JP2008164187A - Air conditioning device utilizing groundwater - Google Patents

Air conditioning device utilizing groundwater Download PDF

Info

Publication number
JP2008164187A
JP2008164187A JP2006351386A JP2006351386A JP2008164187A JP 2008164187 A JP2008164187 A JP 2008164187A JP 2006351386 A JP2006351386 A JP 2006351386A JP 2006351386 A JP2006351386 A JP 2006351386A JP 2008164187 A JP2008164187 A JP 2008164187A
Authority
JP
Japan
Prior art keywords
heat exchanger
sealed container
groundwater
supplied
air conditioning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006351386A
Other languages
Japanese (ja)
Other versions
JP2008164187A5 (en
JP4753312B2 (en
Inventor
Masaaki Imai
正昭 今井
Yoshinori Inoue
良則 井上
Hiroaki Hayase
宏明 早瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2006351386A priority Critical patent/JP4753312B2/en
Publication of JP2008164187A publication Critical patent/JP2008164187A/en
Publication of JP2008164187A5 publication Critical patent/JP2008164187A5/ja
Application granted granted Critical
Publication of JP4753312B2 publication Critical patent/JP4753312B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/40Geothermal heat-pumps

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning device performing dehumidifying-cooling and humidifying-heating by using groundwater. <P>SOLUTION: This air conditioning device comprises a first sealed container 1 and a second sealed container 2, a heat exchanger 10 for heating and cooling and a heat exchanger 17 for humidity conditioning to a heated/cooled part 9, and a steam compressor 5 disposed in a steam duct 4 between both sealed containers. The evaporative liquid in the first sealed container is circulated to be supplied to the heat exchanger for humidity conditioning and then returned to the first sealed container, and the groundwater is supplied to the second sealed container and the heat exchanger for heating and cooling, when the steam compressor is rotated forward in the direction to be compressed from the first sealed container toward the second sealed container, and the evaporative liquid in the first sealed container is circulated to be supplied to both of the heat exchanger for humidity conditioning and the heat exchanger for heating and cooling, and then returned to the first sealed container, and the groundwater is supplied to the second sealed container, when the steam compressor is rotated backward in the direction to be compressed from the second sealed container toward the first sealed container. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,地下水を利用して,冷房及び暖房を行うようにした空調装置に関するものである。   The present invention relates to an air conditioner that performs cooling and heating using groundwater.

先行技術としての特許文献1における明細書及び図2には,地下水を利用して冷暖房を行うようにした空調装置が記載されている。   The specification in Patent Document 1 as a prior art and FIG. 2 describe an air conditioner that performs cooling and heating using groundwater.

この装置は,
「減圧に維持した第1密閉容器及び第2密閉容器と,冷暖房箇所との間で間接的に熱交換を行う冷暖房用熱交換器と,地下水との間で間接的に熱交換を行う放吸熱用熱交換器と,水等の蒸発性液体を前記第1密閉容器内と前記冷暖房用熱交換器との間を循環する第1循環手段と,同じく水等の蒸発性液体を前記第2密閉容器内と前記放吸熱用熱交換器との間を循環する第2循環手段とを備え,更に,前記第1密閉容器内と前記第2密閉容器内とを接続する蒸気ダクト中に,正逆回転可能なルーツ式圧縮機を設けて成る。」
という構成である。
This device
“The first and second sealed containers maintained at a reduced pressure, and the heat exchanger for air conditioning that indirectly exchanges heat between the air-conditioning location and the heat dissipation that indirectly exchanges heat with the groundwater. And a first circulation means for circulating an evaporating liquid such as water between the first sealed container and the heat exchanger for cooling and heating, and an evaporating liquid such as water as the second sealed. A second circulation means for circulating between the inside of the container and the heat exchanger for heat release and absorption, and further in a steam duct connecting the inside of the first sealed container and the inside of the second sealed container. It is equipped with a rotatable roots compressor. "
This is the configuration.

この装置において冷房を行う場合には,前記ルーツ式圧縮機を,前記第1密閉容器内で発生した蒸気を前記第2密閉容器に向かって圧縮する方向に回転する。   When performing cooling in this apparatus, the Roots compressor is rotated in a direction in which the steam generated in the first sealed container is compressed toward the second sealed container.

これにより,前記第1密閉容器内は前記ルーツ式圧縮機による吸引にて減圧度が高くなり,この第1密閉容器内の蒸発性液体は,減圧状態で沸騰蒸発することで冷却されて前記冷暖房用熱交換器に送られたのち再び前記第1密閉容器内に戻るという循環を繰り返すことにより,冷暖房箇所を冷房する。   As a result, the degree of decompression is increased by the suction by the Roots compressor in the first sealed container, and the evaporating liquid in the first sealed container is cooled by boiling and evaporating in the decompressed state, and the cooling and heating are performed. The air-conditioning part is cooled by repeating the circulation of returning to the first sealed container after being sent to the heat exchanger.

一方,前記ルーツ式圧縮機にて圧縮された蒸気は,前記第2密閉容器内に入り,ここで,当該第2密閉容器と前記放吸熱用熱交換器との間を第2循環手段を介して循環する蒸発性液体にて冷やされて凝縮し,この蒸気の凝縮にて温度が高くなった蒸発性液体は,この第2密閉容器内から前記放吸熱用熱交換器に送られたのち再び前記第2密閉容器内に戻るという循環を繰り返すことにより,前記放吸熱用熱交換器において地下水にて冷却される。   On the other hand, the steam compressed by the Roots type compressor enters the second sealed container, where the second sealed container and the heat-dissipating heat exchanger are routed through the second circulation means. The evaporating liquid cooled and condensed by the circulating evaporating liquid and the temperature of which is increased by the condensation of the vapor is sent from the second sealed container to the heat-absorbing heat exchanger and then again. By repeating the circulation of returning to the inside of the second sealed container, the heat exchanger for releasing heat is cooled by ground water.

また,暖房を行う場合には,前記ルーツ式圧縮機を,前記第2密閉容器内で発生した蒸気を前記第1密閉容器に向かって圧縮する方向に逆回転する。   When heating is performed, the Roots compressor is reversely rotated in a direction in which steam generated in the second sealed container is compressed toward the first sealed container.

これにより,今度は,前記第2密閉容器内がルーツ式圧縮機の逆回転による吸引にて減圧度が高くなり,この第2密閉容器内の蒸発性液体は減圧状態で沸騰蒸発し,ここに発生した蒸気は,前記ルーツ式圧縮機にて圧縮されたのち前記第1密閉容器内に入り,ここで当該第1密閉容器と前記冷暖房用熱交換器との間を第1循環手段を介して循環する蒸発性液体にて冷やされて凝縮し,この蒸気の凝縮にて温度が高くなった蒸発性液体は,この第1密閉容器内から前記冷暖房用熱交換器に送られたのち再び前記第1容器内に戻るという循環を繰り返すことにより,前記冷暖房箇所を暖房する。   As a result, this time, the pressure inside the second sealed container is increased by suction by reverse rotation of the Roots compressor, and the evaporating liquid in the second sealed container evaporates in a reduced pressure state. The generated steam is compressed by the Roots compressor and then enters the first sealed container, where the first sealed container and the heat exchanger for cooling and heating are routed through the first circulation means. The evaporating liquid which has been cooled and condensed by the circulating evaporating liquid and whose temperature has been increased by the condensation of the vapor is sent from the inside of the first sealed container to the heat exchanger for air conditioning, and then again the first evaporating liquid. By repeating the circulation of returning to the inside of one container, the air-conditioning part is heated.

一方,前記第2密閉容器内において沸騰蒸発にて温度が下がった蒸発性液体は,この第2密閉容器内から前記放吸熱用熱交換器に送られたのち再び前記第2密閉容器内に戻るという循環を繰り返すことにより,前記放吸熱用熱交換器において地下水からの吸熱を行う。
というものである。
特開2006−97989号公報
On the other hand, the evaporating liquid whose temperature has been lowered by boiling evaporation in the second sealed container is sent from the second sealed container to the heat-absorbing heat exchanger and then returned to the second sealed container again. By repeating this circulation, heat is absorbed from groundwater in the heat exchanger for releasing heat.
That's it.
Japanese Patent Application Laid-Open No. 2006-97989

しかし,前記した先行技術における空調装置は,地下水で冷房と冷房を行うことができるものの,この装置によって,冷暖房箇所を,冷房と同時に除湿すること,及び暖房と同時に加湿することができず,冷暖房と同時に,除湿又は加湿の調湿を行う場合には,この調湿専用の装置を,前記冷暖房装置とは別個に設置しなければならないのであった。   However, although the air conditioner in the prior art described above can perform cooling and cooling with groundwater, the air conditioning unit cannot be dehumidified simultaneously with cooling and humidified simultaneously with heating. At the same time, when performing dehumidifying or humidifying humidity control, a device dedicated to humidity control must be installed separately from the air conditioning unit.

本発明は,地下水を利用して,冷房と除湿とが同時にできるとともに,暖房と加湿とが同時にできるようにした空調装置を提供することを技術的課題とするものである。   It is a technical object of the present invention to provide an air conditioner that uses groundwater to simultaneously cool and dehumidify, and simultaneously perform heating and humidification.

この技術的課題を達成するための本発明の請求項1は,
「少なくとも,減圧に維持した第1密閉容器及び第2密閉容器と,冷暖房箇所に対する間接型の冷暖房用熱交換器と,前記冷暖房箇所に対する間接型の調湿用熱交換器と,前記第1密閉容器及び第2密閉容器の相互間を接続する蒸気ダクト中に設けた正逆回転可能な蒸気圧縮機とから成り,
前記蒸気圧縮機を前記第1密閉容器から前記第2密閉容器に向かって圧縮する方向に正回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器に供給したのち再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記第2密閉容器及び前記冷暖房用熱交換器に供給してこれらから排出する構成にし,
前記蒸気圧縮機を前記第2密閉容器から前記第1密閉容器に向かって圧縮する方向に逆回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器と前記冷暖房用熱交換器との両方に供給したのちこれらから再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記第2密閉容器に供給してこれから排出する構成にした。」
ことを特徴としている。
In order to achieve this technical problem, claim 1 of the present invention provides:
“At least first and second sealed containers maintained at a reduced pressure, an indirect air conditioning / heating heat exchanger for an air conditioning location, an indirect humidity control heat exchanger for the air conditioning location, and the first airtightness A steam compressor provided in a steam duct connecting between the container and the second hermetic container and capable of rotating forward and backward,
When the vapor compressor is rotated forward in the direction of compression from the first sealed container toward the second sealed container, the evaporative liquid in the first sealed container is supplied to the humidity control heat exchanger. While circulating back to the first sealed container again, the groundwater pumped from the ground is supplied to the second sealed container and the heat exchanger for cooling and heating, and discharged from them.
When the vapor compressor is reversely rotated in the direction of compression from the second sealed container toward the first sealed container, the evaporating liquid in the first sealed container is used for the humidity control heat exchanger and the air conditioning After being supplied to both the heat exchanger and circulating again to return to the first sealed container, groundwater pumped from the ground is supplied to the second sealed container and discharged from there. "
It is characterized by that.

