JP2004319139A - Membrane electrode assembly and its manufacturing method - Google Patents

Membrane electrode assembly and its manufacturing method Download PDF

Info

Publication number
JP2004319139A
JP2004319139A JP2003108270A JP2003108270A JP2004319139A JP 2004319139 A JP2004319139 A JP 2004319139A JP 2003108270 A JP2003108270 A JP 2003108270A JP 2003108270 A JP2003108270 A JP 2003108270A JP 2004319139 A JP2004319139 A JP 2004319139A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solvent
membrane
electrode assembly
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003108270A
Other languages
Japanese (ja)
Inventor
Takumi Taniguchi
拓未 谷口
Masayoshi Takami
昌宜 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003108270A priority Critical patent/JP2004319139A/en
Publication of JP2004319139A publication Critical patent/JP2004319139A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve contact of a stacking surface between a membrane electrode and a catalyst layer without executing a surface softening treatment of the electrolyte membrane by heat transfer or heat press and thereby to provide a high-performance membrane electrode assembly. <P>SOLUTION: This method is used for manufacturing this membrane electrode assembly formed by stacking the catalyst layer on the electrolyte membrane. Catalytic substance-containing ink containing a catalytic substance, an ion exchange resin and a solvent containing water as a main constituent is used, the catalytic substance-containing ink is directly applied to the electrolyte membrane installed on a stage by a spray method, and thereafter the solvent is volatilized to form the catalyst layer. Preferably, heating of the stage and suction from the undersurface thereof are executed at the same time. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池、特に固体高分子型燃料電池を形成するのに用いられる膜電極接合体およびその製造方法に関する。
【0002】
【従来の技術】
図1は、固体高分子型燃料電池の要部を示しており、膜電極接合体(MEA:Membrane−Electrode Assembly)1がセパレータ2を挟持して多数配置されている。膜電極接合体1は、イオン交換膜からなる電解質膜3の両面にアノードおよびカソードとして機能する触媒層4が積層され、さらに、その上に必要に応じてガス拡散層5が積層される。触媒層4にはセパレータ2に形成された流路を介して燃料ガス(水素)および酸化ガス(酸素、通常は空気)が供給される。
【0003】
電解質膜3には、フッ素系のものと、例えばエンジニアリングプラスチックを主骨格として有する炭化水素系のものが用いられている。触媒層4の形成には、粒子状の触媒物質とイオン交換樹脂と溶媒とを含む触媒物質含有インクが用いられ、該インクを電解質膜3の上に印刷やロール転写により直接塗布するか、特許文献1(特開2001−68119号公報)に記載のようにスプレー塗布することが行われる。また、適宜の転写膜上にインクを一旦塗布したものをホットプレスにより電解質膜上に転写することも行われる。
【0004】
触媒物質含有インクは多くのものが存在するが、触媒物質として白金のような貴金属類をカーボンブラックなどの導電性材料の表面に担持させたものが主に用いられ、イオン交換樹脂としては、プロトン伝導性を有するポリマー(例えば、デュポン社の「ナフィオン」(商品名))が主に用いられる。溶剤としてはエタノールなどの低級アルコールである有機物成分が主に用いられる。溶剤として低級アルコールを多く含むものは発火による危険性が高いことから、特許文献2(特開平8−259873号公報)には、溶媒として水を主成分としたものを用いたものが記載されている。溶剤としての有機物成分は多くても10重量%以下が好ましいとしている。
【0005】
【特許文献1】
特開2001−68119号公報
【特許文献2】
特開平8−259873号公報
【0006】
【発明が解決しようとする課題】
電解質膜と触媒層とが互いの積層面で隙間なく接触していることは高性能の膜電極接合体を得るために必要である。しかし、有機物を主成分とする溶媒を含む従来知られた触媒物質含有インクは、単に刷毛塗り塗布あるいはスプレー塗布しただけでは、十分な接触性が得られない。そのために、印刷やロール転写により直接塗布する場合も、また、転写法による場合も、加熱による電解質膜表面の膨潤と軟化を行い、塗布あるいは転写したインクと電解質膜面との接触性を改善するようにしている。
【0007】
例えば、フッ素系電解質膜の場合は120℃付近にガラス転移温度(Tg)を有するため、120℃前後の温度で加熱プレスすることで、電解質膜の表面を軟化させて、インクとの高い接触性を確保している。しかし、炭化水素系の電解質膜の場合には、ガラス転移温度が120℃を超えるものが多く、120℃を超える温度ではイオン交換基であるスルホン酸基が分解することから、この加熱による接合法を有効に用いることができない。また、いずれにしろ、インク塗布後に加熱処理を行うことは作業工程を複雑化している。
【0008】
水を主成分とする溶媒を用いた触媒物質含有インクが知られているが、この場合にも、電解質膜への製膜を手塗りや転写で行う場合、良好な接触面を得るために、やはり加熱による電解質膜の表面軟化処理が必要となる。
【0009】
本発明は上記のような事情に鑑みてなされたものであり、電解質膜の表面に対して加熱による軟化処理を行うことなく、電解質膜と触媒層との積層面の接触を良好なものとして高性能の膜電極接合体を得ることを可能とする改良された膜電極接合体の製造方法、およびその製造方法により製造された膜電極接合体を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく多くの実験と研究を行うことにより、触媒物質含有インクとして水を主成分とする溶剤を含むインクを用いることと、電解質膜へのインクの塗布方法としてスプレー法を用いること、とを同時に採用することにより、加熱処理を行うことなく電解質膜表面とインク膜層触媒層との接触性が改善され、加熱処理したと同等またはそれ以上の性能を持つ膜電極接合体が得られることを知った。
