JP2008198516A - Fuel cell - Google Patents

Fuel cell Download PDF

Info

Publication number
JP2008198516A
JP2008198516A JP2007033184A JP2007033184A JP2008198516A JP 2008198516 A JP2008198516 A JP 2008198516A JP 2007033184 A JP2007033184 A JP 2007033184A JP 2007033184 A JP2007033184 A JP 2007033184A JP 2008198516 A JP2008198516 A JP 2008198516A
Authority
JP
Japan
Prior art keywords
gas diffusion
carbon
fuel
diffusion layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007033184A
Other languages
Japanese (ja)
Inventor
Takashi Akiyama
崇 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007033184A priority Critical patent/JP2008198516A/en
Publication of JP2008198516A publication Critical patent/JP2008198516A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell increasing power generation performance by giving uniform and high conductivity and water repellency to a gas diffusion layer. <P>SOLUTION: The fuel cell comprises cells each formed by stacking a conductive water repellent layer, the gas diffusion layer, and a separator on both of a pair of catalyst layers facing through an electrolyte layer in this order. At least one side of the gas diffusion layer is made of a substrate of carbon fibers having carbon-fluorine bond on the surface. By covering the surface of carbon fiber having high conductivity with carbon-fluorine bonds having high water repellency, uniform and high conductivity and water repellency can be kept, and high power generation performance is provided for a long time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は燃料電池に関し、より詳しくはガス拡散層の改良に関する。   The present invention relates to a fuel cell, and more particularly to improvement of a gas diffusion layer.

燃料電池は、使用する電解質の種類によって、燐酸型、アルカリ型、溶融炭酸塩型、固体酸化物型、固体高分子型等に分類される。これらの中で、低温動作が可能で、出力密度が高いという特徴を有する固体高分子型燃料電池は、車載用電源や家庭用コージェネレーションシステム等において実用化されつつある。   Fuel cells are classified into phosphoric acid type, alkaline type, molten carbonate type, solid oxide type, solid polymer type, etc., depending on the type of electrolyte used. Among these, polymer electrolyte fuel cells that can operate at a low temperature and have a high output density are being put into practical use in in-vehicle power supplies, household cogeneration systems, and the like.

一方、近年ではノート型パソコンや携帯電話、PDAといった携帯機器の利便性を向上させるために、二次電池のように充電を必要とせず、燃料を補充するだけで発電することが可能な燃料電池が、将来的な電源として期待されている。このようなポータブル機器用の燃料電池電源として、動作温度の低い固体高分子型燃料電池(以下PEFCと記す)が注目されており、中でも常温で液体の燃料を、水素に改質することなく、電極において直接酸化して電気エネルギーを取り出すことができる直接燃料酸化型燃料電池は、改質器が不要で電源の小型化が容易である点から、最も期待されている。   On the other hand, in recent years, in order to improve the convenience of portable devices such as notebook computers, mobile phones, and PDAs, a fuel cell that does not require charging unlike a secondary battery and can generate electricity only by replenishing fuel. However, it is expected as a future power source. As a fuel cell power source for such portable devices, a polymer electrolyte fuel cell (hereinafter referred to as PEFC) having a low operating temperature is attracting attention. Among them, a liquid fuel at room temperature is not reformed to hydrogen, A direct fuel oxidation type fuel cell that can directly oxidize at an electrode and extract electric energy is most expected because it does not require a reformer and can easily reduce the size of a power source.

直接燃料酸化型燃料電池の燃料としては、低分子量のアルコールやエーテル類が検討されているが、中でもエネルギー効率や出力を高められるメタノールを燃料としたダイレクトメタノール型燃料電池(以下DMFCと記す)が最も有望視されている。   Low-molecular-weight alcohols and ethers have been studied as fuels for direct fuel oxidation fuel cells. Among them, direct methanol fuel cells (hereinafter referred to as DMFC) using methanol as a fuel, which can improve energy efficiency and output, are used. Most promising.

DMFCのアノードでの反応はCH3OH+H2O→CO2+6H++6e-(以下、反応式(1))で表され、カソードでの反応は3/2O2+6H++6e-→3H2O(以下、反応式(2))で表される。カソードに導入される酸素は、空気から取り入れることが一般的である。 The reaction at the anode of the DMFC is represented by CH 3 OH + H 2 O → CO 2 + 6H + + 6e (hereinafter, reaction formula (1)), and the reaction at the cathode is 3 / 2O 2 + 6H + + 6e → 3H 2 O ( Hereinafter, it is represented by the reaction formula (2)). The oxygen introduced into the cathode is generally taken from air.

DMFCを含むPEFCは、電解質層を介して一対の触媒層を対峙させ、さらに双方の触媒層の他面に、導電性撥水層、ガス拡散層、セパレータの順に積層することで、セルと呼ばれる基本構成を形成している。電解質膜と一対の触媒層からなる構成をCCM(Catalyst Coated Membrane)と称し、導電性撥水層とガス拡散層からなる構成をMEA(Membrane Electrode Assembly)と称する。またセパレータには、燃料および空気をMEAに流通させるための流路が設けられている。この流路に燃料を導入する方がアノードとなり、空気を導入する方がカソードとなる。なお燃料電池の発電電圧は1V以下であり、単一のセルから発生する電圧で機器を駆動するのは困難であることから、上述したセルを複数直列に積層して、高い電圧を得ることが一般的である。このようなセル積層体はスタックと呼ばれる。   A PEFC including a DMFC is called a cell by facing a pair of catalyst layers through an electrolyte layer and laminating a conductive water repellent layer, a gas diffusion layer, and a separator in this order on the other side of both catalyst layers. It forms the basic configuration. A configuration including an electrolyte membrane and a pair of catalyst layers is referred to as CCM (Catalyst Coated Membrane), and a configuration including a conductive water repellent layer and a gas diffusion layer is referred to as MEA (Membrane Electrode Assembly). The separator is provided with a flow path for circulating fuel and air to the MEA. The fuel is introduced into the flow path as an anode, and the air is introduced as a cathode. Since the power generation voltage of the fuel cell is 1 V or less and it is difficult to drive the device with a voltage generated from a single cell, it is possible to obtain a high voltage by stacking a plurality of the cells described above in series. It is common. Such a cell stack is called a stack.

