用塗液を作成した。
On the other hand, 0.2% by weight of silica filler (average particle size: 100 nm) (trade name Snowtex ZL manufactured by Nissan Chemical Co., Ltd.), polyoxyethylene (n = 7) lauryl ether (Sanyo Chemical Co., Ltd.) as a wetting agent An aqueous solution to which 0.3% by weight of Naroactee N-70 (trade name) was added was prepared.
8 parts by weight of the polyester aqueous dispersion, 7 parts by weight of the acrylic water dispersion, and 85 parts by weight of the aqueous solution were mixed to prepare an easy-adhesion layer coating solution.

<ポリエステルフィルムの作成>
先にフィルム用ポリマーとして作成したポリエチレン−2,6−ナフタレンジカルボキシレートのペレットを170℃で6時間乾燥後、押出機ホッパーに供給し、溶融温度305℃で溶融し、平均目開きが17μmのステンレス鋼細線フィルターで濾過し、3mmのスリット状ダイを通して表面温度60℃の回転冷却ドラム上で押出し、急冷して未延伸フィルムを得た。このようにして得られた未延伸フィルムを120℃にて予熱し、さらに低速、高速のロール間で15mm上方より850℃のIRヒーターにて加熱して縦方向に3.2倍に延伸した。この縦延伸後のフィルムの片面に、上記易接着用塗液を塗膜の厚みが100nmになるようにロールコーターで塗工し易接層を形成した。
<Creation of polyester film>
The polyethylene-2,6-naphthalene dicarboxylate pellets previously prepared as a polymer for film were dried at 170 ° C. for 6 hours, then supplied to an extruder hopper, melted at a melting temperature of 305 ° C., and an average opening of 17 μm. It filtered with the stainless steel fine wire filter, extruded on the rotating cooling drum with a surface temperature of 60 degreeC through the slit-shaped die of 3 mm, and rapidly cooled, and the unstretched film was obtained. The unstretched film thus obtained was preheated at 120 ° C., and further heated by an IR heater at 850 ° C. from above 15 mm between low-speed and high-speed rolls and stretched 3.2 times in the longitudinal direction. The easy-adhesion layer was formed by coating the easy-adhesion coating solution on one side of the film after the longitudinal stretching with a roll coater so that the thickness of the coating film was 100 nm.

続いてテンターに供給し、140℃にて横方向に3.3倍に延伸した。得られた二軸延伸フィルムを244℃の温度で5秒間熱固定し、ポリマーの固有粘度が0.58dl/g、フィルムの厚み125μmの二軸延伸ポリエステルフィルムを得た。200℃で10分間処理したときの二軸延伸ポリエステルフィルムの長手方向の熱収縮率は0.58%、幅方向の熱収縮率は0.12%、長手方向と幅方向の熱収縮率の差は0.46%であった。
こうして得られた二軸延伸ポリエステルフィルム上の反射率最小値は718nmであり、550nmの光線透過率は89.6%であった。
Then, it supplied to the tenter and extended | stretched 3.3 times in the horizontal direction at 140 degreeC. The obtained biaxially stretched film was heat-fixed at a temperature of 244 ° C. for 5 seconds to obtain a biaxially stretched polyester film having an intrinsic viscosity of 0.58 dl / g and a film thickness of 125 μm. When the biaxially stretched polyester film was treated at 200 ° C. for 10 minutes, the thermal shrinkage in the longitudinal direction was 0.58%, the thermal shrinkage in the width direction was 0.12%, and the difference between the thermal shrinkage in the longitudinal and width directions Was 0.46%.
The minimum reflectance on the biaxially stretched polyester film thus obtained was 718 nm, and the light transmittance at 550 nm was 89.6%.