【0011】
本発明は上記知見に基づくものであり、本発明は、電解質膜の上に触媒層を積層した膜電極接合体の製造方法であって、触媒物質とイオン交換樹脂と水を主成分とする溶媒とを含む触媒物質含有インクを用い、該触媒物質含有インクをステージ上に設置した電解質膜にスプレー法により直接塗布した後、溶媒を揮発させて触媒層を製膜することを特徴とする。
【0012】
本発明において、電解質膜は、従来の燃料電池の膜電極接合体で用いられているものでよく、フッ素系電解質膜でも炭化水素系電解質膜でもよい。前記したように炭化水素系電解質膜の場合には、従来の加熱による一体化法を有効に用いることができないことから、炭化水素系電解質膜に対して本発明を適用することは特に効果的である。
【0013】
触媒物質含有インクも水が主成分の溶媒を用いることを条件に任意であり、特に制限はない。本発明者らの実験では、触媒物質含有インク全重量に対する溶媒の重量比率が70〜90重量%程度であり、溶媒100重量部に対して水が30〜90重量部程度であり、その他の有機溶媒成分(例えば、エタノール、プロパノール)が10〜30重量部程度である場合に、特によい結果が得られた。有機溶媒成分はエタノール、グリコールなどの低級アルコール類、あるいは、塩化メチレン、脂肪酸エステルようなものであってもよい。
【0014】
触媒物質含有インクを構成する溶媒以外の成分も任意であり特に制限はない。触媒物質は、表面に触媒を担持した粒子状の導電性材料であればよく、触媒としては、従来の燃料電池において用いられているものをそのまま用いることができる。例えば、白金、白金−ルテニウム合金のような貴金属類が挙げられる。導電性材料も同様であり、カーボンブラックやカーボンナノチューブなどの導電性カーボン材料、酸化チタンなどのセラミック材料などが挙げられる。イオン交換樹脂は、従来燃料電池で用いられてきたプロトン伝導性を有する樹脂であってよく、従来知られているデュポン社製のナフィオン(商品名)や旭硝子社製のフレミオン(商品名)が挙げられる。
【0015】
本発明による触媒物質含有インクは、上記の触媒物質と、イオン交換樹脂と、水を主成分とする溶媒とを、従来知られた方法により混ぜ合わせることにより得ることができる。必要な場合には、触媒粒子を解砕する工程やインク中に分散する工程を補助的に行ってもよい。
【0016】
上記の触媒物質含有インクをステージ上に設置した電解質膜にスプレー法により直接塗布する。スプレー塗布により、インクは粒子状となって飛散し、電解質膜上に付着する。そのために、触媒層の多孔性は効果的に維持されて触媒の有効面積が大きくなり、セル抵抗の低い膜電極接合体が得られることに加え、溶媒は水を主成分とすることから、熱を加えなくても、電解質膜表面の膨潤軟化が積極的に進行し、インクと電解質膜表面のと馴染みがよくなり、インクと電解質膜との接触状態は良好となる。なお、有機物成分であるアルコール類(例えば、エタノール)は電解質膜の膨潤軟化を促進する傾向にある。本発明者らの実験では、多くのエタノールを使用すると膨潤による変形から電解質膜にしわが発生するのを経験した。しわが発生すると電圧の振れが大きくなり好ましくないので、本発明において、溶媒中のアルコール量を制御して電解質膜の軟化程度を調整することは好ましい態様となる。実際にどの程度の有機物成分量とするのが最適かは、用いる電解質膜の種類に応じて実験を通して定めればよい。
【0017】
前記のように、本発明においては、電解質膜は水が主成分である溶媒の影響で膨潤軟化する。膨潤量が大きくなると電解質膜の変形が大きくなりすぎ、逆にインクの付着を阻害することが起こり得る。そのために、電解質膜とインク(触媒層)との間の馴染みと変形とのバランスをとることが必要となる。有機物成分量をコントロールすることが1つの手法であるが、他の方法として、電解質膜を支持するステージを、電解質膜に損傷を与えない温度以下の温度(例えば、100℃以下、好ましくは、50〜80℃程度)で加熱して、溶媒の揮発速度を調整する方法を採用することもできる。さらに、ステージとして多孔質材料を用い、ステージ下面をポンプで吸引するなどにより減圧して電解質膜を吸引しながら触媒物質含有インクのスプレー塗布を行い、余分な溶媒を吸引により除去する方法も採用することができる。
【0018】
本発明は、また、上記の製造方法により製造された膜電極接合体として、電解質膜はフッ素系電解質膜または炭素系電解質膜であり、触媒層は触媒物質とイオン交換樹脂と水を主成分とする溶媒とを含む触媒物質含有インクをスプレー法により直接塗布した後、溶媒を揮発させて製膜されたものであることを特徴とする膜電極接合体、をも開示する。
【0019】
【実施例】
以下、実施例により本発明を説明する。
[実施例1]
電解質膜としてガラス転移温度(Tg)230℃の炭化水素系電解質膜を用いた。電解質膜を多孔質材料であるセラミック製のステージ上に置き、スプレー塗付装置を用いて、表1に示す組成の触媒物質含有インクを塗布し触媒層とした。この触媒物質含有インクでの溶媒は水のみであり、インクに占める溶媒(水)の割合は77重量%である。
【0020】
インクの塗布は所定回重ね塗りして行い、乾燥後に重量を測定し、重量変化から塗布量を求めた。乾燥は室温で1時間放置して行った。触媒塗布量は、アノード側0.3mgPt/cm、カソード側1.2mgPt/cm、とした。 得られた膜電極接合体に拡散層を熱プレスすることなく触媒層上に寄り添わせて配置してセル構造体とし、I−V特性、I−R特性を評価した。また、水素脱離部面積から、有効白金面積を算出した。図2にI−V特性曲線を、図3にI−R特性曲線と有効白金面積を示す(○で示される)。なお、I−V、I−Rの測定は、電極面積:13cm、セル温度:80℃、アノード側:純水素300cc/min,バブラ90℃、カソード側:空気1000cc/min,バブラ80℃、両極背圧:2ataの条件下で行った。
【0021】
【表1】

Figure 2004319139
【0022】
[比較例1]
表1の触媒物質含有インクを、ドクターブレードを用いてテフロンシート上に延ばし、乾燥させたもの(転写シート)を、実施例1と同じ電解質膜に重ね、120℃で20分間加熱プレスすることにより、触媒層を電解質膜上に転写して膜電極接合体を得た。触媒量は、アノード側およびカソード側ともに、実施例1のものとほぼ同じとした。実施例1と同じ拡散層を熱プレスせずに触媒層上に寄り添わせてセル構造体とし、実施例と同様にして、I−V特性、I−R特性を評価した。また、水素脱離部面積から、有効白金面積を算出した。その結果を図2、図3に示す(□で示される)。
【0023】
[比較例2]
表1の触媒物質含有インクを、電解質膜ではなく実施例1と同じ拡散層側に手塗りで塗布した。乾燥後、実施例1と同じ電解質膜に重ね、120℃で20分間加熱プレスすることにより、膜電極接合体を得た。触媒量は、アノード側およびカソード側ともに、実施例1のものとほぼ同じとした。得られた膜電極接合体を用いてセル構造体とし、実施例と同様にして、I−V特性、I−R特性を評価した。また、水素脱離部面積から、有効白金面積を算出した。その結果を図2、図3に示す(◇で示される)。
【0024】
[評価]
図2に示すように、スプレー法により作製した膜電極接合体(実施例1:○)は、転写法(比較例1:□)および手塗り(比較例2:◇)で作製した膜電極接合体と比較して特性に向上が見られる。図3に示すように、実施例1は比較例1および比較例2と比較してセル抵抗が低くなっており、このことは、本発明による膜電極接合体は、触媒層と電解質膜との接着態様が、従来の熱転写や手塗り後の熱プレスなどの方法と比較して良好となっていることによると考えられる。また、図3に示すように、実施例1の白金の有効面積は比較例1および比較例2と比較して大きくなっている。これらのことの相乗効果として、図2に示すようにI−V特性が改善されたものと考えられる。このことは、本発明による膜電極接合体は、従来の熱転写や手塗り後の熱プレスなどの加熱手段を介して作製したものと比較して、高性能であることを示している。
【0025】
[実施例1−2]
実施例1の膜電極接合体を目視によってしわの発生状態を調査した。また、実施例1と同様にしてセル構造体とし、80℃で水素および空気を流通した場合の開回路電圧(OCV)を測定した。その結果を表4に示す。
【0026】
[実施例2]
