JP2008164330A - Ultrasound flowmeter - Google Patents
Ultrasound flowmeter Download PDFInfo
- Publication number
- JP2008164330A JP2008164330A JP2006351253A JP2006351253A JP2008164330A JP 2008164330 A JP2008164330 A JP 2008164330A JP 2006351253 A JP2006351253 A JP 2006351253A JP 2006351253 A JP2006351253 A JP 2006351253A JP 2008164330 A JP2008164330 A JP 2008164330A
- Authority
- JP
- Japan
- Prior art keywords
- ultrasonic
- printed circuit
- circuit board
- terminal block
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、特に超音波によって都市ガス、プロパンガス等流体の流量を測定する超音波流量計に関するものである。 The present invention relates to an ultrasonic flowmeter that measures the flow rate of a fluid such as city gas and propane gas by ultrasonic waves.
従来の超音波流量計としては、例えば特許文献1に記載されている。図5は特許文献1に記載されている従来の超音波流量計を示す制御ブロック図である。 A conventional ultrasonic flowmeter is described in Patent Document 1, for example. FIG. 5 is a control block diagram showing a conventional ultrasonic flowmeter described in Patent Document 1. In FIG.
図5において、流体管路4の途中に超音波を発信する第1振動子5と受信する第2振動子6とが流れ方向に配置されている。7は第1振動子5への発信回路、8は第2振動子6で受信した信号の増幅回路で、この増幅された信号は基準信号と比較回路9で比較され、発信から受信までの時間をタイマカウンタのような計時手段10で求め、その超音波伝幡時間に応じて管路の大きさや流れの状態を考慮して流量演算手段11で流量値を求め、この流量演算手段11の値によって発信回路7のトリガ手段13への信号送出のタイミングを調節する。 In FIG. 5, a first vibrator 5 that transmits ultrasonic waves and a second vibrator 6 that receives ultrasonic waves are arranged in the flow direction in the middle of the fluid conduit 4. 7 is a transmission circuit to the first vibrator 5, and 8 is an amplification circuit for a signal received by the second vibrator 6. This amplified signal is compared with a reference signal by the comparison circuit 9, and the time from transmission to reception is shown. Is calculated by the time counting means 10 such as a timer counter, the flow rate value is obtained by the flow rate calculation means 11 in consideration of the size of the pipeline and the flow state according to the ultrasonic propagation time, and the value of the flow rate calculation means 11 is obtained. To adjust the timing of signal transmission to the trigger means 13 of the transmission circuit 7.
次にその動作について述べる。トリガ手段13から発信回路7よりバースト信号を送出され第1振動子5で発信された超音波信号は、流れの中を伝幡し第2振動子6で受信され増幅回路8と比較回路9で信号処理され、発信から受信までの時間を計時手段10で測定する。 Next, the operation will be described. The ultrasonic signal transmitted from the trigger circuit 13 from the transmission circuit 7 and transmitted from the first vibrator 5 is transmitted through the flow and received by the second vibrator 6, and is received by the amplification circuit 8 and the comparison circuit 9. Signal processing is performed, and the time from transmission to reception is measured by the time measuring means 10.
静止流体中の音をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝幡速度は(c+v)となる。振動子5と6の間の距離をL、超音波伝幡軸と管路の中心軸とがなす角度をφとすると、超音波が到達する時間Tは、
T=L/(c+vcosφ) (1)
となり、(1)式より
v=(L/T−c)/cosφ (2)
となり、Lとφが既知ならTを測定すれば流速vが求められる。この流速より流量Qは、通過面積をS、補正計数をKとすれば、
Q=KSv (3)
となる。
If the sound in the static fluid is c and the flow velocity of the fluid is v, the propagation speed of the ultrasonic wave in the forward direction of the flow is (c + v). When the distance between the transducers 5 and 6 is L, and the angle formed by the ultrasonic transmission axis and the central axis of the pipe is φ, the time T that the ultrasonic wave reaches is:
T = L / (c + vcosφ) (1)
From the equation (1), v = (L / Tc) / cosφ (2)
If L and φ are known, the flow velocity v can be obtained by measuring T. From this flow velocity, if the flow rate Q is S and the correction count is K,
Q = KSv (3)
It becomes.