また,本発明の請求項2は,
「少なくとも,減圧に維持した第1密閉容器及び第2密閉容器と,冷暖房箇所に対する間接型の冷暖房用熱交換器と,前記冷暖房箇所に対する間接型の調湿用熱交換器と,前記第1密閉容器及び第2密閉容器の相互間を接続する蒸気ダクト中に設けた正逆回転可能な蒸気圧縮機と,二つの流体の相互間で間接熱交換を行う地下水用熱交換器とから成り,
前記第2密閉容器内における蒸発性液体を,当該第2密閉容器内と前記地下水用熱交換器における一方側との間を循環する構成にし,
前記蒸気圧縮機を前記第1密閉容器から前記第2密閉容器に向かって圧縮する方向に正回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器に供給したのち再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記地下水用熱交換器における他方側及び前記冷暖房用熱交換器に供給してこれらから排出する構成にし,
前記蒸気圧縮機を前記第2密閉容器から前記第1密閉容器に向かって圧縮する方向に逆回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器と前記冷暖房用熱交換器との両方に供給したのちこれらから再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記地下水用熱交換器における他方側に供給してこれから排出する構成にした。」
ことを特徴としている。
Further, claim 2 of the present invention is
“At least first and second sealed containers maintained at a reduced pressure, an indirect air conditioning / heating heat exchanger for an air conditioning location, an indirect humidity control heat exchanger for the air conditioning location, and the first airtightness A steam compressor provided in a steam duct connecting between the container and the second hermetic container and capable of rotating in the forward and reverse directions, and a heat exchanger for groundwater that performs indirect heat exchange between the two fluids,
The evaporative liquid in the second sealed container is circulated between the second sealed container and one side of the groundwater heat exchanger,
When the vapor compressor is rotated forward in the direction of compression from the first sealed container toward the second sealed container, the evaporative liquid in the first sealed container is supplied to the humidity control heat exchanger. While circulating back to the first closed vessel again, the groundwater pumped from the ground is supplied to the other side of the groundwater heat exchanger and the heat exchanger for cooling and heating, and discharged from these.
When the vapor compressor is reversely rotated in the direction of compression from the second sealed container toward the first sealed container, the evaporating liquid in the first sealed container is used for the humidity control heat exchanger and the air conditioning After being supplied to both the heat exchanger and circulating from there again, the groundwater pumped up from the ground is supplied to the other side of the groundwater heat exchanger and discharged from there. did. "
It is characterized by that.

本発明の請求項3は,
「前記請求項1又は2の記載において,前記蒸気圧縮機を正回転するとき,前記地下から汲み上げた地下水を,先ず前記第2密閉容器又は地下水用熱交換器における他方側に供給し,次いで前記冷暖房用熱交換器を経て排出する構成にした。」
ことを特徴としている。
Claim 3 of the present invention provides:
“In the claim 1 or 2, when the steam compressor is rotated forward, the groundwater pumped from the underground is first supplied to the other side of the second closed vessel or the groundwater heat exchanger, and then It was configured to discharge through a heat exchanger for air conditioning. ”
It is characterized by that.

本発明の請求項4は,
「前記請求項1〜3のいずれかの記載において,前記冷暖房用熱交換器が,前記冷暖房箇所の内部の空気との間で間接熱交換を行う第1熱交換器と,二つの流体の相互間で間接熱交換を行う第2熱交換器と,熱媒液を前記第1熱交換器と前記第2熱交換器の一方側との間を循環するようにした循環経路とから成り,前記蒸気圧縮機を正回転するとき,地下から汲み上げた地下水を前記第2熱交換器の他方側に供給し,前記蒸気圧縮機を逆回転するとき,前記第1密閉容器から排出される蒸発性液体の一部を前記第2熱交換器における他方側に供給する構成にした。」
ことを特徴としている。
Claim 4 of the present invention provides:
“In any one of claims 1 to 3, the cooling / heating heat exchanger includes a first heat exchanger that performs indirect heat exchange with the air inside the cooling / heating portion, and a mutual flow of two fluids. A second heat exchanger that performs indirect heat exchange between them, and a circulation path that circulates the heat transfer fluid between the first heat exchanger and one side of the second heat exchanger, When the steam compressor is rotated forward, groundwater pumped from the ground is supplied to the other side of the second heat exchanger, and when the steam compressor is rotated reversely, the evaporative liquid discharged from the first sealed container Is configured to be supplied to the other side of the second heat exchanger. "
It is characterized by that.

本発明の請求項5は,
「前記請求項4の記載において,前記第1熱交換器が,前記冷暖房箇所における天井面又は壁面に沿って配設した輻射パネルと,この各輻射パネルに設けた流体通路とから成り,前記流体通路内に,前記第2熱交換器の一方側との間を循環する熱媒液を流すようにした構成である。」
ことを特徴としている。
Claim 5 of the present invention provides:
“In the description of claim 4, the first heat exchanger includes a radiation panel disposed along a ceiling surface or a wall surface in the air-conditioning section, and a fluid passage provided in each radiation panel. The configuration is such that a heat transfer fluid circulating between one side of the second heat exchanger flows in the passage.
It is characterized by that.

本発明の請求項6は,
「前記請求項1〜5のいずれかの記載において,地下水を汲み上げる二つの井戸が適宜距離を隔てて設けられ,前記蒸気圧縮機を正回転するとき,前記第2密閉容器及び前記冷暖房用熱交換器又は前記第2熱交換器の他方側に供給する地下水を,前記二つの井戸のうち一方の井戸から汲み上げる一方,前記第2密閉容器及び前記冷暖房用熱交換器又は前記第2熱交換器の他方側から排出される地下水を,他方の井戸から地中に戻するように構成し,前記蒸気圧縮機を逆回転するとき,前記第2密閉容器に供給する地下水を前記他方の井戸から汲み上げる一方,前記第2密閉容器から排出される地下水を前記一方の井戸から地中に戻すように構成した。」
ことを特徴としている。
Claim 6 of the present invention provides:
“In the description of any one of claims 1 to 5, when the two wells pumping up the groundwater are provided at an appropriate distance and the steam compressor is rotated forward, the second airtight container and the heat exchange for air conditioning The ground water supplied to the other side of the second heat exchanger is pumped from one of the two wells, while the second sealed vessel and the air conditioner heat exchanger or the second heat exchanger The groundwater discharged from the other side is returned to the ground from the other well, and when the steam compressor is reversely rotated, the groundwater supplied to the second sealed vessel is pumped from the other well. The groundwater discharged from the second airtight container is returned to the ground from the one well. "
It is characterized by that.

本発明の請求項7は,
「前記請求項1〜6のいずれかの記載において,前記蒸気圧縮機が,その回転数を変更可能な構成である。」
ことを特徴としている。
Claim 7 of the present invention provides:
“In any one of claims 1 to 6, the steam compressor is configured to be able to change the number of revolutions thereof.”
It is characterized by that.

前記請求項1に記載した構成において,蒸気圧縮機を正回転するとき,地中から汲み上げた低い温度の地下水は,冷暖房箇所に対する冷暖房用熱交換器に供給されるので,冷暖房箇所を冷房することができる。   In the configuration described in claim 1, when the steam compressor is rotated forward, the low temperature groundwater pumped from the ground is supplied to the air conditioner heat exchanger, so that the air conditioner is cooled. Can do.

前記蒸気圧縮機の正回転にて第1密閉容器内の減圧が高くなることで,この第1密閉容器内における蒸発性液体が沸騰蒸発し,この沸騰蒸発にて温度が下がった蒸発性液体は調湿用熱交換器に送られる。   The depressurization in the first sealed container is increased by the positive rotation of the vapor compressor, so that the evaporable liquid in the first sealed container is boiled and evaporated, and the evaporable liquid whose temperature is lowered by the boiling evaporation is It is sent to the heat exchanger for humidity control.

一方,前記第1密閉容器内での沸騰蒸発にて発生した蒸気は,蒸気圧縮機にて圧縮されたのち第2密閉容器内に至り,ここで,当該第2密閉容器内に供給される地下水との直接接触にて冷却されて凝縮する。   On the other hand, the steam generated by boiling evaporation in the first sealed container is compressed by the steam compressor and then reaches the second sealed container, where the groundwater supplied into the second sealed container is supplied. Cools and condenses in direct contact with

前記第1密閉容器内における沸騰蒸発により,この第1密閉容器から前記冷暖房箇所に対する調湿用熱交換器に送られる蒸発性液体の温度を,地下水の温度よりも前記蒸気圧縮機における圧縮比に相当する温度だけ大幅に低くすることができ,換言すると,前記調湿用熱交換器における伝熱面の表面温度を,前記冷暖房箇所における温度よりも十分に低くすることができて,その伝熱面の表面には空気中における水分の結露が発生することになるから,この結露した水を除去することで,前記冷暖房箇所を,除湿しながら冷房することができる。   Due to boiling evaporation in the first closed container, the temperature of the evaporating liquid sent from the first closed container to the humidity control heat exchanger for the cooling / heating location is set to a compression ratio in the vapor compressor rather than the temperature of groundwater. The corresponding temperature can be significantly lowered, in other words, the surface temperature of the heat transfer surface in the humidity control heat exchanger can be made sufficiently lower than the temperature at the air conditioning location, and the heat transfer Since condensation of moisture in the air occurs on the surface of the surface, the air-conditioning part can be cooled while dehumidifying by removing the condensed water.

次に,前記蒸気圧縮機を逆回転するとき,これにより,今度は,第2密閉容器内の減圧が高くなることで,当該第2密閉容器内に供給される地下水が沸騰蒸発し,この沸騰蒸発にて発生した蒸気は,前記蒸気圧縮機の逆回転にて圧縮されたのち第1密閉容器内に至り,ここで,当該第1密閉容器内における蒸発性液体との直接接触にて冷却されて凝縮される。   Next, when the steam compressor is rotated in reverse, the pressure in the second sealed container is increased by this, so that the groundwater supplied into the second sealed container is boiled and evaporated. The vapor generated by evaporation is compressed by reverse rotation of the vapor compressor and then reaches the first sealed container, where it is cooled by direct contact with the evaporating liquid in the first sealed container. Condensed.

この第1密閉容器内における蒸気の凝縮にて温度が上昇した蒸発性液体は,冷暖房箇所に対する冷暖房用熱交換器に供給されるので,冷暖房箇所を暖房することができる。   Since the evaporating liquid whose temperature has risen due to the condensation of the vapor in the first sealed container is supplied to the air conditioner heat exchanger, the air conditioner can be heated.

前記第1密閉容器内における蒸気の凝縮にて温度が上昇した蒸発性液体は,前記と同時に,前記調湿用熱交換器にも送られ,この調湿用熱交換器における伝熱面の表面温度を高めるから,この伝熱面に対する散水等にて水の蒸発を行うことにより,前記冷暖房箇所を,加湿しながら暖房を行うことができる。   The evaporating liquid whose temperature has increased due to the condensation of the vapor in the first closed container is simultaneously sent to the humidity control heat exchanger, and the surface of the heat transfer surface in the humidity control heat exchanger Since the temperature is raised, the air-conditioning part can be heated while being humidified by evaporating water by watering the heat transfer surface.