ガス拡散層は、高いガス拡散性と電子伝導性が要求される。しかしカソード側では、反応式(2)に示すように水を生成する反応を伴うので、この層の空孔が水で飽和して空気の拡散が不十分にならないように、水を速やかに外部に排出させる必要がある。したがって少なくともカソード側のガス拡散層には高い撥水性が併せて要求される。そこでポリアクリロニトリル系カーボン繊維を織布、不織布、紙状に成型したいわゆるカーボンクロスや、カーボン不織布、カーボンペーパーなどを、空孔率が80%以上になるようにシート状に構成し、ガス拡散層として用いるのが一般的である。   The gas diffusion layer is required to have high gas diffusibility and electronic conductivity. However, on the cathode side, as shown in the reaction formula (2), there is a reaction to generate water, so that the water is quickly removed from the outside so that the pores in this layer are saturated with water and air diffusion is not insufficient. Need to be discharged. Accordingly, at least the gas diffusion layer on the cathode side is required to have high water repellency. Therefore, a so-called carbon cloth, carbon non-woven fabric, carbon paper, etc., formed from a polyacrylonitrile-based carbon fiber into a woven fabric, non-woven fabric, or paper, is formed into a sheet shape with a porosity of 80% or more, and a gas diffusion layer It is common to use as

ガス拡散層に撥水性を付与するために、カーボン繊維からなるシートを強撥水性材料であるポリテトラフルオロエチレン(PTFE)などのフッ素樹脂の分散液に浸漬し、乾燥
して水分を除去した後、焼成して分散液に含まれる界面活性剤を除去し、カーボン繊維をフッ素樹脂でコーティングするプロセスが一般的である。しかしこのプロセスでは、繊維同士が構成する数μmの隙間や交点周辺など分散液が滞留しやすい部分にフッ素樹脂が集中するため、シートを均一に撥水効果のある構成で覆うことは難しい。そこで特許文献1のように、フッ素樹脂繊維と導電性繊維とを織り込んだ不織布を使用することが提案されている。
特開平11−204114号公報
In order to impart water repellency to the gas diffusion layer, a sheet made of carbon fiber is immersed in a dispersion of a fluororesin such as polytetrafluoroethylene (PTFE), which is a highly water-repellent material, and dried to remove moisture. In general, a process of baking to remove the surfactant contained in the dispersion and coating the carbon fiber with a fluororesin is common. However, in this process, since the fluororesin concentrates on the portion where the dispersion liquid tends to stay, such as a gap of several μm formed by the fibers and around the intersection, it is difficult to cover the sheet with a structure having a uniform water repellent effect. Therefore, as in Patent Document 1, it has been proposed to use a nonwoven fabric in which a fluororesin fiber and a conductive fiber are woven.
JP-A-11-204114

しかしフッ素樹脂繊維は電子伝導性を有しない上に、異なる2つの繊維を均一に織り込むことは困難である。したがって微視的に見ると、特許文献1の構成は、フッ素樹脂繊維を主体とした導電性に劣る部位と、カーボン繊維を主体とした撥水処理が施されていない部位とが混在する形態となり、特に長期に亘り運転した時に、各々の部位が有する課題が顕著化して所望の効果が得られにくくなる。   However, the fluororesin fiber does not have electronic conductivity, and it is difficult to uniformly weave two different fibers. Therefore, when viewed microscopically, the configuration of Patent Document 1 has a form in which a portion having poor conductivity mainly composed of fluororesin fibers and a portion not subjected to water repellent treatment mainly composed of carbon fibers are mixed. Especially, when driving for a long period of time, the problems of each part become conspicuous and it becomes difficult to obtain a desired effect.

本発明は上記課題を解決し、均一で高い導電性と撥水性とをガス拡散層に付与することで、発電性能の高い燃料電池を提供することを目的とする。   An object of the present invention is to solve the above problems and to provide a fuel cell with high power generation performance by imparting uniform and high conductivity and water repellency to a gas diffusion layer.

上記の課題を解決するために、本発明の燃料電池は、電解質層を介して対峙させた一対の触媒層の双方に導電性撥水層、ガス拡散層、セパレータの順に積層したセルからなり、ガス拡散層の少なくとも一方が、表面に炭素−フッ素結合を有するカーボン繊維を基材としたものであることを特徴とする。   In order to solve the above problems, the fuel cell of the present invention comprises a cell in which a conductive water-repellent layer, a gas diffusion layer, and a separator are laminated in this order on both of a pair of catalyst layers opposed via an electrolyte layer, At least one of the gas diffusion layers is characterized by using a carbon fiber having a carbon-fluorine bond on the surface as a base material.

ガス拡散層の基材そのものは導電性の高いカーボン繊維としつつ、その表面を撥水性の高い炭素−フッ素結合で覆うことにより、特許文献1のように異なる性質を有する2種の繊維を混在させる場合と比べて、導電性、撥水性ともに均一かつ高いレベルに保てるので、長期間に亘って優れた発電性能を発揮できるようになる。   The base material itself of the gas diffusion layer is made of carbon fiber having high conductivity, and the surface thereof is covered with a carbon-fluorine bond having high water repellency, thereby mixing two kinds of fibers having different properties as in Patent Document 1. Compared to the case, both conductivity and water repellency can be maintained at a uniform and high level, so that excellent power generation performance can be exhibited over a long period of time.

