JP2008166163A - Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly - Google Patents

Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly Download PDF

Info

Publication number
JP2008166163A
JP2008166163A JP2006355624A JP2006355624A JP2008166163A JP 2008166163 A JP2008166163 A JP 2008166163A JP 2006355624 A JP2006355624 A JP 2006355624A JP 2006355624 A JP2006355624 A JP 2006355624A JP 2008166163 A JP2008166163 A JP 2008166163A
Authority
JP
Japan
Prior art keywords
catalyst
polymer electrolyte
electrolyte membrane
catalyst layer
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006355624A
Other languages
Japanese (ja)
Inventor
Naotoshi Suzuki
直俊 鈴木
Masakazu Hidai
将一 干鯛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Fuel Cell Power Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Fuel Cell Power Systems Corp filed Critical Toshiba Corp
Priority to JP2006355624A priority Critical patent/JP2008166163A/en
Publication of JP2008166163A publication Critical patent/JP2008166163A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method and a manufacturing device of a catalyst-polymer electrolyte membrane assembly capable of forming a catalyst layer having less cracking and falling-off, and maintaining formation of a high cell voltage stably. <P>SOLUTION: This is equipped with a suction stage 1 to place a coating substrate 5, a catalyst layer forming chamber 2 installed so as to surround this suction stage 1, and a mixture supply part 3 to supply a mixture consisting of a catalyst and a binder on the suction stage 1 in the catalyst layer chamber 2. The mixture supply part 3 is equipped with a nitrogen gas supply part 4 and a gas flow rate adjustment part 6 in order to send a powder catalyst into the chamber 2. The suction stage 1 is constituted of a porous member having gas-permeability, and an exhaust tube 9 which is equipped with an exhaust blower 7 and a pressure adjustment valve 8 in its rear face is installed. After a catalyst powder in the chamber 2 is laminated on the coating substrate 5, the catalyst layer is made by stopping the nitrogen gas, removing the chamber 2, and crimping a powder catalyst laminate 10 on the coating substrate 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体高分子電解質形燃料電池に使用する触媒−高分子電解質膜接合体に関するものであって、特に、触媒層の亀裂、欠落が少なく、燃料電池の長期運転に渡って安定した特性を得られる触媒−高分子電解質膜接合体の製造方法及び製造装置に係るものである。   TECHNICAL FIELD The present invention relates to a catalyst-polymer electrolyte membrane assembly used for a solid polymer electrolyte fuel cell, and particularly has a characteristic that the catalyst layer is less cracked and missing and stable over a long period of operation of the fuel cell. The present invention relates to a method for producing a catalyst-polymer electrolyte membrane assembly and a production apparatus.

燃料電池は、水素等の燃料ガスと空気等の酸化剤ガスを電気化学的に反応させることにより、燃料ガスのもつ化学的エネルギを電気エネルギに変換する装置である。     A fuel cell is a device that converts chemical energy of fuel gas into electrical energy by electrochemically reacting a fuel gas such as hydrogen and an oxidant gas such as air.

このような無公害エネルギを利用する燃料電池に組み込まれる燃料電池本体は、イオン導電性を有する電解質層を挟んで配置した燃料極および酸化剤極からなる単位セルと、それぞれの電極に反応ガス(燃料ガス、酸化剤ガス)を供給するための燃料ガス供給溝、酸化剤ガス供給溝をそれぞれ設けた導電性を有するガス不透過性の燃料ガス供給セパレータおよび酸化剤ガス供給セパレータと、冷却水供給溝を設けた冷却水供給セパレータとからなる基本構成を複数枚積み重ねて成る燃料電池積層体を備えて構成されている。   A fuel cell body incorporated in a fuel cell using such non-polluting energy includes a unit cell composed of a fuel electrode and an oxidant electrode arranged with an electrolyte layer having ionic conductivity, and a reactive gas ( A fuel gas supply groove for supplying a fuel gas, an oxidant gas), a conductive gas-impermeable fuel gas supply separator and an oxidant gas supply separator each provided with an oxidant gas supply groove, and a cooling water supply The fuel cell stack is formed by stacking a plurality of basic components each including a cooling water supply separator provided with a groove.

このような構成を備える燃料電池本体において、燃料ガス供給溝及び酸化剤ガス溝に対して、燃料電池積層体の側面に設けた反応ガス供給マニホールドを介してそれぞれの反応ガス(燃料ガス、酸化剤ガス)を供給すると、単位セルの一対の電極で下記に示す電気化学反応が進行し、電極間で起電力が生じる。   In the fuel cell main body having such a configuration, each reaction gas (fuel gas, oxidant) is provided to the fuel gas supply groove and the oxidant gas groove via a reaction gas supply manifold provided on the side surface of the fuel cell stack. When the gas is supplied, the electrochemical reaction shown below proceeds at the pair of electrodes of the unit cell, and an electromotive force is generated between the electrodes.

