JP2008166055A - High-frequency oscillation type proximity sensor - Google Patents

High-frequency oscillation type proximity sensor Download PDF

Info

Publication number
JP2008166055A
JP2008166055A JP2006352540A JP2006352540A JP2008166055A JP 2008166055 A JP2008166055 A JP 2008166055A JP 2006352540 A JP2006352540 A JP 2006352540A JP 2006352540 A JP2006352540 A JP 2006352540A JP 2008166055 A JP2008166055 A JP 2008166055A
Authority
JP
Japan
Prior art keywords
coil
circuit
frequency
resonance circuit
resonance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006352540A
Other languages
Japanese (ja)
Other versions
JP4831686B2 (en
Inventor
Takumi Hayashi
巧 林
Pearl Neil
パール ニール
Takashi Honma
隆 本間
Shinichi Kawai
真一 川井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2006352540A priority Critical patent/JP4831686B2/en
Publication of JP2008166055A publication Critical patent/JP2008166055A/en
Application granted granted Critical
Publication of JP4831686B2 publication Critical patent/JP4831686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-frequency oscillation type proximity sensor capable of setting a detection distance long enough with not only a ferromagnetic metal but a non-magnetic metal, and that, with stable detection characteristics. <P>SOLUTION: The sensor is provided with a two-thread coil with one of the two coil conductors having one end connected with each other and twisted together as a coil for a resonance circuit, and the other as a coil for copper resistor compensation, a capacitor connected in parallel with the two-thread coil to form a resonance circuit, a driving circuit driving the resonance circuit at a constant frequency, a series circuit of an inductance of the two-thread coil and its inner resistor, and a copper resistor compensation circuit virtually grounding a connection point of each copper resistor at an equivalent circuit of the two-thread coil shown as each copper resistor of the coil for resonance circuit and the coil for copper resistor compensation, and the above series circuit. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鉄等の強磁性金属のみならずアルミニウム等の非磁性金属に対しても、例えば一般的なM18サイズの円柱型近接センサにおいて、その検出距離を10mm以上とすることが可能な高周波発振型近接センサに関する。   In the present invention, not only a ferromagnetic metal such as iron but also a non-magnetic metal such as aluminum, for example, in a general M18 size cylindrical proximity sensor, the detection distance can be set to 10 mm or more. The present invention relates to an oscillation type proximity sensor.

高周波発振型近接センサは、高周波発振回路の一部を構成する検出用コイルに検出対象物が接近したとき、電磁誘導作用により上記検出用コイルのインダクタンスや損失が変化し、これに伴って高周波発振回路の発振周波数や発振振幅が変化することを利用して上記検出対象物の接近を検出するものである。この種の高周波発振型近接センサには、一般的にその検出特性が安定であることのみならず、その検出距離を十分に長く設定し得ること等が要求され、従来より種々の改良が施されている。   The high-frequency oscillation proximity sensor changes the inductance and loss of the detection coil due to electromagnetic induction when the object to be detected approaches the detection coil that forms part of the high-frequency oscillation circuit. The approach of the detection object is detected by utilizing the change in the oscillation frequency and oscillation amplitude of the circuit. In general, this type of high-frequency oscillation proximity sensor is required not only to have stable detection characteristics but also to be able to set its detection distance sufficiently long. ing.

そこで本発明者らは先に、近接センサの検出特性が、専ら、検出コイルに含まれる銅抵抗(銅損)の影響を受けることに着目し、一端を互いに接続して縒り合わせた2本のコイル導体の一方を共振回路用コイルとし、他方を銅抵抗補償用コイルとした2糸コイルを検出用コイルとして用いた自励振型の高周波発振型近接センサにおいて、2糸コイルのインダクタンスLとその誘導性の内部抵抗Riとの直列回路、およびこの直列回路の一端にそれぞれ接続される前記共振回路用コイルおよび前記銅抵抗補償用コイルの各銅抵抗Rcuとして示される前記2糸コイルの等価回路における前記各銅抵抗と前記直列回路との接続点を仮想接地することで上記各銅抵抗Rcu自体を打ち消し、その検出特性の安定化を図ることを提唱した(例えば特許文献1を参照)。   Therefore, the present inventors first focused on the fact that the detection characteristics of the proximity sensor are exclusively affected by the copper resistance (copper loss) contained in the detection coil, and connected the two ends connected to each other. In a self-excited high-frequency oscillation proximity sensor using a two-wire coil in which one of the coil conductors is a resonance circuit coil and the other is a copper resistance compensation coil as a detection coil, the inductance L of the two-wire coil and its induction In the equivalent circuit of the two-yarn coil shown as each copper resistance Rcu of the resonance circuit coil and the copper resistance compensation coil respectively connected to one end of the series circuit. It was proposed that each copper resistor Rcu itself is canceled by virtually grounding the connection point between each copper resistor and the series circuit, and the detection characteristic is stabilized (for example, Patent Document 1). Reference).