<反射防止層の設置>
酸化チタン成分を1.7wt%含む酸化チタンゾル(PTAsol 吉川総合開発製)35.3g、及び界面活性剤(フタージエント250 株式会社ネオス製)0.014g及びエタノール4.7gからなる塗液を作成した。この塗液をポリエステルフィルム上にバーコーターにより塗布し乾燥した。こうして作成した反射防止層の厚みは84nmであり屈折率は1.87であった。
<Installation of antireflection layer>
A coating solution comprising 35.3 g of a titanium oxide sol containing 1.7 wt% of a titanium oxide component (manufactured by PTAsol, Yoshikawa General Development Co., Ltd.), 0.014 g of a surfactant (manufactured by Phageentent 250 Neos) and 4.7 g of ethanol was prepared. This coating solution was applied onto a polyester film with a bar coater and dried. The antireflection layer thus prepared had a thickness of 84 nm and a refractive index of 1.87.

<透明導電層の設置>
主として酸化インジウムからなり酸化亜鉛が10重量%添加されたIZOターゲットを用いた直流マグネトロンスパッタリング法により、膜厚260nmのIZOからなる透明導電層を形成した。透明導電層のスパッタリング法による形成は、プラズマの放電前にチャンバー内を5×10−4Paまで排気した後、チャンバー内にアルゴンと酸素を導入して圧力を0.3Paとし、IZOターゲットに2W/cmの電力密度で電力を印加して行った。酸素分圧は3.7mPaであった。透明導電層の表面抵抗値は15Ω/□であった。
こうして得られた反射防止導電性フィルムの550nmの光線透過率は80.9%、400〜800nmの平均光線透過率は78.6%であった。
<Installation of transparent conductive layer>
A transparent conductive layer made of IZO having a thickness of 260 nm was formed by a direct current magnetron sputtering method using an IZO target mainly made of indium oxide and added with 10% by weight of zinc oxide. Formation of the transparent conductive layer by sputtering is performed by evacuating the chamber to 5 × 10 −4 Pa before plasma discharge, introducing argon and oxygen into the chamber to a pressure of 0.3 Pa, and applying 2 W to the IZO target. Electric power was applied at a power density of / cm 2 . The oxygen partial pressure was 3.7 mPa. The surface resistance value of the transparent conductive layer was 15Ω / □.
The antireflection conductive film thus obtained had a light transmittance of 550 nm of 80.9% and an average light transmittance of 400 to 800 nm of 78.6%.

[実施例2]
反射防止層の設置において反射防止層の厚みを99nmとした以外は実施例1と同様にして、反射防止導電性フィルムを得た。得られた反射防止導電性フィルムの550nmの光線透過率は82.0%、400〜800nmの平均光線透過率は79.0%であった。
[Example 2]
An antireflection conductive film was obtained in the same manner as in Example 1 except that the thickness of the antireflection layer was set to 99 nm in the installation of the antireflection layer. The obtained antireflection conductive film had a light transmittance of 550 nm of 82.0% and an average light transmittance of 400 to 800 nm of 79.0%.

[比較例1]
反射防止層を設置しない以外は実施例1と同様にして導電性フィルムを得た。得られた導電性フィルムの550nmの光線透過率は80.5%、400〜800nmの平均光線透過率は77.4%であった。
[Comparative Example 1]
A conductive film was obtained in the same manner as in Example 1 except that no antireflection layer was provided. The obtained conductive film had a light transmittance of 550 nm of 80.5% and an average light transmittance of 400 to 800 nm of 77.4%.

本発明の反射防止導電性フィルムは太陽電池の部材として好適に用いることができる。   The antireflection conductive film of the present invention can be suitably used as a solar cell member.