[燃料極]
2H → 4H4e ……(1)
[酸化剤極]
+4H+4e → 2HO ……(2)
[Fuel electrode]
2H 2 → 4H + 4e (1)
[Oxidant electrode]
O 2 + 4H + + 4e → 2H 2 O (2)

上式において、燃料極では、式(1)に示すように、供給した水素を水素イオンと電子に解離する。その際、水素イオンは、電解質層を通り、また、電子は、外部回路を通り、酸化剤極にそれぞれ移動する。   In the above equation, the fuel electrode dissociates the supplied hydrogen into hydrogen ions and electrons as shown in equation (1). At that time, hydrogen ions pass through the electrolyte layer, and electrons move through the external circuit to the oxidant electrode.

一方、酸化剤極では、式(2)に示すように、供給した酸化剤ガス中の酸素と、上述水素イオンおよび電子が反応して水を生成する。このとき、外部回路を通った電子は、電流となり、電力を供給することができる。   On the other hand, at the oxidant electrode, as shown in Formula (2), oxygen in the supplied oxidant gas reacts with the hydrogen ions and electrons to generate water. At this time, electrons that have passed through the external circuit become current and can be supplied with electric power.

なお、式(1)(2)の反応により生成した水は、燃料電池本体で消費されなかった反応ガス(既反応ガス)とともに上述燃料電池積層体の側面に設けた反応ガス排出マニホールドを介して燃料電池本体の外部に排出される。   In addition, the water produced | generated by reaction of Formula (1) (2) goes through the reaction gas discharge manifold provided in the side surface of the said fuel cell laminated body with the reaction gas (already-reacted gas) which was not consumed with the fuel cell main body. It is discharged outside the fuel cell body.

ところで、燃料電池は、使用されている電解質層により、アルカリ形燃料電池、リン酸形燃料電池、固体高分子形燃料電池、溶融炭酸塩形燃料電池、固体酸化物形燃料電池に分類されている。   By the way, fuel cells are classified into alkaline fuel cells, phosphoric acid fuel cells, polymer electrolyte fuel cells, molten carbonate fuel cells, and solid oxide fuel cells, depending on the electrolyte layer used. .

これら燃料電池のうち、電解質層として固体高分子膜を使用した固体高分子形燃料電池は、比較的低温で運転ができ、起動時間が短く、大きな出力密度が得られることから、定置電源用、車載電源用、携帯電源用として大きな注目を浴びている。   Among these fuel cells, a polymer electrolyte fuel cell using a solid polymer membrane as an electrolyte layer can be operated at a relatively low temperature, has a short start-up time, and provides a large output density. It has attracted a great deal of attention as an in-vehicle power source and a portable power source.

このように注目を浴びている固体高分子形燃料電池の電解質層に使用される固体高分子電解質膜には、10〜100μm程度の厚さのパーフルオロカーボンスルホン酸膜、例えば、Nafion/ナフロン(商品名:DuPont/デュポン社製)等が用いられている。   As the solid polymer electrolyte membrane used in the electrolyte layer of the solid polymer fuel cell which has been attracting attention in this way, a perfluorocarbon sulfonic acid membrane having a thickness of about 10 to 100 μm, for example, Nafion / Naflon (product) Name: DuPont / manufactured by DuPont).

この固体高分子電解質膜は、燃料ガスと酸化剤ガスとを分離する反応ガス分離機能と、燃料極で生成された水素イオンを酸化剤極に運ぶ水素イオン伝導性とに優れている。もっとも、この固体高分子電解質膜には、水分を含んでいる場合、良好な水素イオン導電性を示すものの、乾燥していると水素イオン導電性を著しく低下させる属性を持っている。   This solid polymer electrolyte membrane is excellent in the reaction gas separation function for separating the fuel gas and the oxidant gas and the hydrogen ion conductivity for carrying the hydrogen ions generated in the fuel electrode to the oxidant electrode. However, although this solid polymer electrolyte membrane exhibits good hydrogen ion conductivity when it contains moisture, it has an attribute of significantly reducing hydrogen ion conductivity when dried.

このため、固体高分子電解質膜の湿潤度を保つ必要があるが、固体高分子電解質膜の水分を高くする反応ガスが膜を透過し易くなり、微量であるが対極への反応ガスの透過量が多くなる傾向がある。   For this reason, it is necessary to maintain the wetness of the solid polymer electrolyte membrane, but the reaction gas that increases the water content of the solid polymer electrolyte membrane is likely to permeate the membrane, and the amount of reaction gas permeated to the counter electrode is small. There is a tendency to increase.

固体高分子電解質膜には燃料極と酸化剤極の触媒層が固体高分子電解質膜を挟むように配置されており、触媒層に亀裂、欠落が存在すると、燃料ガス、酸化剤ガスともに式(1)(2)で示した反応を起こさない未反応のガスが固体高分子電解質膜を透過することとなる。固体高分子形燃料電池の運転では微量の反応ガス透過(クロスリーク)がセル電圧低下を招くことから、反応ガスの透過防止が重要課題になっている。   In the solid polymer electrolyte membrane, the catalyst layer of the fuel electrode and the oxidant electrode is arranged so as to sandwich the solid polymer electrolyte membrane. If there is a crack or a gap in the catalyst layer, both the fuel gas and oxidant gas are 1) Unreacted gas that does not cause the reaction shown in (2) permeates through the solid polymer electrolyte membrane. In the operation of the polymer electrolyte fuel cell, since a small amount of reaction gas permeation (cross leak) causes a decrease in cell voltage, prevention of reaction gas permeation has become an important issue.

