JP2008166107A - Induction heating cooker - Google Patents

Induction heating cooker Download PDF

Info

Publication number
JP2008166107A
JP2008166107A JP2006354203A JP2006354203A JP2008166107A JP 2008166107 A JP2008166107 A JP 2008166107A JP 2006354203 A JP2006354203 A JP 2006354203A JP 2006354203 A JP2006354203 A JP 2006354203A JP 2008166107 A JP2008166107 A JP 2008166107A
Authority
JP
Japan
Prior art keywords
power supply
inverter
heating
circuit
supply means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354203A
Other languages
Japanese (ja)
Inventor
Masayuki Isogai
雅之 磯貝
Nobuo Oshima
信夫 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2006354203A priority Critical patent/JP2008166107A/en
Publication of JP2008166107A publication Critical patent/JP2008166107A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an induction heating cooker improved in reliability of a product having no occurrence of overvoltage in the output of a power supply circuit and giving no overvoltage and excess current to a switching element constituting an inverter. <P>SOLUTION: The induction heating cooker is provided with a resonance load circuit including a heating object, a power supply circuit having a step-up power supply means which is connected to a commercial power supply and converts into a DC variable power supply, an inverter which converts the DC voltage generated by the power supply circuit and supplies the power to the resonance load circuit, and a control means to control the power supply circuit and the inverter. The control means controls so that, at the time of heating start, the operation of the step-up power supply means of the power supply circuit is started after a prescribed time of driving the inverter, and at the time of heating stop, the driving of inverter is stopped after a prescribed time of stopping the operation of the step-up power supply means of the power supply circuit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、誘導加熱調理器に関するものである。   The present invention relates to an induction heating cooker.

誘導加熱調理器は、高周波電流を流す加熱コイルの近傍に配した被加熱物である鍋等に渦電流を発生させ、そのジュール熱によって鍋自体が自己発熱することで、効率よく鍋を加熱することができるものであり、近年、ガスコンロや電熱ヒータによる加熱調理器具に対して、安全性や温度制御性に優れた点によって、これらの置換えが進んでいる。   An induction heating cooker efficiently heats a pan by generating eddy current in a pan or the like to be heated placed near a heating coil that passes a high-frequency current, and the pan itself self-heats due to its Joule heat. In recent years, the replacement of cooking utensils using gas stoves or electric heaters has been progressing due to their excellent safety and temperature controllability.

誘導加熱調理器は、加熱コイルに高周波電流を流す電力制御回路として、被加熱物の鍋(負荷)を含めた加熱コイルのインダクタンスと、共振コンデンサの共振負荷回路を接続し、スイッチング素子で20〜40kHz程度の駆動周波数でオンオフ制御するいわゆる共振型インバータが一般的である。   The induction heating cooker connects the inductance of the heating coil including the pot (load) of the object to be heated and the resonant load circuit of the resonant capacitor as a power control circuit for supplying a high-frequency current to the heating coil, and the switching element is 20 to 20 A so-called resonant inverter that performs on / off control at a drive frequency of about 40 kHz is generally used.

共振型インバータは、電圧共振型と電流共振型があり、前者は100V電源用、後者は200V電源用として適用されることが多い。   The resonance type inverter is classified into a voltage resonance type and a current resonance type. The former is often used for a 100V power source and the latter is used for a 200V power source.

当初は、鉄などの磁性材料の負荷のみが加熱できるだけであったが、近年は、非磁性ステンレスなどの負荷も加熱できるようになってきており、さらに、加熱できないとされてきたアルミニウム製の負荷も加熱できるようにしたものが提案されている。   Initially, only a load of magnetic material such as iron could be heated, but in recent years, a load of nonmagnetic stainless steel or the like can be heated. The one that can be heated is also proposed.

すなわち、被加熱金属体の負荷を含む共振負荷回路と、直流電圧を生成する電源回路と、この電源回路の昇圧電源手段と降圧電源手段が生成する直流電圧を高周波電圧に変換して前記共振負荷回路に電力を供給するインバータとを備え、このインバータは直列に接続される少なくとも二個のスイッチング素子で構成される上下アームを有してなり、前記電源回路は二つ以上の異なる直流電圧を生成し、被加熱金属体の負荷の材質に応じて前記電源回路の出力電圧を切り替える構成とすることにより、異なる材質の負荷に対し、所望の電力を効率よく供給することができる誘導加熱調理器の提案がなされている(例えば、特許文献1参照)。   That is, a resonant load circuit including a load of a metal body to be heated, a power supply circuit that generates a DC voltage, and a DC voltage generated by the step-up power supply means and the step-down power supply means of the power supply circuit is converted into a high-frequency voltage to convert the resonant load And an inverter for supplying power to the circuit, the inverter having upper and lower arms composed of at least two switching elements connected in series, and the power supply circuit generates two or more different DC voltages In addition, by adopting a configuration in which the output voltage of the power supply circuit is switched according to the material of the load of the metal body to be heated, the induction heating cooker that can efficiently supply desired power to the load of different materials Proposals have been made (see, for example, Patent Document 1).

特開2004−319296号公報JP 2004-319296 A

しかしながら、上記の従来技術において、電源回路の昇圧電源手段の起動時および停止時は、負荷の軽重によって出力電圧の変動や電源電流の変動が発生しやすく、昇圧電源手段の起動時は安定動作出力状態になるまで電源電流が変動する。また、停止時は、出力電圧が上昇する。   However, in the above prior art, when the booster power supply means of the power supply circuit is started and stopped, output voltage fluctuations and power supply current fluctuations are likely to occur due to the weight of the load. The power supply current fluctuates until a state is reached. Also, the output voltage rises when stopped.

したがって、加熱停止時のインバータ停止時は、電源回路に対する負荷インピーダンスは急激に大きくなり電源回路の出力電流が減少するため、電源回路の出力電圧が急上昇して、スイッチング素子に過電圧が印加することによりスイッチング素子の信頼性が損なわれるという問題点がある。   Therefore, when the inverter is stopped when heating is stopped, the load impedance to the power supply circuit suddenly increases and the output current of the power supply circuit decreases, so the output voltage of the power supply circuit rises rapidly and an overvoltage is applied to the switching element. There is a problem that the reliability of the switching element is impaired.

