JP2006038333A - Air conditioning system using vapor compression refrigerating machine - Google Patents

Air conditioning system using vapor compression refrigerating machine Download PDF

Info

Publication number
JP2006038333A
JP2006038333A JP2004218202A JP2004218202A JP2006038333A JP 2006038333 A JP2006038333 A JP 2006038333A JP 2004218202 A JP2004218202 A JP 2004218202A JP 2004218202 A JP2004218202 A JP 2004218202A JP 2006038333 A JP2006038333 A JP 2006038333A
Authority
JP
Japan
Prior art keywords
load
cooling
water
heating
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004218202A
Other languages
Japanese (ja)
Other versions
JP4573263B2 (en
Inventor
Atsushi Matsumura
篤志 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2004218202A priority Critical patent/JP4573263B2/en
Publication of JP2006038333A publication Critical patent/JP2006038333A/en
Application granted granted Critical
Publication of JP4573263B2 publication Critical patent/JP4573263B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D31/00Other cooling or freezing apparatus

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioning system using a vapor compression refrigerating machine reversibly moving a Roots vacuum pump arranged between an evaporator and a condenser without providing an independent selector valve. <P>SOLUTION: The air conditioning system is provided with a one side vacuum container 40 functioning as an evaporator during cooling and as a condenser during heating, and arranged with an air conditioning load, an another side vacuum container 41 functioning as a condenser during cooling and as an evaporator during heating, and supplied with heat source water, and a compressor reversibly sending vapor through a connection piping connecting both vacuum containers by operation of cooling or heating of the vapor compression refrigerating machine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、別異の切替弁を備えることなく蒸発器と凝縮器との間にダクトを介して配置したルーツポンプを可逆運動することにより、水蒸気を該ダクト内に可逆方向に流過させて居室等に配備された放射パネル等で構築された負荷に冷水又は温水を供給する水蒸気圧縮冷凍機による冷暖房システムに関するものである。 The present invention allows water vapor to flow through the duct in a reversible direction by reversibly moving a Roots pump arranged via a duct between the evaporator and the condenser without providing a separate switching valve. The present invention relates to an air conditioning system using a steam compression refrigerator that supplies cold water or hot water to a load constructed by a radiant panel or the like provided in a living room or the like.