以上のように本発明によれば、フッ素原子が直接炭素繊維に結合しているため、特許文献1のガス拡散層のように機能が不均一にならず、長期保存性、長期連続運転性能に優れた燃料電池を提供することが可能となる。   As described above, according to the present invention, since fluorine atoms are directly bonded to carbon fibers, the function does not become uneven as in the gas diffusion layer of Patent Document 1, and long-term storage stability and long-term continuous operation performance are achieved. It is possible to provide an excellent fuel cell.

以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1の発明は、電解質層を介して対峙させた一対の触媒層の双方に導電性撥水層、ガス拡散層、セパレータの順に積層したセルからなり、ガス拡散層の少なくとも一方が、表面に炭素−フッ素結合を有するカーボン繊維を基材としたものであることを特徴とする燃料電池に関する。また第2の発明は、第1の発明において、ガス拡散層の一方に燃料を供給し、もう一方に酸素を含むガスを供給する構成とした上で、少なくとも酸素を含むガスを供給する方のガス拡散層が、表面に炭素−フッ素結合を有するカーボン繊維を基材としたものであることを特徴とする。   1st invention consists of the cell which laminated | stacked the electroconductive water-repellent layer, the gas diffusion layer, and the separator in order on both of a pair of catalyst layers opposed through the electrolyte layer, and at least one of the gas diffusion layers is on the surface. The present invention relates to a fuel cell comprising a carbon fiber having a carbon-fluorine bond as a base material. According to a second invention, in the first invention, the fuel is supplied to one of the gas diffusion layers and the gas containing oxygen is supplied to the other, and at least the gas containing oxygen is supplied. The gas diffusion layer is characterized by using a carbon fiber having a carbon-fluorine bond on the surface as a base material.

図1は、本発明の単セルとしての燃料電池を示す概略断面図である。電解質層1を介して一対の触媒層2および3を対峙させ、さらに触媒層2の他面に、導電性撥水層4、ガス拡散層6、セパレータ8の順に積層し、触媒層3の他面に、導電性撥水層5、ガス拡散層7、セパレータ8の順に積層することで、セルと呼ばれる基本構成を形成している。電解
質膜1と触媒層2および3からなる構成がCCMであり、導電性撥水層4および5とガス拡散層6および7からなる構成がMEAである。セパレータ8には、燃料および空気(酸素を含むガスとして)をMEAに流通させるための流路9が設けられている。この流路9に燃料を導入する方がアノードとなり、空気を導入する方がカソードとなる。CCMが発電を担う一方で、MEAが供給される燃料および空気の均一な分散や、生成物である水および二酸化炭素の円滑な排出を担う。
FIG. 1 is a schematic sectional view showing a fuel cell as a single cell of the present invention. A pair of catalyst layers 2 and 3 are opposed to each other through the electrolyte layer 1, and the conductive water repellent layer 4, the gas diffusion layer 6, and the separator 8 are laminated in this order on the other surface of the catalyst layer 2. By laminating the conductive water repellent layer 5, the gas diffusion layer 7, and the separator 8 in this order, a basic structure called a cell is formed. The structure composed of the electrolyte membrane 1 and the catalyst layers 2 and 3 is CCM, and the structure composed of the conductive water repellent layers 4 and 5 and the gas diffusion layers 6 and 7 is MEA. The separator 8 is provided with a flow path 9 for circulating fuel and air (as a gas containing oxygen) to the MEA. The fuel is introduced into the channel 9 as an anode, and the air is introduced as a cathode. While the CCM is responsible for power generation, it is responsible for the uniform dispersion of the fuel and air supplied by the MEA and the smooth discharge of the product water and carbon dioxide.

ガス拡散層6および7には一般的にカーボン繊維が用いられるが、カーボンがカソードのように高電位、高湿度の環境下に長期間曝されると、表面の炭素原子が酸化して炭素−酸素結合を形成し、水との親和性が増すことにより空孔が水で飽和して空気の拡散が不十分になる。第1の発明において、ガス拡散層6および7の少なくとも一方を、基材そのものは導電性の高いカーボン繊維としつつ、その表面を撥水性の高い炭素−フッ素結合で覆うことにより、上述した課題を解決するだけでなく、特許文献1のように異なる性質を有する2種の繊維を混在させる場合と比べて、導電性、撥水性ともに均一かつ高いレベルに保てるので、長期保存時および長期使用時などにおいても優れた発電性能を発揮できるようになる。   Carbon fibers are generally used for the gas diffusion layers 6 and 7, but when carbon is exposed to a high potential and high humidity environment like a cathode for a long time, carbon atoms on the surface are oxidized and carbon- By forming an oxygen bond and increasing affinity with water, the pores are saturated with water and air diffusion becomes insufficient. In the first invention, at least one of the gas diffusion layers 6 and 7 is made of a carbon fiber having a high conductivity as a base material itself, and the surface thereof is covered with a carbon-fluorine bond having a high water repellency. In addition to solving this problem, both conductivity and water repellency can be maintained at a uniform and high level as compared with the case where two kinds of fibers having different properties are mixed as in Patent Document 1, so that it can be stored for a long time and used for a long time. Even in this case, it will be possible to demonstrate excellent power generation performance.