一方、高周波発振型近接センサは、鉄等の強磁性金属に比較してアルミニウムや銅等の非磁性金属に対する検出感度が悪く、その検出距離は強磁性金属の30%程度である。そこでコイルとコンデンサとからなる共振回路を一定周波数で駆動することで、強磁性金属のみならず非磁性金属をも高感度に検出し得るようにした、いわゆる他励振型の高周波発振型近接センサが提唱されている(例えば特許文献2を参照)。
特開2003−298403号公報 特開平3−29415号公報
On the other hand, the high-frequency oscillation type proximity sensor has a lower detection sensitivity for nonmagnetic metals such as aluminum and copper than a ferromagnetic metal such as iron, and its detection distance is about 30% of that of a ferromagnetic metal. Therefore, a so-called separately excited high-frequency oscillation proximity sensor that can detect not only ferromagnetic metals but also nonmagnetic metals with high sensitivity by driving a resonance circuit composed of a coil and a capacitor at a constant frequency is provided. Has been proposed (see, for example, Patent Document 2).
JP 2003-298403 A JP-A-3-29415

しかしながら前述した特許文献2に示されるような他励振型の高周波発振型近接センサを用いても、非磁性金属に対する検出距離を強磁性金属と同程度に長くし得るだけである。具体的には従来一般的な他励振型の高周波発振型近接センサにおける、強磁性金属および/または非磁性金属からなる検出対象物の検出距離は、例えば一般的なM18サイズの円柱型近接センサにおいて高々7mm程度であり、実用上十分に長い検出距離が確保されているとは言い難い。これ故、検出対象物との衝突を確実に防ぐ上で、その検出距離を10mm以上に設定した高周波発振型近接センサの開発が強く望まれている。   However, even if a separately excited high-frequency oscillation proximity sensor as shown in Patent Document 2 described above is used, the detection distance for a nonmagnetic metal can only be made as long as that for a ferromagnetic metal. Specifically, the detection distance of a detection object made of a ferromagnetic metal and / or a non-magnetic metal in a conventional general excitation type high-frequency oscillation proximity sensor is, for example, a general M18 size cylindrical proximity sensor. It is at most about 7 mm, and it is difficult to say that a sufficiently long detection distance is practically secured. Therefore, in order to reliably prevent a collision with a detection target, development of a high-frequency oscillation type proximity sensor whose detection distance is set to 10 mm or more is strongly desired.

本発明はこのような事情を考慮してなされたもので、その目的は、鉄等の強磁性金属のみならずアルミニウム等の非磁性金属に対しても、例えば一般的なM18サイズの円柱型近接センサにおいてその検出距離を10mm以上と十分に長くすることができ、しかも検出特性の安定した使い勝手の良い高周波発振型近接センサを提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is not only to a ferromagnetic metal such as iron but also to a nonmagnetic metal such as aluminum, for example, a general M18 size cylindrical proximity. An object of the present invention is to provide a high-frequency oscillating proximity sensor that can sufficiently increase the detection distance of the sensor to 10 mm or more and that has stable detection characteristics and is easy to use.

上述した目的を達成するべく本発明に係る高周波発振型近接センサは、
<a> 一端を互いに接続して縒り合わせた2本のコイル導体の一方を共振回路用コイルとし、他方を銅抵抗補償用コイルとした2糸コイルと、
<b> この2糸コイルに並列接続されて共振回路を形成するコンデンサと、
<c> 上記共振回路を一定周波数で駆動する駆動回路と、
<d> 前記2糸コイルのインダクタンスとその誘導性の内部抵抗との直列回路、およびこの直列回路の一端にそれぞれ接続される前記共振回路用コイルおよび前記銅抵抗補償用コイルの各銅抵抗として示される前記2糸コイルの等価回路における前記各銅抵抗と前記直列回路との接続点を仮想接地する銅抵抗補償回路と
を備えたことを特徴としている。
In order to achieve the above-described object, the high-frequency oscillation type proximity sensor according to the present invention includes:
<a> A two-filament coil in which one end of two coil conductors connected together and wound together is a resonance circuit coil and the other is a copper resistance compensation coil;
<b> a capacitor that is connected in parallel to the two-thread coil to form a resonance circuit;
<c> a drive circuit for driving the resonant circuit at a constant frequency;
<d> Shown as a series circuit of the inductance of the two-wire coil and its inductive internal resistance, and each copper resistance of the resonance circuit coil and the copper resistance compensation coil respectively connected to one end of the series circuit And a copper resistance compensation circuit that virtually grounds a connection point between each of the copper resistors and the series circuit in the equivalent circuit of the two-thread coil.