本発明は、上記の問題を解決するためになされたものであり、被加熱物を含む共振負荷回路と、商用電源に接続され直流可変電源に変換する昇圧電源手段を有する電源回路と、この電源回路が生成する直流電圧を交流電圧に変換して前記共振負荷回路に電力を供給するインバータと、前記電源回路と前記インバータを制御する制御手段とを備えた誘導加熱調理器において、加熱開始時は前記インバータを駆動させた所定時間後に前記電源回路の昇圧電源手段の動作を開始させ、加熱停止時は前記電源回路の昇圧電源手段の動作を停止させた所定時間後に前記インバータを駆動停止させるように前記制御手段にて制御するものである。   The present invention has been made to solve the above-described problem, and includes a resonant load circuit including an object to be heated, a power supply circuit having a boost power supply means connected to a commercial power supply and converted to a DC variable power supply, and the power supply. In an induction heating cooker including an inverter that converts a DC voltage generated by a circuit into an AC voltage and supplies power to the resonant load circuit, and a control unit that controls the power supply circuit and the inverter. The operation of the boosting power supply means of the power supply circuit is started after a predetermined time after the inverter is driven, and when the heating is stopped, the inverter is stopped after a predetermined time after the operation of the boosting power supply means of the power supply circuit is stopped. It is controlled by the control means.

また、前記電源回路の入力電流と、前記共振負荷回路の電流とを検知して被加熱物の加熱可否を判定する加熱可否判定手段を備え、この加熱可否判定手段は、加熱開始時の前記電源回路の昇圧電源手段の動作開始以前に加熱可否を判定するものである。   The power supply circuit includes a heating availability determination unit that detects an input current of the power supply circuit and a current of the resonance load circuit to determine whether to heat the object to be heated. The heating availability determination unit includes the power supply at the start of heating. Whether or not heating is possible is determined before the operation of the boosting power source means of the circuit is started.

本発明の誘導加熱調理器は、上記のように構成したことにより、電源回路の出力に過電圧の発生が無く、したがって、インバータを構成する素子に与える過電圧や過電流のストレスを微小にすることができ、故障の発生頻度が激減し、製品の信頼性を高めることができる。   Since the induction heating cooker of the present invention is configured as described above, there is no occurrence of overvoltage in the output of the power supply circuit, and therefore the overvoltage and overcurrent stress applied to the elements constituting the inverter can be made minute. The frequency of failure can be drastically reduced and the reliability of the product can be improved.

また、加熱開始時に行う被加熱物の加熱可否の判定を安定した電源状態で行うことができるため、誤判定を防止することができる。   Moreover, since it can be determined in a stable power supply state whether or not the object to be heated can be heated at the start of heating, erroneous determination can be prevented.

以下、本発明の一実施例を図1〜図10を参照して説明する。   An embodiment of the present invention will be described below with reference to FIGS.

図1は、本発明の誘導加熱調理器の回路ブロック図である。商用電源1に接続され、整流手段2で直流に変換した後に、昇圧電源手段3および降圧電源手段4を接続して、その出力直流電圧を可変することが出来る電源回路9の出力端子に、加熱コイル6に高周波電流を流すためのインバータ5が接続されている。   FIG. 1 is a circuit block diagram of the induction heating cooker of the present invention. After being connected to the commercial power source 1 and converted into direct current by the rectifying means 2, the boost power supply means 3 and the step-down power supply means 4 are connected to the output terminal of the power supply circuit 9 which can vary the output DC voltage. An inverter 5 is connected to the coil 6 for flowing a high-frequency current.

制御手段7は、昇圧電源手段3の起動や停止制御、降圧電源手段4の出力電圧の設定、インバータ5の図示しないスイッチング素子の駆動条件(スイッチング周波数やデューティー)の設定等を行う。使用者が行う操作手段8の操作によって、高周波電流を流す加熱コイル6の近傍に配した被加熱物である金属鍋等負荷の加熱電力や負荷の温度を検知する図示しない温度センサ−により行う負荷の温度制御などの条件設定を行う。   The control means 7 performs start-up and stop control of the step-up power supply means 3, setting of the output voltage of the step-down power supply means 4, setting of driving conditions (switching frequency and duty) of a switching element (not shown) of the inverter 5. A load performed by a temperature sensor (not shown) for detecting the heating power of the load, such as a metal pan, which is an object to be heated, which is disposed in the vicinity of the heating coil 6 through which a high-frequency current flows, by the operation of the operating means 8 performed by the user Set conditions such as temperature control.

また、制御手段7は、電源回路9の入力電流を検知する入力電流検知素子10と、加熱コイル6の共振負荷回路に流れる電流を検知するインバータ電流検知素子11とで検知した電流値から、インバータ5の負荷の状態が高インピーダンスか低インピーダンスかを判別したり、インバータ5の負荷の共振周波数の高低状態を判別して、被加熱物の加熱可否を判定する加熱可否判定手段12の判定出力を入力している。この加熱可否判定手段12の判定結果により、負荷(金属鍋)の材質や形状などを推定し、負荷が加熱に適していなければ加熱しないようにインバータ5のスイッチング素子の駆動を制御手段7により制御する。   Further, the control means 7 generates an inverter from the current value detected by the input current detection element 10 that detects the input current of the power supply circuit 9 and the inverter current detection element 11 that detects the current flowing in the resonance load circuit of the heating coil 6. 5 is used to determine whether the state of the load 5 is high impedance or low impedance, or whether the resonance frequency of the load of the inverter 5 is high or low. You are typing. The material of the load (metal pan) is estimated based on the determination result of the heating enable / disable determining unit 12, and the driving of the switching element of the inverter 5 is controlled by the control unit 7 so that the load is not heated if the load is not suitable for heating. To do.

図2は、昇圧電源手段3の回路構成を説明する図である。整流手段2の正側の出力端子に、チョークコイル31の一端を接続し、チョークコイル31の他端の出力端側にスイッチング素子32を接続して整流手段2の負側の出力端子(基準電位)に接続して閉ループを構成する。チョークコイル31の出力端にはダイオード33を接続し、平滑用のコンデンサ34を接続する。35は昇圧電源手段3の負荷を表す。   FIG. 2 is a diagram for explaining the circuit configuration of the boost power supply means 3. One end of the choke coil 31 is connected to the positive output terminal of the rectifying means 2, the switching element 32 is connected to the output end side of the other end of the choke coil 31, and the negative output terminal (reference potential) of the rectifying means 2 is connected. ) To form a closed loop. A diode 33 is connected to the output end of the choke coil 31 and a smoothing capacitor 34 is connected. Reference numeral 35 denotes a load of the boost power source means 3.

昇圧電源手段3は、スイッチング素子32のオン期間に整流手段2の直流電圧がチョークコイル31に印加されてエネルギーが蓄積され、スイッチング素子32のオフ期間にダイオード33を介してコンデンサ34にエネルギーが放出され、その電圧が昇圧電源手段3の負荷35に印加される。   In the step-up power supply means 3, the DC voltage of the rectifying means 2 is applied to the choke coil 31 during the ON period of the switching element 32 to accumulate energy, and the energy is released to the capacitor 34 via the diode 33 during the OFF period of the switching element 32. Then, the voltage is applied to the load 35 of the boost power supply means 3.