またDMFCなど多くの直接酸化型燃料電池は、燃料が水溶性であるために、燃料が電解質膜1を透過するクロスオーバーが発生する。クロスオーバーした燃料は、カソードの電位を低下させるので、この懸念を見越して、アノードに供給される燃料の水溶液濃度は、反応式(1)に示したメタノールと水が等モルの濃度(約64重量パーセント)よりも遥かに低く設定することになる。その結果アノードとカソードの間で水の活量差が生じ、水がアノードからカソードへ大量に移動する。第2の発明において、ガス拡散層6および7のうち少なくとも流路9に空気を供給する方を第1の発明の構成にすることにより、アノードからカソードへ移動していた水を、触媒層2または3から流路9の方向へと効率的に排出できるので、水の蓄積による不具合(空気の拡散が阻害されること)がなくなり、高い出力が得られる。   In many direct oxidation fuel cells such as DMFC, since the fuel is water-soluble, a crossover in which the fuel passes through the electrolyte membrane 1 occurs. Since the crossover fuel lowers the cathode potential, in anticipation of this concern, the concentration of the aqueous solution of the fuel supplied to the anode is equal to the concentration of methanol and water shown in the reaction formula (1) (approximately 64). Will be set much lower than (weight percent). As a result, a difference in water activity occurs between the anode and the cathode, and a large amount of water moves from the anode to the cathode. In the second aspect of the present invention, at least one of the gas diffusion layers 6 and 7 that supplies air to the flow path 9 has the structure of the first aspect of the invention, so that the water that has moved from the anode to the cathode Or since it can discharge | emit efficiently from 3 to the direction of the flow path 9, the malfunction by the accumulation | storage of water (air diffusion is inhibited) is eliminated, and a high output is obtained.

第3の発明は、第1の発明において、燃料を直接供給する構成としたことを特徴とする。具体的には、流路9に達するまでに改質器などを設けずに直接燃料を送る構成を云う。第1の発明においてガス拡散層6および7の少なくとも一方の撥水性を高めているため、第3の発明の構成を採用した場合でもアノードからカソードへ移動していた水の排出が速やかになり、ガス拡散層6または7において空気の拡散性が維持できるので、高い出力が得られる。   The third invention is characterized in that, in the first invention, the fuel is directly supplied. Specifically, it refers to a configuration in which fuel is directly sent without providing a reformer or the like until reaching the flow path 9. Since the water repellency of at least one of the gas diffusion layers 6 and 7 is increased in the first invention, the water that has moved from the anode to the cathode is quickly discharged even when the configuration of the third invention is adopted. Since the diffusibility of air can be maintained in the gas diffusion layer 6 or 7, a high output can be obtained.

以下に、本発明の構成についてさらに詳細に説明する。   Below, the structure of this invention is demonstrated in detail.

電解質膜1は、プロトン伝導性の固体電解質からなる膜であればよく、Dupont社のNafion(商品名)を代表としたパーフルオロスルホン酸ポリマーなどや、無機物・有機物複合膜、有機物同士の複合膜およびフッ素を含まない炭化水素系ポリマーなど、燃料であるメタノールのクロスオーバーを低減する効果を有する材料を用いるのが好ましい。   The electrolyte membrane 1 may be a membrane made of a proton-conducting solid electrolyte, such as a perfluorosulfonic acid polymer represented by Dupont's Nafion (trade name), an inorganic / organic composite membrane, or a composite membrane of organic materials. It is preferable to use a material having an effect of reducing the crossover of methanol as a fuel, such as a hydrocarbon-based polymer not containing fluorine.

触媒層2および3は、触媒粉末とプロトン伝導性の固体電解質の混合物で構成される。触媒粉末は、白金に代表される貴金属触媒粉末が用いられ、ブラックと称する貴金属のみからなる粉末を用いる場合と、カーボン粒子に貴金属粉末を担持させたものを用いる場合とがある。触媒層2および3のうちアノード側には、中間生成物である一酸化炭素による活性点の被毒を低減するために、白金とルテニウムの合金微粒子などが触媒粉末として用いられることが一般的である。一方、触媒層2および3のうちカソード側には、白金単体の微粒子が用いられる。またプロトン伝導性の固体電解質としては、電解質膜1と同様に
、パーフルオロスルホン酸ポリマーなどや、メタノールのクロスオーバーを低減するような材質を用いることができる。
The catalyst layers 2 and 3 are composed of a mixture of catalyst powder and a proton conductive solid electrolyte. As the catalyst powder, a noble metal catalyst powder typified by platinum is used, and there are a case where a powder consisting only of a noble metal called black is used and a case where a noble metal powder is supported on carbon particles. In order to reduce the poisoning of the active sites due to carbon monoxide, which is an intermediate product, the catalyst layers 2 and 3 generally use platinum and ruthenium alloy fine particles as catalyst powder. is there. On the other hand, platinum fine particles are used on the cathode side of the catalyst layers 2 and 3. As the proton-conducting solid electrolyte, like the electrolyte membrane 1, a perfluorosulfonic acid polymer or the like, or a material that reduces the crossover of methanol can be used.

触媒層2および3の前駆体であるペーストは、上述した触媒粉末と、固体電解質を分散させたディスパージョン液とを溶媒中で混合して得られる。これをスプレーで電解質膜1の表面に直接塗布乾燥することで、CCMを得る方法がある。あるいは、支持体であるポリテトラフルオロエチレン(PTFE)などのシートの上に、ペーストをドクターブレードなどで塗布した後、乾燥して支持体上に触媒層2および3を形成し、それを電解質膜1の両面に配置してホットプレス法などにより接合し、CCMを得るという方法もある。
導電性撥水層4および5は、カーボンブラック(ファーネスブラックやアセチレンブラックなど)、黒鉛粉末や多孔質金属粉末など導電性微細孔を形成することができる材料と、撥水性材料(PTFEなどの樹脂)とを溶媒中で攪拌混合してペーストを作製し、表面が平滑なシート(PTFEなど)の上にドクターブレードなどで塗布した後、乾燥することによって得られる。
The paste which is a precursor of the catalyst layers 2 and 3 is obtained by mixing the above-described catalyst powder and a dispersion liquid in which a solid electrolyte is dispersed in a solvent. There is a method of obtaining CCM by directly applying and drying this on the surface of the electrolyte membrane 1 by spraying. Alternatively, a paste is applied with a doctor blade on a sheet of polytetrafluoroethylene (PTFE) or the like, which is a support, and then dried to form catalyst layers 2 and 3 on the support. There is also a method in which a CCM is obtained by arranging on both surfaces of 1 and bonding by hot pressing or the like.
The conductive water-repellent layers 4 and 5 are made of carbon black (furnace black, acetylene black, etc.), graphite powder, porous metal powder, and other materials capable of forming conductive micropores, and water-repellent materials (PTFE, etc.). ) In a solvent to prepare a paste, which is applied on a smooth surface (such as PTFE) with a doctor blade and then dried.