また,請求項2の記載によると,前記蒸気圧縮機を正回転して冷房仕様にしたとき,前記第2密閉容器内に至った蒸気が,地下水用熱交換器において地下水にて冷却される蒸発性液体との直接接触にて冷却されて凝縮するので,前記と同様に,前記冷暖房箇所を除湿しながら冷房することができ,前記蒸気圧縮機を逆回転して暖房仕様にしたとき,前記第2密閉容器内における蒸発性液体は,地下水用熱交換器において地下水からの熱を受けるので,前記と同様に,前記冷暖房箇所を加湿しながら暖房することができる。   According to a second aspect of the present invention, when the steam compressor is rotated forward to have a cooling specification, the vapor that has reached the second sealed container is cooled by groundwater in the groundwater heat exchanger. Since it is cooled and condensed by direct contact with the ionic liquid, it can be cooled while dehumidifying the air-conditioning part as described above, and when the steam compressor is reversely rotated to be heated, Since the evaporative liquid in the two sealed containers receives heat from the groundwater in the groundwater heat exchanger, it can be heated while humidifying the air-conditioning part as described above.

従って,本発明によると,地下水を利用して,冷暖房箇所を,除湿しながら冷房することが確実にできるとともに,加湿しながら暖房することが確実にできる。   Therefore, according to the present invention, by using groundwater, it is possible to reliably cool the air-conditioning location while dehumidifying it and to heat it while humidifying it.

特に,請求項2に記載した構成によると,大気圧以下に減圧される前記第2密閉容器内に地下水が入ることがない状態のもとで冷暖房を行うことができるから,地下水が前記第2密閉容器内に入ることの弊害,例えば,地下水中に多量に含まれる不性ガスによる減圧度の低下,地下水によるスケール及び腐食の発生を確実に回避できる利点がある。   In particular, according to the configuration described in claim 2, since the ground water can be cooled and heated in a state in which the ground water does not enter the second sealed container that is depressurized to an atmospheric pressure or lower, There is an advantage that it is possible to surely avoid the adverse effects of entering the sealed container, for example, the reduction of the degree of decompression due to the inert gas contained in a large amount in the groundwater, the occurrence of scale and corrosion due to the groundwater.

なお,請求項1のうち「地下から汲み上げた地下水を第2密閉容器及び冷暖房用熱交換器,又は地下水用熱交換器及び冷暖房用熱交換器に供給する。」には,地下水を,前記第2密閉容器及び前記冷暖房用熱交換器,又は前記地下水用熱交換器及び前記冷暖房用熱交換器とに分けて別々に同時に供給する場合,地下水を,先ず前記第2密閉容器に供給しこの第2密閉容器から前記冷暖房用熱交換器に,又は先ず前記地下水用熱交換器に供給しこの地下水用熱交換器から前記冷暖房用熱交換器に供給する場合,地下水を,先ず冷暖房用熱交換器に供給しこの冷暖房用熱交換器から第2密閉容器に,先ず前記冷暖房用熱交換器に供給しこの冷暖房用熱交換器から前記地下水用熱交換器に供給する場合を含む。   In claim 1, “groundwater pumped from the ground is supplied to the second sealed container and the heat exchanger for air conditioning or heating, or the heat exchanger for groundwater and the heat exchanger for air conditioning”. In the case of separately supplying two sealed containers and the air conditioner heat exchanger or the groundwater heat exchanger and the air conditioner heat exchanger separately and simultaneously supplying the groundwater, the groundwater is first supplied to the second sealed container. 2. When supplying from the airtight container to the air conditioner heat exchanger or first to the groundwater heat exchanger and supplying from the groundwater heat exchanger to the air conditioner heat exchanger, the groundwater is first supplied to the air conditioner heat exchanger. To the second airtight container from the cooling / heating heat exchanger, first to the cooling / heating heat exchanger, and from the cooling / heating heat exchanger to the groundwater heat exchanger.

ところで,前記したように,冷暖房箇所における冷房を,前記したように,地下から汲み上げた地下水にて行う場合,この地下水の温度は,例えば16℃というように,冷暖房箇所における適正温度(例えば,25〜28℃)よりも可成り低いことにより,前記冷暖房用熱交換器の伝熱面と前記冷暖房箇所との間における温度差が大きいから,前記冷暖房用熱交換器における伝熱面には,結露が発生するおそれが大きい。   By the way, as described above, when the cooling at the air conditioning location is performed by the groundwater pumped from the underground as described above, the temperature of the groundwater is, for example, 16 ° C., the appropriate temperature at the air conditioning location (for example, 25 ˜28 ° C.), the temperature difference between the heat transfer surface of the cooling / heating heat exchanger and the cooling / heating location is large. Is likely to occur.

これに対しては,前記請求項3に記載したように,地下から汲み上げた地下水を,先ず,先ず前記第2密閉容器又は地下水用熱交換器における他方側に供給し,次いで前記冷暖房用熱交換器を経て排出する構成にすることを提案する。   For this, as described in claim 3, groundwater pumped from the ground is first supplied to the other side of the second sealed container or the groundwater heat exchanger, and then the heat exchanger for cooling and heating is used. It is proposed to use a configuration that discharges through a container.

これにより,前記地下水は,前記第2密閉容器内における蒸気の凝縮で温度が高くなった状態で前記冷暖房用熱交換器に送られるか,又は,前記地下水用熱交換器における熱交換で温度が高くなった状態で前記冷暖房用熱交換器に送られることにより,前記冷暖房用熱交換器の伝熱面と前記冷暖房箇所との間における温度差が,前記第2密閉容器内において蒸気の凝縮を行う分だけ小さくなるから,前記冷暖房用熱交換器における伝熱面に結露が発生することを確実に低減できる。   Accordingly, the groundwater is sent to the heat exchanger for cooling and heating in a state where the temperature is increased due to the condensation of steam in the second sealed container, or the temperature is increased by heat exchange in the heat exchanger for groundwater. By being sent to the heating / cooling heat exchanger in a high state, the temperature difference between the heat transfer surface of the heating / cooling heat exchanger and the cooling / heating point causes condensation of steam in the second sealed container. Since it becomes small by the amount to be performed, it is possible to reliably reduce the occurrence of condensation on the heat transfer surface in the air conditioner heat exchanger.

また,冷暖房箇所における冷房を,前記したように,地下から汲み上げた地下水にて行う場合,前記冷暖房用熱交換器に,前記したように結露が発生するおそれが大きいことに加えて,前記地下水による腐食及びスケールが発生するおそれが大きい。   In addition, as described above, when the cooling at the air-conditioning / cooling location is performed using the groundwater pumped from the ground as described above, in addition to the high possibility that condensation occurs in the air-conditioning heat exchanger as described above, Corrosion and scale are likely to occur.

これに対しては,前記請求項4に記載したように,前記冷暖房用熱交換器を,前記冷暖房箇所の内部の空気との間で間接熱交換を行う第1熱交換器と,二つの流体の相互間で間接熱交換をを行う第2熱交換器と,熱媒液を前記第1熱交換器と前記第2熱交換器における一方側との間を循環するようにした循環経路とで構成して,前記蒸気圧縮器を正回転するとき,地下から汲み上げた地下水又は前記第2熱交換器における他方側に供給する一方,前記蒸気圧縮機を逆回転するとき,前記第1密閉容器から排出される蒸発性液体の一部を前記第2熱交換器における他方側に供給するという構成にすることを提案する。   For this, as described in claim 4, the air conditioner heat exchanger is connected to the first heat exchanger that performs indirect heat exchange with the air inside the air conditioner and two fluids. A second heat exchanger that performs indirect heat exchange with each other, and a circulation path that circulates the heat transfer fluid between the first heat exchanger and one side of the second heat exchanger. When the steam compressor is rotated forward, it is supplied to the ground water pumped from the ground or the other side of the second heat exchanger, while the steam compressor is rotated backward, the first sealed container is It is proposed that a part of the discharged evaporating liquid is supplied to the other side of the second heat exchanger.

これにより,前記冷暖房用熱交換器を構成する第1熱交換器と前記第2熱交換器との間を循環する熱媒液に,地下水以外の熱媒液を使用できるから,地下水による腐食及びスケールの発生を確実に回避できるのであり,しかも,冷房を行う場合に,第1熱交換器の伝熱面における温度は,第2熱交換器において地下水と熱媒液との間で間接熱交換を行うことに必要な温度差(例えば,2〜5℃程度)の分だけ下がり,冷暖房箇所との間における温度差が小さくなるから,前記第1熱交換器の伝熱面に結露が発生することを確実に低減できる。   As a result, a heat transfer fluid other than groundwater can be used as the heat transfer fluid circulating between the first heat exchanger and the second heat exchanger constituting the air conditioner heat exchanger. The generation of scale can be reliably avoided, and the temperature at the heat transfer surface of the first heat exchanger is indirect heat exchange between the groundwater and the heat transfer liquid in the second heat exchanger when cooling is performed. As the temperature difference required for the heating is reduced by an amount corresponding to the temperature difference (for example, about 2 to 5 ° C.), the temperature difference with the air-conditioning part is reduced, so that condensation occurs on the heat transfer surface of the first heat exchanger. Can be reliably reduced.

特に,この請求項4に記載した構成においては,請求項3に記載したのと同様に,地下から汲み上げた地下水を,先ず前記第2密閉容器に供給し,この第2密閉容器から前記冷暖房用熱交換器における第2熱交換器に供給するか,又は,先ず前記地下水用熱交換器に供給し,この地下水用熱交換器から前記冷暖房用熱交換器における第2熱交換器にし,ここの第2熱交換器から排出するように構成することにより,前記第2熱交換器には,前記第2密閉容器において蒸気の凝縮で暖められた地下水が供給されるから,第1熱交換器の伝熱面における温度を,前記冷暖房箇所における温度を越えない状態において,前記冷暖房箇所における温度に更に近づけることができ,結露の発生より確実に低減できる利点がある。   In particular, in the configuration described in claim 4, as in the case of claim 3, groundwater pumped from the ground is first supplied to the second sealed container, and the air conditioner for cooling and heating is supplied from the second sealed container. The heat exchanger is supplied to the second heat exchanger, or first supplied to the ground water heat exchanger, and the ground water heat exchanger is changed to the second heat exchanger in the air conditioner heat exchanger. By being configured to discharge from the second heat exchanger, the second heat exchanger is supplied with groundwater heated by condensation of steam in the second sealed vessel, so that the first heat exchanger In a state where the temperature at the heat transfer surface does not exceed the temperature at the air conditioning / heating location, the temperature at the air conditioning / heating location can be made closer, and there is an advantage that it can be reduced more reliably than the occurrence of condensation.