実施例1と同様にして膜電極接合体を作製した。ただし、ステージを70℃に加熱しかつポンプで吸引(吸引圧0.3atm)しながら、触媒物質含有インクのスプレー塗布と溶剤の乾燥、吸引を行った。得られた膜電極接合体を実施例1−2と同様にしてしわの発生状態を調査した。また、セル構造体とし、実施例1−2と同様にして開回路電圧(OCV)を測定した。その結果を表4に示す。
【0027】
[実施例3]
表2に示す触媒物質含有インクを調整し、実施例1と同様にして膜電極接合体を作製し、それを用いて実施例1と同様にしてセル構造体とした。得られた膜電極接合体について実施例1−2と同様にしわの発生状態を調査した。また、実施例1−2と同様にしてセル構造体とし、開回路電圧(OCV)を測定した。その結果を表4に示す。
【0028】
[実施例4]
表3に示す触媒物質含有インクを調整し、実施例1と同様にして膜電極接合体を作製し、それを用いて実施例1と同様にしてセル構造体とした。得られた膜電極接合体について実施例1−2と同様にしてしわの発生状態を調査した。また、実施例1−2と同様にしてセル構造体とし、開回路電圧(OCV)を測定した。その結果を表4に示す。
【0029】
【表2】
Figure 2004319139
【0030】
【表3】
Figure 2004319139
【0031】
【表4】
Figure 2004319139
【0032】
[評価]
溶媒として水のみを添加して調整した触媒物質含有インクを用いた場合(実施例1−2、実施例2)は、しわの発生が少なく、セル構造体評価時での開回路電圧(OCV)も高い。これは、膜電極接合体作製時の膨潤変形が少ないためにしわが少なく、同時に変形によるダメージが少ないためにガスリークが少なく、OCVが高くなったと考えられる。また、ステージの加熱および下面からの吸引を実施することにより、さらにしわの発生を抑制することができた。このことは、本発明において、ステージを電解質膜に損傷を与えない温度以下の温度で加熱して溶媒の揮発を行うこと、および、ステージ下面を減圧して電解質膜を吸引固定しながら触媒物質含有インクのスプレー塗布と余分な溶媒の吸引を行うことにより、さらに良好な電解質膜と触媒層との接着状態が得られることを示している。
【0033】
実施例3では溶媒としてエタノールを、また、実施例4では溶媒としてエタノールと酢酸ブチルをさらに添加している。実施例3では、インクに占める溶媒の割合は91重量%であり、溶媒に占める水の割合は22重量%である。また、実施例4では、インクに占める溶媒の割合は91重量%であり、溶媒に占める水の割合は22重量%である。
【0034】
触媒物質含有インク中に有機物成分を添加した結果、その量に比例して、しわの発生が多くなり、開回路電圧(OCV)が低くなっている。これは、アルコールが一因となって変形が大きくなり、膜へのダメージが発生して、ガスリークが増えたためと考えられる。このことは、本発明において、溶媒として水を主成分としたものを用いることが有効であると共に、アルコール系溶媒は少ない方がよい結果が得られることを示している。すなわち、アルコール使用量を抑制することで本発明の効果が一層顕著になることがわかる。
【0035】
[実施例5]
実施例1と実施例3について、耐フラッディング性評価を行った。評価は、セル温度80℃、アノード側:純水素68cc/min,カソード側:空気330〜120cc/min,両面背圧:2ata、電流密度0.5A/cmの条件で、カソードガス流量を変更し、各条件での電圧およびセル抵抗値を評価した。その結果を表5に示す。
【0036】
【表5】
Figure 2004319139
【0037】
[評価]
実施例1は溶媒は水のみであり、実施例3は溶媒として水とエタノールの混合物を用いている。表5に示すように、実施例1では低カソード流量(ブラッディングしやすい条件)でも高いカソード流量の場合と同等の電圧を示しており、電圧の振れも少ない。一方、実施例3ではカソード流量低下にしたがってセル抵抗の低下を示し、電圧の振れも大きくなっている。このことからも、本発明において、溶媒として水を主成分としたものを用いることが有効であることと共に、他のアルコール系溶媒は少ない方がよい結果が得られることがわかる。すなわち、アルコール使用量を抑制することで本発明の効果が一層顕著になることを示している。
【0038】
[実施例6]
電解質膜としてガラス転移温度(Tg)120℃のフッ素系電解質膜を用いた以外は、実施例1と同様にして膜電極接合体を作製した。80℃、24hr・atmの条件で、水素透過量(cc/m)を初期および加速耐久試験後について測定した。その結果を表6に示す。加速耐久試験は、80℃、膜電極接合体への圧縮応力印加条件とした。
[比較例3]
電解質膜としてガラス転移温度(Tg)120℃のフッ素系電解質膜を用いた以外は、比較例1と同様にして膜電極接合体を作製した。それについて、実施例6と同様にして水素透過量(cc/m)を初期および加速耐久試験後について測定した。その結果を表6に示す。
【0039】
[比較例4]
用いたフッ素系電解質膜単独での水素透過量(cc/m)を同様にして測定した。その結果を表6に示す。
【0040】
【表6】
Figure 2004319139
【0041】
[評価]
転写法により作製した膜電極接合体(比較例3)は、膜単独の場合(比較例4)と比較して水素透過量が増加するが、スプレー法で作製したもの(実施例5)は増加していない。むしろ膜のみの場合よりも若干低下する傾向がある。水素透過度が低下するのは、膜電極接合体とすることにより見かけの膜厚が増加するためである。この差は加速耐久試験後にさらに顕著になる。比較例3のものは水素透過度が4倍程度に増加するのに対して、実施例5では10%程度の増加に留まっている。この結果は、本発明による膜電極接合体の製造方法は、電解質膜へのダメージが従来の熱転写による場合よりも少ないことを示しており、本発明の優位性がここでも示される。
【0042】
【発明の効果】
本発明によれば、加熱による表面軟化処理を行うことなく、電解質膜と触媒層との積層面の接触を良好なものとすることができ、それにより、高性能の膜電極接合体を作製することが可能となる。
【図面の簡単な説明】
【図1】固体高分子型燃料電池の要部を示す図。
【図2】実施例および比較例でのI−V特性曲線を示すグラフ。
【図3】実施例および比較例でのI−R特性曲線と有効白金面積を示すグラフ。
【符号の説明】
1…膜電極接合体、2…セパレータ、3…電解質膜、4…触媒層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a membrane electrode assembly used to form a fuel cell, particularly a polymer electrolyte fuel cell, and a method for producing the same.
[0002]
[Prior art]
FIG. 1 shows a main part of a polymer electrolyte fuel cell, in which a large number of membrane electrode assemblies (MEAs) 1 are arranged with a separator 2 interposed therebetween. In the membrane electrode assembly 1, a catalyst layer 4 functioning as an anode and a cathode is laminated on both surfaces of an electrolyte membrane 3 made of an ion exchange membrane, and a gas diffusion layer 5 is further laminated thereon as needed. Fuel gas (hydrogen) and oxidizing gas (oxygen, usually air) are supplied to the catalyst layer 4 through a flow path formed in the separator 2.
[0003]