図6は前記公報に記載されている従来の超音波流量計の第4の実施例を示す制御ブロック図であり、発信から受信を繰り返し手段15によって繰り返し設定手段16で設定された回数だけ繰り返し、さらに発振と受信の切り換えを切換手段17で行った後、同様に繰り返しを行う。すなわち発振回路7によって第1振動子4から超音波が発生し、この超音波を第2振動子5で受信し、増幅回路8を介し比較回路9に到達すると繰り返し手段16で再びトリガ手段13で発信回路7をトリガする。この繰り返しは繰り返し設定手段15で設定された回数だけ行われ、設定回数に達すると繰り返しに要した時間を計時手段10で計測する。しかる後、切換手段17により第1振動子4と第2振動子5の発信受信を逆に接続し、今度は第2振動子から第1振動子5に向かって超音波を発信し前述と同様に到達時間を求め、この差を流量演算手段11で流量値を演算する。 FIG. 6 is a control block diagram showing a fourth embodiment of the conventional ultrasonic flowmeter described in the above publication, and repeats transmission and reception by the number of times set by the repetition setting means 16 by the repetition means 15, Further, after switching between oscillation and reception by the switching means 17, the same is repeated. That is, an ultrasonic wave is generated from the first vibrator 4 by the oscillation circuit 7, and this ultrasonic wave is received by the second vibrator 5 and reaches the comparison circuit 9 via the amplifier circuit 8. The transmission circuit 7 is triggered. This repetition is performed the number of times set by the repetition setting means 15, and when the set number of times is reached, the time required for the repetition is measured by the time measuring means 10. After that, the transmission and reception of the first vibrator 4 and the second vibrator 5 are reversely connected by the switching means 17, and this time, the ultrasonic waves are sent from the second vibrator toward the first vibrator 5 and the same as described above. The flow time value is calculated by the flow rate calculation means 11 based on this difference.
静止流体中の音をc、流体の流れの速さをvとすると、流れの順方向の超音波の伝幡速度は(c+v)、逆方向の伝幡速度は(c−v)となる。振動子7と8の間の距離をL、超音波伝幡軸と管路の中心軸とがなす角度をφ、繰り返し回数をnとすると、順方向と逆方向のそれぞれの繰り返し時間T1とT2は、
T1=n×L/(c+vcosφ) (4)
T2=n×L/(c−vcosφ) (5)
となり、(4)、(5)式より
v=n×L/2cosφ×(1/T1−1/T2) (6)
となり、Lとφが既知ならT1とT2を測定すれば流速vが求められる。
If the sound in the static fluid is c and the flow velocity of the fluid is v, the propagation speed of ultrasonic waves in the forward direction of the flow is (c + v), and the propagation speed of the reverse direction is (cv). If the distance between the transducers 7 and 8 is L, the angle between the ultrasonic transmission axis and the central axis of the pipe is φ, and the number of repetitions is n, the forward and reverse repetition times T1 and T2 respectively. Is
T1 = n × L / (c + v cos φ) (4)
T2 = n × L / (c−v cos φ) (5)
From the equations (4) and (5), v = n × L / 2 cos φ × (1 / T1-1 / T2) (6)
If L and φ are known, the flow velocity v can be obtained by measuring T1 and T2.
しかしながらT1とT2の差は流量が小さくかつ繰り返し回数が小さいときには極めて微小であり、正確に計ることが困難であるので測定回数を多く設定し誤差を比較的小さくし、流量が大きくなるとT1−T2の差も大きくなるので測定が容易になりその場合には繰り返し設定の回数を小さくしてサンプリング間隔を速くして誤差を小さくする。 However, the difference between T1 and T2 is extremely small when the flow rate is small and the number of repetitions is small, and it is difficult to measure accurately. Therefore, when the number of measurements is set large to reduce the error relatively, and the flow rate increases, T1-T2 Therefore, the measurement becomes easy, and in this case, the number of repeated settings is reduced, the sampling interval is increased, and the error is reduced.
すなわち、流量演算手段11によって繰り返し設定手段15の回数を変更する。また、特開平10−30947号公報には、超音波を用いて高精度な超音波伝播時間の測定を短時間で、かつ、低消費電力で行う計測方法が記載されている。 That is, the number of repetition setting means 15 is changed by the flow rate calculation means 11. Japanese Patent Application Laid-Open No. 10-30947 discloses a measurement method that uses ultrasonic waves to measure ultrasonic propagation time with high accuracy in a short time and with low power consumption.
これは図7に示されるように、超音波信号を送受信する振動子25と振動子25の交流受信信号を複数周期にわたって閾値と比較する比較手段29と、振動子25の送信から比較手段29による検出ごとの複数の伝播時間を計測する計時手段31と、計時手段31の計時値の平均値より伝播時間を算出する時間演算手段32とを備えたものである。これによって1回の超音波送受信によって何度も比較手段で比較を行った計測値が得られるので、その平均値を求めることによって高精度な伝播時間の測定値が短時間で得られ、低消費電力で計測を行うことができるように記載されている。 As shown in FIG. 7, the transducer 25 that transmits / receives an ultrasonic signal, the comparison unit 29 that compares the AC reception signal of the transducer 25 with a threshold over a plurality of periods, and the transmission unit of the transducer 25 to the comparison unit 29 A time measuring unit 31 for measuring a plurality of propagation times for each detection and a time calculating unit 32 for calculating the propagation time from the average value of the time measured values of the time measuring unit 31 are provided. As a result, a measurement value obtained by comparing with the comparison means many times by one ultrasonic transmission / reception can be obtained. Therefore, by obtaining the average value, a highly accurate propagation time measurement value can be obtained in a short time, and the consumption is low. It is described so that measurement can be performed with electric power.
