JP2021134964A - Geothermal unit - Google Patents

Geothermal unit Download PDF

Info

Publication number
JP2021134964A
JP2021134964A JP2020030220A JP2020030220A JP2021134964A JP 2021134964 A JP2021134964 A JP 2021134964A JP 2020030220 A JP2020030220 A JP 2020030220A JP 2020030220 A JP2020030220 A JP 2020030220A JP 2021134964 A JP2021134964 A JP 2021134964A
Authority
JP
Japan
Prior art keywords
piping system
heat
utilization
liquid
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020030220A
Other languages
Japanese (ja)
Other versions
JP7325110B2 (en
Inventor
喜代美 今
Kiyomi Kon
喜代美 今
修一郎 今
Shuichiro Kon
修一郎 今
祐治郎 今
Yujiro Kon
祐治郎 今
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riviera Co Ltd
Original Assignee
Riviera Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riviera Co Ltd filed Critical Riviera Co Ltd
Priority to JP2020030220A priority Critical patent/JP7325110B2/en
Publication of JP2021134964A publication Critical patent/JP2021134964A/en
Application granted granted Critical
Publication of JP7325110B2 publication Critical patent/JP7325110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Hydraulic Turbines (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Central Air Conditioning (AREA)

Abstract

To obtain stable heat quantity.SOLUTION: A geothermal unit includes: a heat source-side piping system 10 forming a circulation flow channel of a heat medium liquid between an underground side and a ground side; a utilization-side piping system 30 forming a circulation flow channel of a liquid for utilizing heat at the ground side independently from the heat source-side piping system 10; a first heat exchanger 20 exchanging heat between the heat medium liquid flowing in the heat source-side piping system 10 and the liquid flowing in the utilization-side piping system 30; an auxiliary piping system 40 branched from the utilization-side piping system 30 at a downstream side with respect to the first heat exchanger 20, and joined to the utilization-side piping system 30 at a downstream side with respect to a branch point; and a second heat exchanger 50 exchanging heat between the liquid flowing in the auxiliary piping system 40 and the air outside of the auxiliary piping system 40 in a passage of the auxiliary piping system 40.SELECTED DRAWING: Figure 1

Description

本発明は、地中熱を、融雪装置や空調機、冷凍機、給湯器等の熱利用機器の熱源(温熱源及び冷熱源を含む)として用いるようにした地中熱利用装置に関するものである。 The present invention relates to a geothermal heat utilization device in which geothermal heat is used as a heat source (including a heat source and a cold heat source) of a heat utilization device such as a snow melting device, an air conditioner, a refrigerator, and a water heater. ..

従来、この種の発明には、例えば特許文献1に記載されるように、鉛直状のケーシングと、このケーシング内から上方のケーシング外へ延設された往管と、ケーシング外からケーシング内へ入り下方へ延設された還管と備え、前記往管によりケーシング内の地下水をくみ上げて地上の熱利用機器で利用した後、この利用後の水を前記還管によりケーシング内へ戻し更に地下水脈へ戻すようにした地下水往還装置がある。 Conventionally, in this type of invention, for example, as described in Patent Document 1, a vertical casing, an outward pipe extending from the inside of the casing to the outside of the upper casing, and an outbound pipe extending from the outside of the casing to the inside of the casing are entered. With a return pipe extending downward, the ground water in the casing is pumped up by the outbound pipe and used by heat utilization equipment on the ground, and then the used water is returned to the inside of the casing by the return pipe and further to the groundwater vein. There is a groundwater return device that is designed to be returned.

特開2006-9335号公報Japanese Unexamined Patent Publication No. 2006-9335

ところで、上記従来技術によれば、気候や季節の変化等による温度変動に起因して、上記熱利用機器の性能が十分に発揮されない場合がある。 By the way, according to the above-mentioned prior art, the performance of the above-mentioned heat utilization equipment may not be sufficiently exhibited due to temperature fluctuations due to changes in climate and seasons.

このような課題に鑑みて、本発明は、以下の構成を具備するものである。
地中側と地上側の間で熱媒体液の循環流路を形成する熱源側配管系統と、前記熱源側配管系統とは独立して地上側で熱利用するための液体の循環流路を形成する利用側配管系統と、前記熱源側配管系統を流れる熱媒体液と前記利用側配管系統を流れる液体との熱交換を行う第一の熱交換器と、前記第一の熱交換器よりも下流側で前記利用側配管系統から分岐され、その分岐点よりも下流側で前記利用側配管系統に合流する補助配管系統と、前記補助配管系統の経路中にて前記補助配管系統を流れる液体と前記補助配管系統の外側の空気との熱交換を行う第二の熱交換器とを具備したことを特徴とする地中熱利用装置。
In view of such problems, the present invention has the following configurations.
A heat source side piping system that forms a heat medium liquid circulation flow path between the underground side and the ground side, and a liquid circulation flow path for heat utilization on the ground side are formed independently of the heat source side piping system. The first heat exchanger that exchanges heat between the utilization-side piping system, the heat medium liquid flowing through the heat source-side piping system, and the liquid flowing through the utilization-side piping system, and downstream from the first heat exchanger. An auxiliary piping system that is branched from the utilization side piping system on the side and joins the utilization side piping system on the downstream side of the branch point, and a liquid flowing through the auxiliary piping system in the path of the auxiliary piping system and the said An underground heat utilization device including a second heat exchanger that exchanges heat with the air outside the auxiliary piping system.

本発明は、以上説明したように構成されているので、熱利用機器の性能を十分に発揮することができる。 Since the present invention is configured as described above, the performance of the heat utilization device can be fully exhibited.

本発明に係る地中熱利用装置の一例を模式的に示す構造図である。It is a structural drawing which shows typically an example of the geothermal heat utilization apparatus which concerns on this invention. 本発明に係る地中熱利用装置の他例を模式的に示す構造図である。It is a structural drawing which shows typically another example of the geothermal heat utilization apparatus which concerns on this invention.