As the electrolyte membrane 3, a fluorine-based material and a hydrocarbon-based material having, for example, an engineering plastic as a main skeleton are used. The catalyst layer 4 is formed by using a catalyst substance-containing ink containing a particulate catalyst substance, an ion exchange resin and a solvent, and applying the ink directly on the electrolyte membrane 3 by printing or roll transfer, or by applying a patent. Spray coating is performed as described in Document 1 (Japanese Patent Application Laid-Open No. 2001-68119). In addition, an ink once applied to an appropriate transfer film is transferred to the electrolyte film by hot pressing.
[0004]
There are many catalyst substance-containing inks, but those in which a noble metal such as platinum is supported on the surface of a conductive material such as carbon black as a catalyst substance are mainly used. A polymer having conductivity (for example, “Nafion” (trade name) of DuPont) is mainly used. As the solvent, an organic component which is a lower alcohol such as ethanol is mainly used. Since a solvent containing a large amount of lower alcohol as a solvent has a high risk of ignition, Patent Literature 2 (Japanese Patent Application Laid-Open No. 8-259873) describes a solvent containing water as a main component as a solvent. I have. The organic component as a solvent is preferably at most 10% by weight or less.
[0005]
[Patent Document 1]
JP 2001-68119 A [Patent Document 2]
JP-A-8-259873
[Problems to be solved by the invention]
It is necessary for the electrolyte membrane and the catalyst layer to be in contact with each other without any gap on the lamination surface in order to obtain a high-performance membrane electrode assembly. However, conventionally known inks containing a catalyst substance containing a solvent containing an organic substance as a main component cannot obtain sufficient contact properties only by brush application or spray application. For this reason, even when directly applied by printing or roll transfer, or when using a transfer method, the surface of the electrolyte membrane is swelled and softened by heating to improve the contact between the applied or transferred ink and the electrolyte membrane surface. Like that.
[0007]
For example, since a fluorine-based electrolyte membrane has a glass transition temperature (Tg) around 120 ° C., the surface of the electrolyte membrane is softened by hot pressing at a temperature of about 120 ° C., and high contact with ink is achieved. Is secured. However, in the case of a hydrocarbon-based electrolyte membrane, the glass transition temperature is often higher than 120 ° C., and at a temperature higher than 120 ° C., the sulfonic acid group which is an ion exchange group is decomposed. Cannot be used effectively. In any case, performing the heat treatment after applying the ink complicates the working process.
[0008]
Although a catalyst substance-containing ink using a solvent containing water as a main component is known, even in this case, when performing film formation on the electrolyte membrane by hand coating or transfer, in order to obtain a good contact surface, Again, a surface softening treatment of the electrolyte membrane by heating is required.
[0009]
The present invention has been made in view of the above circumstances, and does not perform a softening treatment by heating the surface of the electrolyte membrane, and improves the contact between the laminated surface of the electrolyte membrane and the catalyst layer. It is an object of the present invention to provide an improved method for producing a membrane electrode assembly capable of obtaining a membrane electrode assembly having high performance, and a membrane electrode assembly produced by the production method.