触媒層の形成技術としては、特許文献1にポリテトラフルオロエチレン(PTFE)上に触媒と電解質からなる溶液を塗布し、触媒層を形成し、固体高分子電解質膜に転写する技術が開示されている。これによると触媒塗布量を抑え特性の高い触媒層を形成することができる。
特許第3554321号公報
As a technique for forming a catalyst layer, Patent Document 1 discloses a technique in which a solution comprising a catalyst and an electrolyte is applied onto polytetrafluoroethylene (PTFE), a catalyst layer is formed, and transferred to a solid polymer electrolyte membrane. Yes. According to this, a catalyst layer having high characteristics can be formed while suppressing the amount of catalyst applied.
Japanese Patent No. 3554321

前記の特許文献1に記載の発明は、優れた属性を持つ反面、それでも幾つかの課題を抱えている。すなわち、特許文献1に示されたように、触媒層を溶液で塗布すると溶液乾燥工程後に亀裂、欠落が生じる可能性がある。そして、この触媒層の亀裂、欠落箇所より反応ガスが固体高分子電解質膜を透過し、セル電圧の低下を招くおそれがある。   While the invention described in Patent Document 1 has excellent attributes, it still has some problems. That is, as shown in Patent Document 1, when the catalyst layer is applied with a solution, there is a possibility that a crack or a drop may occur after the solution drying step. And there exists a possibility that a reactive gas permeate | transmits a solid polymer electrolyte membrane from the crack of this catalyst layer, and a missing part, and may cause a fall of a cell voltage.

本発明は、このような従来技術の問題点を解決するために提案されたもので、亀裂、欠落の少ない触媒層を得ることで、高いセル電圧の生成を安定に維持させる燃料電池の製造方法を提供することを目的とする。   The present invention has been proposed in order to solve such problems of the prior art, and a fuel cell manufacturing method that stably maintains the generation of a high cell voltage by obtaining a catalyst layer with few cracks and defects. The purpose is to provide.

本発明に係る触媒−高分子電解質膜接合体の製造方法は、上述の目的を達成するために、予め混合された触媒と結着材からなる粉末を多孔質体である塗布基板上に積層し、これを圧着して触媒層を形成したのちに高分子電解質膜に転写することを特徴とする。   In order to achieve the above-mentioned object, a method for producing a catalyst-polymer electrolyte membrane assembly according to the present invention comprises laminating a powder mixed with a catalyst and a binder mixed in advance on a porous coated substrate. The catalyst layer is formed by pressure bonding, and then transferred to the polymer electrolyte membrane.

また、本発明に係る触媒−高分子電解質膜接合体の製造装置は、触媒層の塗布基板を負圧により固定する吸引ステージと、塗布基板上に触媒と結着材からなる粉末触媒を積層する触媒層形成チャンバーを有し、前記粉末触媒を触媒層形成チャンバーに不活性ガスを用いて送る粉末触媒供給部を有することを特徴とする。   The apparatus for producing a catalyst-polymer electrolyte membrane assembly according to the present invention includes a suction stage for fixing a coated substrate of a catalyst layer by negative pressure, and a powder catalyst made of a catalyst and a binder on the coated substrate. It has a catalyst layer formation chamber, and has a powder catalyst supply part which sends the above-mentioned powder catalyst to a catalyst layer formation chamber using an inert gas.

本発明に係る触媒−高分子電解質膜接合体の製造方法および製造装置は、予め混合された触媒と結着材からなる粉末を、多孔質体である塗布基板上に塗布して触媒層を形成したのちに電解質膜に転写することにより、従来技術のような触媒溶液の乾燥工程がなくなるので、亀裂・欠落の少ない触媒層を形成した触媒−高分子電解質膜接合体を得ることが可能になり、それにより高いセル電圧の生成を安定に維持する燃料電池を得ることができる。   The manufacturing method and the manufacturing apparatus of the catalyst-polymer electrolyte membrane assembly according to the present invention form a catalyst layer by applying a powder mixed with a catalyst and a binder mixed in advance onto a porous substrate. Then, by transferring it to the electrolyte membrane, the catalyst solution drying step as in the prior art is eliminated, and it becomes possible to obtain a catalyst-polymer electrolyte membrane assembly in which a catalyst layer with few cracks and missing portions is formed. Thus, a fuel cell that stably maintains the generation of a high cell voltage can be obtained.

以下、本発明に係る触媒−高分子電解質膜接合体の製造方法及び製造装置の一実施形態を、図面および図面に付した符号を引用して説明する。   Hereinafter, an embodiment of a production method and production apparatus for a catalyst-polymer electrolyte membrane assembly according to the present invention will be described with reference to the drawings and the reference numerals attached to the drawings.

(1)第1実施形態
図1は、本発明に係る触媒−高分子電解質膜接合体の製造方法およびその製造装置の第1実施形態を示すもので、燃料電池製造装置の概念図である。
(1) First Embodiment FIG. 1 shows a first embodiment of a method for manufacturing a catalyst-polymer electrolyte membrane assembly and its manufacturing apparatus according to the present invention, and is a conceptual diagram of a fuel cell manufacturing apparatus.