本実施の形態では、以下の特徴を開示している。
第1の特徴は、地中側と地上側の間で熱媒体液の循環流路を形成する熱源側配管系統と、前記熱源側配管系統とは独立して地上側で熱利用するための液体の循環流路を形成する利用側配管系統と、前記熱源側配管系統を流れる熱媒体液と前記利用側配管系統を流れる液体との熱交換を行う第一の熱交換器と、前記第一の熱交換器よりも下流側で前記利用側配管系統から分岐され、その分岐点よりも下流側で前記利用側配管系統に合流する補助配管系統と、前記補助配管系統の経路中にて前記補助配管系統を流れる液体と前記補助配管系統の外側の空気との熱交換を行う第二の熱交換器とを具備した(図1及び図2参照)。
In this embodiment, the following features are disclosed.
The first feature is the heat source side piping system that forms a circulation flow path for the heat medium liquid between the underground side and the ground side, and the liquid for heat utilization on the ground side independently of the heat source side piping system. The first heat exchanger that exchanges heat between the utilization-side piping system that forms the circulation flow path of the above, the heat medium liquid that flows through the heat source-side piping system, and the liquid that flows through the utilization-side piping system, and the first An auxiliary piping system that branches from the utilization-side piping system on the downstream side of the heat exchanger and joins the utilization-side piping system on the downstream side of the branch point, and the auxiliary piping in the path of the auxiliary piping system. It is provided with a second heat exchanger that exchanges heat between the liquid flowing through the system and the air outside the auxiliary piping system (see FIGS. 1 and 2).

第2の特徴は、前記利用側配管系統を流れる液体の流量と、前記補助配管系統を流れる液体の流量との比率を調節する流量調節手段を具備した(図1及び図2参照)。 The second feature is provided with a flow rate adjusting means for adjusting the ratio of the flow rate of the liquid flowing through the utilization side piping system to the flow rate of the liquid flowing through the auxiliary piping system (see FIGS. 1 and 2).

第3の特徴は、前記第二の熱交換器に空気を強制的に吹き付ける送風機が設けられている(図1及び図2参照)。 The third feature is that a blower for forcibly blowing air to the second heat exchanger is provided (see FIGS. 1 and 2).

第4の特徴は、一端側から他端側に空気を流通させるダクトを備え、このダクト内における空気流路の上流側に前記送風機を配設するとともに同空気流路の下流側に前記第二の熱交換器を配設した(図1及び図2参照)。 The fourth feature is that a duct for flowing air from one end side to the other end side is provided, the blower is arranged on the upstream side of the air flow path in the duct, and the second is on the downstream side of the air flow path. The heat exchanger of No. 1 was arranged (see FIGS. 1 and 2).

第5の特徴として、前記送風機は、回転して前記第二の熱交換器に風を吹き付ける羽根車と、回転力を前記羽根車に機械的に伝達する水車とを備え、前記水車は、前記第二の熱交換器の下流側における液体の流通経路中に設けられている(図2参照)。 As a fifth feature, the blower includes an impeller that rotates and blows wind onto the second heat exchanger, and a water turbine that mechanically transmits a rotational force to the impeller. It is provided in the liquid flow path on the downstream side of the second heat exchanger (see FIG. 2).

第6の特徴として、前記第二の熱交換器の下流側に、前記水車を収容する水車室を設け、この水車室内に、前記第二の熱交換器内の液体を放出する放出口を設け、前記放出口から放出されて落下する液体により前記水車を回転させるようにした(図2参照)。 As a sixth feature, a water turbine chamber for accommodating the water turbine is provided on the downstream side of the second heat exchanger, and a discharge port for discharging the liquid in the second heat exchanger is provided in the water turbine chamber. , The water turbine was rotated by the liquid discharged from the discharge port and dropped (see FIG. 2).

第7の特徴は、前記熱源側配管系統と、前記利用側配管系統と、前記補助配管系統とのうち、何れかの配管系統の流路中に、該流路中の液体の圧力により回転するように水車を設け、前記水車の回転軸の回転力を前記送風機の回転軸に機械的に伝達して、前記送風機を回転させるようにした(図2参照)。 The seventh feature is that the heat source side piping system, the utilization side piping system, and the auxiliary piping system rotate in the flow path of any of the piping systems due to the pressure of the liquid in the flow path. As described above, the water turbine is provided so that the rotational force of the rotating shaft of the water turbine is mechanically transmitted to the rotating shaft of the blower to rotate the blower (see FIG. 2).

<第一の実施態様>
次に、上記特徴を有する具体的な実施態様について、図面に基づいて詳細に説明する。
図1は、本発明に係る地中熱利用装置の一例を示す。
この地中熱利用装置1は、地中と地上との間で熱媒体液の循環経路を形成する熱源側配管系統10と、地上にて熱源側配管系統10を流れる液体と利用側配管系統30を流れる液体との熱交換を行う第一の熱交換器20と、第一の熱交換器20の二次側にて熱源側配管系統10とは独立して地上にて熱利用するための循環経路を形成する利用側配管系統30と、第一の熱交換器20よりも下流側で利用側配管系統30から分岐され、その分岐点よりも下流側で利用側配管系統30に合流する補助配管系統40と、補助配管系統40の流路中にて補助配管系統40を流れる液体と補助配管系統40の外側の空気との熱交換を行う第二の熱交換器50と、第二の熱交換器50に空気を強制的に吹き付ける送風機60と、第二の熱交換器50及び送風機60を内在して一端側から他端側に空気を流通させる筒状のダクト70とを具備している。
<First embodiment>
Next, a specific embodiment having the above characteristics will be described in detail with reference to the drawings.
FIG. 1 shows an example of a geothermal heat utilization device according to the present invention.
The underground heat utilization device 1 includes a heat source side piping system 10 that forms a circulation path for the heat medium liquid between the ground and the ground, and a liquid flowing through the heat source side piping system 10 on the ground and the utilization side piping system 30. Circulation for heat utilization on the ground independently of the heat source side piping system 10 on the secondary side of the first heat exchanger 20 and the first heat exchanger 20 that exchange heat with the liquid flowing through the Auxiliary pipes that form a path and branch from the user-side duct system 30 on the downstream side of the first heat exchanger 20 and join the user-side pipe system 30 on the downstream side of the branch point. A second heat exchanger 50 that exchanges heat between the system 40 and the liquid flowing through the auxiliary piping system 40 in the flow path of the auxiliary piping system 40 and the air outside the auxiliary piping system 40, and a second heat exchange. It includes a blower 60 that forcibly blows air onto the vessel 50, and a tubular duct 70 that contains a second heat exchanger 50 and a blower 60 and allows air to flow from one end side to the other end side.

熱源側配管系統10は、地中と地上の間にわたる配管やその他の機器等により構成され、図示しないポンプによって往管11から熱媒体液を吸い上げ、この熱媒体液を、第一の熱交換器20の一次側流路21に通過させて還管12へ還す。 The heat source side piping system 10 is composed of piping and other equipment extending between the ground and the ground, sucks the heat medium liquid from the outgoing pipe 11 by a pump (not shown), and uses this heat medium liquid as the first heat exchanger. It is passed through the primary side flow path 21 of 20 and returned to the return pipe 12.