このような回路構成により、スイッチング素子32のオンオフデューティを変化させることによって、整流手段2からの入力電圧よりも高い任意の電圧に昇圧して昇圧電源手段3の負荷回路35に出力することが出来る。   With such a circuit configuration, by changing the on / off duty of the switching element 32, the voltage can be boosted to an arbitrary voltage higher than the input voltage from the rectifier 2 and output to the load circuit 35 of the boost power source 3. .

また、スイッチング素子32のオンオフデューティを制御手段7により制御すること、および平滑用のコンデンサ34の容量を十分に大きくすることにより、十分に平滑化された直流電圧を出力することができる。   Further, by controlling the on / off duty of the switching element 32 by the control means 7 and increasing the capacity of the smoothing capacitor 34 sufficiently, a sufficiently smoothed DC voltage can be output.

図3は、昇圧電源手段3の制御タイミングを説明する図である。スイッチング素子32がオンしている時は、チョークコイル31には整流手段2の電圧が印加されて電流IL が流れ、チョークコイル31にエネルギーが蓄積される。 FIG. 3 is a diagram for explaining the control timing of the boost power supply means 3. When the switching element 32 is on, the choke coil 31 is a current I L flowing voltage of the rectifier means 2 is applied, energy is accumulated in the choke coil 31.

次に、スイッチング素子32がオフすると、チョークコイル31に蓄積されたエネルギーが電圧に変換され、入力電圧Vinよりも高い電圧が発生し、その電圧によってダイオード33を経由してコンデンサ34に充電される。このとき、昇圧電源手段3の負荷回路
35に出力する電圧VO1は入力電圧Vinよりも高い電圧となる。
Next, when the switching element 32 is turned off, the energy accumulated in the choke coil 31 is converted into a voltage, a voltage is generated is higher than the input voltage V in, it is charged in the capacitor 34 through the diode 33 by the voltage The At this time, the voltage V O1 output to the load circuit 35 of the step-up power supply means 3 is a voltage higher than the input voltage V in.

昇圧電源手段3は、入力電圧Vin波形と入力電流ILの包絡線波形が位相を含めて相似波形になるようにスイッチング素子32のオンオフタイミングを制御手段7により制御することにより、誘導加熱調理器の力率を高い状態にすることができる。 Boosted power supply unit 3, by the envelope waveform of the input current I L and the input voltage V in the waveform is controlled by the control means 7 on and off timing of the switching element 32 so that the similar waveforms, including phase, induction cooking The power factor of the vessel can be made high.

図4は、降圧電源手段4の回路構成を説明する図である。昇圧電源手段3の出力端子にスイッチング素子41を接続し、そのスイッチング素子41の出力側にチョークコイル
42接続し、また、降圧電源手段4の出力と逆並列になるようにダイオード43を接続する。チョークコイル42の出力側にはコンデンサ44を接続する。45は降圧電源手段4の負荷を表す。
FIG. 4 is a diagram for explaining the circuit configuration of the step-down power supply means 4. A switching element 41 is connected to the output terminal of the step-up power supply means 3, a choke coil 42 is connected to the output side of the switching element 41, and a diode 43 is connected in antiparallel with the output of the step-down power supply means 4. A capacitor 44 is connected to the output side of the choke coil 42. 45 represents the load of the step-down power supply means 4.

この構成において、スイッチング素子41のオンオフデューティを変化させることにより、出力電圧VOUT を0〜100%に変化させることができる。ただし、降圧電源手段4の負荷45のインピーダンスによってはスイッチング素子41のオンオフデューティが同じであっても出力電圧VOUT は変化する。 In this configuration, the output voltage V OUT can be changed to 0 to 100% by changing the on / off duty of the switching element 41. However, the output voltage V OUT varies depending on the impedance of the load 45 of the step-down power supply means 4 even if the on / off duty of the switching element 41 is the same.

図5は、降圧電源手段4の制御タイミングを説明する図である。スイッチング素子41のオンオフタイミングと、チョークコイル42に流れる電流IL2,出力電圧VOUT 、入力電圧である昇圧電源手段3の出力端子の電圧VO1の関係を示している。 FIG. 5 is a diagram for explaining the control timing of the step-down power supply means 4. The relationship between the on / off timing of the switching element 41, the current I L2 flowing through the choke coil 42, the output voltage V OUT , and the voltage V O1 at the output terminal of the boosting power source means 3 as the input voltage is shown.

スイッチング素子41がオンしている時は、降圧電源手段4に印加される電圧VO1がチョークコイル42を介してコンデンサ44に充電される。このときチョークコイル42には電圧VO1が印加されて電流が流れ、チョークコイル42にエネルギーが蓄積される。 When the switching element 41 is on, the voltage V O1 applied to the step-down power supply means 4 is charged to the capacitor 44 via the choke coil 42. At this time, the voltage V O1 is applied to the choke coil 42 to cause a current to flow, and energy is accumulated in the choke coil 42.

次に、スイッチング素子41がオフすると、チョークコイル42に蓄積されたエネルギーが電圧に変換され、ダイオード43を含む閉回路を経由して降圧電源手段4の負荷45に供給される。チョークコイル42のエネルギーが無くなると、出力端子のコンデンサ
44の充電エネルギーから供給される。負荷45に供給されるエネルギーは、スイッチング素子41のオンオフデューティで決定され、それにより出力電圧VOUT が決定する。
Next, when the switching element 41 is turned off, the energy accumulated in the choke coil 42 is converted into a voltage and supplied to the load 45 of the step-down power supply means 4 via a closed circuit including the diode 43. When the choke coil 42 is depleted of energy, it is supplied from the charging energy of the capacitor 44 at the output terminal. The energy supplied to the load 45 is determined by the on / off duty of the switching element 41, whereby the output voltage VOUT is determined.

図6は、インバータ5の回路構成を説明する図である。回路は一般的なシングルエンドプシュプル回路構成である。電源回路9の出力にスイッチング素子51,52の直列体の上下アームを接続し、その中点に加熱コイル6と、図示しない被加熱物と、共振コンデンサ55とで構成される共振負荷回路を接続する。スイッチング素子51,52の直列体にはそれぞれ逆並列にダンパダイオード53,54を接続し、さらにスナバコンデンサ56,57を接続してスイッチング素子51,52の過電圧や損失の発生を抑制する。   FIG. 6 is a diagram illustrating the circuit configuration of the inverter 5. The circuit has a general single-ended push-pull circuit configuration. The upper and lower arms of a series body of switching elements 51 and 52 are connected to the output of the power supply circuit 9, and a resonance load circuit composed of the heating coil 6, an object to be heated (not shown), and a resonance capacitor 55 is connected to the middle point. To do. Damper diodes 53 and 54 are connected in antiparallel to the series bodies of the switching elements 51 and 52, respectively, and further snubber capacitors 56 and 57 are connected to suppress the occurrence of overvoltage and loss in the switching elements 51 and 52.