本実施形態に係る燃料電池製造装置は、図1に示すとおり、塗布基板5を載置するための吸引ステージ1と、この吸引ステージ1を取り囲むように設けられた触媒層形成チャンバー2と、触媒と結着材からなる混合物を触媒層チャンバー2内の吸引ステージ1上に供給する混合物供給部3とを備えている。   As shown in FIG. 1, the fuel cell manufacturing apparatus according to the present embodiment includes a suction stage 1 for mounting a coating substrate 5, a catalyst layer forming chamber 2 provided so as to surround the suction stage 1, and a catalyst And a mixture supply unit 3 for supplying a mixture made of the binder onto the suction stage 1 in the catalyst layer chamber 2.

この混合物供給部3は、混合物供給部3から供給された粉末状の混合物をチャンバー2内に送り込むために、窒素などの不活性ガスを供給するガス供給部4と、そのガス流量を調整するための調整部6を備えている。   This mixture supply unit 3 is configured to supply a gas mixture 4 supplied from the mixture supply unit 3 into the chamber 2 and to supply an inert gas such as nitrogen, and to adjust the gas flow rate. The adjustment part 6 is provided.

前記吸引ステージ1は、ガス透過性を有する多孔質の部材から構成され、その背面には吸引ステージに加える負圧の調整機構として排気ブロワー7及び圧力調整弁8を備えた排気管9が設けられている。すなわち、この排気管9によって吸引ステージ1の背面からチャンバー2内の不活性ガスを吸引することにより、前記塗布基板5の触媒塗布面のガス圧力を塗布基板5の触媒塗布背面より高く設定する。   The suction stage 1 is composed of a porous member having gas permeability, and an exhaust pipe 9 provided with an exhaust blower 7 and a pressure adjustment valve 8 is provided on the back side thereof as a mechanism for adjusting a negative pressure applied to the suction stage. ing. That is, the exhaust pipe 9 sucks the inert gas in the chamber 2 from the back surface of the suction stage 1, thereby setting the gas pressure on the catalyst coating surface of the coating substrate 5 higher than the catalyst coating back surface of the coating substrate 5.

この燃料電池製造装置において、多孔質体である塗布基板5を塗布基板吸引ステージ1に固定し、触媒層形成チャンバー2を塗布吸引ステージ1に被せたのちに、ガス供給部4より窒素を流通し、混合物供給部3より触媒と結着材の混合物を投入し、多孔質体である塗布基板5に触媒層10を形成する。この場合、排気管9によって吸引ステージ1の背面からチャンバー2内の不活性ガスを吸引することによって、多孔質の塗布基板5の表面に粉末触媒が吸着され、粉末触媒の積層体が形成される。   In this fuel cell manufacturing apparatus, after the coated substrate 5, which is a porous body, is fixed to the coated substrate suction stage 1 and the catalyst layer forming chamber 2 is placed on the coated suction stage 1, nitrogen is circulated from the gas supply unit 4. Then, a mixture of the catalyst and the binder is introduced from the mixture supply unit 3 to form the catalyst layer 10 on the coated substrate 5 that is a porous body. In this case, by sucking the inert gas in the chamber 2 from the back surface of the suction stage 1 by the exhaust pipe 9, the powder catalyst is adsorbed on the surface of the porous coated substrate 5, and a powder catalyst laminate is formed. .

以下に本実施形態における触媒と結着材の混合物の製作方法について述べる。触媒にはカーボンブラックに白金を40wt%坦持させたものを用い、結着材には5wt%の固体高分子電解質溶液(DuPont社の商品名「Nafion」の5wt%溶液)を用いた。触媒に重量比にて20倍の超純水を添加して15分間超音波混合器にて分散を行い、触媒の縣濁液を得た。   A method for producing a mixture of the catalyst and the binder in the present embodiment will be described below. The catalyst used was carbon black supported on platinum by 40 wt%, and the binder was a 5 wt% solid polymer electrolyte solution (5 wt% solution of DuPont's trade name “Nafion”). Ultrapure water 20 times in weight ratio was added to the catalyst and dispersed in an ultrasonic mixer for 15 minutes to obtain a catalyst suspension.

この縣濁液に固体高分子電解質溶液を、乾燥重量にて触媒に対して3分の1の重量になるよう添加し、再度15分間超音波混合器にて分散を行い触媒−固体高分子電解質混合液を得た。この混合液を50℃にて3時間、窒素雰囲気中に乾燥を行い混合物の粉末を得た。この混合物をさらに粉砕機にて粉砕して触媒層形成用の触媒―固体高分子電解質混合粉末とした。   A solid polymer electrolyte solution is added to this suspension so that the weight becomes one third of the catalyst by dry weight, and dispersed again in an ultrasonic mixer for 15 minutes to form a catalyst-solid polymer electrolyte. A mixture was obtained. This mixed solution was dried in a nitrogen atmosphere at 50 ° C. for 3 hours to obtain a powder of the mixture. This mixture was further pulverized by a pulverizer to obtain a catalyst-solid polymer electrolyte mixed powder for forming a catalyst layer.