前記熱媒体液は、地下水、又は地下水と熱交換された不凍液(ブライン液)等とすればよい。
往管11及び還管12は、例えば、熱媒体液を汲み上げて循環させる図示しない装置(例えば特許文献1参照)や、不凍液を地下水と熱交換して循環させる図示しない装置等に接続される。
The heat medium solution may be groundwater, an antifreeze solution (brine solution) whose heat has been exchanged with the groundwater, or the like.
The outward pipe 11 and the return pipe 12 are connected to, for example, a device (not shown) that pumps up and circulates the heat medium liquid, a device (not shown) that exchanges heat with groundwater to circulate the antifreeze liquid, and the like.

第一の熱交換器20は、一次側流路21を流れる熱媒体液と、一次側流路21とは独立した二次側流路22を流れる液体との熱交換を行う装置である。この第一の熱交換器20には、例えば、プレート式熱交換器や、シェル&チューブ式熱交換器、二重管式熱交換器等を用いることが可能である。 The first heat exchanger 20 is a device that exchanges heat between the heat medium liquid flowing through the primary side flow path 21 and the liquid flowing through the secondary side flow path 22 independent of the primary side flow path 21. For the first heat exchanger 20, for example, a plate type heat exchanger, a shell & tube type heat exchanger, a double tube type heat exchanger, or the like can be used.

利用側配管系統30は、第一の熱交換器20によって得た熱を利用するために液体を循環させる循環配管経路であり、その配管経路中に、第一の熱交換器20の二次側流路22を含んでいる。 The utilization side piping system 30 is a circulation piping path for circulating a liquid in order to utilize the heat obtained by the first heat exchanger 20, and the secondary side of the first heat exchanger 20 is in the piping path. The flow path 22 is included.

詳細に説明すれば、この利用側配管系統30において、第一の熱交換器20の直ぐ下流側の配管30aの出口には、熱利用機器31の吸入口が接続され、熱利用機器31の直ぐ下流側の配管30bには、三方弁32が接続され、この三方弁32のさらに下流側の配管30cには、合流管33が接続され、そして、合流管33の下流側の配管30dは、電動の循環ポンプPを介して、第一の熱交換器20の二次側流路22の入口に接続される。 More specifically, in the utilization side piping system 30, the suction port of the heat utilization device 31 is connected to the outlet of the piping 30a on the immediate downstream side of the first heat exchanger 20 and immediately after the heat utilization device 31. A three-way valve 32 is connected to the downstream pipe 30b, a merging pipe 33 is connected to the pipe 30c further downstream of the three-way valve 32, and the downstream pipe 30d of the merging pipe 33 is electric. It is connected to the inlet of the secondary side flow path 22 of the first heat exchanger 20 via the circulation pump P of the above.

熱利用機器31は、例えば、融雪装置や、空調機(水冷ヒートポンプチラー等を含む)、冷凍機、ヒートポンプ式給湯器等、利用側配管系統30の液体の熱を間接的又は直接的に利用する機器であればよい。 The heat utilization device 31 indirectly or directly utilizes the heat of the liquid in the utilization side piping system 30, such as a snow melting device, an air conditioner (including a water-cooled heat pump chiller, etc.), a refrigerator, a heat pump type water heater, and the like. It may be a device.

この利用側配管系統30を流れる液体は、水道水等の水とすればよいが、他例としては、不凍液(ブライン液)や、その他の液体とすることも可能である。 The liquid flowing through the utilization side piping system 30 may be water such as tap water, but as another example, antifreeze liquid (brine liquid) or other liquid can also be used.

三方弁32は、三方向の配管接続口を有する三又状に構成され、本実施の形態の好ましい一例によれば、図示しない制御回路からの信号によって適宜に制御されるように、電動三方弁が用いられる。
この電動三方弁は、熱利用機器31の下流側の配管30bを、利用側配管系統30を構成する配管30cと、補助配管系統40を構成する配管40aとの二つに分岐する。さらに、この電動三方弁は、補助配管系統40側へ流す液体の流量と、利用側配管系統30側へ流す液体の流量との比率を調節する流量調節手段として機能する。
The three-way valve 32 is configured in a three-pronged shape having a pipe connection port in three directions, and according to a preferred example of the present embodiment, the electric three-way valve 32 is appropriately controlled by a signal from a control circuit (not shown). Is used.
In this electric three-way valve, the piping 30b on the downstream side of the heat utilization device 31 is branched into two, a piping 30c constituting the utilization side piping system 30 and a piping 40a constituting the auxiliary piping system 40. Further, this electric three-way valve functions as a flow rate adjusting means for adjusting the ratio of the flow rate of the liquid flowing to the auxiliary piping system 40 side and the flow rate of the liquid flowing to the utilization side piping system 30 side.

また、合流管33は、三方向の配管接続口を有する三又状に構成され、利用側配管系統30の配管30cと、補助配管系統40の配管40bとから流入する液体を合流して配管30dへ流す。 Further, the merging pipe 33 is configured in a three-pronged shape having pipe connection ports in three directions, and the liquid flowing from the pipe 30c of the utilization side pipe system 30 and the pipe 40b of the auxiliary pipe system 40 are merged to form the pipe 30d. Flush to.

補助配管系統40は、三方弁32により分岐された一方の配管40aと、この配管40aの下流側に接続された第二の熱交換器50と、第二の熱交換器50の出口に接続された配管40bとを具備している。 The auxiliary piping system 40 is connected to one of the pipes 40a branched by the three-way valve 32, the second heat exchanger 50 connected to the downstream side of the pipe 40a, and the outlet of the second heat exchanger 50. It is provided with a pipe 40b.

第二の熱交換器50は、管内を流れる液体と、管外の空気との熱交換を行う装置である。この第二の熱交換器50の一例としては、適宜な隙間を置いて略平行に配設された多数の熱交換フィン(図示せず)と、これら熱交換フィンに蛇行状に挿通された液管とを備えたプレートフィンコイル式熱交換器が用いられる。前記多数の熱交換フィンには、送風機60により送られてくる空気を通過させる。 The second heat exchanger 50 is a device that exchanges heat between the liquid flowing in the pipe and the air outside the pipe. As an example of the second heat exchanger 50, a large number of heat exchange fins (not shown) arranged substantially in parallel with appropriate gaps and a liquid inserted through these heat exchange fins in a serpentine manner. A plate fin coil heat exchanger equipped with a tube is used. The air sent by the blower 60 is passed through the large number of heat exchange fins.