好ましくは前記銅抵抗補償回路は、前記2糸コイルにおける前記共振回路用コイルおよび銅抵抗補償用コイルの他端に接続され、前記銅抵抗補償用コイルの他端に生じる電圧を反転増幅して前記共振回路用コイルの他端に負帰還する反転増幅器を含んで構成される。また前記駆動回路は、前記共振回路の固有振動周波数近傍の該固有振動周波数よりも若干低い一定周波数の電圧を発生する発振器と、この発振器が出力する上記一定周波数の電圧を電流変換して前記共振回路に印加するV-I変換器を含んで構成される。   Preferably, the copper resistance compensation circuit is connected to the other end of the resonance circuit coil and the copper resistance compensation coil in the two-thread coil, and inverts and amplifies the voltage generated at the other end of the copper resistance compensation coil. An inverting amplifier that negatively feeds back to the other end of the resonance circuit coil is included. In addition, the drive circuit includes an oscillator that generates a voltage having a constant frequency slightly lower than the natural vibration frequency in the vicinity of the natural vibration frequency of the resonance circuit, and the resonance frequency by converting the voltage of the constant frequency output by the oscillator. A V-I converter applied to the circuit is included.

更には前記発振器が出力する電圧と前記共振回路から得られる出力電圧との位相差に応じて前記コンデンサの容量を微調整する調整手段を備えることを特徴としている。   Furthermore, an adjustment means for finely adjusting the capacitance of the capacitor according to a phase difference between a voltage output from the oscillator and an output voltage obtained from the resonance circuit is provided.

上述した構成の高周波発振型近接センサによれば、2糸コイルとコンデンサとにより構成される共振回路を、その外部から一定周波数で駆動する他励振型の構成を採用することで鉄等の強磁性金属のみならずアルミニウム等の非磁性金属に対してもその検出距離を長くすることができる上、上記2糸コイルの銅抵抗(銅損)を補償し、実質的にその銅抵抗自体を打ち消すことにより上記銅抵抗の温度特性に依存する検出特性の変化を抑制すると共に、その共振条件を急峻(シャープ)にすることができる。換言すれば銅抵抗が補償された(打ち消された)前記2糸コイルとコンデンサとにより構成される共振回路の共振条件(Qスイッチ特性)を、周波数帯域が狭く、且つそのピークレベルを大きくすることができるので、検出対象物の有無による共振回路の出力の変化を大きくすることができる。この結果、検出対象物が強磁性体であるか、或いは非磁性体であるかに係わらず、その検出距離を十分に長くすることができる。例えば一般的なM18サイズの円柱型近接センサにおいてその検出距離を検出距離を12mm程度に設定することが可能となる。   According to the high-frequency oscillation type proximity sensor having the above-described configuration, a ferromagnetic circuit such as iron is used by adopting a separately-excited configuration in which a resonance circuit including a two-thread coil and a capacitor is driven at a constant frequency from the outside. The detection distance can be increased not only for metals but also for non-magnetic metals such as aluminum, and the copper resistance (copper loss) of the above-described two-thread coil is compensated, and the copper resistance itself is substantially cancelled. As a result, it is possible to suppress the change in the detection characteristic depending on the temperature characteristic of the copper resistance and to make the resonance condition sharp. In other words, the resonance condition (Q switch characteristic) of the resonance circuit composed of the two-filament coil and the capacitor in which the copper resistance is compensated (cancelled) is narrow in the frequency band and the peak level is increased. Therefore, the change in the output of the resonance circuit due to the presence or absence of the detection target can be increased. As a result, the detection distance can be made sufficiently long regardless of whether the detection target is a ferromagnetic material or a non-magnetic material. For example, in a general M18 size cylindrical proximity sensor, the detection distance can be set to about 12 mm.

以下、図面を参照して本発明の一実施形態に係る高周波発振型近接センサについて説明する。
図1はこの実施形態に係る高周波発振型近接センサの概略構成図であり、1は2本のコイル導体の一端を互いに接続して縒り合わせた2糸コイルである。この高周波発振型近接センサは上記2糸コイル1にコンデンサ2を並列接続し、2本のコイル導体の一方を共振回路用コイルとし、他方を銅抵抗補償用コイルとする共振回路3を構築し、この共振回路3を外部から一定周波数で駆動するように構成される。ちなみに前記2糸コイル1は、例えば一端を共通に接続した2本の高周波リッツ線を互いに縒り合わせたコイルL1,L2を樹脂製のボビンに巻装し、該ボビンにフェライトコアを挿入したものからなる。
Hereinafter, a high-frequency oscillation type proximity sensor according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a high-frequency oscillation type proximity sensor according to this embodiment, and 1 is a two-thread coil in which one ends of two coil conductors are connected to each other and wound together. This high-frequency oscillation type proximity sensor has a capacitor 2 connected in parallel to the two-thread coil 1, and a resonance circuit 3 is constructed in which one of the two coil conductors is a resonance circuit coil and the other is a copper resistance compensation coil. The resonance circuit 3 is configured to be driven at a constant frequency from the outside. For example, the two-thread coil 1 is formed by winding coils L1 and L2 in which two high-frequency litz wires having one end connected in common are wound around a resin bobbin, and inserting a ferrite core into the bobbin. Become.