Claims (2)

二軸延伸ポリエステルフィルムおよびその上に設けられた反射防止層、ならびに該反射防止層の上に設けられた透明導電層からなり、反射防止層は金属化合物を含み反射防止層の屈折率と厚みが下記式(1)および式(2)の条件を満たすことを特徴とする反射防止導電性フィルム。
105−40.0×N≦d≦180−40.0×N (1)
1.75≦N≦2.0 (2)
(式中、Nは反射防止層の屈折率、dは反射防止層の厚み(nm)である。)
A biaxially stretched polyester film and an antireflection layer provided thereon, and a transparent conductive layer provided on the antireflection layer, the antireflection layer containing a metal compound and having a refractive index and a thickness of the antireflection layer An antireflection conductive film characterized by satisfying the conditions of the following formulas (1) and (2).
105-40.0 × N ≦ d ≦ 180-40.0 × N (1)
1.75 ≦ N ≦ 2.0 (2)
(In the formula, N is the refractive index of the antireflection layer, and d is the thickness (nm) of the antireflection layer.)
太陽電池の部材として用いられる、請求項1記載の反射防止導電性フィルム。   The antireflection conductive film according to claim 1, which is used as a member of a solar cell.
JP2007002510A 2007-01-10 2007-01-10 Anti-reflective conductive film Active JP4928274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002510A JP4928274B2 (en) 2007-01-10 2007-01-10 Anti-reflective conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002510A JP4928274B2 (en) 2007-01-10 2007-01-10 Anti-reflective conductive film

Publications (2)

Publication Number Publication Date
JP2008168488A true JP2008168488A (en) 2008-07-24
JP4928274B2 JP4928274B2 (en) 2012-05-09

Family

ID=39697041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002510A Active JP4928274B2 (en) 2007-01-10 2007-01-10 Anti-reflective conductive film

Country Status (1)

Country Link
JP (1) JP4928274B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012043736A1 (en) * 2010-09-30 2012-04-05 三菱マテリアル株式会社 Composition for antireflective film for solar cell, antireflective film for solar cell, method for manufacturing antireflective film for solar cell, and solar cell
WO2012074057A1 (en) * 2010-12-02 2012-06-07 日産化学工業株式会社 Film-forming material
WO2012074058A1 (en) * 2010-12-02 2012-06-07 日産化学工業株式会社 Film-forming material
JP2012153057A (en) * 2011-01-27 2012-08-16 Teijin Dupont Films Japan Ltd Conductive film with reflection prevention function
JP2013190732A (en) * 2012-03-15 2013-09-26 Toray Advanced Film Co Ltd Antireflection film
JP5651106B2 (en) * 2009-03-30 2015-01-07 リンテック株式会社 Transparent conductive film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021703A (en) * 2001-05-01 2003-01-24 Nidek Co Ltd Transparent substrate with multilayered antireflection film having conductivity
JP2005251506A (en) * 2004-03-03 2005-09-15 Teijin Dupont Films Japan Ltd Laminated film for dye-sensitized solar cell, and electrode for dye-sensitized solar cell using it
JP2005324435A (en) * 2004-05-14 2005-11-24 Teijin Dupont Films Japan Ltd Transparent conductive laminated film and optical action electrode for photochemical cell
JP2006302562A (en) * 2005-04-18 2006-11-02 Teijin Dupont Films Japan Ltd Conductive film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021703A (en) * 2001-05-01 2003-01-24 Nidek Co Ltd Transparent substrate with multilayered antireflection film having conductivity
JP2005251506A (en) * 2004-03-03 2005-09-15 Teijin Dupont Films Japan Ltd Laminated film for dye-sensitized solar cell, and electrode for dye-sensitized solar cell using it
JP2005324435A (en) * 2004-05-14 2005-11-24 Teijin Dupont Films Japan Ltd Transparent conductive laminated film and optical action electrode for photochemical cell
JP2006302562A (en) * 2005-04-18 2006-11-02 Teijin Dupont Films Japan Ltd Conductive film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5651106B2 (en) * 2009-03-30 2015-01-07 リンテック株式会社 Transparent conductive film
CN103081112A (en) * 2010-09-30 2013-05-01 三菱综合材料株式会社 Composition for antireflective film for solar cell, antireflective film for solar cell, method for manufacturing antireflective film for solar cell, and solar cell
JP5884486B2 (en) * 2010-09-30 2016-03-15 三菱マテリアル株式会社 Composition for antireflection film for solar cell, antireflection film for solar cell, method for producing antireflection film for solar cell, and solar cell
WO2012043736A1 (en) * 2010-09-30 2012-04-05 三菱マテリアル株式会社 Composition for antireflective film for solar cell, antireflective film for solar cell, method for manufacturing antireflective film for solar cell, and solar cell
JP5804283B2 (en) * 2010-12-02 2015-11-04 日産化学工業株式会社 Film forming material
CN103348267A (en) * 2010-12-02 2013-10-09 日产化学工业株式会社 Film-forming material
JP5783384B2 (en) * 2010-12-02 2015-09-24 日産化学工業株式会社 Film forming material
WO2012074058A1 (en) * 2010-12-02 2012-06-07 日産化学工業株式会社 Film-forming material
US9240500B2 (en) 2010-12-02 2016-01-19 Nissan Chemical Industries, Ltd. Film-forming material
CN103348267B (en) * 2010-12-02 2016-01-20 日产化学工业株式会社 Form the material of film
WO2012074057A1 (en) * 2010-12-02 2012-06-07 日産化学工業株式会社 Film-forming material
US9761741B2 (en) 2010-12-02 2017-09-12 Nissan Chemical Industries, Ltd. Film-forming material
JP2012153057A (en) * 2011-01-27 2012-08-16 Teijin Dupont Films Japan Ltd Conductive film with reflection prevention function
JP2013190732A (en) * 2012-03-15 2013-09-26 Toray Advanced Film Co Ltd Antireflection film