[0010]
[Means for Solving the Problems]
The present inventors have conducted a number of experiments and studies to solve the above-mentioned problems, and have found that an ink containing a solvent containing water as a main component is used as a catalyst substance-containing ink, and a method of applying the ink to an electrolyte membrane. By using the spray method as the method, the contact property between the electrolyte membrane surface and the ink film layer catalyst layer is improved without performing the heat treatment, and the performance is equal to or higher than that of the heat treatment. I knew that a membrane electrode assembly could be obtained.
[0011]
The present invention is based on the above findings, and the present invention is a method for producing a membrane electrode assembly in which a catalyst layer is laminated on an electrolyte membrane, comprising a catalyst substance, an ion exchange resin, and a solvent containing water as a main component. And a catalyst substance-containing ink comprising: directly applying the catalyst substance-containing ink to an electrolyte membrane provided on a stage by a spray method, and then evaporating the solvent to form a catalyst layer.
[0012]
In the present invention, the electrolyte membrane may be one used in a conventional membrane electrode assembly of a fuel cell, and may be a fluorine-based electrolyte membrane or a hydrocarbon-based electrolyte membrane. As described above, in the case of a hydrocarbon-based electrolyte membrane, it is particularly effective to apply the present invention to a hydrocarbon-based electrolyte membrane because the conventional integration method by heating cannot be used effectively. is there.
[0013]
The catalyst substance-containing ink is also optional under the condition that a solvent whose main component is water is used, and there is no particular limitation. In our experiments, the weight ratio of the solvent to the total weight of the ink containing the catalyst substance was about 70 to 90% by weight, water was about 30 to 90 parts by weight with respect to 100 parts by weight of the solvent, and other organic compounds were used. Particularly good results were obtained when the solvent components (eg, ethanol, propanol) were about 10 to 30 parts by weight. The organic solvent component may be lower alcohols such as ethanol and glycol, or methylene chloride and fatty acid esters.
[0014]
Components other than the solvent constituting the catalyst-containing ink are also optional and are not particularly limited. The catalyst substance may be a particulate conductive material having a catalyst supported on its surface. As the catalyst, those used in conventional fuel cells can be used as they are. For example, noble metals such as platinum and a platinum-ruthenium alloy can be mentioned. The same applies to the conductive material, and examples thereof include a conductive carbon material such as carbon black and carbon nanotube, and a ceramic material such as titanium oxide. The ion exchange resin may be a resin having proton conductivity that has been conventionally used in fuel cells, and includes Nafion (trade name) manufactured by DuPont and Flemion (trade name) manufactured by Asahi Glass Co., Ltd. Can be
[0015]
The ink containing a catalyst substance according to the present invention can be obtained by mixing the above-mentioned catalyst substance, an ion exchange resin, and a solvent containing water as a main component by a conventionally known method. If necessary, a step of crushing the catalyst particles or a step of dispersing the catalyst particles in the ink may be supplementarily performed.
[0016]
The above-mentioned catalyst substance-containing ink is directly applied to an electrolyte membrane provided on a stage by a spray method. By the spray application, the ink is scattered in the form of particles and adheres to the electrolyte membrane. For this reason, the porosity of the catalyst layer is effectively maintained, the effective area of the catalyst is increased, and a membrane electrode assembly with low cell resistance is obtained. Even without adding swelling, the swelling and softening of the electrolyte membrane surface progresses positively, the affinity between the ink and the electrolyte membrane surface is improved, and the contact state between the ink and the electrolyte membrane is improved. Note that alcohols (for example, ethanol), which are organic components, tend to promote swelling and softening of the electrolyte membrane. In the experiments of the present inventors, it was experienced that when a large amount of ethanol was used, the electrolyte membrane was wrinkled due to deformation due to swelling. When wrinkles occur, the fluctuation of the voltage increases, which is not preferable. Therefore, in the present invention, it is a preferable embodiment to control the amount of alcohol in the solvent to adjust the degree of softening of the electrolyte membrane. The actual optimum amount of the organic component may be determined through experiments depending on the type of the electrolyte membrane to be used.
[0017]
As described above, in the present invention, the electrolyte membrane swells and softens under the influence of the solvent containing water as a main component. When the amount of swelling is large, the deformation of the electrolyte membrane becomes too large, and conversely, the adhesion of the ink may be hindered. Therefore, it is necessary to balance the familiarity and deformation between the electrolyte membrane and the ink (catalyst layer). One method is to control the amount of the organic component, but as another method, the stage supporting the electrolyte membrane is heated to a temperature lower than the temperature at which the electrolyte membrane is not damaged (for example, 100 ° C. or lower, preferably 50 ° C. or lower). (About 80 ° C.) to adjust the volatilization rate of the solvent. Furthermore, a method is also employed in which a porous material is used as the stage, and the pressure is reduced by, for example, suctioning the lower surface of the stage with a pump to spray the catalyst substance-containing ink while sucking the electrolyte membrane, thereby removing excess solvent by suction. be able to.
[0018]
The present invention also provides a membrane electrode assembly manufactured by the above manufacturing method, wherein the electrolyte membrane is a fluorine-based electrolyte membrane or a carbon-based electrolyte membrane, and the catalyst layer contains a catalyst substance, an ion-exchange resin, and water as main components. A membrane-electrode assembly characterized in that the catalyst-containing ink containing a solvent is directly applied by a spray method and then the solvent is evaporated to form a film.
[0019]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[Example 1]
A hydrocarbon electrolyte membrane having a glass transition temperature (Tg) of 230 ° C. was used as the electrolyte membrane. The electrolyte membrane was placed on a ceramic stage, which is a porous material, and a catalyst-containing ink having the composition shown in Table 1 was applied using a spray coating apparatus to form a catalyst layer. The solvent in the catalyst substance-containing ink is only water, and the proportion of the solvent (water) in the ink is 77% by weight.