PTFEは撥水性材料として好ましい反面、分散液の形態で納入される場合が多い。PTFE分散液に含まれる界面活性剤が導電性撥水層2および3に残存すると撥水性が低下するため、250℃以上の高温で焼成して界面活性剤を分解除去するのが一般的である。従って支持体として使用するシートは、高温下において溶融や著しい変形を生じない、耐熱性の高い樹脂や金属を使用することが好ましい。また後工程においてホットプレスのような加圧プロセスを経ない場合には、支持体としてガラスやセラミックスなどを使用しても良い。いずれの支持体も、除去する際に導電性撥水層の一部を剥ぎ取ることのないよう、表面の平滑性や耐熱性を高めておくのが好ましい。   PTFE is a preferred water-repellent material, but is often delivered in the form of a dispersion. When the surfactant contained in the PTFE dispersion remains in the conductive water-repellent layers 2 and 3, the water repellency is lowered. Therefore, the surfactant is generally decomposed and removed by baking at a high temperature of 250 ° C. or higher. . Therefore, the sheet used as the support is preferably made of a resin or metal having high heat resistance that does not melt or significantly deform at high temperatures. Further, in the subsequent step, when a pressure process such as hot pressing is not performed, glass, ceramics, or the like may be used as the support. It is preferable to enhance the smoothness and heat resistance of the surface of any support so that a part of the conductive water-repellent layer is not peeled off when the support is removed.

ガス拡散層6および7のうちカソード側のものは、上述のように高い撥水性を付与することが重要である。一方ガス拡散層6および7のうちアノード側のものは、反応式(1)に示すように燃料に水を混合して用いる場合が多いものの、以下の理由により高い撥水性を付与する場合と行わない場合とがある。すなわち、DMFCにおいては、アノードGDL中の物質拡散は複雑であり、燃料であるメタノール水溶液は液体または気体の状態でセパレータ8からアノード側の触媒層6または7に拡散し、生成物である二酸化炭素のそれと対向して拡散する。通常であれば、メタノールや水の拡散性が速いほど発電性能が優れるはずだが、メタノールの発電消費量と供給量のバランスにおいて、供給量が過剰であるとアノード側の触媒層6または7と電解質膜1の界面でメタノール濃度が上昇するためクロスオーバー量が増加し、発電性能はかえって低下する。従って、アノード側のガス拡散層6または7の撥水性は、他の材料の撥水性とのバランスを考慮することが必要である。表面に炭素−フッ素結合を有するカーボン繊維を基材としたガス拡散層6および7は、例えばカーボン繊維からなるシートを用意し、常温でフッ素ガスと不活性ガス(アルゴンやヘリウムなど)との混合ガスや低分子量のフッ化炭素ガスに暴露することにより得られる。但しいずれの場合も、化学式(CFxnで表されるxの値が大きくなりフッ素原子の比率の高くなると電子伝導性が著しくなるので、留意が必要である。 It is important that the gas diffusion layers 6 and 7 on the cathode side impart high water repellency as described above. On the other hand, among the gas diffusion layers 6 and 7, the anode-side one is often used by mixing water with fuel as shown in the reaction formula (1). There may be no cases. That is, in DMFC, the material diffusion in the anode GDL is complicated, and the methanol aqueous solution as fuel diffuses from the separator 8 to the catalyst layer 6 or 7 on the anode side in a liquid or gas state, and the product carbon dioxide. Diffuses opposite it. Normally, the faster the diffusibility of methanol or water, the better the power generation performance. However, if the supply amount is excessive in the balance between the power generation consumption and supply amount of methanol, the anode catalyst layer 6 or 7 and the electrolyte Since the methanol concentration increases at the interface of the membrane 1, the amount of crossover increases, and the power generation performance decreases. Therefore, the water repellency of the gas diffusion layer 6 or 7 on the anode side needs to consider the balance with the water repellency of other materials. For the gas diffusion layers 6 and 7 based on carbon fibers having carbon-fluorine bonds on the surface, for example, a sheet made of carbon fibers is prepared and mixed with fluorine gas and inert gas (such as argon or helium) at room temperature. It is obtained by exposure to gas or low molecular weight fluorocarbon gas. However, in either case, it should be noted that the value of x represented by the chemical formula (CF x ) n becomes large and the electron conductivity becomes remarkable when the ratio of fluorine atoms becomes high.

ガス拡散層6および7の基材として使用される炭素繊維は一部が黒鉛化した炭素繊維から構成されていると考えられる。本発明の趣旨に沿って、炭素繊維が本来有する電子伝導性を失うことなく、高い表面撥水性を得るためには、フッ素が黒鉛層間化合物を形成することなく、表面の炭素のみがフッ素と結合することが好ましい。   The carbon fibers used as the base material for the gas diffusion layers 6 and 7 are considered to be composed of carbon fibers partially graphitized. In accordance with the spirit of the present invention, in order to obtain high surface water repellency without losing the electronic conductivity inherent to carbon fibers, fluorine does not form a graphite intercalation compound, and only surface carbon bonds with fluorine. It is preferable to do.

セパレータ8は、黒鉛などのカーボン材料を含む材料を用い、流路9を切削加工などによって形成するか、射出成型、圧縮成型などによって金型加工してもよい。   The separator 8 may be made of a material containing a carbon material such as graphite, and the flow path 9 may be formed by cutting or the like, or may be die-molded by injection molding, compression molding, or the like.