上述した2糸コイル1とコンデンサ2とからなる共振回路3を駆動する駆動回路は、水晶発振器からなり、一定周波数のパルス信号(電圧)を発振出力する発振器4と、この発振器4の出力を分周することで前記共振回路3の共振周波数の近傍であって、且つ該共振周波数よりも若干低い周波数の信号を生成する分周器5と、この分周器5の出力(電圧)を電流変換して前記共振回路3に印加するV-I変換器6とからなる。このような駆動回路にて前記共振回路3を駆動することにより他励振型の高周波発振型近接センサが構成されている。そして基本的には前記2糸コイル1への検出対象物Mの接近に伴って変化する前記共振回路3の出力(振幅)の変化をレベル検出器7にて判定することで、検出対象物Mの近接(存在)を検出するものとなっている。   The drive circuit for driving the resonance circuit 3 composed of the two-yarn coil 1 and the capacitor 2 described above is composed of a crystal oscillator and oscillates and outputs a pulse signal (voltage) with a constant frequency, and the output of the oscillator 4 is divided. A frequency divider 5 that generates a signal having a frequency that is in the vicinity of the resonance frequency of the resonance circuit 3 and slightly lower than the resonance frequency by turning, and an output (voltage) of the frequency divider 5 is converted into a current. And a VI converter 6 applied to the resonance circuit 3. By driving the resonant circuit 3 with such a drive circuit, a separately excited high frequency oscillation proximity sensor is configured. Basically, the level detector 7 determines a change in the output (amplitude) of the resonance circuit 3 that changes as the detection target M approaches the two-thread coil 1, thereby detecting the detection target M. It detects the proximity (presence) of.

このような他励振型の高周波発振型近接センサにおいて、本発明においては更に前記2糸コイル1の銅抵抗を打ち消して、その検出特性の安定化を図る銅抵抗補償回路8を備えている。この銅抵抗補償回路8は、例えば前記2糸コイル1における前記銅抵抗補償用コイルL2の他端に生じる電圧を反転増幅し、その出力を前記共振回路用コイルL1の他端に負帰還する反転増幅器9として実現される。   In such a separately excited type high frequency oscillation proximity sensor, the present invention further includes a copper resistance compensation circuit 8 for canceling the copper resistance of the two-thread coil 1 and stabilizing the detection characteristics. The copper resistance compensation circuit 8 inverts and amplifies the voltage generated at the other end of the copper resistance compensation coil L2 in the two-wire coil 1, for example, and inverts the output to the other end of the resonance circuit coil L1. This is realized as an amplifier 9.

尚、このような銅抵抗補償回路8は、基本的には図2に示すように2糸コイル1のインダクタンスL(=L1=L2)とその誘導性の内部抵抗Riとの直列回路、およびこの直列回路の一端にそれぞれ接続される前記共振回路用コイルおよび前記銅抵抗補償用コイルの各銅抵抗Rcuとする等価回路として示したとき、その等価回路における前記各銅抵抗と前記直列回路との接続点Dを仮想接地する役割を担う。そして上記接続点Dの仮想接地により銅抵抗Rcuの存在自体を打ち消すことで、共振回路3における銅抵抗Rcuに起因する検出特性の不安定化を防止するものである。このような役割を果たす銅抵抗補償回路8については、前述した特許文献1に詳述される通りである。   Such a copper resistance compensation circuit 8 basically includes a series circuit of an inductance L (= L1 = L2) of the two-filament coil 1 and its inductive internal resistance Ri as shown in FIG. When shown as an equivalent circuit having each copper resistance Rcu of the resonance circuit coil and the copper resistance compensation coil respectively connected to one end of a series circuit, the connection of the copper resistance and the series circuit in the equivalent circuit The point D is virtually grounded. The presence of the copper resistor Rcu itself is canceled by the virtual ground at the connection point D, thereby preventing the detection characteristics from becoming unstable due to the copper resistor Rcu in the resonance circuit 3. The copper resistance compensation circuit 8 that plays such a role is as described in detail in the above-mentioned Patent Document 1.