なお,前記調湿用熱交換器及び第1熱交換器は,前記冷暖房箇所の内部に設置するか,又は前記冷暖房箇所における空気循環経路中に設置するか,或いは前記冷暖房箇所への新規空気の導入経路中に設置するという構成にできる。   The humidity control heat exchanger and the first heat exchanger are installed inside the air conditioning unit, installed in an air circulation path in the air conditioning unit, or new air is supplied to the air conditioning unit. It can be configured to be installed in the introduction route.

また,前記請求項4に記載した構成においては,前記請求項5に記載したように,前記第1熱交換器を,前記冷暖房箇所における天井面又は壁面に沿って配設した輻射パネルと,この各輻射パネルに設けた流体通路とで構成し,前記流体通路内に,前記第2熱交換器との間を循環する熱媒液を流する構成にできる。   Further, in the configuration described in claim 4, as described in claim 5, the first heat exchanger is provided with a radiant panel disposed along a ceiling surface or a wall surface in the air conditioning location, It can be constituted by a fluid passage provided in each radiation panel, and a heat medium liquid circulating between the second heat exchanger can be flowed in the fluid passage.

この構成により,前記冷暖房箇所との間で間接熱交換を行うための伝熱面の面積を大幅に増大できるから,冷房及び暖房の性能を,腐食,スケール及び結露の発生を抑制した状態のもとで,大幅に向上できる利点がある。   With this configuration, the area of the heat transfer surface for performing indirect heat exchange with the air-conditioning location can be greatly increased, so that the performance of cooling and heating can be controlled in a state where the occurrence of corrosion, scale and condensation is suppressed. And there is an advantage that can be greatly improved.

更に,請求項6に記載した構成にすることにより,以下に述べる効果を有する。   Further, the configuration described in claim 6 has the following effects.

すなわち,前記蒸気圧縮機を正回転しての冷房時において,第2密閉容器内で圧縮蒸気を凝縮することで温度が上昇した地下水を,第2の井戸から地中に戻して,この第2の井戸の付近に蓄え,この蓄えた高い温度の地下水を,前記蒸気圧縮機を逆回転しての暖房時において,前記第2の井戸から汲み上げて前記第2密閉容器に供給して,暖房を行う場合の熱源にすることができる。   That is, during cooling with the steam compressor rotating forward, groundwater whose temperature has increased by condensing the compressed steam in the second sealed container is returned from the second well to the ground, and the second The stored high temperature groundwater is pumped up from the second well and supplied to the second sealed container during heating with the steam compressor rotating in reverse, for heating. It can be a heat source when performing.

一方,前記蒸気圧縮機を逆回転しての暖房時において,第2密閉容器内の沸騰蒸発にて温度が下がった地下水を,第1の井戸から地中に戻して,この第1の井戸の付近に蓄え,この蓄えた低い温度の地下水を,前記蒸気圧縮機を正回転しての冷房時において,前記第1の井戸から汲み上げて前記第2密閉容器及び前記冷暖房用熱交換器又は第2熱交換器の他方側に供給して,冷房を行う場合の冷却源にすることができるから,冷房及び暖房の効率を大幅に向上できる。   On the other hand, during heating with the steam compressor rotating in the reverse direction, the ground water whose temperature has been lowered by boiling evaporation in the second closed vessel is returned from the first well to the ground, The stored low-temperature groundwater is pumped up from the first well and cooled in the forward rotation of the steam compressor, and stored in the vicinity. Since it can be supplied to the other side of the heat exchanger and used as a cooling source for cooling, the efficiency of cooling and heating can be greatly improved.

また,前記冷房及び暖房に際しての負荷は,請求項7に記載したように,前記蒸気圧縮機における回転数を変更することによって,任意に増減するように調節できる。   Further, as described in claim 7, the load during cooling and heating can be adjusted to increase or decrease arbitrarily by changing the number of revolutions in the steam compressor.

以下,本発明における第1の実施の形態を,図1〜図3の図面について説明する。   A first embodiment of the present invention will be described below with reference to FIGS.

この図において,符号1は,第1密閉容器を,符号2は,第2密閉容器を各々示し,これら両密閉容器1,2のうちいずれか一方又は両方には,当該両密閉容器1,2内を大気圧より低い減圧に維持するための真空ポンプ3等の真空発生装置が接続されている。   In this figure, reference numeral 1 denotes a first sealed container, and reference numeral 2 denotes a second sealed container. Either one or both of these sealed containers 1 and 2 includes the both sealed containers 1 and 2. A vacuum generator such as a vacuum pump 3 is connected to maintain the inside at a reduced pressure lower than the atmospheric pressure.

また,前記第1密閉容器1の上部と前記第2密閉容器2の上部の間は,蒸気ダクト4を介して互いに接続され,この蒸気ダクト4の途中には,正逆回転可能な蒸気圧縮機としての一つの例であるところのルーツ式圧縮機5が設けられている。   The upper part of the first sealed container 1 and the upper part of the second sealed container 2 are connected to each other via a steam duct 4, and a steam compressor capable of rotating in the forward and reverse directions is disposed in the middle of the steam duct 4. The Roots type compressor 5 which is one example is provided.

このルーツ式圧縮機5は,電動モータ5a又は内燃機関等にて回転駆動され,その回転数を変更するための変速機構5bを備えている。   This Roots type compressor 5 is rotationally driven by an electric motor 5a, an internal combustion engine or the like, and includes a speed change mechanism 5b for changing the number of rotations.

前記第1密閉容器1と前記第2密閉容器2の相互間は,その各々における水が互いに往来するように,底部における連通路6を介して接続されており,加えて,前記両密閉容器1,2内の上部には,水散布ノズル7,8が各々設けられている。   The first airtight container 1 and the second airtight container 2 are connected to each other through a communication passage 6 at the bottom so that water in each of the airtight containers 1 and 2 can pass between them. , 2 are provided with water spray nozzles 7, 8 respectively.

次に,符号9は,室内等のように冷房と暖房を行う箇所,つまり冷暖房箇所を,符号10は,前記冷暖房箇所9に対する間接熱交換型の冷暖房用熱交換器を各々示す。   Reference numeral 9 denotes a place for cooling and heating such as indoors, that is, an air-conditioning place, and reference numeral 10 denotes an indirect heat exchange type air-conditioning heat exchanger for the air-conditioning place 9.

前記冷暖房用熱交換器10は,前記冷暖房箇所9内等に設置することで当該冷暖房箇所9における空気との間で間接的に熱交換するようにした少なくとも一つの第1熱交換器11と,前記冷暖房箇所9の外等の適宜箇所に設置されて二つの流体の相互間で間接的に熱交換を行うようにした第2熱交換器12と,水等の熱媒液を前記第1熱交換器11と前記第2熱交換器12の一方側12aとの間を循環させるようにした循環経路13,14と,この循環経路13,14のうち一方に設けた循環ポンプ15とで構成されている。   The air conditioner heat exchanger 10 is installed in the air conditioner 9 or the like so as to indirectly exchange heat with the air in the air conditioner 9, and the first heat exchanger 11, A second heat exchanger 12 installed at an appropriate location such as outside the air-conditioning location 9 to indirectly exchange heat between the two fluids, and a heat transfer fluid such as water are used as the first heat The circulation path 13, 14 is configured to circulate between the exchanger 11 and one side 12 a of the second heat exchanger 12, and the circulation pump 15 provided in one of the circulation paths 13, 14. ing.

本実施の形態の場合,前記少なくとも一つの第1熱交換器11は,二つの熱交換器11a,11bを直列接続したものに構成している。   In the case of the present embodiment, the at least one first heat exchanger 11 is configured by connecting two heat exchangers 11a and 11b in series.

なお,前記第1熱交換器11は,冷暖房箇所9の内部に設置するか,又は前記冷暖房箇所9における空気循環経路中に設置するか,或いは前記冷暖房箇所9への新規空気の導入ダクト(図示せず)中に設置するという構成にしている。   The first heat exchanger 11 is installed inside the air conditioning station 9 or installed in an air circulation path in the air conditioning station 9 or a duct for introducing new air into the air conditioning station 9 (see FIG. (Not shown).

一方,前記冷暖房箇所9には,新規空気の導入ダクト16を接続して,この導入ダクト16内に,新規空気との間で間接的に熱交換を行うようにした調湿用熱交換器17と,この調湿用熱交換器17の伝熱面に対する水散布ノズル18とが設けられている。   On the other hand, a new air introduction duct 16 is connected to the cooling / heating location 9, and a heat exchanger 17 for humidity control in which heat is indirectly exchanged with the new air in the introduction duct 16. And a water spray nozzle 18 for the heat transfer surface of the humidity control heat exchanger 17 is provided.

一方,地面19には,二つの井戸20,21が,適宜距離Lを隔てて掘削されており,この両井戸20,21のうち一方の井戸20からポンプ22にて汲み上げた地下水,及び,他方の井戸21からポンプ23にて汲み上げた地下水を,各々開閉弁24,25を備えた管路26,27を介して前記第2密閉容器2における水散布ノズル8に供給して第2密閉容器2内に噴出するように構成している。   On the other hand, two wells 20 and 21 are excavated on the ground 19 at an appropriate distance L. The ground water pumped from one of the wells 20 and 21 by the pump 22 and the other The ground water pumped up from the well 21 by the pump 23 is supplied to the water spray nozzle 8 in the second sealed container 2 through the pipes 26 and 27 having the on-off valves 24 and 25, respectively. It is configured to erupt inside.

前記第2密閉容器2内における地下水を,ポンプ28にて汲み出し,開閉弁29を備えた管路30を介して前記一方の井戸20から地中に戻すように構成するとともに,開閉弁31を備えた管路32を介して前記第2熱交換器12の他方側12bに供給するように構成している。   The ground water in the second sealed container 2 is pumped out by a pump 28 and returned to the ground from the one well 20 through a pipe line 30 having an on-off valve 29, and an on-off valve 31 is provided. Further, the second heat exchanger 12 is configured to be supplied to the other side 12b via the pipe line 32.

前記第1密閉容器1内における水等の蒸発性液体を,ポンプ33にて汲み出し,開閉弁34を備えた管路35を介して前記第2熱交換器12の他方側12bに供給するとともに,開閉弁36を備えた管路37を介して前記調湿用熱交換器17に供給するように構成している。   Evaporating liquid such as water in the first sealed container 1 is pumped out by a pump 33 and supplied to the other side 12b of the second heat exchanger 12 through a pipe line 35 provided with an on-off valve 34. The humidity control heat exchanger 17 is supplied through a pipe line 37 having an on-off valve 36.

更に,前記調湿用熱交換器17から排出される蒸発性液体を,管路38を介して前記第1密閉容器1における水散布ノズル7に供給して第1密閉容器1内に噴出するように構成しており,加えて,前記第2熱交換器12の他方側12bから排出される地下水を,開閉弁39を備えた管路40を介して前記他方の井戸21から地中に戻すとともに,開閉弁41を備えた管路42を介して前記第1密閉容器1における水散布ノズル7に供給するように構成している。   Further, the evaporative liquid discharged from the humidity control heat exchanger 17 is supplied to the water spray nozzle 7 in the first sealed container 1 through the pipe line 38 so as to be ejected into the first sealed container 1. In addition, the groundwater discharged from the other side 12b of the second heat exchanger 12 is returned to the ground from the other well 21 through the pipe line 40 provided with the on-off valve 39. The water spray nozzle 7 in the first airtight container 1 is supplied through a pipe line 42 having an opening / closing valve 41.