被加熱物を含む共振負荷回路にはスイッチング素子51,52を排他的にオンオフすることにより高周波電流が流れ、加熱コイル6に流れる電流により加熱コイル6の近傍に置かれた負荷(鍋等)に渦電流を発生させ、負荷自体を発熱させる。このような回路構成にすることによって、加熱コイル6に流れる電流により負荷(鍋等)に投入される電力は、降圧電源手段4の出力設定電圧およびインバータ5のスイッチング周波数で制御することができる。   A high frequency current flows through the resonant load circuit including the object to be heated exclusively by turning on and off the switching elements 51 and 52, and a load (pot or the like) placed near the heating coil 6 by the current flowing through the heating coil 6. An eddy current is generated and the load itself generates heat. With such a circuit configuration, the electric power input to the load (pan etc.) by the current flowing through the heating coil 6 can be controlled by the output set voltage of the step-down power supply means 4 and the switching frequency of the inverter 5.

なお、本実施例では、昇圧電源手段3の動作により十分に平滑された直流電圧をインバータ5に入力することができるので、インバータ5のスイッチング素子51,52を排他的にオンオフすることにより流れる加熱コイル6の高周波電流の包絡線は平らになる。これは昇圧電源手段3が無い場合の、十分に平滑されてない直流電源の場合は、加熱コイル6に流れる高周波電流の包絡線が商用電源の周波数の2倍で変動するため、負荷(鍋等)自体に振動が発生して、商用周波数に起因した異音が発生することがある。したがって、昇圧電源手段3を用いることによって、商用周波数に起因した負荷(鍋等)自体の振動による異音の発生を抑制することができる。   In this embodiment, since the DC voltage sufficiently smoothed by the operation of the boosting power source means 3 can be input to the inverter 5, the heating that flows when the switching elements 51 and 52 of the inverter 5 are exclusively turned on and off. The envelope of the high frequency current of the coil 6 becomes flat. In the case of a DC power source that is not sufficiently smoothed when there is no boosting power source means 3, the envelope of the high frequency current flowing through the heating coil 6 fluctuates at twice the frequency of the commercial power source, so ) Vibration may occur in itself, and abnormal noise due to commercial frequency may occur. Therefore, by using the boosting power source means 3, it is possible to suppress the generation of abnormal noise due to the vibration of the load (eg, pan) caused by the commercial frequency.

一般的に、昇圧電源手段3の出力が平滑化した電圧となるためには、昇圧電源手段3の出力に接続するコンデンサ34の容量は十分に大きくなければならない。このため、加熱開始時に昇圧電源手段3の力率補正動作が急激に行われるとスイッチング素子32に過電流が流れたり、電源電流が過大になったりする恐れがある。したがって、加熱開始時は昇圧電源手段3の動作は徐々に効果が現れるようにソフトスタート動作にする必要がある。ただし、ソフトスタート動作中の出力電圧や電源電流は過渡的な変動を含むために、安定状態ではない。また、同様に加熱停止時にもソフトストップ動作が必要になる。   In general, in order for the output of the boost power supply means 3 to be a smoothed voltage, the capacity of the capacitor 34 connected to the output of the boost power supply means 3 must be sufficiently large. For this reason, if the power factor correction operation of the step-up power supply means 3 is suddenly performed at the start of heating, an overcurrent may flow through the switching element 32 or the power supply current may become excessive. Therefore, at the start of heating, it is necessary to perform a soft start operation so that the operation of the boosting power source means 3 gradually appears. However, the output voltage and power supply current during the soft start operation are not stable because they include transient fluctuations. Similarly, a soft stop operation is required when heating is stopped.

さらには、昇圧電源手段3の出力電圧は負荷電流の変化によって急激に変化する。具体的には、昇圧動作中に負荷電流をゼロにすると、出力電圧が急上昇して平滑用コンデンサ34に過電圧が印加されたり、出力に接続されている降圧電源手段4のスイッチング素子41に過電圧が印加されるため故障の原因となる。   Furthermore, the output voltage of the boosting power source means 3 changes rapidly due to a change in load current. Specifically, when the load current is reduced to zero during the step-up operation, the output voltage rises rapidly and an overvoltage is applied to the smoothing capacitor 34, or an overvoltage is applied to the switching element 41 of the step-down power supply means 4 connected to the output. Since it is applied, it causes a failure.

昇圧電源手段3における出力電圧VO1の昇圧動作は、図3に示すとおり、スイッチング素子32がオフになった後である。したがって、スイッチング素子32がオン中に負荷電流が減少すると、その時点で昇圧動作を停止する操作を行っても(スイッチング素子32をオフしても)出力電圧VO1に過電圧が発生する。 The step-up operation of the output voltage V O1 in the step-up power supply means 3 is after the switching element 32 is turned off, as shown in FIG. Therefore, when the load current decreases while the switching element 32 is on, an overvoltage is generated in the output voltage V O1 even if an operation for stopping the boosting operation at that time is performed (even if the switching element 32 is turned off).

従来の昇圧機能を有しない電源回路を用いた誘導加熱調理器のインバータにおいては、商用電源を整流手段で直流電圧に変換し、その出力をインバータに接続する構成をとっており、加熱を停止する場合は、インバータの駆動信号を即時停止するようにしている。この構成においては、インバータの負荷電流が急激に減少しても、電源電流の流れる電源回路の経路に大きなインダクタンスが存在しないために、過渡的な高電圧が発生する恐れは無い。したがって、過渡的な高電圧から回路素子を保護するための過電圧防止素子やインバータの駆動タイミングについて特段の対応を必要としない。   In an inverter of an induction heating cooker using a power supply circuit that does not have a conventional boosting function, the commercial power supply is converted to a DC voltage by a rectifying means, and the output is connected to the inverter to stop heating. In this case, the drive signal of the inverter is stopped immediately. In this configuration, even if the load current of the inverter rapidly decreases, there is no possibility that a transient high voltage is generated because there is no large inductance in the path of the power supply circuit through which the power supply current flows. Therefore, no special measures are required for the overvoltage prevention element for protecting the circuit element from the transient high voltage and the drive timing of the inverter.