前記のようにして製作した混合粉末を用いて、以下の手順で塗布基板5上に触媒層10を形成した。塗布基板5として15cm角のろ紙(JIS P3801に規定する微細沈殿用濾紙5種C/厚さ0.2mm)を用いた。ろ紙を塗布基板吸引ステージ1に設置して、排気管9から排気ブロワー7及び圧力調整弁8により一定の圧力で吸引しながら触媒層形成チャンバー2を被せた。   Using the mixed powder produced as described above, the catalyst layer 10 was formed on the coated substrate 5 by the following procedure. A 15 cm square filter paper (5 types of fine precipitation filter paper specified in JIS P3801 C / thickness 0.2 mm) was used as the coating substrate 5. The filter paper was placed on the coated substrate suction stage 1 and covered with the catalyst layer forming chamber 2 while being sucked from the exhaust pipe 9 by the exhaust blower 7 and the pressure adjusting valve 8 at a constant pressure.

この状態で、ガス供給部4から窒素を流通しつつ、混合物供給部3より触媒−固体高分子電解質混合粉末を投入した。投入された触媒−固体高分子電解質混合粉末は、ガス供給部4より供給されている窒素ガスとともに塗布基板5であるろ紙上に積層されて触媒層10が得られた。この場合、チャンバー2内で触媒粉末が舞い上がることなくろ紙5の全表面に均等に蓄積するように、ガス流量調整部6により供給する窒素ガス量を制御した。また、塗布基板5上に積層された粉末触媒の見かけの厚さは100μm程度である。   In this state, the catalyst-solid polymer electrolyte mixed powder was charged from the mixture supply unit 3 while flowing nitrogen from the gas supply unit 4. The charged catalyst-solid polymer electrolyte mixed powder was laminated on the filter paper as the coated substrate 5 together with the nitrogen gas supplied from the gas supply unit 4 to obtain the catalyst layer 10. In this case, the amount of nitrogen gas supplied by the gas flow rate adjusting unit 6 was controlled so that the catalyst powder did not rise in the chamber 2 and accumulated evenly on the entire surface of the filter paper 5. Moreover, the apparent thickness of the powder catalyst laminated | stacked on the application | coating board | substrate 5 is about 100 micrometers.

触媒層形成チャンバー2内の触媒粉末がろ紙5上に積層された後に、窒素ガスを止めて、触媒層形成チャンバー2を取り外し、ろ紙5上の粉末触媒積層体10を図示しないローラにて圧着して触媒層とした。この場合のローラによる圧力は5kgf/cm程度が好ましい。また、圧着後の触媒層の厚さは、30μmである。 After the catalyst powder in the catalyst layer forming chamber 2 is laminated on the filter paper 5, the nitrogen gas is stopped, the catalyst layer forming chamber 2 is removed, and the powder catalyst laminate 10 on the filter paper 5 is pressure-bonded with a roller (not shown). Thus, a catalyst layer was obtained. The pressure by the roller in this case is preferably about 5 kgf / cm 2. Moreover, the thickness of the catalyst layer after pressure bonding is 30 μm.

上記方法にて形成した触媒層を燃料極、酸化剤極として固体高分子電解質膜に熱圧着し、触媒−高分子電解質膜接合体を得た。この場合、固体高分子電解質膜には、厚さ50マイクロメーターのNafion膜(NR112)を用いた。また熱圧着はホットプレスを用いて温度135℃、圧力50kgf/cm、時間2分で行った。 The catalyst layer formed by the above method was thermocompression bonded to the solid polymer electrolyte membrane as a fuel electrode and an oxidizer electrode to obtain a catalyst-polymer electrolyte membrane assembly. In this case, a Nafion membrane (NR112) having a thickness of 50 micrometers was used as the solid polymer electrolyte membrane. Thermocompression bonding was performed using a hot press at a temperature of 135 ° C., a pressure of 50 kgf / cm 2 , and a time of 2 minutes.

(2)比較例
以下に比較例の触媒層形成方法について述べる。上記実施形態と同じ触媒、固体高分子電解質膜を用いて触媒インクを形成した。触媒インクの組成は触媒:水:固体高分子電解質=1:15:6.7(重量比)とした。触媒インクを耐熱性フッ素樹脂シート(一例として商品名テフロン)上に塗布して、温度90℃にて30分間乾燥して触媒層とした。得られた触媒層をホットプレスにて温度135℃、圧力50kgf/cm、時間2分の条件で固体高分子電解質膜に転写した。固体高分子電解質膜は第1実施形態と同じものを用いた。この場合、触媒量は、前記第1実施形態と白金量などが等しくなるように決定して比較を行った。
(2) Comparative Example The catalyst layer forming method of the comparative example is described below. A catalyst ink was formed using the same catalyst and solid polymer electrolyte membrane as in the above embodiment. The composition of the catalyst ink was catalyst: water: solid polymer electrolyte = 1: 15: 6.7 (weight ratio). The catalyst ink was applied on a heat-resistant fluororesin sheet (trade name Teflon as an example) and dried at a temperature of 90 ° C. for 30 minutes to form a catalyst layer. The obtained catalyst layer was transferred to a solid polymer electrolyte membrane by a hot press under conditions of a temperature of 135 ° C., a pressure of 50 kgf / cm 2 , and a time of 2 minutes. The same solid polymer electrolyte membrane as in the first embodiment was used. In this case, the amount of catalyst was determined so as to be equal to the amount of platinum and the like in the first embodiment.