[0020]
The application of the ink was performed by repeatedly applying the ink a predetermined number of times, and after drying, the weight was measured, and the application amount was determined from the change in weight. Drying was carried out at room temperature for 1 hour. The catalyst coating amount is anode 0.3mgPt / cm 2, the cathode-side 1.2mgPt / cm 2, and a. A diffusion layer was placed on the catalyst layer without hot pressing the obtained membrane electrode assembly to form a cell structure, and the IV characteristics and the IR characteristics were evaluated. In addition, the effective platinum area was calculated from the area of the hydrogen desorption portion. FIG. 2 shows an IV characteristic curve, and FIG. 3 shows an IR characteristic curve and an effective platinum area (indicated by ○). The measurement of IV and IR was performed by measuring the electrode area: 13 cm 2 , the cell temperature: 80 ° C., the anode side: pure hydrogen 300 cc / min, the bubbler 90 ° C., the cathode side: the air 1000 cc / min, the bubbler 80 ° C. The test was performed under the condition of bipolar back pressure: 2 ata.
[0021]
[Table 1]
Figure 2004319139
[0022]
[Comparative Example 1]
The ink containing the catalyst substance of Table 1 was spread on a Teflon sheet using a doctor blade, and the dried one (transfer sheet) was placed on the same electrolyte membrane as in Example 1 and heated and pressed at 120 ° C. for 20 minutes. Then, the catalyst layer was transferred onto the electrolyte membrane to obtain a membrane electrode assembly. The catalyst amount was substantially the same as that of Example 1 on both the anode side and the cathode side. The same diffusion layer as in Example 1 was placed on the catalyst layer without hot pressing to form a cell structure, and the IV characteristics and IR characteristics were evaluated in the same manner as in Example. In addition, the effective platinum area was calculated from the area of the hydrogen desorption portion. The results are shown in FIGS. 2 and 3 (indicated by □).
[0023]
[Comparative Example 2]
The catalyst substance-containing ink of Table 1 was applied by hand to the same diffusion layer side as in Example 1 instead of the electrolyte membrane. After drying, the membrane electrode assembly was obtained by stacking on the same electrolyte membrane as in Example 1 and heating and pressing at 120 ° C. for 20 minutes. The catalyst amount was substantially the same as that of Example 1 on both the anode side and the cathode side. A cell structure was formed using the obtained membrane electrode assembly, and the IV characteristics and the IR characteristics were evaluated in the same manner as in the example. In addition, the effective platinum area was calculated from the area of the hydrogen desorption portion. The results are shown in FIGS. 2 and 3 (indicated by Δ).
[0024]
[Evaluation]
As shown in FIG. 2, the membrane electrode assembly manufactured by the spray method (Example 1: ○) was manufactured by the transfer method (Comparative Example 1: □) and the hand-painted (Comparative Example 2: ◇). The properties are improved compared to the body. As shown in FIG. 3, Example 1 has a lower cell resistance than Comparative Examples 1 and 2, which means that the membrane electrode assembly according to the present invention has This is considered to be due to the fact that the bonding mode is better than conventional methods such as thermal transfer and hot pressing after hand coating. Further, as shown in FIG. 3, the effective area of platinum of Example 1 is larger than Comparative Examples 1 and 2. As a synergistic effect of these things, it is considered that the IV characteristics were improved as shown in FIG. This indicates that the membrane / electrode assembly according to the present invention has higher performance as compared with those manufactured via a heating means such as a conventional thermal transfer or a hot press after hand coating.
[0025]
[Example 1-2]
The membrane electrode assembly of Example 1 was visually inspected for the occurrence of wrinkles. Further, a cell structure was formed in the same manner as in Example 1, and the open circuit voltage (OCV) when hydrogen and air flowed at 80 ° C. was measured. Table 4 shows the results.
[0026]
[Example 2]
A membrane / electrode assembly was produced in the same manner as in Example 1. However, while the stage was heated to 70 ° C. and suctioned by a pump (suction pressure: 0.3 atm), spray application of the catalyst substance-containing ink and drying and suctioning of the solvent were performed. The state of wrinkling of the obtained membrane / electrode assembly was examined in the same manner as in Example 1-2. Further, an open circuit voltage (OCV) was measured in the same manner as in Example 1-2 using the cell structure. Table 4 shows the results.
[0027]
[Example 3]
The catalyst substance-containing inks shown in Table 2 were prepared, and a membrane / electrode assembly was produced in the same manner as in Example 1. Using this, a cell structure was obtained in the same manner as in Example 1. With respect to the obtained membrane electrode assembly, the state of occurrence of wrinkles was examined in the same manner as in Example 1-2. Further, an open circuit voltage (OCV) was measured using a cell structure in the same manner as in Example 1-2. Table 4 shows the results.
[0028]
[Example 4]
The catalyst substance-containing inks shown in Table 3 were prepared, and a membrane / electrode assembly was produced in the same manner as in Example 1. Using this, a cell structure was produced in the same manner as in Example 1. With respect to the obtained membrane / electrode assembly, the occurrence of wrinkles was examined in the same manner as in Example 1-2. Further, an open circuit voltage (OCV) was measured using a cell structure in the same manner as in Example 1-2. Table 4 shows the results.
[0029]
[Table 2]
Figure 2004319139
[0030]
[Table 3]
Figure 2004319139
[0031]
[Table 4]
Figure 2004319139
[0032]
[Evaluation]
In the case where the catalyst substance-containing ink prepared by adding only water as the solvent was used (Examples 1-2 and 2), wrinkles were less generated and the open circuit voltage (OCV) at the time of evaluating the cell structure was reduced. Is also expensive. This is considered to be due to less swelling deformation at the time of producing the membrane electrode assembly and less wrinkling, and at the same time less damage due to deformation, resulting in less gas leak and higher OCV. Further, by performing the heating of the stage and the suction from the lower surface, generation of wrinkles could be further suppressed. This means that in the present invention, the stage is heated at a temperature not higher than the temperature at which the electrolyte membrane is not damaged to volatilize the solvent, and the catalyst substance is contained while the stage lower surface is depressurized and the electrolyte membrane is suction-fixed. This shows that a better adhesion state between the electrolyte membrane and the catalyst layer can be obtained by spraying the ink and sucking the excess solvent.
[0033]
In Example 3, ethanol was further added as a solvent, and in Example 4, ethanol and butyl acetate were further added as solvents. In Example 3, the proportion of the solvent in the ink was 91% by weight, and the proportion of water in the solvent was 22% by weight. In Example 4, the proportion of the solvent in the ink was 91% by weight, and the proportion of water in the solvent was 22% by weight.