しかしながら、昇圧電源手段3を有する電源回路9の回路構成においては、上述の通り急激な負荷の変動、特に負荷電流の減少は過電圧の発生につながるため避けなければならない。そこで、加熱を停止する場合、インバータ5の出力電力の設定を徐々に減少させてインバータ5の負荷電流が急激に減少しないようにする方法にすれば良いが、この方法では所定の時間が必要となり、本来加熱を停止しなければならないタイミングからしばらくの間、通電を継続する形になるので、不要な電力の消費、負荷温度の上昇による調理物の失敗、などが発生する。   However, in the circuit configuration of the power supply circuit 9 having the boosting power supply means 3, as described above, sudden load fluctuations, particularly a decrease in load current, lead to generation of an overvoltage and must be avoided. Therefore, when heating is stopped, the output power setting of the inverter 5 may be gradually decreased so that the load current of the inverter 5 does not rapidly decrease. However, this method requires a predetermined time. Since energization is continued for a while from when the heating should be stopped, unnecessary power consumption, cooking failure due to an increase in load temperature, and the like occur.

また、制御手段7で行うインバータ5の制御をマイクロコンピュータのソフトウェアで行う場合は加熱の終了処理が複雑になるという問題点が生じる。   Further, when the control of the inverter 5 performed by the control means 7 is performed by software of a microcomputer, there arises a problem that the heating end process becomes complicated.

このため、本実施例では、使用者の設定により、あるいは、所定の自動加熱動作の終了に伴い負荷の加熱を停止する場合には、電源回路9の昇圧電源手段3の動作を先に停止し、所定の時間(短時間)が経過した後にインバータ5の動作を停止させる。このような動作をすることで、インバータ5が停止したときに発生する負荷電流の急激な低下は、すでに昇圧電源手段3の動作が停止しているために過電圧の発生は生じない。また、インバータ5が停止するまでに短時間しか要しないために、不要な電力の消費を最小限に抑えることができるとともに、負荷の温度上昇も無視できる加熱量にすることができるので、調理物の失敗にはつながらない。   For this reason, in this embodiment, when the heating of the load is stopped by the setting of the user or at the end of the predetermined automatic heating operation, the operation of the boosting power supply means 3 of the power supply circuit 9 is stopped first. The operation of the inverter 5 is stopped after a predetermined time (short time) has elapsed. By performing such an operation, an abrupt decrease in the load current that occurs when the inverter 5 is stopped does not cause an overvoltage because the operation of the boosting power source means 3 has already stopped. In addition, since only a short time is required until the inverter 5 stops, it is possible to minimize the consumption of unnecessary power and to make the heating amount negligible for the temperature rise of the load. Does not lead to failure.

図7、図8は、加熱終了時のインバータ5,昇圧電源手段3,降圧電源手段4の動作タイミングと、昇圧電源手段3の出力電圧VO1との関係を説明する図であり、図7は、昇圧電源手段3と降圧電源手段4を有しない電源回路を用いた従来の動作タイミングに準拠した場合の加熱終了時の動作波形を説明する図である。図8は、本発明の実施例の加熱終了時のインバータ5,昇圧電源手段3,降圧電源手段4の動作タイミングと、昇圧電源手段3の出力電圧VO1との関係を説明する図である。 7 and 8 are diagrams for explaining the relationship between the operation timing of the inverter 5, the step-up power supply means 3 and the step-down power supply means 4 at the end of heating, and the output voltage V O1 of the step-up power supply means 3. FIG. FIG. 6 is a diagram for explaining an operation waveform at the end of heating when complying with a conventional operation timing using a power supply circuit that does not include the step-up power supply means 3 and the step-down power supply means 4. FIG. 8 is a diagram for explaining the relationship between the operation timing of the inverter 5, the step-up power supply means 3 and the step-down power supply means 4 at the end of heating and the output voltage V O1 of the step-up power supply means 3 in the embodiment of the present invention.

図7では、加熱終了時に、電源回路9の昇圧電源手段3の動作と、降圧電源手段4の動作と、インバータ5の動作を同時に停止すると、昇圧電源手段3の出力電圧は、通電停止前の安定電圧V1 から停止直後に高電圧VP が発生し、その後、降圧電源手段4やインバータ5の回路部分による漏れ電流等で出力電圧VO1は徐々に低下し、停止電圧V3 に近づいていく。このとき、高電圧VP が降圧電源手段4やインバータ5で使われている素子の耐圧を超えた状態になると素子がブレークダウンして短絡モードで故障し、これによりその後段に接続されているインバータ5に過電圧が印加され、インバータ5のスイッチング素子51,52が過電圧により破損する、といった連鎖的な故障となり、使用不能となる恐れがある。 In FIG. 7, when the operation of the step-up power supply means 3, the operation of the step-down power supply means 4 and the operation of the inverter 5 of the power supply circuit 9 are stopped at the same time when the heating is finished, the output voltage of the step-up power supply means 3 A high voltage V P is generated immediately after the stop from the stable voltage V 1 , and then the output voltage V O1 gradually decreases due to a leakage current or the like due to the circuit portion of the step-down power supply means 4 or the inverter 5 and approaches the stop voltage V 3. Go. At this time, when the high voltage V P exceeds the breakdown voltage of the element used in the step-down power supply means 4 and the inverter 5, the element breaks down and breaks down in the short-circuit mode, thereby being connected to the subsequent stage. An overvoltage is applied to the inverter 5 and the switching elements 51 and 52 of the inverter 5 are damaged due to the overvoltage, which may result in a failure to use.

図8では、加熱終了時に、昇圧電源手段3を先に停止してから、所定時間T1 経過後に降圧電源手段4の動作とインバータ5の動作を停止する。これにより、昇圧電源手段3の動作が停止するタイミングにおいても昇圧電源手段3の出力において、所定のインピーダンスの負荷が接続されていることになるので、図7のような過渡的な高電圧VP は発生しない。 In FIG. 8, at the end of heating, the step-up power supply means 3 is stopped first, and then the operation of the step-down power supply means 4 and the operation of the inverter 5 are stopped after a predetermined time T 1 has elapsed. As a result, a load having a predetermined impedance is connected to the output of the boosting power supply means 3 even at the timing when the operation of the boosting power supply means 3 is stopped. Therefore, the transient high voltage V P as shown in FIG. Does not occur.

さらに、昇圧電源手段3の平滑用コンデンサ34を放電することになるので、昇圧電源手段3の出力電圧を速やかに低下することができる。   Furthermore, since the smoothing capacitor 34 of the boost power supply means 3 is discharged, the output voltage of the boost power supply means 3 can be quickly reduced.