第二の熱交換器50の液管を流通した液体は、配管40b及び合流管33を経て,利用側配管系統30に戻される。 The liquid flowing through the liquid pipe of the second heat exchanger 50 is returned to the utilization side piping system 30 via the pipe 40b and the merging pipe 33.

送風機60は、ダクト70内の空気流通経路において、第二の熱交換器50よりも上流側(吸込みが側)に設けられ、第二の熱交換器50の熱交換フィン(図示せず)に対し、強制的に空気を吹き付けて流通させる。 The blower 60 is provided on the upstream side (suction side) of the second heat exchanger 50 in the air flow path in the duct 70, and is provided on the heat exchange fin (not shown) of the second heat exchanger 50. On the other hand, air is forcibly blown and distributed.

図示例の送風機60は、軸方向の一方から空気を吸い込んで径方向外側へ吐出する羽根車61と、この羽根車61の回転軸を駆動回転する回転駆動源62とを具備して、遠心ファン(シロッコファンを含む)を構成している。 The blower 60 of the illustrated example includes an impeller 61 that sucks air from one of the axial directions and discharges the air outward in the radial direction, and a rotary drive source 62 that drives and rotates the rotating shaft of the impeller 61. (Including sirocco fans).

羽根車61は、周方向に間隔を置いた多数の羽根をその中心側の回転軸によって支持するように構成され、ダクト70内に配設される。 The impeller 61 is configured to support a large number of blades spaced in the circumferential direction by a rotation shaft on the center side thereof, and is arranged in the duct 70.

回転駆動源62は、図示例によれば回転式電動モータである。この回転駆動源62は、羽根車61の回転軸に接続された回転駆動軸を、ダクト70の壁部に貫通するようにしてダクト70の外部に支持される。 The rotary drive source 62 is a rotary electric motor according to the illustrated example. The rotary drive source 62 is supported outside the duct 70 so that the rotary drive shaft connected to the rotary shaft of the impeller 61 penetrates the wall portion of the duct 70.

なお、送風機60の他例としては、プロペラファンや、ターボファン等、図示例以外の方式の送風機を用いることも可能である。 As another example of the blower 60, it is also possible to use a blower of a type other than the illustrated example, such as a propeller fan or a turbo fan.

ダクト70は、一端側の吸込口71から吸い込んだ空気を他端側の吐出口72から吐出する管状の部材である。
このダクト70は、図示例によれば、壁Wによって仕切られた一方側の空間Aから他方側の空間B(例えば室内)にわたって略コ字状に曲げられている。
The duct 70 is a tubular member that discharges the air sucked from the suction port 71 on one end side from the discharge port 72 on the other end side.
According to the illustrated example, the duct 70 is bent in a substantially U-shape from the space A on one side partitioned by the wall W to the space B on the other side (for example, indoors).

吸込口71は、前記一方側の空間Aに配設されて該空間Aの空気を吸い込む。この吸込口71は、図示例によれば、ダクト70内の空気流通方向に対し交差する方向に開口しているが、他例として、送風機60をプロペラファンとした場合には、前記空気流通方向の上流側の端部を開口する。 The suction port 71 is arranged in the space A on one side and sucks the air in the space A. According to the illustrated example, the suction port 71 opens in a direction intersecting the air flow direction in the duct 70, but as another example, when the blower 60 is a propeller fan, the air flow direction Open the upstream end of.

吐出口72は、前記一方側に対する他方側の空間Bに配設されて該空間Bへ空気を吐出する。 The discharge port 72 is arranged in the space B on the other side with respect to the one side, and discharges air into the space B.

上記構成のダクト70は、その壁面に補助配管系統40の配管40a,40bを貫通させている。そして、ダクト70内において、これら二つの配管40a,40bの間には、第二の熱交換器50が接続される。
また、このダクト70内の空気流通経路において、第二の熱交換器50よりも上流側には、送風機60の羽根車61が設けられる(図1参照)。
The duct 70 having the above configuration has the pipes 40a and 40b of the auxiliary piping system 40 penetrating the wall surface thereof. Then, in the duct 70, a second heat exchanger 50 is connected between these two pipes 40a and 40b.
Further, in the air flow path in the duct 70, an impeller 61 of the blower 60 is provided on the upstream side of the second heat exchanger 50 (see FIG. 1).

<作用効果>
次に、上記構成の地中熱利用装置1について、その特徴的な作用効果を詳細に説明する。
例えば、夏場外気温が比較的高い時期に地中熱利用装置1を用いれば、相対的に温度の低い地下の熱媒体液と、利用側配管系統30の液体とを熱交換して、利用側配管系統30の液体を冷却することができる。そして、この冷却された液体を冷熱源にして、熱利用機器31を運転することができる。
<Effect>
Next, the characteristic action and effect of the geothermal heat utilization device 1 having the above configuration will be described in detail.
For example, if the geothermal heat utilization device 1 is used when the outside temperature is relatively high in summer, the underground heat medium liquid having a relatively low temperature and the liquid in the utilization side piping system 30 exchange heat with each other to exchange heat with the utilization side. The liquid in the piping system 30 can be cooled. Then, the heat utilization device 31 can be operated by using this cooled liquid as a cold heat source.

熱利用機器31の運転中、三方弁32及び合流管33により補助配管系統40へ液体を循環すれば、利用側配管系統30中の液体の熱量を、第二の熱交換器50側の液体により調整して、熱利用機器31の性能を十分に発揮させること可能になる。
特に本実施の好ましい一例によれば、三方弁32を電動制御できるので、前記熱量の調整をきめ細かに行って、熱利用機器31の性能を安定させることができる。
If the liquid is circulated to the auxiliary piping system 40 by the three-way valve 32 and the merging pipe 33 during the operation of the heat utilization device 31, the amount of heat of the liquid in the utilization side piping system 30 is transferred by the liquid on the second heat exchanger 50 side. By adjusting, it becomes possible to fully exert the performance of the heat utilization device 31.
In particular, according to a preferred example of the present embodiment, since the three-way valve 32 can be electrically controlled, the amount of heat can be finely adjusted to stabilize the performance of the heat utilization device 31.