ところで上述した如くして2糸コイル1における銅抵抗を補償した場合、銅抵抗Rcuを打ち消した分、前記共振回路3の共振特性を、その共振周波数の幅が狭く、且つそのピークレベルが大きい急峻(シャープ)なものとすることができる。即ち、図3に前述した共振回路3における2糸コイル1の銅抵抗を補償しない場合の共振特性(x,y,z)と、銅抵抗を補償した場合の共振特性(X,Y,Z)とを対比して示すように、銅抵抗補償によってその共振特性を急峻(シャープ)にすることができる。尚、特性(x,X)は検出対象物Mが存在しないときの共振特性を示しており、特性(y,Y)は検出対象物Mが鉄等の強磁性体であるときの共振特性、そして特性(z,Z)は検出対象物Mがアルミニウムや銅等の非磁性体であるときの共振特性を示している。   By the way, when the copper resistance in the two-thread coil 1 is compensated as described above, the resonance characteristic of the resonance circuit 3 is steep with a narrow resonance frequency width and a large peak level by canceling the copper resistance Rcu. It can be (sharp). That is, the resonance characteristics (x, y, z) when the copper resistance of the two-thread coil 1 in the resonance circuit 3 described above in FIG. 3 is not compensated, and the resonance characteristics (X, Y, Z) when the copper resistance is compensated. As shown by contrast, the resonance characteristic can be made sharp by the copper resistance compensation. The characteristic (x, X) indicates a resonance characteristic when the detection target M does not exist, and the characteristic (y, Y) indicates a resonance characteristic when the detection target M is a ferromagnetic material such as iron. The characteristics (z, Z) indicate the resonance characteristics when the detection object M is a nonmagnetic material such as aluminum or copper.

より具体的には銅抵抗補償回路8によって2糸コイル1の銅抵抗Rcuを打ち消すことによって上記2糸コイル1とコンデンサ2とにより構成される共振回路3のQ値が高くなる。そして2糸コイル1の実質的な抵抗成分が小さくなる分、その共振周波数における振幅(レベル)が大きくなり、また上記共振周波数からのずれに対してその振幅(レベル)が急激に小さくなる。つまり銅抵抗補償により共振回路3の共振特性をよりシャープにすることが可能となる。   More specifically, when the copper resistance Rcu of the two-yarn coil 1 is canceled by the copper resistance compensating circuit 8, the Q value of the resonance circuit 3 constituted by the two-yarn coil 1 and the capacitor 2 is increased. As the substantial resistance component of the two-thread coil 1 decreases, the amplitude (level) at the resonance frequency increases, and the amplitude (level) rapidly decreases with respect to the deviation from the resonance frequency. That is, the resonance characteristics of the resonance circuit 3 can be made sharper by copper resistance compensation.

このような駆動条件下における共振回路3の特性Xに対して2糸コイル1に鉄等の強磁性体が近付くと2糸コイル1のインピーダンスが低下し、図3に特性Yとして示すように振幅自体が小さくなるので、上記共振周波数の変化をモニタすることで強磁性体の存在を高感度に検出することができる。また2糸コイル1にアルミ等の非磁性体が近付くと、非磁性体に生じる渦電流によって磁束が打ち消され、2糸コイル1のインダクタンスが低下するので、図3に特性Zとして示すようにその共振点(共振周波数)が変化する。従ってそのときの共振周波数での振幅ではなく、前述した駆動周波数での振幅をモニタすることで非磁性体の存在を高感度に検出することが可能となる。   When the ferromagnetic material such as iron comes close to the double-threaded coil 1 with respect to the characteristic X of the resonance circuit 3 under such driving conditions, the impedance of the double-threaded coil 1 is reduced, and the amplitude as shown as the characteristic Y in FIG. Since it itself becomes small, the presence of the ferromagnetic material can be detected with high sensitivity by monitoring the change in the resonance frequency. Further, when a non-magnetic material such as aluminum approaches the two-thread coil 1, the magnetic flux is canceled by the eddy current generated in the non-magnetic material, and the inductance of the two-thread coil 1 is reduced. The resonance point (resonance frequency) changes. Therefore, it is possible to detect the presence of the non-magnetic material with high sensitivity by monitoring the amplitude at the drive frequency described above, not the amplitude at the resonance frequency at that time.