つまり、インバータ5の通電中はインバータ5の電力制御に応じた電圧V1 で安定しており、加熱終了時には昇圧電源手段3の出力電圧はV2 まで低下し、降圧電源手段4とインバータ5が停止してから停止電圧V3 まで再び充電される形になる。 That is, while the inverter 5 is energized, it is stable at the voltage V 1 according to the power control of the inverter 5, and at the end of heating, the output voltage of the step-up power supply means 3 decreases to V 2 , and the step-down power supply means 4 and the inverter 5 After stopping, the battery is charged again up to the stop voltage V 3 .

次に、加熱開始時の昇圧電源手段3の動作について説明する。図9,図10は、加熱開始時のインバータ5,昇圧電源手段3,降圧電源手段4の動作タイミングと、昇圧電源手段3の出力電圧との関係を説明する図であり、図9は、昇圧電源手段3と降圧電源手段4を有しない電源回路を用いた従来の動作タイミングに準拠した場合の加熱開始時の動作波形を説明する図である。図10は、本発明の実施例の加熱開始時のインバータ5,昇圧電源手段3,降圧電源手段4の動作タイミングと、昇圧電源手段3の出力電圧VO1との関係を説明する図である。 Next, the operation of the boost power supply means 3 at the start of heating will be described. FIG. 9 and FIG. 10 are diagrams for explaining the relationship between the operation timing of the inverter 5, the step-up power supply means 3 and the step-down power supply means 4 at the start of heating, and the output voltage of the step-up power supply means 3. FIG. It is a figure explaining the operation | movement waveform at the time of the heating start at the time of complying with the conventional operation timing using the power supply circuit which does not have the power supply means 3 and the pressure | voltage fall power supply means 4. FIG. FIG. 10 is a diagram for explaining the relationship between the operation timing of the inverter 5, the step-up power supply means 3 and the step-down power supply means 4 at the start of heating and the output voltage V O1 of the step-up power supply means 3 in the embodiment of the present invention.

図9では、インバータ5の動作と同時に昇圧電源手段3が動作を開始するため、インバータ5の負荷が高インピーダンスであっても、低インピーダンスであっても、所定の電圧に達するよう昇圧電源手段3が動作する。本動作例は、加熱開始時に負荷が無い、あるいは非常に低インピーダンスの負荷であることを制御手段7の加熱可否判定手段12が判定し、とりあえず加熱するのに適当でない負荷であるため所定の周期で昇圧電源手段3と降圧電源手段4とインバータ5のオン動作と、オフ動作を繰り返し、加熱可否判定手段12により負荷の加熱可否を数回に渡り確認するパターンとなっている。このような動作では、昇圧電源手段3で昇圧するために多くの充放電電流が流れるために、最終的に加熱できない負荷と判断した場合は、インバータ5の動作を停止する時に、急激な電源回路9の負荷電流の減少が発生するため、電源回路9の出力に過渡的な高電圧が発生することがあり、これにより、回路素子の耐圧を越えるような電圧に達すると素子破壊を起こし故障する。   In FIG. 9, since the boosting power supply means 3 starts operating simultaneously with the operation of the inverter 5, the boosting power supply means 3 reaches a predetermined voltage regardless of whether the load of the inverter 5 is high impedance or low impedance. Works. In this operation example, the heating availability determination unit 12 of the control unit 7 determines that there is no load or a very low impedance load at the start of heating, and the load is not suitable for heating for the time being. Thus, the ON / OFF operation of the step-up power supply means 3, the step-down power supply means 4 and the inverter 5 is repeated, and the heating availability determination means 12 confirms whether or not the load can be heated several times. In such an operation, since a large amount of charge / discharge current flows for boosting by the boosting power supply means 3, when it is determined that the load cannot be finally heated, a sudden power supply circuit is used when the operation of the inverter 5 is stopped. 9 may cause a transient high voltage to be generated at the output of the power supply circuit 9. If the voltage reaches a voltage exceeding the breakdown voltage of the circuit element, the element will be destroyed and break down. .

図10では、同様な動作であっても昇圧電源手段3の動作を行わないため、所定の周期で昇圧電源手段3と降圧電源手段4とインバータ5のオン動作と、オフ動作を繰り返しても過渡的な高電圧は発生しない。インバータ5を駆動する加熱開始時に、負荷が有り、また、非常に低インピーダンスの負荷でないことを加熱可否判定手段12が判定し、加熱するのに適当であるという負荷の場合、インバータ5の動作を開始させた所定時間T2 経過後に昇圧電源手段3の動作を開始する。 In FIG. 10, since the step-up power supply means 3 is not operated even in the same operation, even if the step-up power supply means 3, the step-down power supply means 4 and the inverter 5 are turned on and off repeatedly at a predetermined cycle, the operation is transient. High voltage is not generated. At the start of heating for driving the inverter 5, there is a load, and the heating availability determination means 12 determines that the load is not a very low impedance load, and in the case of a load that is suitable for heating, the operation of the inverter 5 is performed. The operation of the boosting power source means 3 is started after a predetermined time T 2 has elapsed.

次に、以上の構成による作用を説明する。   Next, the effect | action by the above structure is demonstrated.

鍋等の被加熱物を誘導加熱により加熱する場合は、先に被加熱物の加熱可否を加熱可否判定手段12で判定を行い加熱可能かどうかを判定する。   When heating an object to be heated, such as a pan, by induction heating, the heating availability determination means 12 first determines whether the object to be heated can be heated, and determines whether heating is possible.

被加熱物の加熱可否の判定動作は被加熱物を低電力レベルで加熱を行うことにより、電源回路9の入力電流と加熱コイル6に流れる共振負荷回路の電流の検出値から無負荷や小物負荷、あるいは極端に負荷インピーダンスの低い負荷などを識別し、そのような場合には加熱を停止する。   The operation of determining whether or not the object to be heated can be heated is performed by heating the object to be heated at a low power level, so that no load or small load is obtained from the detected value of the input current of the power supply circuit 9 and the current of the resonant load circuit flowing in the heating coil 6. Or, a load having an extremely low load impedance is identified, and in such a case, heating is stopped.

加熱可能と判定した場合は引き続き目標の電力(使用者が操作手段8で設定した加熱電力)になるよう制御手段7により電源回路9やインバータ5の制御を行う。   When it is determined that heating is possible, the power supply circuit 9 and the inverter 5 are controlled by the control means 7 so that the target electric power (heating power set by the user with the operation means 8) is continued.