[0034]
As a result of adding an organic substance component to the catalyst substance-containing ink, the occurrence of wrinkles increases in proportion to the amount thereof, and the open circuit voltage (OCV) decreases. This is considered to be due to the fact that the alcohol caused a large deformation, which caused damage to the film and increased gas leakage. This indicates that in the present invention, it is effective to use a solvent containing water as a main component as the solvent, and that a smaller amount of the alcohol-based solvent gives better results. That is, it is understood that the effect of the present invention becomes more remarkable by suppressing the amount of alcohol used.
[0035]
[Example 5]
Example 1 and Example 3 were evaluated for flooding resistance. The evaluation was performed under the conditions of a cell temperature of 80 ° C., an anode side: pure hydrogen of 68 cc / min, a cathode side of air of 330 to 120 cc / min, a back pressure of both sides of 2 ata, and a current density of 0.5 A / cm 2 , and the cathode gas flow rate was changed. Then, the voltage and the cell resistance under each condition were evaluated. Table 5 shows the results.
[0036]
[Table 5]
Figure 2004319139
[0037]
[Evaluation]
Example 1 uses only water as a solvent, and Example 3 uses a mixture of water and ethanol as a solvent. As shown in Table 5, in Example 1, even at a low cathode flow rate (a condition that facilitates the bladding), a voltage equivalent to that at a high cathode flow rate was shown, and voltage fluctuation was small. On the other hand, in Example 3, the cell resistance decreased as the cathode flow rate decreased, and the voltage fluctuation also increased. From this, it can be seen that in the present invention, it is effective to use a solvent containing water as a main component as a solvent, and that a better result can be obtained with a smaller amount of another alcohol solvent. That is, it is shown that the effect of the present invention becomes more remarkable by suppressing the amount of alcohol used.
[0038]
[Example 6]
A membrane / electrode assembly was produced in the same manner as in Example 1, except that a fluorine-based electrolyte membrane having a glass transition temperature (Tg) of 120 ° C. was used as the electrolyte membrane. Under the conditions of 80 ° C. and 24 hr · atm, the hydrogen permeation amount (cc / m 2 ) was measured at the initial stage and after the accelerated durability test. Table 6 shows the results. The accelerated durability test was performed under the conditions of 80 ° C. and the application of compressive stress to the membrane electrode assembly.
[Comparative Example 3]
A membrane / electrode assembly was produced in the same manner as in Comparative Example 1, except that a fluorine-based electrolyte membrane having a glass transition temperature (Tg) of 120 ° C. was used as the electrolyte membrane. The hydrogen permeation amount (cc / m 2 ) was measured at the initial stage and after the accelerated durability test in the same manner as in Example 6. Table 6 shows the results.
[0039]
[Comparative Example 4]
The hydrogen permeation amount (cc / m 2 ) of the used fluorine-based electrolyte membrane alone was measured in the same manner. Table 6 shows the results.
[0040]
[Table 6]
Figure 2004319139
[0041]
[Evaluation]
The membrane electrode assembly manufactured by the transfer method (Comparative Example 3) has an increased hydrogen permeation amount as compared with the case of using the membrane alone (Comparative Example 4), but the membrane electrode assembly manufactured by the spray method (Example 5) increases. I haven't. Rather, it tends to be slightly lower than in the case of the film alone. The reason why the hydrogen permeability decreases is that the apparent film thickness increases by using the membrane electrode assembly. This difference becomes more remarkable after the accelerated durability test. In the case of Comparative Example 3, the hydrogen permeability increased about four times, whereas in Example 5, the increase was only about 10%. This result indicates that the method for producing a membrane electrode assembly according to the present invention causes less damage to the electrolyte membrane than the case of the conventional thermal transfer, which also shows the superiority of the present invention.
[0042]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the contact of the lamination surface of an electrolyte membrane and a catalyst layer can be made favorable, without performing surface softening treatment by heating, and thereby producing a high-performance membrane electrode assembly. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a diagram showing a main part of a polymer electrolyte fuel cell.
FIG. 2 is a graph showing IV characteristic curves in Examples and Comparative Examples.
FIG. 3 is a graph showing an IR characteristic curve and an effective platinum area in Examples and Comparative Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Membrane electrode assembly, 2 ... Separator, 3 ... Electrolyte membrane, 4 ... Catalyst layer

Claims (4)

電解質膜の上に触媒層を積層した膜電極接合体の製造方法であって、触媒物質とイオン交換樹脂と水を主成分とする溶媒とを含む触媒物質含有インクを用い、該触媒物質含有インクをステージ上に設置した電解質膜にスプレー法により直接塗布した後、溶媒を揮発させて触媒層を製膜することを特徴とする膜電極接合体の製造方法。A method for producing a membrane / electrode assembly in which a catalyst layer is laminated on an electrolyte membrane, comprising using a catalyst substance-containing ink containing a catalyst substance, an ion exchange resin, and a solvent containing water as a main component. A method for producing a membrane-electrode assembly, comprising applying directly to an electrolyte membrane provided on a stage by a spray method, and then evaporating a solvent to form a catalyst layer. ステージを電解質膜に損傷を与えない温度以下の温度で加熱して溶媒の揮発を行うことを特徴とする請求項1に記載の膜電極接合体の製造方法。2. The method according to claim 1, wherein the solvent is volatilized by heating the stage at a temperature lower than a temperature at which the electrolyte membrane is not damaged. ステージとして多孔質材料を用い、ステージ下面を減圧して電解質膜を吸引しながら触媒物質含有インクのスプレー塗布と溶媒の揮発を行うことを特徴とする請求項1または2に記載の膜電極接合体の製造方法。3. The membrane / electrode assembly according to claim 1, wherein a porous material is used as the stage, and the lower surface of the stage is depressurized and the electrolyte film is sucked to spray the catalyst substance-containing ink and volatilize the solvent. Manufacturing method. 電解質膜の上に触媒層を積層した膜電極接合体であって、電解質膜はフッ素系電解質膜または炭素系電解質膜であり、触媒層は触媒物質とイオン交換樹脂と水を主成分とする溶媒とを含む触媒物質含有インクをスプレー法により直接塗布した後、溶媒を揮発させて製膜されたものであることを特徴とする膜電極接合体。A membrane electrode assembly in which a catalyst layer is laminated on an electrolyte membrane, wherein the electrolyte membrane is a fluorine-based electrolyte membrane or a carbon-based electrolyte membrane, and the catalyst layer is a solvent mainly composed of a catalyst substance, an ion exchange resin, and water. A membrane-electrode assembly formed by directly applying a catalyst substance-containing ink containing the following by a spray method and then evaporating a solvent to form a film.