従って上述した如く共振回路3をその共振周波数近傍の一定周波数で駆動し、この駆動周波数における共振回路3の出力(振幅)をモニタすることによって、検出対象物Mが強磁性体であっても、或いは非磁性体であってもその近接(存在)を高感度に検出することが可能となる。ちなみに本発明者らの実験によれば、例えば一般的なM18サイズの円柱型近接センサにおいて、強磁性体である鉄に対する検出距離を7mmから12mmと長く設定することが可能となり、また非磁性体であるに銅やアルミニウムに対する検出距離を2mmから12mmと長く設定することが可能となった。   Therefore, as described above, the resonance circuit 3 is driven at a constant frequency in the vicinity of the resonance frequency, and the output (amplitude) of the resonance circuit 3 at this drive frequency is monitored. Alternatively, even if it is a non-magnetic material, its proximity (presence) can be detected with high sensitivity. By the way, according to the experiments by the present inventors, for example, in a general M18 size cylindrical proximity sensor, it is possible to set the detection distance for iron, which is a ferromagnetic material, as long as 7 mm to 12 mm. However, the detection distance for copper and aluminum can be set as long as 2 mm to 12 mm.

ところで上述ように他励振型の高周波発振型近接センサを構成した場合、その共振特性(Qスイッチ特性)がシャープになることは前述した通りであるが、このシャープな共振特性を活かして検出対象物Mの近接を検出するには、共振回路3の駆動周波数と該共振回路3の共振周波数とを精度良く合わせ込む必要がある。その調整法としては、例えば発振器4の発振周波数自体を調整したり、或いは分周器5による分周比を調整しても良いが、一般的にはコンデンサ2の容量を微調整することか実用的である。   By the way, as described above, when the separately excited high frequency oscillation proximity sensor is configured as described above, the resonance characteristic (Q switch characteristic) becomes sharp as described above. In order to detect the proximity of M, the drive frequency of the resonance circuit 3 and the resonance frequency of the resonance circuit 3 must be matched with high accuracy. As the adjustment method, for example, the oscillation frequency itself of the oscillator 4 may be adjusted, or the frequency division ratio by the frequency divider 5 may be adjusted. In general, the capacitance of the capacitor 2 is finely adjusted. Is.

この場合には、例えば代表的なサンプルを用い、調整器9にて強磁性金属と非磁性金属とを長距離で、且つ等距離で検出し得るような前記分周器5の出力と共振器3の出力との位相差φの最適値を予め求めておく。そして量産品においては、前記分周器5の出力と共振器3の出力との位相差φが上記位相差の最適値となるように前記コンデンサ2の容量を微調整するようにすれば良い。即ち、共振回路3の駆動周波数と該共振回路3の共振周波数にずれがあると、上記駆動周波数における共振回路3のインピーダンスの虚数成分に依存して、図4(a)に示すように分周回路5の出力(矩形波)V1と共振回路3の出力(正弦波)V2との間に位相のずれφが生じる。このずれ、即ち位相差φには、正確にはV-I変換器での位相回転の影響も含まれる。そのため、上記位相差φの最適値は回路構成ごとに異なる値となる。しかしこの位相差φを参照することによって、前記コンデンサ2の容量の調整を容易に、且つ正確に行うことが可能となる。   In this case, for example, a representative sample is used, and the output of the frequency divider 5 and the resonator that can detect the ferromagnetic metal and the nonmagnetic metal at a long distance and an equal distance by the adjuster 9. The optimum value of the phase difference φ with respect to the output 3 is obtained in advance. In a mass-produced product, the capacitance of the capacitor 2 may be finely adjusted so that the phase difference φ between the output of the frequency divider 5 and the output of the resonator 3 becomes the optimum value of the phase difference. That is, if there is a difference between the drive frequency of the resonance circuit 3 and the resonance frequency of the resonance circuit 3, the frequency division is performed as shown in FIG. 4A depending on the imaginary component of the impedance of the resonance circuit 3 at the drive frequency. A phase shift φ occurs between the output (rectangular wave) V1 of the circuit 5 and the output (sine wave) V2 of the resonance circuit 3. This shift, that is, the phase difference φ includes the influence of the phase rotation in the VI converter accurately. For this reason, the optimum value of the phase difference φ is different for each circuit configuration. However, by referring to this phase difference φ, the capacitance of the capacitor 2 can be adjusted easily and accurately.

尚、本発明は上述した実施形態に限定されるものではない。例えば2糸コイル1の銅抵抗補償については、共振回路3の出力を位相制御して銅抵抗補償用コイルに負帰還することの可能である。また実施形態においては分周器5を用いて発振器4の出力を分周して共振回路3を駆動する一定周波数の電圧信号を生成したが、VCO(周波数可変制御型発振器)を用いて一定周波数の電圧信号を発生させたり、或いはPLL回路(フェーズ・ロック・ループ回路)を用いて一定周波数の電圧信号を発生させることも可能である。更には共振回路3に対する共振条件の微調整手段も実施形態に特定されないことは言うまでもない。要は本発明の要旨を逸脱しない範囲で種々変形して実施することができる。   The present invention is not limited to the embodiment described above. For example, for copper resistance compensation of the two-thread coil 1, the output of the resonance circuit 3 can be phase-controlled and negatively fed back to the copper resistance compensation coil. In the embodiment, the output of the oscillator 4 is divided by using the frequency divider 5 to generate a constant frequency voltage signal for driving the resonant circuit 3. However, the constant frequency is generated by using a VCO (frequency variable control oscillator). It is also possible to generate a voltage signal of a constant frequency using a PLL circuit (phase lock loop circuit). Furthermore, it goes without saying that the fine adjustment means of the resonance condition for the resonance circuit 3 is not specified in the embodiment. In short, various modifications can be made without departing from the scope of the present invention.