Also Published As

Publication number Publication date
JP4928274B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5728944B2 (en) Polyester film for solar cell, solar cell backsheet using the same, and solar cell
JP5648629B2 (en) Polyethylene terephthalate composition, method for producing the same, and polyethylene terephthalate film
JP4766192B2 (en) Polyester film for solar cells
JP5565020B2 (en) Polyester film and solar cell using the same
KR101511201B1 (en) Solar cell backsheet, method of manufacturing same, and solar cell module
JP4928274B2 (en) Anti-reflective conductive film
WO2007040039A1 (en) Encapsulation film for photovoltaic module and photovoltaic module
JP2014073598A (en) Gas barrier film
AU2005208615B2 (en) Laminated film for dye-sensitized solar cell, electrode for dye-sensitized solar cell and process for producing the same
JP4660252B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
JP5702116B2 (en) SOLAR CELL PROTECTIVE SHEET AND METHOD FOR PRODUCING THE SAME, SOLAR CELL BACK SHEET, AND SOLAR CELL MODULE
JP2007281071A (en) Biaxial orientation polyester film for amorphous silicon solar battery board
JP2006310461A (en) Polyester film for solar cell rear face protecting film, and solar rear face protecting film using the same
JP6699659B2 (en) Film and electrical insulation sheet, adhesive tape, and rotating machine using it
JP5710140B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP4456894B2 (en) Dye-sensitized solar cell laminated film and dye-sensitized solar cell electrode using the same
JP2007149600A (en) Laminated film for dye-sensitized solar cell and electrode for dye-sensitized solar cell using it
JP2008039803A (en) Antireflection film
JP2011192790A (en) Polyester film for solar cells, and method of manufacturing the same
JP5739176B2 (en) Conductive film with antireflection function
JP5031997B2 (en) Electrode for dye-sensitized solar cell and method for producing the same
WO2012111716A1 (en) Protective sheet for back surface of solar cell and process for production thereof, and solar cell module
WO2024027355A1 (en) Multilayer reflective composite material and preparation method therefor
JP4456933B2 (en) Method for producing dye-sensitized solar cell electrode
JP2006127825A (en) Laminate for dye-sensitized solar battery, electrode for dye-sensitized solar battery and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110601

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4928274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250