なお図1は単セルの構造を示しているため、双方のセパレータ8の外側に端板10を配
置して、ボルトとバネ(図示せず)などを使用して加圧締結する形態を示したが、複数のセルを直接積層接続するスタックを構成する場合も同様である。ホットプレスによって接合されたMEAとセパレータ8との界面は接着性が乏しいため、セルまたはスタックを構成面に垂直な方向に加圧締結することにより接触抵抗を低減させるのが狙いである。
Since FIG. 1 shows the structure of a single cell, an end plate 10 is arranged on the outside of both separators 8 and pressure fastening using bolts and springs (not shown) is shown. However, the same applies to a stack in which a plurality of cells are directly stacked and connected. Since the interface between the MEA and the separator 8 bonded by hot pressing has poor adhesion, the aim is to reduce the contact resistance by pressure-fastening the cell or stack in the direction perpendicular to the component surface.

以下に本発明の実施例を示す。   Examples of the present invention are shown below.

(実施例1)
平均一次粒子径30nmの導電性カーボン粒子に原子比1:1の白金−ルテニウム合金を50重量%担持したものを触媒粉末として、固体電解質であるNafion(商品名)を分散させたディスパージョン液とを水の中で混合し、脱泡してペーストを得た。このペーストを、厚み50μmのポリプロピレンシート上にバーコーターを用いて塗布し、常温で1日放置して乾燥して、アノード側の触媒層を得た。
(Example 1)
A dispersion liquid in which Nafion (trade name), which is a solid electrolyte, is dispersed as a catalyst powder obtained by supporting 50% by weight of a platinum-ruthenium alloy having an atomic ratio of 1: 1 on conductive carbon particles having an average primary particle diameter of 30 nm; Were mixed in water and defoamed to obtain a paste. This paste was applied onto a polypropylene sheet having a thickness of 50 μm using a bar coater, and allowed to stand for 1 day at room temperature and dried to obtain an anode-side catalyst layer.

平均一次粒子径30nmの導電性カーボン粒子に白金を50重量%担持したものを触媒粉末として、固体電解質であるNafion(商品名)を分散させたディスパージョン液とを水の中で混合し、脱泡してペーストを得た。このペーストを、厚み50μmのポリプロピレンシート上にバーコーターを用いて塗布し、常温で1日放置して乾燥して、カソード側の触媒層を得た。   Mixing a dispersion liquid in which Nafion (trade name), which is a solid electrolyte, is dispersed in water using 50% by weight of platinum supported on conductive carbon particles having an average primary particle diameter of 30 nm as a catalyst powder. A paste was obtained by foaming. This paste was applied onto a polypropylene sheet having a thickness of 50 μm using a bar coater, and allowed to stand for 1 day at room temperature and dried to obtain a catalyst layer on the cathode side.

電解質膜としてNafion117(商品名、厚み178μm)を用意し、上述の2つの触媒層でこれをサンドイッチし、ホットプレス装置で、125℃、10MPa、3分間の設定で加圧して触媒層を電解質膜に熱転写し、ポリプロピレンシートを除去してCCM(25cm2の正方形)を得た。 Nafion 117 (trade name, thickness 178 μm) is prepared as an electrolyte membrane, sandwiched between the above two catalyst layers, and pressurized with a hot press device at a setting of 125 ° C., 10 MPa for 3 minutes, the catalyst layer is electrolyte membrane And the polypropylene sheet was removed to obtain CCM (25 cm 2 square).

カーボンペーパーTGP−H−090(商品名、東レ(株)製)を基材として、所望の濃度に希釈したPTFEディスパージョンD−1(商品名、ダイキン工業(株)製)に1分間浸漬して引き上げた後、100℃の熱風乾燥機中で乾燥し、270℃の電気炉中で2時間焼成処理を行い、PTFEの含有量が10重量%のガス拡散層を作製し、アノード側に用いた。   Using carbon paper TGP-H-090 (trade name, manufactured by Toray Industries, Inc.) as a base material, it is immersed in PTFE dispersion D-1 (trade name, manufactured by Daikin Industries, Ltd.) diluted to a desired concentration for 1 minute. Then, it is dried in a hot air dryer at 100 ° C., and baked in an electric furnace at 270 ° C. for 2 hours to produce a gas diffusion layer having a PTFE content of 10% by weight. It was.

Avcarb1071HCB(商品名、バラードマテリアルプロダクツ社製)を基材として、ヘリウムガスにフッ素ガスを0.1mol%混合した常温の混合ガスの中に10分間放置して基材のカーボン繊維の表面に炭素−フッ素結合を設けたガス拡散層を作製し、カソード側に用いた。   Using Avcarb 1071HCB (trade name, manufactured by Ballard Material Products) as a base material, it is allowed to stand for 10 minutes in a mixed gas at room temperature in which 0.1 mol% of fluorine gas is mixed with helium gas. A gas diffusion layer provided with a fluorine bond was prepared and used on the cathode side.

導電性撥水層として、アノード側、カソード側とも、アセチレンブラック粉末にPTFEディスパージョンD−1を、PTFEの固形分比が10重量%となるように攪拌混合してペーストを作製し、上述したガス拡散層の上にドクターブレード法により塗布し、100℃の恒温層で乾燥した後、270℃の電気炉中で2時間焼成処理を行って界面活性剤を除去し、MEAを得た。   As the conductive water repellent layer, on both the anode side and the cathode side, PTFE dispersion D-1 was stirred and mixed so that the solid content ratio of PTFE was 10% by weight, and the paste was prepared as described above. It apply | coated by the doctor blade method on the gas diffusion layer, and after drying with a 100 degreeC constant temperature layer, it baked in the electric furnace of 270 degreeC for 2 hours, the surfactant was removed, and MEA was obtained.