本実施例の構成のような電源回路9に昇圧電源手段3を有する場合には、加熱開始直後の入力電流は昇圧電源手段3の動作に起因する充電電流が重畳されてしまう。このため、電源投入の通電開始直後や、昇圧電源手段3の昇圧用コンデンサ44の充電完了後や、昇圧電源手段3の動作開始直後や、昇圧電源手段3の昇圧動作の安定時、などの異なる動作状態では、インバータ5の出力電力は同じでも入力電流は異なっている場合がある。すなわち、次のような場合がある。
(1)電源投入直後の昇圧用コンデンサ34に流れる大きな充電電流とインバータ5の共振負荷回路に流れる電流の合計値。
(2)昇圧電源手段3の昇圧用コンデンサ34の充電完了後の充電電流とインバータ5の共振負荷回路に流れる電流の合計値。
(3)昇圧電源手段3の昇圧動作開始直後の昇圧用コンデンサ34充電電流とインバータ5の共振負荷回路に流れる電流の合計値。
(4)昇圧電源手段3の昇圧動作安定後の昇圧用コンデンサ34に流れる昇圧動作時の充電電流とインバータ5の共振負荷回路に流れる電流の合計値。
When the booster power supply means 3 is provided in the power supply circuit 9 as in the configuration of the present embodiment, the charging current resulting from the operation of the booster power supply means 3 is superimposed on the input current immediately after the start of heating. Therefore, immediately after the start of power-on energization, after the charging of the boosting capacitor 44 of the boosting power supply unit 3 is completed, immediately after the operation of the boosting power supply unit 3 is started, or when the boosting operation of the boosting power supply unit 3 is stable, etc. In the operating state, the output current of the inverter 5 may be the same, but the input current may be different. That is, there are the following cases.
(1) The total value of the large charging current flowing through the boosting capacitor 34 immediately after power-on and the current flowing through the resonant load circuit of the inverter 5.
(2) The total value of the charging current after completion of charging of the boosting capacitor 34 of the boosting power source means 3 and the current flowing through the resonant load circuit of the inverter 5.
(3) The total value of the charging current of the boosting capacitor 34 immediately after the boosting operation of the boosting power supply means 3 and the current flowing through the resonant load circuit of the inverter 5 are performed.
(4) A total value of the charging current during the boosting operation that flows through the boosting capacitor 34 after the boosting operation of the boosting power source means 3 is stabilized and the current that flows through the resonant load circuit of the inverter 5.

したがって、加熱開始時に行う被加熱物の加熱可否の判定動作で入力電流を参照する方法では、インバータ5の共振負荷回路に流れる負荷電流が同一であっても、入力電流は異なり、(2),(4)以外では正確な入力電流の値が検出されないため、正確な被加熱物の加熱可否の判定を行うことが困難であり、誤判定する恐れがある。   Therefore, in the method of referring to the input current in the operation for determining whether the object to be heated can be heated at the start of heating, even if the load current flowing in the resonant load circuit of the inverter 5 is the same, the input current is different, (2), Since an accurate input current value is not detected except for (4), it is difficult to accurately determine whether the object to be heated can be heated, and there is a risk of erroneous determination.

このため、本実施例では加熱開始時に昇圧電源手段3の動作を停止した状態、つまり、昇圧動作に関わる入力電流の変動を発生させない状態で加熱可否の判定動作を行い、入力電流はインバータ5の電力にのみ反映される状態と加熱可否の判定精度の向上を図り、入力電流はインバータ5の負荷に印加する電力にのみ反映される状態とする。これにより、無負荷や小物負荷を加熱可能とみなすような誤検知や、磁性体と非磁性体の誤判別を防ぐことができ、誤加熱による温度上昇や、加熱できない負荷への電力投入によるインバータ5への過負荷状態を未然に防止できるため、安全性,信頼性を高めることができる。   For this reason, in this embodiment, the operation for determining whether heating is possible or not is performed in a state where the operation of the boosting power source means 3 is stopped at the start of heating, that is, in a state where fluctuations in the input current related to the boosting operation are not generated. The state reflected only in electric power and the determination accuracy of heating availability are improved, and the input current is reflected only in electric power applied to the load of the inverter 5. This prevents false detections such that no load or small load can be heated, and misidentification of magnetic and non-magnetic materials. Temperature rises due to incorrect heating, or inverters that turn on power to loads that cannot be heated. Since the overload state to 5 can be prevented in advance, safety and reliability can be improved.

なお、負荷判定終了後、加熱を継続する場合にはインバータ5を駆動させた所定時間
2 後に昇圧電源手段3の動作を開始する。このとき、昇圧用のコンデンサ34への充放電電流が入力電流に重畳するが、既に加熱可否の判定が終了しているために、このタイミングでは一時的に負荷判定を行わなければ良い。所定の時間後、昇圧動作電流が安定的に流れはじめてから負荷判定を再開することで、負荷の有無や材質を判定することができ、誤加熱を防止することができる。
Incidentally, after the load determination end, it starts the operation of the boosted power supply unit 3 after a predetermined time T 2 of driving the inverter 5 when continuing the heating. At this time, the charging / discharging current to the boosting capacitor 34 is superimposed on the input current. However, since the determination as to whether heating is possible has already been completed, it is not necessary to perform load determination temporarily at this timing. By restarting the load determination after the boost operation current starts to flow stably after a predetermined time, it is possible to determine the presence or material of the load and prevent erroneous heating.

このように、電源回路9の出力に過電圧の発生が無く、したがって、インバータ5を構成する素子に与える過電圧や過電流のストレスを微小にすることができ、故障の発生頻度が激減し、製品の信頼性を高めることができる。   Thus, there is no occurrence of overvoltage at the output of the power supply circuit 9, so that overvoltage and overcurrent stress applied to the elements constituting the inverter 5 can be made minute, the frequency of occurrence of failure is drastically reduced, and the product Reliability can be increased.

また、加熱開始時に行う被加熱物の加熱可否の判定を安定した電源状態で行うことができるため、誤判定を防止することができる。   Moreover, since it can be determined in a stable power supply state whether or not the object to be heated can be heated at the start of heating, erroneous determination can be prevented.