また、地中熱利用装置1によれば、利用側配管系統30から分岐され補助配管系統40に流通する液体は、第二の熱交換器50を介してダクト70内の空気と熱交換する。
よって、空間Aの空気を、第二の熱交換器50によって温度調整して、他方の空間Bへ供給することができる。
例えば、冬場外気温が比較的低い時期に地中熱利用装置1を用いれば、相対的に高温の熱媒体液と利用側配管系統30の液体とを熱交換して、利用側配管系統30の液体を加熱することができる。そして、この加熱された液体を熱源にして、熱利用機器31(例えばヒートポンプ式給湯器)を効率的に運転することができ、さらに、前記加熱された液体を第二の熱交換器50に流通させて、ダクト70内を流れる空気を、適度に加熱された空気にし、別の空間Bへ供給することができる。
Further, according to the geothermal heat utilization device 1, the liquid branched from the utilization side piping system 30 and flowing to the auxiliary piping system 40 exchanges heat with the air in the duct 70 via the second heat exchanger 50.
Therefore, the air in the space A can be temperature-controlled by the second heat exchanger 50 and supplied to the other space B.
For example, if the geothermal heat utilization device 1 is used when the outside air temperature is relatively low in winter, the relatively high temperature heat medium liquid and the liquid of the utilization side piping system 30 exchange heat with each other to exchange heat with the utilization side piping system 30. The liquid can be heated. Then, using this heated liquid as a heat source, the heat utilization device 31 (for example, a heat pump type water heater) can be efficiently operated, and the heated liquid is further distributed to the second heat exchanger 50. The air flowing through the duct 70 can be made into appropriately heated air and supplied to another space B.

また、夏場外気温が比較的高い時期に地中熱利用装置1を用いれば、相対的に低温の熱媒体液(熱源側配管系統10側の液体)と利用側配管系統30の液体とを熱交換して、利用側配管系統30の液体を冷却することができる。そして、この冷却された液体を冷熱源にして、熱利用機器31(例えばヒートポンプ式チラー)を効率的に運転することができ、さらに、前記冷却された液体を第二の熱交換器50に流通させて、ダクト70内を流れる空気を、適度に冷却され且つ除湿された空気にし、別の空間Bへ供給することができる。 Further, if the geothermal heat utilization device 1 is used when the outside temperature is relatively high in summer, the relatively low temperature heat medium liquid (liquid on the heat source side piping system 10 side) and the liquid on the utilization side piping system 30 are heated. It can be replaced to cool the liquid in the utilization side piping system 30. Then, using this cooled liquid as a cold heat source, the heat utilization device 31 (for example, a heat pump type chiller) can be efficiently operated, and the cooled liquid is further distributed to the second heat exchanger 50. The air flowing through the duct 70 can be made into appropriately cooled and dehumidified air and supplied to another space B.

<第二の実施態様>
次に、本発明に係る地中熱利用装置の他例について説明する。
なお、以下に示す地中熱利用装置は、上述した地中熱利用装置1に対しその一部を変更したものであるため、地中熱利用装置1のものと略同様の構成について同一の符号を用い、重複する詳細説明を省略する。
<Second embodiment>
Next, another example of the geothermal heat utilization device according to the present invention will be described.
Since the geothermal heat utilization device shown below is a partial modification of the above-mentioned geothermal heat utilization device 1, the same reference numerals are given to the configuration substantially similar to that of the geothermal heat utilization device 1. Will be used, and duplicate detailed explanations will be omitted.

図2に示す地中熱利用装置2は、上記地中熱利用装置1に対し、送風機60を送風機60Xに置換し、第二の熱交換器50の下流側に、水車62Xを収容する水車室90を設けたものである。 The geothermal heat utilization device 2 shown in FIG. 2 replaces the blower 60 with the blower 60X with respect to the geothermal heat utilization device 1, and accommodates the water turbine 62X on the downstream side of the second heat exchanger 50. 90 is provided.

送風機60Xは、上記送風機60に対し、電動モータである回転駆動源62を、水車62Xに置換したものである。 The blower 60X is a blower 60 in which the rotary drive source 62, which is an electric motor, is replaced with a water turbine 62X.

水車62Xは、第二の熱交換器50の下流側における液体の流通経路中である水車室90に内在される。
この水車62Xは、羽根車61の回転軸に接続された駆動回転軸62X1の外周に、周方向に間隔を置いて複数の水受け板62X2を支持してなり、水受け板62X2が液体を受けて回転した際に、その回転力を、駆動回転軸62X1によって羽根車61に機械的に伝達する。
The turbine 62X is embedded in the turbine chamber 90, which is in the flow path of the liquid on the downstream side of the second heat exchanger 50.
The water turbine 62X supports a plurality of water receiving plates 62X2 at intervals in the circumferential direction on the outer periphery of the drive rotating shaft 62X1 connected to the rotating shaft of the impeller 61, and the water receiving plates 62X2 receive the liquid. When it rotates, the rotational force is mechanically transmitted to the impeller 61 by the drive rotation shaft 62X1.

駆動回転軸62X1は、ダクト70の外壁を貫通するようにして水車室90内へ突出し、図示しない軸受け部材により回転自在に支持されている。 The drive rotating shaft 62X1 projects into the water turbine chamber 90 so as to penetrate the outer wall of the duct 70, and is rotatably supported by a bearing member (not shown).

複数の水受け板62X2は、放出口40cから放出されて落下する液体(水)を、回転軸から水平に離れた位置で受ける。 The plurality of water receiving plates 62X2 receive the liquid (water) discharged from the discharge port 40c and fall at a position horizontally separated from the rotation axis.

水車室90は、ダクト70の外側に位置する密閉状の部屋である。水車室90内には、上記構成の水車62X、放出口40c、受液部91、排出口92等が設けられる。 The water turbine chamber 90 is a closed room located outside the duct 70. In the turbine chamber 90, a turbine 62X having the above configuration, a discharge port 40c, a liquid receiving unit 91, a discharge port 92, and the like are provided.

放出口40cは、第二の熱交換器50の下流側の配管を、ダクト70の外壁に貫通させて、その突端を水車室90内で開放するようにして形成される。この放出口40cから放出される液体は、自由落下して水車62Xの水受け板62X2に受けられる。 The discharge port 40c is formed so that a pipe on the downstream side of the second heat exchanger 50 is passed through the outer wall of the duct 70 and the tip thereof is opened in the water turbine chamber 90. The liquid discharged from the discharge port 40c freely falls and is received by the water receiving plate 62X2 of the water turbine 62X.