この構成において,冷房仕様とするときには,図2に示すように操作する。   In this configuration, the cooling operation is performed as shown in FIG.

すなわち,前記ルーツ式圧縮機5を,前記第1密閉容器1から前記第2密閉容器2に向かって圧縮する方向に正回転する一方,前記各種の開閉弁のうち開閉弁24,31,36及び39を開いて,開閉弁25,29,34及び41を閉じ,更に,前記各種のポンプのうちポンプ15,22,28,33を運転し,ポンプ23を運転停止にする。   That is, while the Roots-type compressor 5 is normally rotated in the direction of compression from the first sealed container 1 toward the second sealed container 2, the on-off valves 24, 31, 36 and 36 of the various on-off valves 39 is opened, the on-off valves 25, 29, 34 and 41 are closed, and among the various pumps, the pumps 15, 22, 28 and 33 are operated, and the pump 23 is stopped.

この操作により,一方の井戸20からポンプ22にて地中から汲み上げられた地下水は,第2密閉容器2内における水散布ノズル8に管路26を介して送られて噴出し,この第2密閉容器2内からポンプ28及び管路32を介して前記冷暖房用熱交換器10を構成する第2熱交換器12の他方側12bに送られ,この第2熱交換器12の他方側12bから排出され,管路40を介して他方の井戸21に送られ,この他方の井戸21から地中に戻される。   By this operation, the groundwater pumped from the ground by the pump 22 from one well 20 is sent to the water spray nozzle 8 in the second sealed container 2 through the pipe 26 and ejected, and this second sealed It is sent from the inside of the container 2 to the other side 12b of the second heat exchanger 12 constituting the cooling / heating heat exchanger 10 via the pump 28 and the pipe line 32, and discharged from the other side 12b of the second heat exchanger 12. Then, it is sent to the other well 21 through the conduit 40 and returned from the other well 21 to the ground.

一方,前記第1密閉容器1内における水等の蒸発性液体は,ポンプ33及び管路37を介して前記調湿用熱交換器17に供給され,この調湿用熱交換器17から前記第1密閉容器1内における水散布ノズル7に管路38を介して送られて噴出するという循環を繰り返す。   On the other hand, an evaporating liquid such as water in the first sealed container 1 is supplied to the humidity control heat exchanger 17 via a pump 33 and a pipe line 37, and the humidity control heat exchanger 17 supplies the first liquid. The circulation of being sent to the water spray nozzle 7 in the closed container 1 through the pipe line 38 and ejected is repeated.

また,前記冷暖房用熱交換器10における熱媒液は,管路13,14及び循環ポンプ15にて,当該冷暖房用熱交換器10を構成する第1熱交換器11と,第2熱交換器12の一方側12aとの間を循環する。   In addition, the heat medium liquid in the heat exchanger 10 for cooling and heating is supplied to the first heat exchanger 11 and the second heat exchanger constituting the heat exchanger 10 for cooling and heating by the pipes 13 and 14 and the circulation pump 15. It circulates between 12 one side 12a.

この状態で,前記ルーツ式圧縮機5が正回転することにより,第1密閉容器1内の減圧が高くなることで,この第1密閉容器1内における水等の蒸発性液体が沸騰蒸発し,この沸騰蒸発にて温度が下がった蒸発性液体は調湿用熱交換器17に送られる。   In this state, when the Roots-type compressor 5 rotates in the forward direction, the reduced pressure in the first sealed container 1 is increased, and evaporating liquid such as water in the first sealed container 1 is boiled and evaporated. The evaporating liquid whose temperature has been lowered by the boiling evaporation is sent to the heat exchanger 17 for humidity control.

一方,前記第1密閉容器1内での沸騰蒸発にて発生した蒸気は,ルーツ式圧縮機5にて圧縮されたのち第2密閉容器2内に至り,ここで,当該第2密閉容器2内に供給される地下水との直接接触にて冷却されて凝縮される。   On the other hand, the vapor generated by boiling evaporation in the first sealed container 1 is compressed by the roots compressor 5 and then reaches the second sealed container 2, where the inside of the second sealed container 2 It is cooled and condensed in direct contact with the groundwater supplied to it.

前記第2密閉容器2内において蒸気を凝縮した地下水は,前記冷暖房用熱交換器10を構成する第2熱交換器12の他方側12bに送られ,この第2熱交換器12の一方側12aと第1熱交換器11との間を循環する熱媒液と熱交換して,この熱媒液を冷すから,前記冷暖房箇所9を冷房することができる。   The groundwater in which the steam is condensed in the second sealed container 2 is sent to the other side 12b of the second heat exchanger 12 constituting the air conditioner heat exchanger 10, and one side 12a of the second heat exchanger 12 is supplied. Since the heat transfer fluid is circulated between the first heat exchanger 11 and the first heat exchanger 11 to cool the heat transfer fluid, the cooling / heating portion 9 can be cooled.

前記第1密閉容器1内における沸騰蒸発により,この第1密閉容器1から前記冷暖房箇所9に対する調湿用熱交換器17に送られる蒸発性液体の温度を,地下水の温度よりも前記ルーツ式圧縮機5における圧縮比に相当する温度だけ低くすることができ,換言すると,前記調湿用熱交換器17における伝熱面の表面温度を,前記冷暖房箇所9における温度よりも十分に低くすることができて,その伝熱面の表面には空気中における水分の結露が発生することになるから,結露を除去することで,前記冷暖房箇所9を,除湿しながら冷房を行うことができる。   The temperature of the evaporating liquid sent from the first sealed container 1 to the heat exchanger 17 for humidity control with respect to the cooling / heating location 9 by boiling evaporation in the first sealed container 1 is more than the root-type compression than the temperature of groundwater. The temperature corresponding to the compression ratio in the machine 5 can be lowered, in other words, the surface temperature of the heat transfer surface in the humidity-control heat exchanger 17 can be made sufficiently lower than the temperature in the air conditioning location 9. In addition, since moisture condensation in the air occurs on the surface of the heat transfer surface, the air conditioning location 9 can be cooled while dehumidifying by removing the condensation.

また,前記第2密閉容器2内における地下水は,蒸気の凝縮によって,その温度が前記冷暖房箇所9の温度に近づくように上昇したのち,前記第2熱交換器12の他方側12bに送られて,ここで,この第2熱交換器12の一方側12aと第1熱交換器11との間を循環する熱媒液と熱交換する。   Further, the groundwater in the second sealed container 2 is sent to the other side 12b of the second heat exchanger 12 after its temperature rises by the condensation of steam so as to approach the temperature of the cooling / heating location 9. Here, heat is exchanged with the heat transfer fluid circulating between the one side 12 a of the second heat exchanger 12 and the first heat exchanger 11.

この熱交換により,前記熱媒液の温度を,前記冷暖房箇所9の温度を越えることがない状態のもとで,当該冷暖房箇所9の温度に近づけることができるから,前記第1熱交換器11と前記冷暖房箇所9との間の温度差を小さくできて,前記第1熱交換器11における前記冷暖房箇所9側の伝熱面に結露が発生することを回避できる。   By this heat exchange, the temperature of the heat transfer liquid can be brought close to the temperature of the cooling / heating location 9 without exceeding the temperature of the cooling / heating location 9, so that the first heat exchanger 11 And the temperature difference between the cooling / heating location 9 can be reduced, and the occurrence of condensation on the heat transfer surface of the first heat exchanger 11 on the cooling / heating location 9 side can be avoided.

次に,暖房の仕様とするときには,図3に示すように操作する。   Next, when setting the heating specification, the operation is performed as shown in FIG.

すなわち,前記ルーツ式圧縮機5を,前記第2密閉容器2から前記第1密閉容器1に向かって圧縮する方向に逆回転する一方,前記各種の開閉弁のうち開閉弁25,29,34,36及び41を開いて,開閉弁24,31及び39を閉じ,更に,前記各種のポンプのうちポンプ15,23,28,33を運転し,ポンプ22を運転停止にする。   That is, the Roots-type compressor 5 rotates in the reverse direction in the direction of compression from the second sealed container 2 toward the first sealed container 1, while the on-off valves 25, 29, 34, 36 and 41 are opened, the on-off valves 24, 31 and 39 are closed, and among the various pumps, the pumps 15, 23, 28 and 33 are operated, and the pump 22 is stopped.

この操作により,他方の井戸21からポンプ23にて地中から汲み上げられた地下水は,第2密閉容器2内における水散布ノズル8に管路26を介して送られて噴出し,この第2密閉容器2内からポンプ28及び管路30を介して一方の井戸20に送られ,この一方の井戸20から地中に戻される。   By this operation, the groundwater pumped from the ground by the pump 23 from the other well 21 is sent to the water spray nozzle 8 in the second hermetic container 2 via the pipe 26 and ejected, and this second hermetic seal is made. It is sent from the inside of the container 2 to one well 20 through a pump 28 and a pipe 30 and returned from the one well 20 to the ground.

一方,前記第1密閉容器1内における水等の蒸発性液体は,ポンプ33にて汲み出され,管路37を介して前記調湿用熱交換器17に供給されるとともに,管路35を介して前記第2熱交換器12の他方側12bに供給され,これら調湿用熱交換器17及び第2熱交換器12の他方側12bから管路38及び管路42を介して前記第1密閉容器1内における水散布ノズル7に送られて噴出するという循環を繰り返す。   On the other hand, evaporative liquid such as water in the first sealed container 1 is pumped out by a pump 33 and supplied to the humidity-control heat exchanger 17 through a pipe 37, To the other side 12b of the second heat exchanger 12, and the first side 12b of the humidity control heat exchanger 17 and the second heat exchanger 12 through the line 38 and the line 42 from the first side. The circulation of being sent to the water spray nozzle 7 in the sealed container 1 and being ejected is repeated.

この場合,前記第1密閉容器1からポンプ33にて汲み出された蒸発性液体の前記調湿用熱交換器17及び前記第2熱交換器12に対する供給比率は,開閉弁34,36の開度調節によって任意に設定できる。   In this case, the supply ratio of the evaporating liquid pumped from the first sealed container 1 by the pump 33 to the humidity control heat exchanger 17 and the second heat exchanger 12 is determined by the opening and closing of the on-off valves 34 and 36. Can be set arbitrarily by adjusting the degree.

また,前記冷暖房用熱交換器10における熱媒液は,管路13,14及び循環ポンプ15にて,当該冷暖房用熱交換器10を構成する第1熱交換器11と,第2熱交換器12の一方側12aとの間を循環する。   In addition, the heat medium liquid in the heat exchanger 10 for cooling and heating is supplied to the first heat exchanger 11 and the second heat exchanger constituting the heat exchanger 10 for cooling and heating by the pipes 13 and 14 and the circulation pump 15. It circulates between 12 one side 12a.