それぞれ製作した触媒−高分子電解質膜接合体をカーボンペーパーで挟み込み、酸化剤ガス供給用セパレータ、燃料ガス供給用セパレータに組み込み発電試験を行った。この発電試験は、電池温度80℃、加湿は相対湿度40%で、電流密度0.3A/cmで、開回路電圧の変化を測定した。 The produced catalyst-polymer electrolyte membrane assembly was sandwiched between carbon papers, and incorporated in an oxidant gas supply separator and a fuel gas supply separator, and a power generation test was conducted. In this power generation test, a change in open circuit voltage was measured at a battery temperature of 80 ° C., humidification at a relative humidity of 40%, and a current density of 0.3 A / cm 2 .

図2は、開回路電圧の時間変化を示すもので。縦軸は開回路電圧(単位V)、横軸は試験時間(単位Hour)である。この発電試験は、燃料電池の耐久性能を判定するための加速度試験である。   FIG. 2 shows the change over time of the open circuit voltage. The vertical axis represents the open circuit voltage (unit V), and the horizontal axis represents the test time (unit Hour). This power generation test is an acceleration test for determining the durability performance of the fuel cell.

図2から明らかなように、本実施形態の燃料電池では比較例と比べて長期にわたって優れた発電特性が得られていることが判る。これは触媒層の亀裂、欠落が少なく反応ガスである水素と酸素の固体高分子電解質膜への透過が少なくなったためと思われる。   As is apparent from FIG. 2, it can be seen that the fuel cell of this embodiment has excellent power generation characteristics over a long period of time compared to the comparative example. This seems to be because the catalyst layer is less cracked and missing, and the permeation of the reaction gases hydrogen and oxygen into the solid polymer electrolyte membrane is reduced.

また、本実施形態によれば、単位時間当たりの粉末触媒の供給量、粉末触媒の粒径や質量に応じて、触媒層形成チャンバー2に供給する不活性ガス流量や圧力を、ガス供給部4に設けたガス流量調整部6によって可変としたので、種々の組成からなる粉末触媒の利用や、塗布基板5上に形成する触媒層の厚さや密度を適宜調整することができる。   Further, according to the present embodiment, the flow rate and pressure of the inert gas supplied to the catalyst layer forming chamber 2 in accordance with the supply amount of the powder catalyst per unit time, the particle size and mass of the powder catalyst, and the gas supply unit 4 Since the gas flow rate adjusting unit 6 provided in FIG. 4 is variable, the use of a powder catalyst having various compositions and the thickness and density of the catalyst layer formed on the coated substrate 5 can be adjusted as appropriate.

同様に、吸引ステージ1には、排気ブロワー7や圧力調整弁8のような負圧の調整機構が設けられているので、多孔質の塗布基板の材質(空隙度や肉厚)、積層する粉末触媒の厚さ、粉末触媒の粒径などに応じて、吸引ステージ1に加える負圧の大きさを適宜変更することが可能である。   Similarly, since the suction stage 1 is provided with a negative pressure adjusting mechanism such as the exhaust blower 7 and the pressure adjusting valve 8, the material of the porous coating substrate (porosity and thickness), the powder to be laminated The magnitude of the negative pressure applied to the suction stage 1 can be appropriately changed according to the thickness of the catalyst, the particle size of the powder catalyst, and the like.

(3)他の実施形態
本発明は前記のような実施形態に限定されるものではなく、次のような他の実施形態も包含する。
(3) Other Embodiments The present invention is not limited to the above-described embodiments, and includes the following other embodiments.

(1) 塗布基板としては、ろ紙以外に通気性のある他の紙、不織布、カーボンペーパー、多孔質プラスチックシートなどが使用できる。 (1) As the coated substrate, in addition to filter paper, other air-permeable paper, non-woven fabric, carbon paper, porous plastic sheet, and the like can be used.

(2) 塗布基板として、剥離性に優れた多孔質シートを使用した場合には、この触媒層を燃料極、酸化剤極として固体高分子電解質膜に熱圧着した後、塗布基板を触媒層から引き剥がして、触媒層−高分子電解質膜接合体を得ることもできる。 (2) When a porous sheet having excellent releasability is used as the coated substrate, this catalyst layer is used as a fuel electrode and an oxidizer electrode by thermocompression bonding to the solid polymer electrolyte membrane, and then the coated substrate is removed from the catalyst layer. The catalyst layer-polymer electrolyte membrane assembly can be obtained by peeling off.