本発明の一実施形態に係る高周波発振型近接センサの概略構成図。The schematic block diagram of the high frequency oscillation type proximity sensor which concerns on one Embodiment of this invention. 2糸コイルの等価回路を示す図。The figure which shows the equivalent circuit of a 2 thread coil. 図1に示す高周波発振型近接センサの共振特性を示す図。The figure which shows the resonance characteristic of the high frequency oscillation type proximity sensor shown in FIG. 共振回路の駆動信号とその出力の関係を示す図。The figure which shows the relationship between the drive signal of a resonance circuit, and its output.

符号の説明Explanation of symbols

1 2糸コイル
2 コンデンサ
3 共振回路
4 発振器
5 分周器
6 V-I変換器
7 レベル検出器
8 銅抵抗補償回路
9 調整器(共振周波数調整)
DESCRIPTION OF SYMBOLS 1 2 Thread coil 2 Capacitor 3 Resonant circuit 4 Oscillator 5 Divider 6 VI converter 7 Level detector 8 Copper resistance compensation circuit 9 Adjuster (resonance frequency adjustment)

Claims (4)

一端を互いに接続して縒り合わせた2本のコイル導体の一方を共振回路用コイルとし、他方を銅抵抗補償用コイルとした2糸コイルと、
この2糸コイルに並列接続されて共振回路を形成するコンデンサと、
上記共振回路を一定周波数で駆動する駆動回路と、
前記2糸コイルのインダクタンスとその誘導性の内部抵抗との直列回路、この直列回路の一端にそれぞれ接続される前記共振回路用コイルおよび前記銅抵抗補償用コイルの各銅抵抗として示される前記2糸コイルの等価回路における前記各銅抵抗と前記直列回路との接続点を仮想接地する銅抵抗補償回路と
を具備したことを特徴とする高周波発振型近接センサ。
One of two coil conductors connected at one end to each other and wound together is a two-strand coil having a resonance circuit coil and the other being a copper resistance compensation coil;
A capacitor connected in parallel to the two-thread coil to form a resonant circuit;
A drive circuit for driving the resonant circuit at a constant frequency;
A series circuit of an inductance of the two-yarn coil and its inductive internal resistance, the two-yarn shown as each copper resistance of the resonance circuit coil and the copper resistance compensating coil respectively connected to one end of the series circuit A high-frequency oscillation type proximity sensor comprising: a copper resistance compensation circuit that virtually grounds a connection point between each of the copper resistors and the series circuit in an equivalent circuit of a coil.
前記銅抵抗補償回路は、前記共振回路用コイルおよび銅抵抗補償用コイルの他端に接続され、前記銅抵抗補償用コイルの他端に生じる電圧を反転増幅して前記共振回路用コイルの他端に負帰還する反転増幅器を含む請求項1に記載の高周波発振型近接センサ。   The copper resistance compensation circuit is connected to the other end of the resonance circuit coil and the copper resistance compensation coil, and inverts and amplifies the voltage generated at the other end of the copper resistance compensation coil, and the other end of the resonance circuit coil The high frequency oscillation type proximity sensor according to claim 1, further comprising an inverting amplifier that performs negative feedback. 前記駆動回路は、前記共振回路の固有振動周波数近傍の該固有振動周波数よりも若干低い一定周波数の電圧を発生する発振器と、この発振器が出力する上記一定周波数の電圧を電流変換して前記共振回路に印加するV-I変換器を含む請求項1に記載の高周波発振型近接センサ。   The drive circuit includes: an oscillator that generates a voltage having a constant frequency slightly lower than the natural vibration frequency in the vicinity of the natural vibration frequency of the resonance circuit; and the resonance circuit that converts the voltage of the constant frequency output by the oscillator into a current. The high-frequency oscillation type proximity sensor according to claim 1, further comprising a V-I converter applied to the capacitor. 前記発振器が出力する電圧と前記共振回路から得られる出力電圧との位相差に応じて前記コンデンサの容量を微調整する調整手段を備えることを特徴とする請求項3に記載の高周波発振型近接センサ。   4. The high-frequency oscillation type proximity sensor according to claim 3, further comprising adjusting means for finely adjusting the capacitance of the capacitor according to a phase difference between a voltage output from the oscillator and an output voltage obtained from the resonance circuit. .
JP2006352540A 2006-12-27 2006-12-27 High-frequency oscillation type proximity sensor Active JP4831686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006352540A JP4831686B2 (en) 2006-12-27 2006-12-27 High-frequency oscillation type proximity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006352540A JP4831686B2 (en) 2006-12-27 2006-12-27 High-frequency oscillation type proximity sensor