この状態で,前記ルーツ式圧縮機5が逆回転することにより,今度は,第2密閉容器2内の減圧が高くなることで,この第2密閉容器2内における地下水が沸騰蒸発し,この沸騰蒸発にて温度が下がった地下水は,一方の井戸20から地中に戻される。   In this state, when the Roots-type compressor 5 rotates in the reverse direction, the pressure in the second sealed container 2 is increased, so that the groundwater in the second sealed container 2 is boiled and evaporated. The groundwater whose temperature has been reduced by evaporation is returned from one well 20 to the ground.

一方,前記第2密閉容器2内での沸騰蒸発にて発生した蒸気は,ルーツ式圧縮機5にて圧縮されたのち第1密閉容器1内に至り,ここで,当該第1密閉容器1内における水等の蒸発性液体との直接接触にて冷却されて凝縮される。   On the other hand, the vapor generated by boiling evaporation in the second sealed container 2 is compressed by the roots compressor 5 and then reaches the first sealed container 1, where the inside of the first sealed container 1 Is cooled and condensed by direct contact with evaporating liquid such as water.

前記第1密閉容器1内において蒸気を凝縮することで温度が高くなった蒸発性液体は,前記冷暖房用熱交換器10を構成する第2熱交換器12の他方側12bと,前記調湿用熱交換器17との両方に送られる。   The evaporating liquid whose temperature is increased by condensing the vapor in the first sealed container 1 is the other side 12b of the second heat exchanger 12 constituting the heat exchanger 10 for cooling and heating, and the humidity adjusting liquid. It is sent to both the heat exchanger 17.

前記第1密閉容器1から第2熱交換器12の他方側12bに送られた蒸発性液体は,この第2熱交換器12の一方側12aと第1熱交換器11との間を循環する熱媒液と熱交換して,この熱媒液を暖めるから,前記冷暖房箇所9を暖房することができる。   The evaporating liquid sent from the first sealed container 1 to the other side 12 b of the second heat exchanger 12 circulates between the one side 12 a of the second heat exchanger 12 and the first heat exchanger 11. Since this heat transfer fluid is heated by exchanging heat with the heat transfer fluid, the cooling / heating portion 9 can be heated.

また,前記第1密閉容器1から前記調湿用熱交換器17に送られた蒸発性液体は,この調湿用熱交換器17における伝熱面の温度を高くするから,この伝熱面に水散布ノズル18にて散水して,水分の蒸発を行うことにより,前記冷暖房箇所を,加湿しながら暖房を行うことができる。   In addition, the evaporating liquid sent from the first sealed container 1 to the humidity control heat exchanger 17 raises the temperature of the heat transfer surface in the humidity control heat exchanger 17. By spraying water with the water spray nozzle 18 and evaporating the water, the air-conditioning part can be heated while humidifying.

また,前記実施の形態においては,地中のうち一方の井戸20における付近に,暖房仕様にしたときに前記第2密閉容器2内での沸騰蒸発にて温度が低くなった地下水を戻して蓄え,次いで,冷房仕様にしたときに,前記一方の井戸20における付近に蓄えた温度の低い地下水を汲み上げて,冷房を行う場合の冷却源にしている。   In the above embodiment, the groundwater whose temperature is lowered by boiling evaporation in the second sealed container 2 when the heating specification is used is returned and stored in the vicinity of one well 20 in the ground. Then, when the cooling specification is adopted, groundwater having a low temperature stored in the vicinity of the one well 20 is pumped up and used as a cooling source for cooling.

一方,地中のうち他方の井戸21における付近に,冷房仕様にしたときに前記第2密閉容器2内での蒸気の凝縮にて温度が高くなった地下水を戻して蓄え,次いで,暖房にしたときに,前記他方の井戸21における付近に蓄えられている温度の高い地下水を汲み上げて,暖房を行う場合の熱源にしている。   On the other hand, in the vicinity of the other well 21 in the ground, the groundwater whose temperature has become high due to the condensation of the steam in the second closed vessel 2 when stored in the cooling is returned and stored, and then heated. Sometimes, groundwater with a high temperature stored in the vicinity of the other well 21 is pumped up to serve as a heat source for heating.

従って,前記二つの井戸20,21間の距離Lは,その各々における地下水が互いに混じり合うことがないように設定することが好ましい。   Therefore, it is preferable that the distance L between the two wells 20 and 21 is set so that the groundwater in each well does not mix with each other.

更にまた,前記実施の形態においては,冷房仕様にした場合において,前記ルーツ式圧縮機5を正回転するときの回転数を加速すると,第1密閉容器1内の減圧度が高くなり沸騰蒸発する蒸発性液体の温度が下がるから,前記冷暖房箇所9における冷房負荷を増大できる一方,暖房仕様にした場合において,前記ルーツ式圧縮機5を逆回転するときの回転数を加速すると,前記第1密閉容器1内の減圧度が下がり,蒸発性液体の温度が上がることになるから,前記冷暖房箇所9における暖房負荷を増大できるというように,前記冷暖房箇所9における冷房負荷及び暖房負荷を,前記ルーツ式圧縮機5を正回転又は逆回転するときの回転数を増減するように制御することで任意に調節できる。   Furthermore, in the embodiment, in the case of the cooling specification, if the rotational speed when the Roots compressor 5 is normally rotated is accelerated, the degree of decompression in the first hermetic container 1 is increased and the liquid is boiled and evaporated. Since the temperature of the evaporating liquid is lowered, the cooling load at the cooling / heating point 9 can be increased. On the other hand, in the case of the heating specification, if the rotation speed when the Roots compressor 5 is reversely rotated is accelerated, the first sealing Since the degree of decompression in the container 1 decreases and the temperature of the evaporative liquid increases, the cooling load and the heating load at the cooling / heating location 9 can be increased so that the heating load at the cooling / heating location 9 can be increased. The compressor 5 can be arbitrarily adjusted by controlling to increase or decrease the number of rotations when the compressor 5 is rotated forward or backward.

加えて,前記実施の形態においては,前記冷暖房箇所9に対する冷暖房用熱交換器10を,第1熱交換器11と,第2熱交換器12と,その間における熱媒液の循環経路とで構成したことにより,第1熱交換器11と前記第2熱交換器12との間を循環する熱媒液に,地下水以外の熱媒液を使用できるから,地下水による腐食及びスケールの発生を確実に回避できるのであり,しかも,冷房を行う場合に,第1熱交換器11の伝熱面における温度は,第2熱交換器12において地下水と熱媒液との間で間接熱交換を行うことに必要な温度差の分だけ下がるから,冷暖房箇所との間における温度差を小さくできる。   In addition, in the said embodiment, the heat exchanger 10 for the air conditioning with respect to the said air-conditioning location 9 is comprised by the 1st heat exchanger 11, the 2nd heat exchanger 12, and the circulation path of the heat-medium liquid in the meantime. As a result, heat medium liquid other than ground water can be used as the heat medium liquid circulating between the first heat exchanger 11 and the second heat exchanger 12, so that corrosion and scale generation due to ground water can be ensured. In addition, when cooling is performed, the temperature at the heat transfer surface of the first heat exchanger 11 is such that the second heat exchanger 12 performs indirect heat exchange between the groundwater and the heat transfer liquid. Since the temperature difference is reduced by the necessary temperature difference, the temperature difference between the air-conditioning location and the temperature can be reduced.

その上,前記実施の形態においては,冷房仕様のとき,一方の井戸20から汲み上げた地下水を,先ず,前記第2密閉容器2に供給し,この第2密閉容器2から前記第2熱交換器12の他方側12bに供給するという構成にしたことにより,前記第2熱交換器12の他方側12bには,前記第2密閉容器2において蒸気の凝縮で暖められた地下水が供給されるから,第1熱交換器11の伝熱面における温度を,前記冷暖房箇所9における温度を越えない状態において,前記冷暖房箇所9における温度に更に近づけることができる。   In addition, in the embodiment, in the cooling specification, the groundwater pumped from one well 20 is first supplied to the second sealed container 2, and the second heat exchanger 2 then supplies the second heat exchanger. Since the second side 12b of the second heat exchanger 12 is supplied with ground water heated by condensation of steam in the second side 12b of the second heat exchanger 12, The temperature at the heat transfer surface of the first heat exchanger 11 can be made closer to the temperature at the cooling / heating location 9 in a state where the temperature does not exceed the temperature at the cooling / heating location 9.

なお,前記実施の形態は,正逆回転可能で,且つ,回転数変更可能な蒸気圧縮機としてルーツ式圧縮機を使用した場合であったが,本発明はこれに限らず,可動翼式圧縮機又はねじ式圧縮機等のような回転型圧縮機を使用できることはいうまでもない。   The embodiment has been described in the case where a roots compressor is used as a steam compressor capable of rotating in the forward and reverse directions and capable of changing the number of revolutions. However, the present invention is not limited to this, and the movable blade compression is not limited thereto. It goes without saying that a rotary compressor such as a machine or a screw compressor can be used.

そして,図4は,前記冷暖房箇所9に対する冷暖房用熱交換器10を構成する第1熱交換器における一つの具体例を示す。   And FIG. 4 shows one specific example in the 1st heat exchanger which comprises the heat exchanger 10 for an air conditioning with respect to the said air conditioning location 9. FIG.

この具体例の第1熱交換器11′は,前記冷暖房箇所9を構成する天井又は壁面に沿って並べて配設した複数枚の輻射パネル11a′と,この各輻射パネル11a′の各々に設けたパイプ状流体通路11b′とから成り,前記各輻射パネル11a′における流体通路11b″内に,前記第2熱交換器12との間を循環する熱媒液を管路13,14にて流すことにより,前記冷暖房箇所9を冷房又は暖房するように構成したものである。   The first heat exchanger 11 ′ of this specific example is provided on each of the plurality of radiation panels 11 a ′ arranged side by side along the ceiling or wall surface that constitutes the air conditioning section 9, and each of these radiation panels 11 a ′. A heat transfer fluid circulating between the second heat exchanger 12 is caused to flow through the conduits 13 and 14 in the fluid passages 11b ″ of the radiation panels 11a ′. Thus, the cooling / heating location 9 is configured to be cooled or heated.

なお,前記輻射パネル11a′及びこれに設けたパイプ状流体通路11b′は,アルミニウム等のように,軽量で且つ熱伝達に優れた材料製にすることが好ましい。   The radiant panel 11a 'and the pipe-like fluid passage 11b' provided therein are preferably made of a material that is lightweight and excellent in heat transfer, such as aluminum.

この構成によると,前記輻射パネル11a′の全体が,これに設けたパイプ状流体通路11b′内を流れる熱媒液にて冷やされるか,暖められることにより,前記冷暖房箇所9に対する伝熱面の面積を大幅に増大できる利点がある。   According to this configuration, the entire radiation panel 11a 'is cooled or warmed by the heat transfer fluid flowing in the pipe-like fluid passage 11b' provided therein, so that the heat transfer surface with respect to the cooling / heating location 9 is improved. There is an advantage that the area can be greatly increased.