(3) 前記実施形態の製造方法は、矩形の塗布基板を使用したものであるが、ロール状に巻き取られたろ紙などの塗布基板を巻き取りローラから繰り出しながら、その表面に触媒粉末を散布し、その後圧着ローラで加圧して塗布基板上に触媒層を形成することもできる。また、そのようにして触媒層を形成した塗布基板と、同様に巻取ローラから繰り出した高分子電解質膜とを重ね合わせ、加熱ローラで熱圧着することにより、触媒層−高分子電解質膜接合体を連続して製造することも可能である。 (3) Although the manufacturing method of the embodiment uses a rectangular coated substrate, the catalyst powder is spread on the surface of the coated substrate such as filter paper wound up in a roll shape while feeding it from the winding roller. Then, the catalyst layer can be formed on the coated substrate by pressing with a pressure roller. In addition, the coated substrate on which the catalyst layer is formed in this manner and the polymer electrolyte membrane similarly fed from the take-up roller are overlapped and thermocompression-bonded with a heating roller, whereby the catalyst layer-polymer electrolyte membrane assembly Can also be produced continuously.

本発明に係る触媒−高分子電解質膜接合体の製造方法および製造装置の第1実施形態を説明する概念図。The conceptual diagram explaining 1st Embodiment of the manufacturing method and manufacturing apparatus of the catalyst-polymer electrolyte membrane assembly which concern on this invention. 本発明の実施形態と比較例の開回路電圧の時間変化を示すグラフ。The graph which shows the time change of the open circuit voltage of embodiment of this invention and a comparative example.

符号の説明Explanation of symbols

1…塗布基板吸引ステージ
2…触媒層形成チャンバー
3…混合物供給部
4…ガス供給部
5…多孔質体塗布基板
6…ガス流量調整部
7…排気ブロワー
8…圧力調整弁
9…排気管
10…触媒層
DESCRIPTION OF SYMBOLS 1 ... Coating substrate suction stage 2 ... Catalyst layer formation chamber 3 ... Mixture supply part 4 ... Gas supply part 5 ... Porous body coating substrate 6 ... Gas flow volume adjustment part 7 ... Exhaust blower 8 ... Pressure adjustment valve 9 ... Exhaust pipe 10 ... Catalyst layer

Claims (7)

予め混合された触媒と結着材からなる粉末を多孔質体である塗布基板上に積層し、これを圧着して触媒層を形成したのちに高分子電解質膜に転写することを特徴とする触媒−高分子電解質膜接合体の製造方法。   A catalyst characterized in that a premixed catalyst and a binder powder are laminated on a porous coated substrate, and a catalyst layer is formed by pressure bonding and then transferred to a polymer electrolyte membrane. -Manufacturing method of polymer electrolyte membrane assembly. 前記結着材が固体高分子電解質であることを特徴とする請求項1に記載の触媒−高分子電解質膜接合体の製造方法。   The method for producing a catalyst-polymer electrolyte membrane assembly according to claim 1, wherein the binder is a solid polymer electrolyte. 触媒と結着材からなる粉末触媒を不活性ガスにより、塗布基板上に吹き付けて積層することを特徴とする請求項1または請求項2に記載の触媒−高分子電解質膜接合体の製造方法。   The method for producing a catalyst-polymer electrolyte membrane assembly according to claim 1 or 2, wherein a powder catalyst comprising a catalyst and a binder is sprayed and laminated on an application substrate with an inert gas. 前記塗布基板の触媒塗布面のガス圧力を塗布基板の触媒塗布背面より高くすることを特徴とする請求項3に記載の触媒−高分子電解質膜接合体の製造方法。   The method for producing a catalyst-polymer electrolyte membrane assembly according to claim 3, wherein the gas pressure on the catalyst-coated surface of the coated substrate is higher than that on the catalyst-coated surface of the coated substrate. 触媒層の塗布基板を負圧により固定する吸引ステージと、塗布基板上に触媒と結着材からなる粉末触媒を積層する触媒層形成チャンバーを有し、前記粉末触媒を触媒層形成チャンバーに不活性ガスを用いて送る粉末触媒供給部を有することを特徴とする触媒−高分子電解質膜接合体の製造装置。   There is a suction stage for fixing the coated substrate of the catalyst layer by negative pressure, and a catalyst layer forming chamber for laminating a powder catalyst comprising a catalyst and a binder on the coated substrate, and the powder catalyst is inactive in the catalyst layer forming chamber An apparatus for producing a catalyst-polymer electrolyte membrane assembly, comprising a powder catalyst supply section for sending gas. 塗布基板を固定する吸引ステージに加える負圧の調整機構を備えていることを特徴とする請求項5記載の触媒−高分子電解質膜接合体の製造装置。   6. The apparatus for producing a catalyst-polymer electrolyte membrane assembly according to claim 5, further comprising a mechanism for adjusting a negative pressure applied to a suction stage for fixing the coated substrate. 前記粉末触媒を触媒層形成チャンバーに送るための不活性ガスの流量を調整するガス流量調整部が設けられていることを特徴とする請求項5または請求項6記載の触媒−高分子電解質膜接合体の製造装置。   The catalyst-polymer electrolyte membrane junction according to claim 5 or 6, further comprising a gas flow rate adjusting unit for adjusting a flow rate of an inert gas for sending the powder catalyst to the catalyst layer forming chamber. Body manufacturing equipment.
JP2006355624A 2006-12-28 2006-12-28 Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly Pending JP2008166163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006355624A JP2008166163A (en) 2006-12-28 2006-12-28 Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006355624A JP2008166163A (en) 2006-12-28 2006-12-28 Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly

Publications (1)

Publication Number Publication Date
JP2008166163A true JP2008166163A (en) 2008-07-17

Family

ID=39695345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006355624A Pending JP2008166163A (en) 2006-12-28 2006-12-28 Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly

Country Status (1)

Country Link
JP (1) JP2008166163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204624A (en) * 2010-03-26 2011-10-13 Toshiba Fuel Cell Power Systems Corp Manufacturing method of electrode catalyst layer for fuel cell, and fuel cell
DE102010030671A1 (en) * 2010-06-29 2011-12-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Applying powder particles on a porous substrate, comprises applying the powder particles using a gas stream, which passes through the porous substrate
DE102010030657A1 (en) * 2010-06-29 2011-12-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for applying e.g. catalytic active metal particles, on carbon-containing membrane to manufacture e.g. gas diffusion layer, in fuel cell application, involves passing flow of gas through porous substrate to apply particles
JP2012209170A (en) * 2011-03-30 2012-10-25 Toshiba Fuel Cell Power Systems Corp Apparatus and method for manufacturing fuel cell electrode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH11288728A (en) * 1998-03-31 1999-10-19 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacture
JP2001300324A (en) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
JP2004095292A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Method and device for manufacturing diaphragm and electrode catalyst joined body of fuel cell
JP2004319139A (en) * 2003-04-11 2004-11-11 Toyota Motor Corp Membrane electrode assembly and its manufacturing method
JP2006328459A (en) * 2005-05-25 2006-12-07 Nissan Motor Co Ltd Film deposition apparatus, and film deposition method using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07254419A (en) * 1994-03-15 1995-10-03 Tanaka Kikinzoku Kogyo Kk Electrode for polyelectrolyte type electrochemical cell and its manufacture
JPH11288728A (en) * 1998-03-31 1999-10-19 Matsushita Electric Ind Co Ltd Electrode for fuel cell and its manufacture
JP2001300324A (en) * 2000-04-26 2001-10-30 Japan Storage Battery Co Ltd Composite catalyst and manufacturing method and method of manufacturing electrode for fuel cell using the same
JP2004095292A (en) * 2002-08-30 2004-03-25 Toyota Motor Corp Method and device for manufacturing diaphragm and electrode catalyst joined body of fuel cell
JP2004319139A (en) * 2003-04-11 2004-11-11 Toyota Motor Corp Membrane electrode assembly and its manufacturing method
JP2006328459A (en) * 2005-05-25 2006-12-07 Nissan Motor Co Ltd Film deposition apparatus, and film deposition method using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204624A (en) * 2010-03-26 2011-10-13 Toshiba Fuel Cell Power Systems Corp Manufacturing method of electrode catalyst layer for fuel cell, and fuel cell
DE102010030671A1 (en) * 2010-06-29 2011-12-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Applying powder particles on a porous substrate, comprises applying the powder particles using a gas stream, which passes through the porous substrate
DE102010030657A1 (en) * 2010-06-29 2011-12-29 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for applying e.g. catalytic active metal particles, on carbon-containing membrane to manufacture e.g. gas diffusion layer, in fuel cell application, involves passing flow of gas through porous substrate to apply particles
JP2012209170A (en) * 2011-03-30 2012-10-25 Toshiba Fuel Cell Power Systems Corp Apparatus and method for manufacturing fuel cell electrode

Similar Documents

Publication Publication Date Title
JP4607708B2 (en) Fuel cell electrode, fuel cell, and fuel cell manufacturing method
WO2002073721A1 (en) Gas diffusion electrode and fuel cell using this
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP2009238376A (en) Fuel cell
JP5145831B2 (en) Fuel cell, diffusion layer for fuel cell and fuel cell system.
JP2006120506A (en) Solid polymer fuel cell
JP5253834B2 (en) Fuel cell electrode
JP2008166163A (en) Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly
JP6070564B2 (en) Catalyst particles, catalyst ink, production method thereof, and production method of each of fuel cell electrode catalyst layer, membrane electrode assembly, and solid polymer fuel cell
JP2004296176A (en) Solid polymer fuel cell
JP2006351492A (en) Gas diffusion layer for fuel cell, its manufacturing method and fuel cell using it
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JP5233183B2 (en) Fuel cell and fuel cell system.
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
JP2009043688A (en) Fuel cell
JP2008198516A (en) Fuel cell
JP5843682B2 (en) Diffusion layer structure of fuel cell
JP4787474B2 (en) Method for producing laminated film for membrane-electrode assembly
JP2007323939A (en) Fuel cell
JP2000228205A (en) High polymer electrolyte fuel cell
JP5526066B2 (en) Gas diffusion layer and fuel cell, and method for manufacturing gas diffusion layer
JP5736232B2 (en) Polymer electrolyte fuel cell
JP2010129378A (en) Gas diffusion electrode, and manufacturing method thereof
KR20050121911A (en) A electrode for fuel cell and a fuel cell comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120821