この種、従来技術の第1の例としては、図6に示す構成を備えた空調システムであった。これについて説明すれば、1は蒸発器、2は凝縮器、3は圧縮機である。上記蒸発器1、凝縮器2及び圧縮機3で圧縮冷凍機Aが構成される。上記蒸発器1は、圧縮機3の運転によって低圧に保持しつつ負荷10から導入された冷水の一部を冷却する。該圧縮機3は、蒸発器1から導入された冷媒ガスを所定の条件で加圧する。上記凝縮器2は、圧縮機3で加圧されかつ高温になった冷媒ガスを導入し、これを外部からの冷却水で冷却し、凝縮し、または負荷10への温水を温める。4は、井水等熱源水5に接続されると共に第1切替弁6、冷・温水ポンプ7、凝縮器2及び第2切替弁8を介在させて配備された一次側冷・温水配管である。9は、放射パネル等でなる負荷10に接続されると共に第3切替弁11、冷・温水ポンプ12、蒸発器1及び第4切替弁13を介在させて配備された二次側冷・温水配管である。14は、第5切替弁であり、上記二次側冷・温水配管9と上記一次側冷・温水配管4との間に接続された第1分岐配管15に介置されている。16は、第6切替弁であり、上記二次側冷・温水配管9と上記一次側冷・温水配管4との間に接続された第2分岐配管17に介置されている。18は、第7切替弁であり、上記二次側冷・温水配管9と上記一次側冷・温水配管4との間に接続された第3分岐配管19に介置されている。20は、第8切替弁であり、上記二次側冷・温水配管9と上記一次側冷・温水配管4との間に接続された第4分岐配管21に介置されている。
而して、冷房運転に際しては、上記圧縮冷凍機Aが運転することにより、冷・温水ポンプ7が駆動すると共に上記第1及び第2切替弁6、8が開放され、熱源水5の両側に配管された一次側冷・温水配管4内を上記凝縮器2を経由して例えば、その入口側の熱源水5が37(℃)ないし27(℃)程度のものとして流過し、その出口側内で32(℃)から22(℃)程度の温度を有する。
一方、これにより、上記蒸発器及び冷・温水ポンプ12が駆動すると共に上記第3及び第4切替弁11、13が開放され、負荷10の両側に配管された二次側冷・温水配管9内を上記蒸発器1を経由して例えば、7(℃)の冷水が流過し、当該放射パネル等の負荷10に冷水でなる熱媒を送り込み、負荷10を設置した居室等を冷房する。これが本空調システムの冷房運転つまり夏期の運転である。
また、暖房運転に際しては、上記圧縮冷凍機Aが運転することにより冷・温水ポンプ12が駆動すると共に上記第6及び第8切替弁16、20が開放され、熱源水5の両側に配管された一次側冷・温水配管4内及び第2分岐配管17内、第4分岐配管21内を上記蒸発器1を経由して例えば、その入口側の熱源水5が7(℃)の冷水として流過し、その出口側で12(℃)程度の温度を有する。
一方、これにより上記凝縮器2及び冷・温水ポンプ7が駆動すると共に上記第5及び第7切替弁14、18が開放され、負荷10の両側に配管された二次側冷・温水配管9内及び第1分岐配管15内、第3分岐配管19内を上記凝縮器2を経由して例えば、45(℃)の温水が流過し、当該放射パネル等の負荷10に温水を送り込み該負荷10を設置した居室等を暖房する。これが本空調システムの暖房運転、つまり、冬期の運転である。
This type of first example of the prior art is an air conditioning system having the configuration shown in FIG. In this regard, 1 is an evaporator, 2 is a condenser, and 3 is a compressor. The evaporator 1, the condenser 2 and the compressor 3 constitute a compression refrigerator A. The evaporator 1 cools a part of cold water introduced from the load 10 while maintaining a low pressure by the operation of the compressor 3. The compressor 3 pressurizes the refrigerant gas introduced from the evaporator 1 under predetermined conditions. The condenser 2 introduces the refrigerant gas that has been pressurized by the compressor 3 and has reached a high temperature, cools it with cooling water from the outside, condenses, or warms the hot water to the load 10. Reference numeral 4 denotes a primary side cold / hot water pipe which is connected to a heat source water 5 such as well water and is provided with a first switching valve 6, a cold / hot water pump 7, a condenser 2 and a second switching valve 8 interposed therebetween. . Reference numeral 9 denotes a secondary side cold / hot water pipe which is connected to a load 10 made of a radiant panel or the like and is arranged with a third switching valve 11, a cold / hot water pump 12, an evaporator 1 and a fourth switching valve 13 interposed therebetween. It is. Reference numeral 14 denotes a fifth switching valve, which is interposed in a first branch pipe 15 connected between the secondary side cold / hot water pipe 9 and the primary side cold / hot water pipe 4. Reference numeral 16 denotes a sixth switching valve, which is interposed in a second branch pipe 17 connected between the secondary side cold / hot water pipe 9 and the primary side cold / hot water pipe 4. Reference numeral 18 denotes a seventh switching valve, which is interposed in a third branch pipe 19 connected between the secondary side cold / hot water pipe 9 and the primary side cold / hot water pipe 4. Reference numeral 20 denotes an eighth switching valve, which is interposed in a fourth branch pipe 21 connected between the secondary side cold / hot water pipe 9 and the primary side cold / hot water pipe 4.
Thus, during the cooling operation, when the compression refrigerator A is operated, the cold / hot water pump 7 is driven and the first and second switching valves 6 and 8 are opened, and the heat source water 5 is disposed on both sides. For example, the heat source water 5 on the inlet side flows through the primary cold / hot water pipe 4 that has been piped through the condenser 2 as having a temperature of about 37 (° C.) to 27 (° C.). The temperature is about 32 (° C.) to 22 (° C.).
On the other hand, the evaporator and the cold / hot water pump 12 are driven and the third and fourth switching valves 11 and 13 are opened, and the secondary cold / hot water pipe 9 piped on both sides of the load 10 is provided. For example, cold water of 7 (° C.) flows through the evaporator 1, a heat medium made of cold water is sent to the load 10 such as the radiant panel, and the room where the load 10 is installed is cooled. This is the cooling operation of the air conditioning system, that is, the summer operation.
In the heating operation, the compressor / refrigerator A is operated to drive the cold / hot water pump 12 and the sixth and eighth switching valves 16 and 20 are opened and piped on both sides of the heat source water 5. For example, the heat source water 5 on the inlet side flows as 7 (° C.) cold water through the evaporator 1 in the primary side cold / hot water pipe 4, the second branch pipe 17, and the fourth branch pipe 21. And has a temperature of about 12 (° C.) on the outlet side.
On the other hand, the condenser 2 and the cold / hot water pump 7 are driven, and the fifth and seventh switching valves 14 and 18 are opened, and the secondary cold / hot water pipe 9 is piped on both sides of the load 10. Then, for example, 45 (° C.) hot water flows through the first branch pipe 15 and the third branch pipe 19 via the condenser 2, and the hot water is sent to the load 10 such as the radiation panel. Heat the living room where is installed. This is the heating operation of the air conditioning system, that is, the winter operation.