本発明の誘導加熱調理器の回路ブロック図である。It is a circuit block diagram of the induction heating cooking appliance of this invention. 昇圧電源手段の回路構成を説明する図である。It is a figure explaining the circuit structure of a step-up power supply means. 昇圧電源手段の制御タイミングを説明する図である。It is a figure explaining the control timing of a pressure | voltage rise power supply means. 降圧電源手段の回路構成を説明する図である。It is a figure explaining the circuit structure of a step-down power supply means. 降圧電源手段の制御タイミングを説明する図である。It is a figure explaining the control timing of a step-down power supply means. インバータの回路構成を説明する図である。It is a figure explaining the circuit structure of an inverter. 昇圧電源手段と降圧電源手段を有しない電源回路を用いた従来の動作タイミングに準拠した場合の加熱終了時の動作波形を説明する図である。It is a figure explaining the operation | movement waveform at the time of completion | finish of a heating at the time of complying with the conventional operation timing using the power supply circuit which does not have a pressure | voltage rise power supply means and a pressure | voltage fall power supply means. 本発明の実施例の加熱終了時のインバータ,昇圧電源手段,降圧電源手段の動作タイミングと、昇圧電源手段の出力電圧VO1との関係を説明する図である。It is a figure explaining the relationship between the operation timing of the inverter at the time of completion | finish of heating of the Example of this invention, a step-up power supply means, a step-down power supply means, and the output voltage VO1 of a step-up power supply means. 昇圧電源手段と降圧電源手段を有しない電源回路を用いた従来の動作タイミングに準拠した場合の加熱開始時の動作波形を説明する図である。It is a figure explaining the operation | movement waveform at the time of the heating start at the time of complying with the conventional operation timing using the power supply circuit which does not have a step-up power supply means and a step-down power supply means. 本発明の実施例の加熱開始時のインバータ,昇圧電源手段,降圧電源手段の動作タイミングと、昇圧電源手段の出力電圧VO1との関係を説明する図である。It is a figure explaining the relationship between the operation timing of the inverter at the time of the heating start of the Example of this invention, a step-up power supply means, a step-down power supply means, and the output voltage VO1 of a step-up power supply means.

符号の説明Explanation of symbols

1 商用電源
3 昇圧電源手段
5 インバータ
7 制御手段
9 電源回路
12 加熱可否判定手段
DESCRIPTION OF SYMBOLS 1 Commercial power supply 3 Boosting power supply means 5 Inverter 7 Control means 9 Power supply circuit 12 Heating availability determination means

Claims (2)

共振負荷回路と、商用電源に接続され直流可変電源に変換する昇圧電源手段を有する電源回路と、この電源回路が生成する直流電圧を交流電圧に変換して前記共振負荷回路に電力を供給するインバータと、前記電源回路と前記インバータを制御する制御手段とを備えた誘導加熱調理器において、
加熱開始時は前記インバータを駆動させた所定時間後に前記電源回路の昇圧電源手段の動作を開始させ、
加熱停止時は前記電源回路の昇圧電源手段の動作を停止させた所定時間後に前記インバータを駆動停止させるように前記制御手段にて制御することを特徴とする誘導加熱調理器。
A resonance load circuit, a power supply circuit having a boost power supply means connected to a commercial power supply and converting to a DC variable power supply, and an inverter that converts a DC voltage generated by the power supply circuit into an AC voltage and supplies power to the resonance load circuit And an induction heating cooker provided with a control means for controlling the power supply circuit and the inverter,
At the start of heating, start the operation of the boost power supply means of the power supply circuit after a predetermined time of driving the inverter,
An induction heating cooker characterized in that when the heating is stopped, the control means controls the inverter to stop driving after a predetermined time after the operation of the boosting power supply means of the power supply circuit is stopped.
前記電源回路の入力電流と、前記共振負荷回路の電流とを検知して被加熱物の加熱可否を判定する加熱可否判定手段を備え、この加熱可否判定手段は、加熱開始時の前記電源回路の昇圧電源手段の動作開始以前に加熱可否を判定することを特徴とする請求項1記載の誘導加熱調理器。   A heating availability determination unit is provided that detects the input current of the power supply circuit and the current of the resonant load circuit to determine whether the object to be heated can be heated, and the heating availability determination unit includes the heating circuit. 2. The induction heating cooker according to claim 1, wherein whether or not heating is possible is determined before the operation of the boosting power source means is started.
JP2006354203A 2006-12-28 2006-12-28 Induction heating cooker Pending JP2008166107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354203A JP2008166107A (en) 2006-12-28 2006-12-28 Induction heating cooker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354203A JP2008166107A (en) 2006-12-28 2006-12-28 Induction heating cooker

Publications (1)

Publication Number Publication Date
JP2008166107A true JP2008166107A (en) 2008-07-17

Family

ID=39695297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354203A Pending JP2008166107A (en) 2006-12-28 2006-12-28 Induction heating cooker

Country Status (1)

Country Link
JP (1) JP2008166107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022908A (en) * 2010-07-15 2012-02-02 Hitachi Appliances Inc Induction heating cooker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246783A (en) * 1988-03-29 1989-10-02 Toshiba Corp Electromagnetic cooking apparatus
JPH06189562A (en) * 1992-12-16 1994-07-08 Fuji Electric Co Ltd Control method for inverter
JP2002151243A (en) * 2000-11-14 2002-05-24 Hitachi Hometec Ltd Induction heating cooker
JP2006114269A (en) * 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd Induction heating device
JP2006324121A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Induction heating device
WO2006135056A1 (en) * 2005-06-17 2006-12-21 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246783A (en) * 1988-03-29 1989-10-02 Toshiba Corp Electromagnetic cooking apparatus
JPH06189562A (en) * 1992-12-16 1994-07-08 Fuji Electric Co Ltd Control method for inverter
JP2002151243A (en) * 2000-11-14 2002-05-24 Hitachi Hometec Ltd Induction heating cooker
JP2006114269A (en) * 2004-10-13 2006-04-27 Matsushita Electric Ind Co Ltd Induction heating device
JP2006324121A (en) * 2005-05-19 2006-11-30 Matsushita Electric Ind Co Ltd Induction heating device
WO2006135056A1 (en) * 2005-06-17 2006-12-21 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012022908A (en) * 2010-07-15 2012-02-02 Hitachi Appliances Inc Induction heating cooker

Similar Documents

Publication Publication Date Title
JP4900248B2 (en) Induction heating device
JP4865699B2 (en) Induction heating device
JP5506547B2 (en) Induction heating cooker
WO2006135056A1 (en) Induction heating apparatus
JP2014023194A (en) Switching power supply
JP2006351301A (en) Induction heating cooker
JP4084615B2 (en) Electromagnetic induction heating cooker
JP2011165452A (en) Induction heating cooker
JP2007012490A (en) Induction heating cooker
JP2008166107A (en) Induction heating cooker
JP6178676B2 (en) Control circuit for inverter circuit, inverter device provided with this control circuit, induction heating device provided with this inverter device, and control method
JP4887681B2 (en) Induction heating device
JP5452162B2 (en) Induction heating cooker
JP4127042B2 (en) Induction heating device
JP4797542B2 (en) Induction heating device
JP2009033905A (en) Power control apparatus
JP3997898B2 (en) Induction heating cooker
JP2006294431A (en) Induction heating device
JP2004171934A (en) Induction heating device
JP2019121544A (en) Induction heating cooker
JP2007294344A (en) Induction heating device
JP5892842B2 (en) Induction heating cooker
JP2008099510A (en) Dc power supply and equipment using same
JP2007095454A (en) Induction heating cooker
JP4807022B2 (en) Induction heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110706

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110