特許文献1および、特許文献2はいずれも、2つの振動子を用いて、送信と受信とを切り替え、それぞれの受信波形から求められる超音波の伝播時間から流速を求めて、流量を演算する方式である。
流量は流速から求められ、流速は式(6)より、順方向と逆方向のそれぞれの繰り返し時間T1とT2の逆数の差で表される。逆数差は(T1−T2)と近似することが出来る。 The flow rate is obtained from the flow velocity, and the flow velocity is expressed by the difference between the reciprocal times T1 and T2 in the forward direction and the reverse direction from the equation (6). The reciprocal difference can be approximated as (T1-T2).
流体が流れる管路(流路とも呼ぶ)の大きさにもよるが、2000リッター/時間から6000リッター/時間の気体を測定する超音波流量計の大きさであれば、(T1−T2)が1×10−9秒であれば約2リッター/時間に相当し、1リッター/時間の分解能を得ようとすると、大変な精度で時間を計測する必要がある。 Depending on the size of the conduit (also referred to as the flow path) through which the fluid flows, if the size of an ultrasonic flowmeter that measures gas of 2000 liters / hour to 6000 liters / hour, (T1-T2) is 1 × 10 −9 seconds corresponds to about 2 liters / hour, and it is necessary to measure the time with great accuracy in order to obtain a resolution of 1 liter / hour.
また、第1、2振動子(超音波センサとも呼ぶ)の出力は微弱で、電圧10−3V、電流20×10−6Aのものである。従って、この出力に外部からの電気的なノイズが重畳すると高精度な測定ができなくなる。このため従来の超音波流量計は、流体を導く流路と、前記流路に設けられた超音波センサと、前記超音波センサの信号処理部と、前記信号処理部を制御する制御部と、前記制御部に外部からの信号を受信するために設けた端子台とを備え、前記端子台と前記制御部の間にノイズフィルタ部とを設けるようにしている。さらに、十分なノイズ除去を行うため、端子台と外部機器とを接続するコードにもノイズフィルタ部を設ける構成としており、ノイズフィルタの構成が大規模になっているという課題がある。 Further, the outputs of the first and second vibrators (also referred to as ultrasonic sensors) are weak and have a voltage of 10 −3 V and a current of 20 × 10 −6 A. Therefore, if electrical noise from the outside is superimposed on this output, high-precision measurement cannot be performed. For this reason, the conventional ultrasonic flowmeter includes a flow path for guiding a fluid, an ultrasonic sensor provided in the flow path, a signal processing unit of the ultrasonic sensor, a control unit for controlling the signal processing unit, The control unit is provided with a terminal block provided for receiving an external signal, and a noise filter unit is provided between the terminal block and the control unit. Furthermore, in order to perform sufficient noise removal, a configuration in which a noise filter unit is also provided in a cord connecting the terminal block and an external device, and there is a problem that the configuration of the noise filter is large.
ノイズがどのように計測に影響を与えるか、そのメカニズムを解析した。その結果以下のことが明確になった。端子台に取り付けられた外部機器との接続用のコードがアンテナとなり、ノイズとなる高周波の電磁波が重畳し、コードを伝播して端子台から超音波流量計の筐体内部に侵入する。このノイズをノイズフィルタ部で減衰させてはいるが、ノイズフィルタ部でさらに電磁波の放射が行われ、それが制御部、信号処理部に放射されて影響を与えている。このため、ある強度以上のノイズがノイズフィルタに侵入した場合は、ノイズフィルタの減衰能力を高めてもさほど効果が上がらない。そこで、ノイズフィルタ部からの輻射を低減する必要がある。さらに、端子台からある強度以上のノイズが侵入すると、そこからの輻射が制御部、信号処理部に放射されるのでノイズフィルタの効果がなくなる。 We analyzed the mechanism of how noise affects measurement. As a result, the following became clear. A cord for connection with an external device attached to the terminal block serves as an antenna, and a high-frequency electromagnetic wave that becomes noise is superimposed, propagates through the cord, and enters the housing of the ultrasonic flowmeter from the terminal block. Although this noise is attenuated by the noise filter unit, electromagnetic wave is further radiated by the noise filter unit, which is radiated to the control unit and the signal processing unit to have an influence. For this reason, when noise of a certain intensity or more enters the noise filter, the effect is not so much improved even if the attenuation capability of the noise filter is increased. Therefore, it is necessary to reduce radiation from the noise filter unit. Furthermore, when noise of a certain intensity or more enters from the terminal block, the radiation from the noise is radiated to the control unit and the signal processing unit, so the effect of the noise filter is lost.