得られたMEAの導電性撥水層がCCMの両側の触媒層と対峙するように配置し、温度を125℃に設定したホットプレス装置で、5MPaの圧力で1分間加圧して接合した。さらに双方のMEAのガス拡散層がセパレータと対峙するように配置した。このセパレータには厚み2mmの黒鉛板を用い、切削によって断面が1mm四方になるように燃料および酸素を供給するための流路を形成するとともに、この流路をガス拡散層の側に配置した。なお流路は、MEAに面上を万遍なく蛇行するサーペンタイン型とした。   The obtained MEA conductive water-repellent layer was arranged so as to face the catalyst layers on both sides of the CCM, and was joined by pressurizing at a pressure of 5 MPa for 1 minute with a hot press apparatus set at a temperature of 125 ° C. Furthermore, it arrange | positioned so that the gas diffusion layer of both MEA may oppose a separator. A 2 mm thick graphite plate was used as the separator, and a flow path for supplying fuel and oxygen was formed by cutting so that the cross section became 1 mm square, and this flow path was disposed on the gas diffusion layer side. In addition, the flow path was made into the serpentine type which meanders uniformly on the surface of MEA.

これらセパレータでCCMおよびMEAをサンドイッチしたものを、厚さ1cmのステンレス板からなる端板でさらに挟み込んだ。なお端板とセパレータの間には、表面に金メッキを施した厚さ2mmの銅板を配置して、電子負荷装置に接続して発電性能を計測できるようにした。この端板を、ボルト、ナットおよび皿ばねを用いて加圧締結し、メタノールを燃料とするDMFCの単セルを作製した。これをセルAとする。   These separators sandwiched between CCM and MEA were further sandwiched between end plates made of a stainless steel plate having a thickness of 1 cm. In addition, between the end plate and the separator, a 2 mm-thick copper plate with a gold plating on the surface was arranged, and connected to an electronic load device so that the power generation performance could be measured. This end plate was pressure-fastened using bolts, nuts, and disc springs to produce a DMFC single cell using methanol as fuel. This is cell A.

(比較例1)
Avcarb1071HCBを基材として、所望の濃度に希釈したPTFEディスパージョンD−1に1分間浸漬して引き上げた後、100℃の熱風乾燥機中で乾燥し、270℃の電気炉中で2時間焼成処理を行い、PTFEの含有量が10重量%のガス拡散層を作製し、これをカソード側に用いて実施例1と同様に作製したDMFCの単セルを、セルRとする。
(Comparative Example 1)
Using Avcarb1071HCB as a base material, it was immersed in PTFE dispersion D-1 diluted to a desired concentration for 1 minute, pulled up, dried in a hot air dryer at 100 ° C., and baked in an electric furnace at 270 ° C. for 2 hours. Then, a gas diffusion layer having a PTFE content of 10% by weight was produced, and a DMFC single cell produced in the same manner as in Example 1 using the gas diffusion layer on the cathode side was designated as cell R.

以上の実施例および比較例について、2mol/Lのメタノール水溶液を燃料として1cm3/minの流量でチューブ式ポンプを用いてアノードに供給しつつ、200cm3/minと1000cm3/minの2種類の流量で無加湿の空気をマスフローコントローラーによって制御しながらカソードに供給して、以下の評価を行った。結果を(表1)に示す。 The above Examples and Comparative Examples, while supplying the anode with a tube pump aqueous methanol solution 2 mol / L at a flow rate of 1 cm 3 / min as a fuel, two of 200 cm 3 / min and 1000 cm 3 / min The following evaluation was performed by supplying unhumidified air at a flow rate to the cathode while being controlled by a mass flow controller. The results are shown in (Table 1).

(初期発電特性)
電熱線ヒータと温度コントローラを用いて各セルを60℃環境下となるように制御した後、電子負荷装置PLZ164WA(菊水電子工業(株)製)に接続し、定電流制御で電流密度が200mA/cm2となるように設定し、発電開始から1分間後の電圧を記録した。
(Initial power generation characteristics)
After each cell is controlled to be in a 60 ° C. environment using a heating wire heater and a temperature controller, it is connected to an electronic load device PLZ164WA (manufactured by Kikusui Electronics Co., Ltd.), and the current density is 200 mA / by constant current control. The voltage was set to be cm 2 and the voltage one minute after the start of power generation was recorded.

(長時間運転後の発電特性)
上述した初期発電特性と同じ条件で1000時間連続発電したときの電圧を記録した。
(Power generation characteristics after long-time operation)
The voltage when 1000 hours of continuous power generation was performed under the same conditions as the initial power generation characteristics described above was recorded.

Figure 2008198516
(表1)からわかるように、本発明のセルAは、比較例であるセルRに比べて空気量の違いによる電圧差異が小さく、空気流量が小さくても高い発電電圧が得られることがわかる。この傾向は初期のみでなく、長時間運転後であっても同様であった。特に長時間運転においては、セルRは空気の拡散が阻害されて発電性能が低下していると考えられるので、本発明のセルAとの差が顕著であった。以上のように、本発明の燃料電池は従来のものに比べて、高い発電性能と高い連続発電性能とを得ることができることがわかった。
Figure 2008198516
As can be seen from Table 1, the cell A of the present invention has a smaller voltage difference due to the difference in the air amount than the cell R as the comparative example, and a high power generation voltage can be obtained even when the air flow rate is small. . This tendency was the same not only in the initial stage but also after long-time operation. In particular, in the long-time operation, since the cell R is considered to have a reduced power generation performance due to inhibition of air diffusion, the difference from the cell A of the present invention was remarkable. As described above, it was found that the fuel cell of the present invention can obtain higher power generation performance and higher continuous power generation performance than those of the conventional one.