この図4に示した構造の第1熱交換器11′を,図1に示すように,直列接続の二つの第1熱交換器11a,11bにする場合には,熱媒液の流れに対して上流側に位置する一方の第1熱交換器における流体通路11b′付き輻射パネル11a′の複数枚を,前記冷暖房箇所9を構成する壁面に沿って縦向きに延びるように配設する一方,熱媒液の流れに対して下流側に位置する他方の第1熱交換器における流体通路11b′付き輻射パネル11a′の複数枚を,前記冷暖房箇所9を構成する天井面に沿って延びるように配設するという構成にすることができる。   When the first heat exchanger 11 ′ having the structure shown in FIG. 4 is replaced with two first heat exchangers 11a and 11b connected in series as shown in FIG. A plurality of radiant panels 11a 'with fluid passages 11b' in one of the first heat exchangers located on the upstream side are arranged so as to extend vertically along the wall surface constituting the air conditioning location 9, A plurality of the radiant panels 11a ′ with the fluid passages 11b ′ in the other first heat exchanger located on the downstream side with respect to the flow of the heat transfer liquid so as to extend along the ceiling surface constituting the cooling / heating location 9 It can be configured to be disposed.

このように構成することで,壁面に配設した一方の第1熱交換器における輻射パネル11a′の表面には結露が発生し易いが,この結露は,輻射パネル11a′は縦向きであることによりこれに沿って容易に流下させることができる。   With this configuration, condensation tends to occur on the surface of the radiant panel 11a 'in the first heat exchanger disposed on the wall surface. This dew condensation is caused by the radiant panel 11a' being oriented vertically. Therefore, it can be made to flow down easily along this.

そして,図5は,第2の実施の形態を示す。   FIG. 5 shows a second embodiment.

この第2の実施の形態は,前記第2密閉容器2内に地下から汲み上げた地下水を供給するという構成にすることに代るものである。   This second embodiment is an alternative to the configuration in which ground water pumped from the underground is supplied into the second sealed container 2.

すなわち,二つの流体の相互間で間接的に熱交換を行うようにした地下水用熱交換器43を別に設けて,前記第2密閉容器2内に入れた水等の蒸発性液体を当該第2密閉容器2と,前記地下水用熱交換器43における一方側43aとの間を循環ポンプ44にて循環するように構成する一方,両井戸20,21から汲み上げた地下水を,前記地下水用熱交換器43における他方側43bに供給し,この他方側43bから排出するように構成したものであり,その他の構成は,前記第1の実施の形態と同様である。   In other words, a groundwater heat exchanger 43 that is configured to indirectly perform heat exchange between two fluids is separately provided, and an evaporating liquid such as water contained in the second sealed container 2 is supplied to the second fluid container. A ground pump 2 is configured to circulate between the sealed container 2 and one side 43a of the ground water heat exchanger 43 by a circulation pump 44, while ground water pumped from both wells 20 and 21 is used as the ground water heat exchanger. 43 is configured to be supplied to the other side 43b and discharged from the other side 43b, and the other configuration is the same as that of the first embodiment.

この構成によると,前記ルーツ圧縮機5等の蒸気圧縮機を正回転して冷房仕様にしたとき,前記第2密閉容器2内に至った蒸気が,地下水用熱交換器43において地下水にて冷却される蒸発性液体との直接接触にて冷却されて凝縮するので,前記と同様に,前記冷暖房箇所9を除湿しながら冷房することができ,前記ルーツ圧縮機5等の蒸気圧縮機を逆回転して暖房仕様にしたとき,前記第2密閉容器2内における蒸発性液体は,地下水用熱交換器43において地下水からの熱を受けるので,前記と同様に,前記冷暖房箇所を加湿しながら暖房することができる。   According to this configuration, when the steam compressor such as the Roots compressor 5 is rotated forward to have a cooling specification, the steam that has reached the second sealed container 2 is cooled by groundwater in the groundwater heat exchanger 43. Since it cools and condenses in direct contact with the evaporating liquid, it is possible to cool the air-conditioning section 9 while dehumidifying the same as described above, and reversely rotate the steam compressor such as the Roots compressor 5 When the heating specification is used, the evaporating liquid in the second airtight container 2 receives heat from the groundwater in the groundwater heat exchanger 43, so that the air-conditioning part is heated while being humidified in the same manner as described above. be able to.

なお,この第2の実施の形態に対しても,前記第1の実施の形態において説明した各種の変形形態を適用できることはいうまでもない。   Needless to say, the various modifications described in the first embodiment can also be applied to the second embodiment.

本発明における第1の実施の形態を示す図である。It is a figure which shows 1st Embodiment in this invention. 冷房仕様にした場合を示す図である。It is a figure which shows the case where it is set as the cooling specification. 暖房仕様にした場合を示す図である。It is a figure which shows the case where it is set as heating specification. 冷暖房用熱交換器を構成する第1熱交換器の具体例を示す斜視図である。It is a perspective view which shows the specific example of the 1st heat exchanger which comprises the heat exchanger for an air conditioning. 本発明における第2の実施の形態を示す図である。It is a figure which shows 2nd Embodiment in this invention.

符号の説明Explanation of symbols

1 第1密閉容器
2 第2密閉容器
3 真空ポンプ
4 蒸気ダクト
5 ルーツ式圧縮機(蒸気圧縮機)
6 連通路
9 冷暖房箇所
10 冷暖房用熱交換器
11 冷暖房用熱交換器を構成する第1熱交換器
12 冷暖房用熱交換器を構成する第2熱交換器
12a 第2熱交換器の一方側
12b 第2熱交換器の他方側
13,14 循環管路
15 循環ポンプ
17 調湿用熱交換器
18 水散布ノズル
20 一方の井戸
21 他方の井戸
43 地下水用熱交換器
43a 地下水用熱交換器の一方側
43b 地下水用熱交換器の他方側
DESCRIPTION OF SYMBOLS 1 1st airtight container 2 2nd airtight container 3 Vacuum pump 4 Steam duct 5 Roots type compressor (steam compressor)
6 communication path 9 air-conditioning location 10 air-conditioning heat exchanger 11 first heat exchanger composing air-conditioning heat exchanger 12 second heat exchanger composing air-conditioning heat exchanger 12a one side of second heat exchanger 12b The other side of the second heat exchanger 13, 14 Circulation line 15 Circulating pump 17 Heat exchanger for humidity control 18 Water spray nozzle 20 One well 21 The other well 43 Ground water heat exchanger 43a One of the ground water heat exchangers Side 43b The other side of the heat exchanger for groundwater

Claims (7)

少なくとも,減圧に維持した第1密閉容器及び第2密閉容器と,冷暖房箇所に対する間接型の冷暖房用熱交換器と,前記冷暖房箇所に対する間接型の調湿用熱交換器と,前記第1密閉容器及び第2密閉容器の相互間を接続する蒸気ダクト中に設けた正逆回転可能な蒸気圧縮機とから成り,
前記蒸気圧縮機を前記第1密閉容器から前記第2密閉容器に向かって圧縮する方向に正回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器に供給したのち再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記第2密閉容器及び前記冷暖房用熱交換器に供給してこれらから排出する構成にし,
前記蒸気圧縮機を前記第2密閉容器から前記第1密閉容器に向かって圧縮する方向に逆回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器と前記冷暖房用熱交換器との両方に供給したのちこれらから再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記第2密閉容器に供給してこれから排出する構成にしたことを特徴とする地下水を利用した空調装置。
At least a first sealed container and a second sealed container maintained at a reduced pressure, an indirect air conditioning heat exchanger for an air conditioning location, an indirect humidity control heat exchanger for the air conditioning location, and the first airtight container And a steam compressor provided in a steam duct connecting between the second sealed containers and capable of rotating in the forward and reverse directions.
When the vapor compressor is rotated forward in the direction of compression from the first sealed container toward the second sealed container, the evaporative liquid in the first sealed container is supplied to the humidity control heat exchanger. While circulating back to the first sealed container again, the groundwater pumped from the ground is supplied to the second sealed container and the heat exchanger for cooling and heating, and discharged from them.
When the vapor compressor is reversely rotated in the direction of compression from the second sealed container toward the first sealed container, the evaporating liquid in the first sealed container is used for the humidity control heat exchanger and the air conditioning After being supplied to both the heat exchanger and circulating from there again, the ground water pumped from the ground is supplied to the second sealed container and discharged from there. Air conditioner using groundwater.
少なくとも,減圧に維持した第1密閉容器及び第2密閉容器と,冷暖房箇所に対する間接型の冷暖房用熱交換器と,前記冷暖房箇所に対する間接型の調湿用熱交換器と,前記第1密閉容器及び第2密閉容器の相互間を接続する蒸気ダクト中に設けた正逆回転可能な蒸気圧縮機と,二つの流体の相互間で間接熱交換を行う地下水用熱交換器とから成り,
前記第2密閉容器内における蒸発性液体を,当該第2密閉容器内と前記地下水用熱交換器における一方側との間を循環する構成にし,
前記蒸気圧縮機を前記第1密閉容器から前記第2密閉容器に向かって圧縮する方向に正回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器に供給したのち再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記地下水用熱交換器における他方側及び前記冷暖房用熱交換器に供給してこれらから排出する構成にし,
前記蒸気圧縮機を前記第2密閉容器から前記第1密閉容器に向かって圧縮する方向に逆回転するとき,前記第1密閉容器内における蒸発性液体を前記調湿用熱交換器と前記冷暖房用熱交換器との両方に供給したのちこれらから再び当該第1密閉容器に戻すように循環する一方,地下から汲み上げた地下水を前記地下水用熱交換器における他方側に供給してこれから排出する構成にしたことを特徴とする地下水を利用した空調装置。
At least a first sealed container and a second sealed container maintained at a reduced pressure, an indirect air conditioning heat exchanger for an air conditioning location, an indirect humidity control heat exchanger for the air conditioning location, and the first airtight container And a steam compressor capable of rotating in the forward and reverse directions provided in a steam duct connecting between the second sealed containers, and a heat exchanger for groundwater that performs indirect heat exchange between the two fluids,
The evaporative liquid in the second sealed container is circulated between the second sealed container and one side of the groundwater heat exchanger,
When the vapor compressor is rotated forward in the direction of compression from the first sealed container toward the second sealed container, the evaporative liquid in the first sealed container is supplied to the humidity control heat exchanger. While circulating back to the first closed vessel again, the groundwater pumped from the ground is supplied to the other side of the groundwater heat exchanger and the heat exchanger for cooling and heating, and discharged from these.
When the vapor compressor is reversely rotated in the direction of compression from the second sealed container toward the first sealed container, the evaporating liquid in the first sealed container is used for the humidity control heat exchanger and the air conditioning After being supplied to both the heat exchanger and circulating from there again, the groundwater pumped up from the ground is supplied to the other side of the groundwater heat exchanger and discharged from there. An air conditioner that uses groundwater.
前記請求項1又は2の記載において,前記蒸気圧縮機を正回転するとき,前記地下から汲み上げた地下水を,先ず前記第2密閉容器又は地下水用熱交換器における他方側に供給し,次いで前記冷暖房用熱交換器を経て排出する構成にしたことを特徴とする地下水を利用した空調装置。   The ground water pumped up from the underground is first supplied to the other side of the second airtight container or the ground water heat exchanger when the steam compressor is rotated in the forward direction. An air conditioner using groundwater, characterized in that it is configured to be discharged through a heat exchanger. 前記請求項1〜3のいずれかの記載において,前記冷暖房用熱交換器が,前記冷暖房箇所の内部の空気との間で間接熱交換を行う第1熱交換器と,二つの流体の相互間で間接熱交換を行う第2熱交換器と,熱媒液を前記第1熱交換器と前記第2熱交換器の一方側との間を循環するようにした循環経路とから成り,前記蒸気圧縮機を正回転するとき,地下から汲み上げた地下水を前記第2熱交換器の他方側に供給し,前記蒸気圧縮機を逆回転するとき,前記第1密閉容器から排出される蒸発性液体の一部を前記第2熱交換器における他方側に供給する構成にしたことを特徴とする地下水を利用した空調装置。   The heat exchanger for air conditioning according to any one of claims 1 to 3, wherein the heat exchanger for air conditioning is between a first heat exchanger that performs indirect heat exchange with air inside the air conditioning location, and two fluids. A second heat exchanger that performs indirect heat exchange at the first and second heat exchangers and a circulation path that circulates the heat transfer fluid between the first heat exchanger and one side of the second heat exchanger. When the compressor is rotated forward, groundwater pumped from the ground is supplied to the other side of the second heat exchanger, and when the vapor compressor is rotated backward, the evaporative liquid discharged from the first sealed container is An air conditioner using groundwater, characterized in that a part is supplied to the other side of the second heat exchanger. 前記請求項4の記載において,前記第1熱交換器が,前記冷暖房箇所における天井面又は壁面に沿って配設した輻射パネルと,この各輻射パネルに設けた流体通路とから成り,前記流体通路内に,前記第2熱交換器の一方側との間を循環する熱媒液を流するようにした構成であることを特徴とする地下水を利用した空調装置。   5. The fluid passage according to claim 4, wherein the first heat exchanger includes a radiation panel disposed along a ceiling surface or a wall surface in the air-conditioning location, and a fluid passage provided in each radiation panel. An air conditioner using groundwater, characterized in that a heat transfer fluid circulating between one side of the second heat exchanger flows inside. 前記請求項1〜5のいずれかの記載において,地下水を汲み上げる二つの井戸が適宜距離を隔てて設けられ,前記蒸気圧縮機を正回転するとき,前記第2密閉容器及び前記冷暖房用熱交換器又は前記第2熱交換器の他方側に供給する地下水を,前記二つの井戸のうち一方の井戸から汲み上げる一方,前記第2密閉容器及び前記冷暖房用熱交換器又は前記第2熱交換器の他方側から排出される地下水を,他方の井戸から地中に戻すように構成し,前記蒸気圧縮機を逆回転するとき,前記第2密閉容器に供給する地下水を前記他方の井戸から汲み上げる一方,前記第2密閉容器から排出される地下水を前記一方の井戸から地中に戻すように構成したことを特徴とする地下水を利用した空調装置。   6. The second airtight container and the air conditioner heat exchanger according to any one of claims 1 to 5, wherein two wells for pumping groundwater are provided at an appropriate distance and when the steam compressor rotates forward. Alternatively, the groundwater supplied to the other side of the second heat exchanger is pumped from one of the two wells, while the second sealed vessel and the heat exchanger for cooling / heating or the other of the second heat exchanger The groundwater discharged from the side is configured to return to the ground from the other well, and when the steam compressor is reversely rotated, the groundwater supplied to the second sealed vessel is pumped from the other well, An air conditioner using groundwater, characterized in that groundwater discharged from the second airtight container is returned to the ground from the one well. 前記請求項1〜6のいずれかの記載において,前記蒸気圧縮機が,その回転数を変更可能な構成であることを特徴とする地下水を利用した空調装置。   The air conditioner using groundwater according to any one of claims 1 to 6, wherein the steam compressor has a configuration capable of changing a rotation speed thereof.
JP2006351386A 2006-12-27 2006-12-27 Air conditioner using groundwater Active JP4753312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006351386A JP4753312B2 (en) 2006-12-27 2006-12-27 Air conditioner using groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006351386A JP4753312B2 (en) 2006-12-27 2006-12-27 Air conditioner using groundwater