このため、本発明の超音波流量計は、端子台、ノイズフィルタ部をシールドする構成とする。また、輻射されたノイズは超音波センサのリード線や、プリント基板上のラインに重畳することが計測に影響を与えているため、これらのラインやリード線をノイズが重畳しにくい構成とする。 For this reason, the ultrasonic flowmeter of this invention is set as the structure which shields a terminal block and a noise filter part. Further, since the noise that is radiated is superimposed on the lead wire of the ultrasonic sensor or the line on the printed circuit board, the measurement is affected. Therefore, the noise is hardly superimposed on the line or the lead wire.
本発明によれば、大規模なノイズフィルタの構成を取らずに30V/m程度の強電界ノイズに耐えることができるようになる。当然、端子台と外部機器とを接続するコードに必要であったノイズフィルタ部は削減できる。 According to the present invention, it is possible to withstand strong electric field noise of about 30 V / m without adopting a large-scale noise filter configuration. Naturally, the noise filter portion required for the cord connecting the terminal block and the external device can be reduced.
(実施の形態1)
流体を導く流路と、前記流路に設けられた超音波センサと、前記超音波センサからの信号を処理する信号処理部と、前記信号処理部を制御する制御部と、前記制御部に外部からの信号を受信するために設けた部端子台と前記端子台と前記制御部の間に設けられたノイズフィルタ部とを備え、前記端子台はシールド部材で複数の面を覆うようにし、シールド部材は直接またはコンデンサを介して筐体と電気的に接続する。
(Embodiment 1)
A flow path for guiding a fluid, an ultrasonic sensor provided in the flow path, a signal processing unit for processing a signal from the ultrasonic sensor, a control unit for controlling the signal processing unit, and an external to the control unit A terminal block provided for receiving a signal from the terminal, and a noise filter provided between the terminal block and the control unit, the terminal block covering a plurality of surfaces with a shield member, and a shield The member is electrically connected to the housing directly or via a capacitor.
図1は本発明の実施の形態1における超音波流量計の構成を示す断面模式図である。流路51は流体の通る管で、途中に超音波センサ52、53が設けてある。超音波センサ52、53はリード線で信号処理部54が設けられているプリント基板55と接続される。また、プリント基板55には制御部56、ノイズフィルタ部57、端子台58も設けられている。端子台58はシールド部材59で複数の面を覆うようにしている。シールド部材59は金属製の筐体60と電気的に直接または、コンデンサを介して接続される。コンデンサは問題となるノイズが高周波であるため、ある程度の容量を持っていれば、高周波でのコンデンサのインピーダンスは小さくなり、実質上直接接続と同じような効果が得られる。端子台58にはコード61が接続され外部機器との電気信号のやり取りを行う。 FIG. 1 is a schematic cross-sectional view showing the configuration of the ultrasonic flowmeter according to Embodiment 1 of the present invention. A flow path 51 is a pipe through which a fluid passes, and ultrasonic sensors 52 and 53 are provided on the way. The ultrasonic sensors 52 and 53 are connected to a printed circuit board 55 provided with a signal processing unit 54 with lead wires. The printed circuit board 55 is also provided with a control unit 56, a noise filter unit 57, and a terminal block 58. The terminal block 58 covers a plurality of surfaces with a shield member 59. The shield member 59 is electrically connected to the metal housing 60 directly or via a capacitor. Since the problematic noise is high frequency, if the capacitor has a certain capacity, the impedance of the capacitor at high frequency becomes small, and the effect similar to that of the direct connection can be obtained. A cord 61 is connected to the terminal block 58 to exchange electric signals with an external device.
外部からの高周波電磁波ノイズは、コード61がアンテナとなって超音波流量計へ侵入する。しかしながら、端子台58がシールド部材59で囲まれているので筐体61と端子台58との間の高周波におけるインピーダンスは小さくなっている。このためコード61から侵入する高周波電磁波ノイズは低減される。 The high frequency electromagnetic wave noise from the outside enters the ultrasonic flowmeter using the cord 61 as an antenna. However, since the terminal block 58 is surrounded by the shield member 59, the impedance at high frequency between the housing 61 and the terminal block 58 is small. For this reason, the high frequency electromagnetic wave noise which penetrate | invades from the cord 61 is reduced.
図2は概観斜視図で、同図(a)は端子台58、同図(b)はシールド部材59であり、端子台58はプリント基板55に半田付けされるピン70を有する。シールド部材59は上蓋のない箱形状で金属製である。端子台58はシールド部材59にはめ込みプリント基板55に半田付けされる。 FIG. 2 is a schematic perspective view, in which FIG. 2A is a terminal block 58, FIG. 2B is a shield member 59, and the terminal block 58 has pins 70 soldered to the printed circuit board 55. FIG. The shield member 59 has a box shape without an upper lid and is made of metal. The terminal block 58 is fitted into the shield member 59 and soldered to the printed board 55.