受液部91は、水車62Xの下方側に底部を有する凹状に貯留槽を構成している。この受液部91は、水受け板62X2によって受け流された液体を、一時的に貯溜する。 The liquid receiving portion 91 constitutes a concave storage tank having a bottom portion on the lower side of the water turbine 62X. The liquid receiving unit 91 temporarily stores the liquid received by the water receiving plate 62X2.

排出口92は、受液部91の底部側の壁部に設けられる。この排出口92は水車室90外の配管40dに接続されている。この配管40dは、上記地中熱利用装置1と同様に、合流管33を介して利用側配管系統30に合流するように接続される。したがって、受液部91から排出される液体は、配管40d及び合流管33を介して利用側配管系統30に戻される。 The discharge port 92 is provided on the wall portion on the bottom side of the liquid receiving portion 91. The discharge port 92 is connected to a pipe 40d outside the turbine chamber 90. Like the geothermal heat utilization device 1, the pipe 40d is connected so as to join the utilization side piping system 30 via the confluence pipe 33. Therefore, the liquid discharged from the liquid receiving unit 91 is returned to the utilization side piping system 30 via the pipe 40d and the merging pipe 33.

上記構成の地中熱利用装置2によれば、補助配管系統40に液体(水)を循環させれば、その液体が放出口40cから落下し水受け板62X2に受けられ、水車62X及び羽根車61が回転して、ダクト70内の空気が強制的に搬送される。
よって、第二の熱交換器50による熱交換を、省電力且つ高効率に行うことができる。
According to the geothermal heat utilization device 2 having the above configuration, if a liquid (water) is circulated in the auxiliary piping system 40, the liquid falls from the discharge port 40c and is received by the water receiving plate 62X2, and the water turbine 62X and the impeller 61 rotates to forcibly convey the air in the duct 70.
Therefore, heat exchange by the second heat exchanger 50 can be performed with low power consumption and high efficiency.

<冷温水供給路について>
上記構成の地中熱利用装置1,2には、必要に応じて、冷温水供給路80が設けられる。
この冷温水供給路80は、熱利用機器31によって加熱又は冷却される液体を、補助配管系統40における第二の熱交換器50よりも上流側に供給するように構成される。
詳細に説明すれば、この冷温水供給路80は、熱利用機器31によって加熱又は冷却される液体(例えば水)を流通する配管81と、この配管81を流れる液体を補助配管系統40に合流させる合流管82とを備える。
<About cold and hot water supply channels>
The geothermal heat utilization devices 1 and 2 having the above configuration are provided with a cold / hot water supply path 80, if necessary.
The cold / hot water supply path 80 is configured to supply the liquid heated or cooled by the heat utilization device 31 to the upstream side of the second heat exchanger 50 in the auxiliary piping system 40.
More specifically, the cold / hot water supply path 80 joins the pipe 81 through which the liquid (for example, water) heated or cooled by the heat utilization device 31 flows and the liquid flowing through the pipe 81 into the auxiliary piping system 40. It is provided with a merging pipe 82.

配管81は、その上流側が、図示しない三方弁等を介して熱利用機器31の給湯管に接続され、下流側が合流管82に接続される。そして、この配管81は、熱利用機器31から、加熱又は冷却された液体の一部を取り込む。 The upstream side of the pipe 81 is connected to the hot water supply pipe of the heat utilization device 31 via a three-way valve or the like (not shown), and the downstream side is connected to the combined pipe 82. Then, the pipe 81 takes in a part of the heated or cooled liquid from the heat utilization device 31.

また、合流管82には、好ましい一例としては、電動三方弁が用いられる。この電動三方弁は、図示しない制御回路により制御されて、熱利用機器31側の配管81から供給される液体の流量を適宜に調節する。 Further, as a preferable example, an electric three-way valve is used for the combined pipe 82. This electric three-way valve is controlled by a control circuit (not shown) to appropriately adjust the flow rate of the liquid supplied from the pipe 81 on the heat utilization device 31 side.

よって、地中熱利用装置1(又は2)に冷温水供給路80を加えた態様によれば、補助配管系統40を流れる液体の熱量を、冷温水供給路80から合流する液体の温度により調整することができる。
例えば、熱利用機器31を給湯器とし冷温水供給路80を具備すれば、冬場、第二の熱交換器50によるダクト70内の空気加熱が不足する場合に、補助配管系統40に熱利用機器31(給湯器)の温水を加えて、補助配管系統40を流れる液体の温度を上昇させて、第二の熱交換器50による空気加熱性能(暖房能力)を高めることができる。
Therefore, according to the embodiment in which the cold / hot water supply path 80 is added to the geothermal heat utilization device 1 (or 2), the amount of heat of the liquid flowing through the auxiliary piping system 40 is adjusted by the temperature of the liquid merging from the cold / hot water supply path 80. can do.
For example, if the heat utilization device 31 is used as a water heater and the cold / hot water supply path 80 is provided, the heat utilization device can be added to the auxiliary piping system 40 in winter when the air heating in the duct 70 by the second heat exchanger 50 is insufficient. The hot water of 31 (water heater) can be added to raise the temperature of the liquid flowing through the auxiliary piping system 40, and the air heating performance (heating capacity) of the second heat exchanger 50 can be improved.

<ドライミスト供給経路について>
上記構成の地中熱利用装置1,2には、必要に応じて、ダクト70内へ水を霧状に噴射するドライミスト供給路100が設けられる。
このドライミスト供給路100は、配管81から分岐されてダクト70内へ向かう配管101と、この配管101の途中で管内の水の流量を調整する流量調整弁102と、配管101の下流側端部に接続されダクト70内へ水を噴霧するノズル103と、空間Bの湿度に応じて流量調整弁102の開度を調節する制御部104とを備える。
<Dry mist supply route>
The geothermal heat utilization devices 1 and 2 having the above configuration are provided with a dry mist supply path 100 for injecting water into the duct 70 in the form of mist, if necessary.
The dry mist supply path 100 includes a pipe 101 branched from the pipe 81 and heading into the duct 70, a flow rate adjusting valve 102 that adjusts the flow rate of water in the pipe in the middle of the pipe 101, and a downstream end of the pipe 101. A nozzle 103 that is connected to the duct 70 and sprays water into the duct 70, and a control unit 104 that adjusts the opening degree of the flow rate adjusting valve 102 according to the humidity of the space B are provided.

ノズル103は、小径の開口を有するドライミスト用のノズルであり、配管81下流側の分岐された配管にそれぞれ接続される。 The nozzle 103 is a nozzle for dry mist having an opening having a small diameter, and is connected to each of the branched pipes on the downstream side of the pipe 81.