Publications (3)

Publication Number Publication Date
JP2008164187A true JP2008164187A (en) 2008-07-17
JP2008164187A5 JP2008164187A5 (en) 2009-10-15
JP4753312B2 JP4753312B2 (en) 2011-08-24

Family

ID=39693910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006351386A Active JP4753312B2 (en) 2006-12-27 2006-12-27 Air conditioner using groundwater

Country Status (1)

Country Link
JP (1) JP4753312B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043788A (en) * 2008-08-12 2010-02-25 Sasakura Engineering Co Ltd Evaporation type air conditioning device
JP2010043787A (en) * 2008-08-12 2010-02-25 Sasakura Engineering Co Ltd Evaporation type air conditioning device
KR101184699B1 (en) 2011-04-04 2012-09-20 홍성희 Hybrid heat pump system using geothermal or waste water heat
WO2013108637A1 (en) * 2012-01-20 2013-07-25 パナソニック株式会社 Refrigeration-cycle apparatus
EP3023710A4 (en) * 2013-07-17 2016-07-06 Panasonic Ip Man Co Ltd Refrigeration device
EP2995883A3 (en) * 2014-08-21 2016-07-13 Panasonic Intellectual Property Management Co., Ltd. Refrigerating cycle apparatus
CN106288518A (en) * 2016-04-01 2017-01-04 安徽新富地能源科技有限公司 A kind of ground temperature can promote arrangement for connecting system
WO2020085354A1 (en) * 2018-10-25 2020-04-30 Mdi株式会社 Air conditioner using heat exchanger, air conditioning system, management server, and heat exchanger
JP2021004700A (en) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 Underground heat utilization system, control device, control method, and program

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705746B1 (en) * 2015-01-09 2017-02-13 윤인거 Absorption refrigeration type airconditioner
KR101705747B1 (en) * 2015-05-26 2017-02-22 윤인거 Absorption refrigeration type airconditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214136A (en) * 1990-12-10 1992-08-05 Hitachi Metals Ltd Air-conditioning facility
JP2006038333A (en) * 2004-07-27 2006-02-09 Sanken Setsubi Kogyo Co Ltd Air conditioning system using vapor compression refrigerating machine
JP2006097989A (en) * 2004-09-30 2006-04-13 Sanken Setsubi Kogyo Co Ltd Refrigerating system for steam compression refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04214136A (en) * 1990-12-10 1992-08-05 Hitachi Metals Ltd Air-conditioning facility
JP2006038333A (en) * 2004-07-27 2006-02-09 Sanken Setsubi Kogyo Co Ltd Air conditioning system using vapor compression refrigerating machine
JP2006097989A (en) * 2004-09-30 2006-04-13 Sanken Setsubi Kogyo Co Ltd Refrigerating system for steam compression refrigerator

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010043788A (en) * 2008-08-12 2010-02-25 Sasakura Engineering Co Ltd Evaporation type air conditioning device
JP2010043787A (en) * 2008-08-12 2010-02-25 Sasakura Engineering Co Ltd Evaporation type air conditioning device
KR101184699B1 (en) 2011-04-04 2012-09-20 홍성희 Hybrid heat pump system using geothermal or waste water heat
WO2013108637A1 (en) * 2012-01-20 2013-07-25 パナソニック株式会社 Refrigeration-cycle apparatus
JPWO2013108637A1 (en) * 2012-01-20 2015-05-11 パナソニックIpマネジメント株式会社 Refrigeration cycle equipment
US9243826B2 (en) 2012-01-20 2016-01-26 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle using a refrigerant having negative saturated vapor pressure with condensation path backflow control and refrigeration cycle using a refrigerant having negative saturated vapor pressure with evaporation path load bypass
EP3023710A4 (en) * 2013-07-17 2016-07-06 Panasonic Ip Man Co Ltd Refrigeration device
US20160201956A1 (en) * 2013-07-17 2016-07-14 Panasonic Intellectual Property Management Co., Ltd. Refrigeration device
US10544968B2 (en) 2013-07-17 2020-01-28 Panasonic Intellectual Property Management Co., Ltd. Refrigeration device
EP2995883A3 (en) * 2014-08-21 2016-07-13 Panasonic Intellectual Property Management Co., Ltd. Refrigerating cycle apparatus
US9689588B2 (en) 2014-08-21 2017-06-27 Panasonic Intellectual Property Management Co., Ltd. Refrigerating cycle apparatus
CN106288518A (en) * 2016-04-01 2017-01-04 安徽新富地能源科技有限公司 A kind of ground temperature can promote arrangement for connecting system
WO2020085354A1 (en) * 2018-10-25 2020-04-30 Mdi株式会社 Air conditioner using heat exchanger, air conditioning system, management server, and heat exchanger
JP2021004700A (en) * 2019-06-26 2021-01-14 三菱重工サーマルシステムズ株式会社 Underground heat utilization system, control device, control method, and program
JP7278545B2 (en) 2019-06-26 2023-05-22 三菱重工サーマルシステムズ株式会社 GEOTHERMAL SYSTEM, CONTROL DEVICE, CONTROL METHOD, AND PROGRAM

Also Published As

Publication number Publication date
JP4753312B2 (en) 2011-08-24

Similar Documents

Publication Publication Date Title
JP4753312B2 (en) Air conditioner using groundwater
US11761645B2 (en) Energy exchange system for conditioning air in an enclosed structure
KR101770258B1 (en) Air conditioning system for maintaining constant temperature and humidity
ES2200380T3 (en) MOTOR AND PUMP SYSTEM AND METHOD FOR USE.
US20060042295A1 (en) Air conditioning system and methods
JP4958591B2 (en) Liquid evaporative cooling system
JP2001227869A (en) Drier
JPH0684822B2 (en) Indirect air conditioner
KR100735990B1 (en) Air conditioner system
CN107003078A (en) Dehumidification system and dehumanization method
JP2007315694A (en) Desiccant air conditioning system and its operating method
JP4857179B2 (en) Evaporative air conditioner
JP2011038489A (en) Method and device for recovering energy from artificial wind generated by artificial wind power generator
JP2015166649A (en) Air cooling device
JP2008261604A (en) Evaporative air conditioner
KR100946381B1 (en) Hybrid heat pump type cooling and heating apparatus
JP4958628B2 (en) Evaporative air conditioner
JP2006162226A (en) Freezing device
JP5330759B2 (en) Evaporative air conditioner
KR100818544B1 (en) Regenerative Heat Pump Air Conditioning System
KR101705746B1 (en) Absorption refrigeration type airconditioner
JP5145164B2 (en) Evaporative air conditioner
JP2010043797A (en) Evaporation type air conditioning system
JP2009270743A (en) Air conditioning system
JP2021134964A (en) Geothermal unit

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110518

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110519

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140603

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4753312

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250