図3は同じく、端子台58とシールド部材59を示しており、同図(a)は端子台58の側面図、同図(b)はシールド部材59の上面図である。シールド部材59には端子台のピン70が通る穴71を設けている。このように端子台58はシールド部材59により、側面と底面を囲まれている。端子台58を囲む面が多いほど、筐体60と端子台58との間の高周波におけるインピーダンスは小さくなるので有利である。とりわけ、端子台58底面のシールド部材59部分は、プリント基板55のパターンが近いため重要である。 3 also shows the terminal block 58 and the shield member 59. FIG. 3A is a side view of the terminal block 58, and FIG. 3B is a top view of the shield member 59. FIG. The shield member 59 is provided with a hole 71 through which the terminal block pin 70 passes. As described above, the terminal block 58 is surrounded by the shield member 59 on the side surface and the bottom surface. The more surfaces surrounding the terminal block 58, the more advantageous is that the impedance at high frequency between the housing 60 and the terminal block 58 becomes smaller. In particular, the shield member 59 portion on the bottom surface of the terminal block 58 is important because the pattern of the printed circuit board 55 is close.
(実施の形態2)
ノイズフィルタ部はシールド部材で複数の面を覆うようにし、シールド部材は直接またはコンデンサを介して筐体と電気的に接続する。
図1において、ノイズフィルタ部57はシールド部材B62で複数の面を覆うようにしている。
(Embodiment 2)
The noise filter unit covers a plurality of surfaces with a shield member, and the shield member is electrically connected to the housing directly or via a capacitor.
In FIG. 1, the noise filter unit 57 covers a plurality of surfaces with a shield member B62.
これは、ノイズフィルタ部57から輻射される高周波電磁波ノイズを遮蔽するためであり、シールド部材B62を直接またはコンデンサを介して筐体60と電気的に接続することで、シールド部材B62と筐体60との間の高周波におけるインピーダンスを低減し高周波電磁波ノイズを低減する。 This is to shield the high frequency electromagnetic wave noise radiated from the noise filter unit 57. The shield member B62 and the casing 60 are electrically connected to the casing 60 directly or via a capacitor. The impedance at a high frequency between them is reduced to reduce high frequency electromagnetic noise.
(実施の形態3)
ノイズフィルタ部と制御部と端子台は一枚のプリント基板上に設けられ、ノイズフィルタ部は前記プリント基板の上下からシールド部材でシールドされ、前記シールド部材は前記プリント基板に設けられた基準電位のパターンと複数の箇所で電気的に接続する。
(Embodiment 3)
The noise filter unit, the control unit, and the terminal block are provided on a single printed circuit board, the noise filter unit is shielded by a shield member from above and below the printed circuit board, and the shield member has a reference potential provided on the printed circuit board. Electrical connection to the pattern at multiple points.
図4はノイズフィルタ部57、制御部56、端子台58を一枚のプリント基板55に設け、ノイズフィルタ部57はプリント基板55の上下から金属製のシールド部材B62で覆い、シールド部材B62はプリント基板55に設けられた基準電位のパターンと複数の箇所で電気的に結合する。さらに、基準電位のパターンと筐体60とは電気的に直接またはコンデンサを介して接続される。 In FIG. 4, the noise filter unit 57, the control unit 56, and the terminal block 58 are provided on one printed circuit board 55. The noise filter unit 57 is covered from above and below the printed circuit board 55 with a metal shield member B 62, and the shield member B 62 is printed. It is electrically coupled to a reference potential pattern provided on the substrate 55 at a plurality of locations. Further, the reference potential pattern and the housing 60 are electrically connected directly or via a capacitor.
このためシールド部材B62と筐体60との間の高周波におけるインピーダンスが低減されるので、高周波電磁波ノイズが低減する。この場合、プリント基板55は薄いことが望ましい。 For this reason, since the impedance in the high frequency between the shield member B62 and the housing | casing 60 is reduced, the high frequency electromagnetic wave noise reduces. In this case, the printed board 55 is desirably thin.
(実施の形態4)
信号処理部はプリント基板上に構成され、前記信号処理部の基準電位のパターンは前記信号処理部の近い箇所から筐体へ電気的に直接またはコンデンサを介して接続するようにする。
(Embodiment 4)
The signal processing unit is configured on a printed circuit board, and the reference potential pattern of the signal processing unit is electrically connected to the housing from a location near the signal processing unit directly or via a capacitor.