制御部104は、センサによって感知される湿度が、任意に設定された湿度に近づくように、接点をオンオフさせる装置であり、ヒューミディスタット等と呼称される場合もある。
この制御部104は、流量調整弁102の開度を調節(例えば開又は閉)するように、電気配線される。
The control unit 104 is a device that turns contacts on and off so that the humidity sensed by the sensor approaches an arbitrarily set humidity, and is sometimes called a humidist or the like.
The control unit 104 is electrically wired so as to adjust (for example, open or close) the opening degree of the flow rate adjusting valve 102.

このドライミスト供給路100を加えた態様によれば、例えば、熱利用機器31を給湯器とし、冬場に、熱利用機器31によって加熱された温水を配管81によってダクト70内へ導きノズル103から霧状に噴射すれば、ダクト70内を流れる空気に適度な湿り気を付与して、空間Bを適宜な湿度に維持することができる。 According to the embodiment in which the dry mist supply path 100 is added, for example, the heat utilization device 31 is used as a water heater, and in winter, the hot water heated by the heat utilization device 31 is guided into the duct 70 by the pipe 81 and fog from the nozzle 103. By injecting the air in the same manner, it is possible to impart an appropriate amount of moisture to the air flowing through the duct 70 and maintain the space B at an appropriate humidity.

<その他の変形例>
上記実施態様の地中熱利用装置2によれば、補助配管系統40に水車62Xを設けたが、他例としては、熱源側配管系統10又は利用側配管系統30に水車を設け、この水車の回転力を、ダクト70内の羽根車61に機械的に伝達することも可能である。
<Other variants>
According to the geothermal heat utilization device 2 of the above embodiment, the water turbine 62X is provided in the auxiliary piping system 40, but as another example, a water turbine is provided in the heat source side piping system 10 or the utilization side piping system 30. It is also possible to mechanically transmit the rotational force to the impeller 61 in the duct 70.

また、上記実施態様によれば、回転駆動源62(又は水車62X)の回転力を、回転軸同士の接続により直接羽根車61に伝達するようにしたが、他例としては、回転駆動源62(又は水車62X)の回転力を、歯車やフレキシブルシャフトを介して羽根車61に伝達する態様等とすることも可能である。 Further, according to the above embodiment, the rotational force of the rotary drive source 62 (or the water wheel 62X) is directly transmitted to the impeller 61 by connecting the rotary shafts, but as another example, the rotary drive source 62 It is also possible to transmit the rotational force of (or the water wheel 62X) to the impeller 61 via a gear or a flexible shaft.

また、上記実施態様によれば、利用側配管系統30中に単数の熱利用機器31を設けたが、他例としては、上記利用側配管系統30中に、複数の熱利用機器31を設けることもの可能である。 Further, according to the above embodiment, a single heat utilization device 31 is provided in the utilization side piping system 30, but as another example, a plurality of heat utilization devices 31 are provided in the utilization side piping system 30. Things are possible.

また、上記実施態様によれば、利用側配管系統30から補助配管系統40への分岐点に流量調節機能を有する三方弁32を設けたが、他例としては、この三方弁32を流量調節機能を有さない分岐管にした態様や、配管40a中に流量調整弁を設けた態様等とすることも可能である。 Further, according to the above embodiment, a three-way valve 32 having a flow rate adjusting function is provided at a branch point from the user-side piping system 30 to the auxiliary piping system 40, but as another example, the three-way valve 32 has a flow rate adjusting function. It is also possible to use a branch pipe that does not have the above, a mode in which a flow rate adjusting valve is provided in the pipe 40a, and the like.

また、上記実施態様によれば、ダクト70の吐出口72を屋内に配置したが、他例としては、ダクト70の吐出口72を屋外に配置して、冷風や温風を屋外に送風させることも可能である。 Further, according to the above embodiment, the discharge port 72 of the duct 70 is arranged indoors, but as another example, the discharge port 72 of the duct 70 is arranged outdoors to blow cold air or hot air to the outside. Is also possible.

また、本発明は上述した実施態様に限定されず、本発明の要旨を変更しない範囲で適宜変更可能である。 Further, the present invention is not limited to the above-described embodiment, and can be appropriately changed without changing the gist of the present invention.

1,2:地中熱利用装置
10:熱源側配管系統
20:第一の熱交換器
30:利用側配管系統
31:熱利用機器
32:三方弁(流量調節手段)
40:補助配管系統
40c:放出口
50:第二の熱交換器
60:送風機
61:羽根車
62:回転駆動源
62X:水車
70:ダクト
80:冷温水供給路
90:水車室
1, 2, Geothermal heat utilization device 10: Heat source side piping system 20: First heat exchanger 30: Utilization side piping system 31: Heat utilization equipment 32: Three-way valve (flow rate adjusting means)
40: Auxiliary piping system 40c: Discharge port 50: Second heat exchanger 60: Blower 61: Impeller 62: Rotating drive source 62X: Water wheel 70: Duct 80: Cold / hot water supply path 90: Water wheel room

Claims (7)