本発明の燃料電池は、携帯電話や携帯情報端末(PDA)、ノートPC、ビデオカメラ用、等の携帯用小型電子機器用の電源として有用である。また、電動スクータ用電源、等の用途にも応用できる。   The fuel cell of the present invention is useful as a power source for portable small electronic devices such as mobile phones, personal digital assistants (PDAs), notebook PCs, and video cameras. Further, it can be applied to a power source for an electric scooter.

本発明の実施の形態の燃料電池の断面略式図Schematic cross-sectional view of a fuel cell according to an embodiment of the present invention

符号の説明Explanation of symbols

1 電解質膜
2、3 触媒層
4、5 導電性撥水層
6、7 ガス拡散層
8 セパレータ
9 流路
10 端板
DESCRIPTION OF SYMBOLS 1 Electrolyte membrane 2, 3 Catalyst layer 4, 5 Conductive water-repellent layer 6, 7 Gas diffusion layer 8 Separator 9 Flow path 10 End plate

Claims (3)

電解質層を介して対峙させた一対の触媒層の双方に導電性撥水層、ガス拡散層、セパレータの順に積層したセルからなる燃料電池であって、
前記ガス拡散層の少なくとも一方が、表面に炭素−フッ素結合を有するカーボン繊維を基材としたものである燃料電池。
A fuel cell comprising a cell in which a conductive water repellent layer, a gas diffusion layer, and a separator are laminated in this order on both of a pair of catalyst layers facing each other through an electrolyte layer,
A fuel cell in which at least one of the gas diffusion layers is based on a carbon fiber having a carbon-fluorine bond on its surface.
前記ガス拡散層の一方に燃料を供給し、もう一方に酸素を含むガスを供給する構成とした上で、少なくとも酸素を含むガスを供給する方の前記ガス拡散層が、前記カーボン繊維を基材としたものである、請求項1に記載の燃料電池。 The gas diffusion layer is configured to supply fuel to one of the gas diffusion layers and supply a gas containing oxygen to the other, and the gas diffusion layer supplying at least a gas containing oxygen is based on the carbon fiber. The fuel cell according to claim 1, wherein 前記燃料を直接供給する構成としたことを特徴とする、請求項1に記載の燃料電池。 The fuel cell according to claim 1, wherein the fuel is directly supplied.
JP2007033184A 2007-02-14 2007-02-14 Fuel cell Withdrawn JP2008198516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007033184A JP2008198516A (en) 2007-02-14 2007-02-14 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007033184A JP2008198516A (en) 2007-02-14 2007-02-14 Fuel cell

Publications (1)

Publication Number Publication Date
JP2008198516A true JP2008198516A (en) 2008-08-28

Family

ID=39757253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007033184A Withdrawn JP2008198516A (en) 2007-02-14 2007-02-14 Fuel cell

Country Status (1)

Country Link
JP (1) JP2008198516A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053084A1 (en) * 2008-11-07 2010-05-14 ソニー株式会社 Fuel cell, oxygen electrode used in fuel cell, and electronic device
JP2011171301A (en) * 2010-02-16 2011-09-01 Panasonic Corp Direct oxidation fuel cell
JP2014222565A (en) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Method of producing gas diffusion layer for fuel cell and method of producing fuel cell
KR20200029707A (en) 2018-09-11 2020-03-19 현대자동차주식회사 Gas diffusion layer for fuel cell applications and unit cell of fuel cell having the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053084A1 (en) * 2008-11-07 2010-05-14 ソニー株式会社 Fuel cell, oxygen electrode used in fuel cell, and electronic device
CN102203994A (en) * 2008-11-07 2011-09-28 索尼公司 Fuel cell, oxygen electrode used in fuel cell, and electronic device
JP2011171301A (en) * 2010-02-16 2011-09-01 Panasonic Corp Direct oxidation fuel cell
JP2014222565A (en) * 2013-05-13 2014-11-27 トヨタ自動車株式会社 Method of producing gas diffusion layer for fuel cell and method of producing fuel cell
KR20200029707A (en) 2018-09-11 2020-03-19 현대자동차주식회사 Gas diffusion layer for fuel cell applications and unit cell of fuel cell having the same

Similar Documents

Publication Publication Date Title
JP4837298B2 (en) Humidity adjustment film
KR100661698B1 (en) Direct methanol fuel cell
KR100659132B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
US20190280307A1 (en) Composite electrode layer for polymer electrolyte fuel cell
KR101140094B1 (en) Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
JP2006324104A (en) Gas diffusion layer for fuel cell and fuel cell using this
JP5126812B2 (en) Direct oxidation fuel cell
JP5253834B2 (en) Fuel cell electrode
KR100796886B1 (en) Direct oxidation fuel cell and method for operating direct oxidation fuel cell system
JP2004296176A (en) Solid polymer fuel cell
JP2008198516A (en) Fuel cell
JP2016181488A (en) Electrode for fuel cell, membrane-electrode composite for fuel cell, and fuel cell
JP2007234589A (en) Direct oxidation fuel cell and method for operating direct oxidation fuel cell system
JP5354982B2 (en) Direct oxidation fuel cell
JP2007134306A (en) Direct oxidation fuel cell and membrane electrode assembly thereof
JP2006049115A (en) Fuel cell
JP2007128665A (en) Electrode catalyst layer for fuel cell, and manufacturing method of membrane-electrode assembly using it
JP2006085984A (en) Mea for fuel cell and fuel cell using this
KR100612233B1 (en) A membrane electrode assembly for fuel cell, a method for preparing the same and a fuel cell comprising the same
JP2006120508A (en) Solid polymer fuel cell
JP5501044B2 (en) Membrane electrode assembly and fuel cell
JP4787474B2 (en) Method for producing laminated film for membrane-electrode assembly
JPWO2012098606A1 (en) Membrane electrode assembly for fuel cell and fuel cell using the same
JP4245405B2 (en) Fuel cell
JP2008065986A (en) Direct methanol type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100120

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100215

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120406