図1おいて信号処理部54はプリント基板55に構成され、信号処理部54の基準電位のパターン63は信号処理部54に近い箇所64から筐体60へ電気的に直接またはコンデンサを介して接続するようにする。信号処理部54に遠い箇所から筐体60へ電気的に直接またはコンデンサを介して接続するようにすると、その箇所の基準電位パターンの電位と、信号処理部54に近い箇所の基準電位パターンの電位とが、高周波ノイズの影響で異なるようになり計測精度の悪化を招くことになる。 In FIG. 1, the signal processing unit 54 is configured on a printed circuit board 55, and a reference potential pattern 63 of the signal processing unit 54 is electrically connected to a housing 60 from a location 64 close to the signal processing unit 54 directly or via a capacitor. To do. When the signal processing unit 54 is electrically connected to the housing 60 from a location far away from the signal processing unit 54 directly or via a capacitor, the potential of the reference potential pattern at that location and the potential of the reference potential pattern at a location close to the signal processing unit 54 are obtained. However, it becomes different due to the influence of high-frequency noise, leading to deterioration in measurement accuracy.
(実施の形態5)
超音波センサと、プリント基板上に設けられた信号処理部とは、シールドされたリード線で接続され、前記シールドは前記プリント基板上の基準電位のパターンに接続され、かつ前記プリント基板上で信号処理部に導かれるラインの近傍には基準電位のパターンを設けるようにする。
(Embodiment 5)
The ultrasonic sensor and the signal processing unit provided on the printed circuit board are connected by a shielded lead wire, the shield is connected to a reference potential pattern on the printed circuit board, and the signal is output on the printed circuit board. A reference potential pattern is provided in the vicinity of the line led to the processing unit.
図1において、超音波センサ52,53とプリント基板55との接続に用いているリード線はシールドされたリード線65を用い、シールドとなるリード線外周に設けられたシールド(網線を用いる)はプリント基板上55の基準電位のパターン63に接続している。高周波の電磁界ノイズが微小信号である超音波センサの信号を導くリード線に重畳して、信号処理部54に侵入することがあるため、リード線の筐体との間のインピーダンスを下げる必要がある。そのための手段としてリード線をシールドする。さらに、シールドされたリード線のシールドはプリント基板上55の基準電位のパターン63に接続して、筐体との同電位になるようにしている。 In FIG. 1, a shielded lead wire 65 is used as a lead wire used for connection between the ultrasonic sensors 52 and 53 and the printed board 55, and a shield (a mesh wire is used) provided on the outer periphery of the lead wire serving as a shield. Is connected to a reference potential pattern 63 on the printed circuit board 55. Since high-frequency electromagnetic noise may be superimposed on the lead wire that guides the signal of the ultrasonic sensor that is a minute signal and may enter the signal processing unit 54, it is necessary to lower the impedance between the lead wire and the housing. is there. For this purpose, the lead wire is shielded. Further, the shield of the shielded lead wire is connected to the reference potential pattern 63 on the printed circuit board 55 so as to have the same potential as the casing.
(実施の形態6)
超音波センサと、電池と、流路への流体の出入りを止める遮断弁と、圧力や温度などを検知するセンサとなど要素部品を備え、これらの要素部品はリード線で制御部と信号処理部が設けられたプリント基盤に電気的にリード線で接続され、前記超音波センサとプリント基盤とを接続するリード線は、遮断弁と、圧力や温度などを検知するセンサとプリント基盤とを接続するリード線とは分離するようにする。
(Embodiment 6)
It is equipped with element parts such as an ultrasonic sensor, a battery, a shut-off valve that stops fluid from entering and exiting the flow path, and a sensor that detects pressure and temperature. The lead wire is electrically connected to the print board provided with the lead wire, and the lead wire connecting the ultrasonic sensor and the print board connects the shut-off valve, the sensor for detecting pressure and temperature, and the print board. Separate from the lead wire.
図1において、遮断弁66は、それを制御する制御部56が設けられているプリント基板55と電気的に接続するためにリード線67を用いている。また、圧力センサ68も同様にリード線69を用いている。さらに、電池40はプリント基板55に電力供給をおこなうためにリード線で接続されている。遮断弁66や圧力センサ68は比較的インピーダンスが高いので、それらのリード線67、69はアンテナとなりやすく、高周波の電磁波ノイズが重畳しやすくなる。このため、超音波センサ52,53のリード線65と、リード線67、69とは分離して配置するようにすることで、ノイズの伝播を阻止するようにしている。電池は比較的インピーダンスが低いので、そのリード線はアンテナとなりにくく、従ってこのリード線に超音波センサの52,53のリード線65が接近することは許容されやすい。 In FIG. 1, the shutoff valve 66 uses a lead wire 67 for electrical connection with a printed circuit board 55 provided with a control unit 56 for controlling the shutoff valve 66. Similarly, the pressure sensor 68 uses a lead wire 69. Further, the battery 40 is connected by a lead wire to supply power to the printed circuit board 55. Since the shutoff valve 66 and the pressure sensor 68 have relatively high impedance, their lead wires 67 and 69 are likely to become antennas, and high-frequency electromagnetic noise is likely to be superimposed. For this reason, the propagation of noise is prevented by arranging the lead wire 65 of the ultrasonic sensors 52 and 53 and the lead wires 67 and 69 separately. Since the battery has a relatively low impedance, its lead wire is unlikely to become an antenna, and therefore it is easy to allow the lead wires 65 of the ultrasonic sensors 52 and 53 to approach this lead wire.