地中側と地上側の間で熱媒体液の循環流路を形成する熱源側配管系統と、
前記熱源側配管系統とは独立して地上側で熱利用するための液体の循環流路を形成する利用側配管系統と、
前記熱源側配管系統を流れる熱媒体液と前記利用側配管系統を流れる液体との熱交換を行う第一の熱交換器と、
前記第一の熱交換器よりも下流側で前記利用側配管系統から分岐され、その分岐点よりも下流側で前記利用側配管系統に合流する補助配管系統と、
前記補助配管系統の経路中にて前記補助配管系統を流れる液体と前記補助配管系統の外側の空気との熱交換を行う第二の熱交換器とを具備したことを特徴とする地中熱利用装置。
A heat source side piping system that forms a circulation flow path for the heat medium liquid between the underground side and the ground side,
A utilization-side piping system that forms a liquid circulation flow path for heat utilization on the ground side independently of the heat source-side piping system.
A first heat exchanger that exchanges heat between the heat medium liquid flowing through the heat source side piping system and the liquid flowing through the utilization side piping system.
An auxiliary piping system that branches from the utilization side piping system on the downstream side of the first heat exchanger and joins the utilization side piping system on the downstream side of the branch point.
Geothermal utilization characterized by comprising a second heat exchanger that exchanges heat between the liquid flowing through the auxiliary piping system and the air outside the auxiliary piping system in the path of the auxiliary piping system. Device.
前記利用側配管系統を流れる液体の流量と、前記補助配管系統を流れる液体の流量との比率を調節する流量調節手段を具備したことを特徴とする請求項1記載の地中熱利用装置。 The geothermal heat utilization device according to claim 1, further comprising a flow rate adjusting means for adjusting the ratio of the flow rate of the liquid flowing through the utilization side piping system to the flow rate of the liquid flowing through the auxiliary piping system. 前記第二の熱交換器に空気を強制的に吹き付ける送風機が設けられていることを特徴とする請求項1又は2記載の地中熱利用装置。 The underground heat utilization device according to claim 1 or 2, wherein the second heat exchanger is provided with a blower forcibly blowing air. 一端側から他端側に空気を流通させるダクトを備え、このダクト内における空気流路の上流側に前記送風機を配設するとともに同空気流路の下流側に前記第二の熱交換器を配設したことを特徴とする請求項3記載の地中熱利用装置。 A duct for circulating air from one end side to the other end side is provided, the blower is arranged on the upstream side of the air flow path in this duct, and the second heat exchanger is arranged on the downstream side of the air flow path. The geothermal heat utilization device according to claim 3, wherein the device is provided. 前記送風機は、回転して前記第二の熱交換器に風を吹き付ける羽根車と、回転力を前記羽根車に機械的に伝達する水車とを備え、
前記水車は、前記第二の熱交換器の下流側における液体の流通経路中に設けられていることを特徴とする請求項3又は4記載の地中熱利用装置。
The blower includes an impeller that rotates and blows wind onto the second heat exchanger, and a water turbine that mechanically transmits a rotational force to the impeller.
The geothermal heat utilization device according to claim 3 or 4, wherein the water turbine is provided in a liquid distribution path on the downstream side of the second heat exchanger.
前記第二の熱交換器の下流側に、前記水車を収容する水車室を設け、この水車室内に、前記第二の熱交換器内の液体を放出する放出口を設け、前記放出口から放出されて落下する液体により前記水車を回転させるようにしたことを特徴とする請求項5記載の地中熱利用装置。 A water turbine chamber for accommodating the water turbine is provided on the downstream side of the second heat exchanger, and a discharge port for discharging the liquid in the second heat exchanger is provided in the water turbine chamber, and the liquid is discharged from the discharge port. The geothermal heat utilization device according to claim 5, wherein the water turbine is rotated by a liquid that is dropped. 前記熱源側配管系統と、前記利用側配管系統と、前記補助配管系統とのうち、何れかの配管系統の流路中に、該流路中の液体の圧力により回転するように水車を設け、前記水車の回転軸の回転力を前記送風機の回転軸に機械的に伝達して、前記送風機を回転させるようにしたことを特徴とする請求項3記載の地中熱利用装置。 A water wheel is provided in the flow path of any of the heat source side piping system, the utilization side piping system, and the auxiliary piping system so as to rotate by the pressure of the liquid in the flow path. The underground heat utilization device according to claim 3, wherein the rotational force of the rotating shaft of the water turbine is mechanically transmitted to the rotating shaft of the blower to rotate the blower.
JP2020030220A 2020-02-26 2020-02-26 Geothermal heat utilization equipment Active JP7325110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020030220A JP7325110B2 (en) 2020-02-26 2020-02-26 Geothermal heat utilization equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020030220A JP7325110B2 (en) 2020-02-26 2020-02-26 Geothermal heat utilization equipment

Publications (2)

Publication Number Publication Date
JP2021134964A true JP2021134964A (en) 2021-09-13
JP7325110B2 JP7325110B2 (en) 2023-08-14

Family

ID=77660800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020030220A Active JP7325110B2 (en) 2020-02-26 2020-02-26 Geothermal heat utilization equipment

Country Status (1)

Country Link
JP (1) JP7325110B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231152A (en) * 1987-03-19 1988-09-27 日立造船株式会社 Absorption type heat exchanger
JP2003343884A (en) * 2002-05-29 2003-12-03 Nobuyuki Tomoyasu Circulating type cooling and heating method of building using geothermal power
JP2017227416A (en) * 2016-06-24 2017-12-28 株式会社ダイワテック Cooling/heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63231152A (en) * 1987-03-19 1988-09-27 日立造船株式会社 Absorption type heat exchanger
JP2003343884A (en) * 2002-05-29 2003-12-03 Nobuyuki Tomoyasu Circulating type cooling and heating method of building using geothermal power
JP2017227416A (en) * 2016-06-24 2017-12-28 株式会社ダイワテック Cooling/heating system

Also Published As

Publication number Publication date
JP7325110B2 (en) 2023-08-14

Similar Documents

Publication Publication Date Title
JP4753312B2 (en) Air conditioner using groundwater
JP2008215795A (en) Movable heat exchange system, and air conditioner, hot water storage device, electric fan, other heat exchanger and heat exchange system applying the system
KR101173518B1 (en) Air cooling device without refrigerant
CN101688676A (en) Humidity adjusting device
US1877905A (en) Poration
JP2023535739A (en) Systems for air conditioning the interior spaces of buildings
CN101688674A (en) Humidity adjusting device
US4254636A (en) Heat transfer system
JP2005315517A (en) Air conditioner system
JP2021134964A (en) Geothermal unit
KR100496895B1 (en) Heat pump type cooling and heating by subterranean heat
JP2021134965A (en) Geothermal unit
CA2214409A1 (en) Arrangement in connection with an air conditioning unit comprising heat recovery means and means for introducing additional heating and cooling
JP2011038489A (en) Method and device for recovering energy from artificial wind generated by artificial wind power generator
SI24409A (en) Closed system of external units of a heat pump and of an air conditioning appliance, of closed type with auto-regulatory system for heating of cooling
JP6980236B2 (en) Air conditioning equipment
US3494415A (en) Room heating and cooling apparatus including a crossflow blower
KR200430990Y1 (en) Heat pump type Cooling and heating by subterranean heat on the water
KR101199020B1 (en) Ground Source Heat Pumps Apparatus
KR100431135B1 (en) Electric Fan Combined With Cooling and Heating Function
KR20100128729A (en) A geothermal heating and cooling system with balancing pipes
JP7320308B2 (en) Auxiliary heat exchange device
CN104101037B (en) Water heat exchanging air conditioner
KR102426675B1 (en) Geothermal heat pump system using fermentation heat of manure
KR20190040780A (en) Cooling system for seawater pump, and seawater pump system having the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230725

R150 Certificate of patent or registration of utility model

Ref document number: 7325110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150