JP2003108270A 2003-04-11 2003-04-11 Membrane electrode assembly and its manufacturing method Pending JP2004319139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003108270A JP2004319139A (en) 2003-04-11 2003-04-11 Membrane electrode assembly and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003108270A JP2004319139A (en) 2003-04-11 2003-04-11 Membrane electrode assembly and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004319139A true JP2004319139A (en) 2004-11-11

Family

ID=33469853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003108270A Pending JP2004319139A (en) 2003-04-11 2003-04-11 Membrane electrode assembly and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004319139A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007119868A1 (en) 2006-04-13 2007-10-25 Sumitomo Chemical Company, Limited Method for producing polymer electrolyte membrane, polymer electrolyte membrane and direct methanol fuel cell
WO2008056824A1 (en) * 2006-11-09 2008-05-15 Sumitomo Chemical Company, Limited Membrane-electrode assembly
JP2008166163A (en) * 2006-12-28 2008-07-17 Toshiba Corp Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly
JP2009527086A (en) * 2006-02-15 2009-07-23 ユン,ビュングク Electrolyte membrane curing device for fuel cells
WO2009148175A1 (en) 2008-06-05 2009-12-10 住友化学株式会社 Polymer electrolyte, crosslinked polymer electrolyte, polymer electrolyte membrane and use of the same
JP2013161736A (en) * 2012-02-08 2013-08-19 Panasonic Corp Method and apparatus for manufacturing membrane electrode assembly for fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729576A (en) * 1993-07-16 1995-01-31 Aqueous Res:Kk Manufacture of electrode for fuel cell
JPH08259873A (en) * 1995-03-09 1996-10-08 Johnson Matthey Plc Improved ink for making electrode
JP2003100314A (en) * 2001-09-25 2003-04-04 Mitsubishi Heavy Ind Ltd Fabricating method of cell for solid polymer electrolyte fuel cell and its fabricating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0729576A (en) * 1993-07-16 1995-01-31 Aqueous Res:Kk Manufacture of electrode for fuel cell
JPH08259873A (en) * 1995-03-09 1996-10-08 Johnson Matthey Plc Improved ink for making electrode
JP2003100314A (en) * 2001-09-25 2003-04-04 Mitsubishi Heavy Ind Ltd Fabricating method of cell for solid polymer electrolyte fuel cell and its fabricating method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009527086A (en) * 2006-02-15 2009-07-23 ユン,ビュングク Electrolyte membrane curing device for fuel cells
WO2007119868A1 (en) 2006-04-13 2007-10-25 Sumitomo Chemical Company, Limited Method for producing polymer electrolyte membrane, polymer electrolyte membrane and direct methanol fuel cell
WO2008056824A1 (en) * 2006-11-09 2008-05-15 Sumitomo Chemical Company, Limited Membrane-electrode assembly
JP2008140779A (en) * 2006-11-09 2008-06-19 Sumitomo Chemical Co Ltd Membrane-electrode conjugant
JP2008166163A (en) * 2006-12-28 2008-07-17 Toshiba Corp Manufacturing method and manufacturing device of catalyst-polymer electrolyte membrane assembly
WO2009148175A1 (en) 2008-06-05 2009-12-10 住友化学株式会社 Polymer electrolyte, crosslinked polymer electrolyte, polymer electrolyte membrane and use of the same
JP2013161736A (en) * 2012-02-08 2013-08-19 Panasonic Corp Method and apparatus for manufacturing membrane electrode assembly for fuel cell

Similar Documents

Publication Publication Date Title
JP4082999B2 (en) Method for producing a membrane electrode assembly for a membrane fuel cell
JP5551215B2 (en) Method for producing polymer electrolyte fuel cell
JP6571655B2 (en) Method of manufacturing a PBI-based membrane electrode assembly (MEA) with improved fuel cell performance and stability
JP6128099B2 (en) Membrane electrode assembly manufacturing method and membrane electrode assembly
JP5233075B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP6382277B2 (en) Method for forming a corrosion-resistant catalyst and ink composition
JP2009037953A (en) Method of manufacturing membrane-electrode assembly for polymer electrolyte fuel cell
CN100377401C (en) Ink for forming catalyst layer, and electrode and membrane-electrode assembly using the same
JP2009266774A (en) Method for manufacturing membrane-electrode assembly, membrane-electrode assembly, and polymer electrolyte fuel cell
JP2007214019A (en) Membrane electrode assembly for fuel cell and gas diffusion layer for fuel cell
JP2007214019A5 (en)
JP2006344517A (en) Manufacturing method of fuel cell
JP2004319139A (en) Membrane electrode assembly and its manufacturing method
WO2017154475A1 (en) Catalyst composition, method for producing polymer electrolyte membrane electrode assembly, and polymer electrolyte membrane electrode assembly
JP2003331852A (en) Membrane-electrode assembly for fuel cell and its manufacturing method
JP2011520237A (en) Method for activating membrane electrode assembly, membrane electrode assembly and polymer electrolyte fuel cell using the same
JP2005294175A (en) Electrode catalyst layer and its manufacturing method
JP6206371B2 (en) Method for producing electrode catalyst layer for fuel cell
JP2004164903A (en) Polymer electrolyte type fuel cell, and manufacturing method of its electrode
JP4511965B2 (en) Method for producing membrane-catalyst layer assembly and method for producing membrane-electrode assembly
JP2009009916A (en) Electrolyte membrane with catalyst layer
JP2005011590A (en) Membrane electrode junction, and manufacturing method of membrane electrode junction intermediate body using the same
CN114072473B (en) Method for producing a catalyst-coated membrane
JP7152992B2 (en) Electrodes for fuel cells
JP6521168B1 (en) Catalyst layer, membrane electrode assembly, solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427