(実施の形態7)
端子台と前記端子台のシールド部材との間で放電ギャップを設ける構成とする。シールド部材は端子台のピンの近傍まで存在することが望ましいが、その両者の距離により雷サージ電圧発生時に放電するか、またはしないかが決まる。雷サージ電圧発生時に放電が行われるように距離を設定することにより、放電により雷サージのエネルギーが減少し、ノイズフィルタ部に構成される雷サージのエネルギーを吸収するサージアブソーバや抵抗、コイルの部品のエネルギー容量を低減することができる。すなわち小型化や削減することができる。
(Embodiment 7)
A discharge gap is provided between the terminal block and the shield member of the terminal block. Although it is desirable that the shield member exists up to the vicinity of the pins of the terminal block, whether or not to discharge when a lightning surge voltage is generated is determined by the distance between the two. By setting the distance to discharge when lightning surge voltage is generated, the lightning surge energy is reduced by the discharge, and the surge absorber, resistor, and coil components that absorb the lightning surge energy configured in the noise filter section Energy capacity can be reduced. That is, it can be reduced in size or reduced.
図3において、ピン70の直径と、シールド部材59の孔の直径71との関係で放電する電圧が決まる。なぜなら、シールド部材59は筐体60と電気的に直接またはコンデンサを介して接続されており、雷サージ電圧は筐体と端子台58のピン70の間に印加するためである。この部分で、雷サージ電圧が発生した場合、放電するようにしておくと、雷サージエネルギーが放電により消費されるので、イズフィルタ部に構成される雷サージのエネルギーを吸収するサージアブソーバや抵抗、コイルの部品のエネルギー耐量を低減することができる。 In FIG. 3, the voltage to be discharged is determined by the relationship between the diameter of the pin 70 and the diameter 71 of the hole of the shield member 59. This is because the shield member 59 is electrically connected to the housing 60 directly or via a capacitor, and the lightning surge voltage is applied between the housing and the pin 70 of the terminal block 58. If lightning surge voltage occurs in this part, if it is set to discharge, lightning surge energy is consumed by discharge, so surge absorbers and resistors that absorb lightning surge energy configured in the noise filter section, The energy tolerance of the coil components can be reduced.
以上のように、本発明にかかる超音波流量計は、外部からの電気(電磁波)ノイズが、計測に影響を与えにくいものとすることができるので、正確な計測が要求される、天然ガスや液化石油ガスの流量を測定する業務用や家庭用の超音波式ガス流量測定装置(ガスメータ)の用途に展開できる。 As described above, the ultrasonic flowmeter according to the present invention can make electrical (electromagnetic wave) noise from outside hardly affect the measurement. It can be used for commercial and household ultrasonic gas flow measurement devices (gas meters) that measure the flow of liquefied petroleum gas.
51 流路
52 超音波センサA
53 超音波センサB
54 信号処理部
55 プリント基板
56 制御部
57 ノイズフィルタ部
58 端子台
59 シールド部材
60 筐体
62 シールド部材B
63 基準電位のパターン
65 シールドされたリード線
66 遮断弁
67 遮断弁のリード線
68 圧力センサ
69 圧力センサのリード線
51 Flow path 52 Ultrasonic sensor A
53 Ultrasonic sensor B
54 Signal Processing Unit 55 Printed Circuit Board 56 Control Unit 57 Noise Filter Unit 58 Terminal Block 59 Shield Member 60 Case 62 Shield Member B
63 Reference potential pattern 65 Shielded lead wire 66 Shut-off valve 67 Shut-off valve lead wire 68 Pressure sensor 69 Pressure sensor lead wire
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006351253A JP2008164330A (en) | 2006-12-27 | 2006-12-27 | Ultrasound flowmeter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006351253A JP2008164330A (en) | 2006-12-27 | 2006-12-27 | Ultrasound flowmeter |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008164330A true JP2008164330A (en) | 2008-07-17 |
Family
ID=39694044
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006351253A Pending JP2008164330A (en) | 2006-12-27 | 2006-12-27 | Ultrasound flowmeter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008164330A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096029A (en) * | 2010-11-27 | 2011-06-15 | 山东电力集团公司济宁供电公司 | Sensor box for detecting ultrahigh frequency electromagnetic wave signals |
CN106768108A (en) * | 2017-02-01 | 2017-05-31 | 贺成 | A kind of plug-in type ultrasonic flowmeter |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171816A (en) * | 1994-03-31 | 1996-07-02 | Ricoh Co Ltd | Shielded wire |
JPH09164216A (en) * | 1995-12-14 | 1997-06-24 | Hitachi Medical Corp | Radiotherapy equipment |
JPH116752A (en) * | 1997-06-16 | 1999-01-12 | Hitachi Ltd | Thermal-type air flow-rate sensor |