Publications (2)

Publication Number Publication Date
JP2008166055A true JP2008166055A (en) 2008-07-17
JP4831686B2 JP4831686B2 (en) 2011-12-07

Family

ID=39695256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006352540A Active JP4831686B2 (en) 2006-12-27 2006-12-27 High-frequency oscillation type proximity sensor

Country Status (1)

Country Link
JP (1) JP4831686B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533273A (en) * 2012-07-13 2015-11-19 クアルコム,インコーポレイテッド System, method and apparatus for detection of metal objects in a predetermined space
KR102002146B1 (en) 2018-01-29 2019-07-19 오므론 가부시키가이샤 Proximity sensor and method of changing detection distance

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329415A (en) * 1989-04-20 1991-02-07 Werner Turck Gmbh & Co Kg Induction proximity switch
JP2003298403A (en) * 2002-04-05 2003-10-17 Yamatake Corp Copper resistance compensating circuit for coil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0329415A (en) * 1989-04-20 1991-02-07 Werner Turck Gmbh & Co Kg Induction proximity switch
JP2003298403A (en) * 2002-04-05 2003-10-17 Yamatake Corp Copper resistance compensating circuit for coil

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015533273A (en) * 2012-07-13 2015-11-19 クアルコム,インコーポレイテッド System, method and apparatus for detection of metal objects in a predetermined space
US10627257B2 (en) 2012-07-13 2020-04-21 Witricity Corporation Systems, methods, and apparatus for detection of metal objects in a predetermined space
US11077762B2 (en) 2012-07-13 2021-08-03 Witricity Corporation Systems, methods, and apparatus for detection of metal objects in a predetermined space
US11919407B2 (en) 2012-07-13 2024-03-05 Witricity Corporation Systems, methods, and apparatus for detection of metal objects in a predetermined space
KR102002146B1 (en) 2018-01-29 2019-07-19 오므론 가부시키가이샤 Proximity sensor and method of changing detection distance
EP3518423A1 (en) 2018-01-29 2019-07-31 Omron Corporation Proximity sensor and method of changing detection distance
JP2019132601A (en) * 2018-01-29 2019-08-08 オムロン株式会社 Proximity sensor and detection distance change method
US10704928B2 (en) 2018-01-29 2020-07-07 Omron Corporation Proximity sensor and method of changing detection distance

Also Published As

Publication number Publication date
JP4831686B2 (en) 2011-12-07

Similar Documents

Publication Publication Date Title
CN106998202B (en) Proximity switch
US6504361B1 (en) Inductive measurement transducer for determining a position of a moving body
JP5150521B2 (en) High frequency oscillation type proximity sensor
JPH04227115A (en) Inductive proximity switch
JP2010216863A (en) Proximity sensor
US6335619B1 (en) Inductive proximity sensor comprising a resonant oscillatory circuit responding to changes in inductive reaction
JP2001272201A (en) Position detector
WO2014156276A1 (en) Proximity-sensor system
JP4831686B2 (en) High-frequency oscillation type proximity sensor
US6859140B2 (en) Independently excited proximity or presence switch arrangement
US7106052B2 (en) Inductive proximity switch with differential coil arrangement
US20150184993A1 (en) Resonant inductive sensing with active resonator target
GB2054867A (en) Eddy-current distance measuring apparatus
JP2001527641A (en) Magnetic resonance sensor
JP2005055326A (en) Conductor current measurement method and magnetic field sensor for measuring conductor current
JP3516780B2 (en) Magnetic sensor circuit
JP2007322125A (en) Magnetic impedance effect sensor and method for detecting external magnetic field
JP3809635B2 (en) Coil copper resistance compensation circuit
JP2007251819A (en) Antenna
WO2014156275A1 (en) Proximity sensor system
KR20190067922A (en) Duty Cycle Modulation for Inductive Position Sensors
JPH09121585A (en) Motor equipped with means for magnetically detecting rotational position of rotor
JP4287735B2 (en) Measuring instrument for fluxgate magnetometer
CN1174549C (en) Inductive proximity sensor comprising oscillatory circuit with inductive reaction
JP5241200B2 (en) Magnetic detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

R150 Certificate of patent or registration of utility model

Ref document number: 4831686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3