JPH1151730A (en) * | 1997-08-07 | 1999-02-26 | Hitachi Ltd | Air flow rate measuring device |
JPH11230794A (en) * | 1998-02-13 | 1999-08-27 | Yazaki Corp | Lp gas measuring device |
JP2000196289A (en) * | 1998-12-25 | 2000-07-14 | Matsushita Electric Ind Co Ltd | Countermeasure against emi and information processing device |
JP2000357546A (en) * | 1999-06-11 | 2000-12-26 | Densei Lambda Kk | Terminal member |
JP2001085884A (en) * | 1999-09-10 | 2001-03-30 | Sony Computer Entertainment Inc | Electromagnetic shield plate, electromagnetic shield structure and entertainment device |
JP2003308996A (en) * | 2002-04-16 | 2003-10-31 | Sharp Corp | Shield case for high-frequency apparatus and highfrequency apparatus |
-
2006
- 2006-12-27 JP JP2006351253A patent/JP2008164330A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08171816A (en) * | 1994-03-31 | 1996-07-02 | Ricoh Co Ltd | Shielded wire |
JPH09164216A (en) * | 1995-12-14 | 1997-06-24 | Hitachi Medical Corp | Radiotherapy equipment |
JPH116752A (en) * | 1997-06-16 | 1999-01-12 | Hitachi Ltd | Thermal-type air flow-rate sensor |
JPH1151730A (en) * | 1997-08-07 | 1999-02-26 | Hitachi Ltd | Air flow rate measuring device |
JPH11230794A (en) * | 1998-02-13 | 1999-08-27 | Yazaki Corp | Lp gas measuring device |
JP2000196289A (en) * | 1998-12-25 | 2000-07-14 | Matsushita Electric Ind Co Ltd | Countermeasure against emi and information processing device |
JP2000357546A (en) * | 1999-06-11 | 2000-12-26 | Densei Lambda Kk | Terminal member |
JP2001085884A (en) * | 1999-09-10 | 2001-03-30 | Sony Computer Entertainment Inc | Electromagnetic shield plate, electromagnetic shield structure and entertainment device |
JP2003308996A (en) * | 2002-04-16 | 2003-10-31 | Sharp Corp | Shield case for high-frequency apparatus and highfrequency apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102096029A (en) * | 2010-11-27 | 2011-06-15 | 山东电力集团公司济宁供电公司 | Sensor box for detecting ultrahigh frequency electromagnetic wave signals |
CN106768108A (en) * | 2017-02-01 | 2017-05-31 | 贺成 | A kind of plug-in type ultrasonic flowmeter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9766283B2 (en) | Transformer fault detection apparatus and method | |
JP6114267B2 (en) | Variable frequency electromagnetic flow meter | |
US20190078927A1 (en) | Sensor | |
EP2633275B1 (en) | Ultrasonic flow meter with zero impedance measuring electronics | |
WO2010103004A3 (en) | Measuring system comprising a vibrating transducer | |
JP4275990B2 (en) | Flow sensor | |
US10627271B2 (en) | Hydraulic system for ultrasonic flow measurement using reflective acoustic path approach | |
JP2007519895A5 (en) | ||
CN201795821U (en) | Ultrasonic flowmeter | |
CN108489561B (en) | Low-noise electromagnetic flow measuring device | |
JP2008164330A (en) | Ultrasound flowmeter | |
CN109282846A (en) | Combined type ultrasonic temperature and conductivity sensors device assembly | |
KR101630301B1 (en) | Taper tube type area flow meter using magnetrostricive position detector | |
JP2008164329A (en) | Ultrasound flowmeter | |
KR20160133084A (en) | Apparatus for observing direction and velocity of wind accurately using ultrasonic sensor and operating method thereof | |
US20180156637A1 (en) | Hollow core magnetic position sensor | |
KR101089275B1 (en) | Electronic flow meter for partially filled pipeline | |
AU2013237713B2 (en) | Fluid Flow Metering Apparatus | |
CN210664620U (en) | Ultrasonic water meter | |
CN104614027B (en) | The measuring method of ultrasonic measuring device | |
JP2007201992A (en) | Ultrasonic wave sending and receiving apparatus, and ultrasonic flowmeter | |
JP2005091332A (en) | Ultrasonic flowmeter | |
JP2004325169A (en) | Device for measuring fluid flow | |
CN203323811U (en) | Ultrasonic flowmeter | |
JP5229349B2 (en) | Fluid flow measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090909 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20091014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120626 |