この種、従来技術の第2の例としては、特開昭60−62539号公開特許公報に開示された図7に示す装置がある。これについて説明すれば、底出口21を有する真空容器22を含み、その底出口21からこの真空容器22の中の水をポンプ23によって汲み出して外部の熱交換器24を通すことができ、その水はノズル管25を通して真空容器22に戻され、即ちそのノズル管25から水はノズル25aを通してこの真空容器22の中の水面上にこの真空容器22の真空中に噴霧される。この射出噴霧によって著しい蒸発とそれに関連した水の冷却が起り、この水はこの真空容器22の中の水26に当たる前に部分的に氷結する。この射出噴霧によって作られる蒸気はこの真空容器22の中の低圧を維持するために除去される。この除去方法は簡単な遠心圧縮機27によって行われ、その圧縮機27がこの蒸気を滴分離器28を通して上部室29に吸い上げ、その上部室29には従来の冷凍装置Bの蒸発器ユニットを構成するような冷凍凝縮器30を備え、その冷凍装置Bの凝縮器は31で示されている。この上部室29の中の圧力は真空容器22の中よりわずかに高いだけで、これはこの低温蒸気の凝縮が凝縮器30に着氷することなく行われるに十分な状態である。凝縮液は傾斜したトレー32上に集められ管33を通して真空容器22の中に直接戻すように案内される。“夜間運転”中、この装置は水26を次第に凍らせるために使われ、水26は外部の熱交換器24を通して再循環され、このユニットがなければこの装置は別の作動をする。この水26が、次の“日中運転”期のすぐ前に、できるだけ砕氷に転換されているように、即ち水26の初期全凍結がないように条件が調整される。換言すれば、水26の中に浮遊する砕氷は、最適には、底出口21又はポンプ23に殆んどとどく程度に作られる。“日中運転”中、熱交換器24は作動させられる。この熱交換器24はポンプ23と冷凍装置Bの能力より大きい能力で冷却されるべき1つ以上の装置を含む回路に付加的に含まれている。冷凍装置Bは多量の水26を冷却するための作業を続けてもよいが、日中運転中水26はこの熱交換器24を通って真空容器22の中の冷却に相当以上に加熱する。即ち水26の氷含有量は間断なく減少し、その融解熱がこの熱交換器24の外部回路の冷却に利用される。その後、外部回路のポンプ34が停められて、次の夜の段階が始まり、その段階では冷凍装置Bは専らこの多量の水26を新しく砕氷で充すために作動する。日中運転中、真空冷却装置の作動条件は、ノズル25aを通して噴射された水の温度が夜間運転中より高い。
尚、図中35は冷房負荷、36は遠心圧縮機27を駆動するモータ、37ないし40は各バルブである。
特開昭60−62539号公開特許公報
As a second example of this type of prior art, there is an apparatus shown in FIG. 7 disclosed in Japanese Patent Application Laid-Open No. 60-62539. To explain this, a vacuum vessel 22 having a bottom outlet 21 is included, and water in the vacuum vessel 22 can be pumped from the bottom outlet 21 by a pump 23 and passed through an external heat exchanger 24. Is returned to the vacuum vessel 22 through the nozzle tube 25, that is, water from the nozzle tube 25 is sprayed into the vacuum of the vacuum vessel 22 onto the water surface in the vacuum vessel 22 through the nozzle 25a. This injection spray causes significant evaporation and associated cooling of the water, which partially freezes before hitting the water 26 in the vacuum vessel 22. The vapor produced by this injection spray is removed to maintain the low pressure in this vacuum vessel 22. This removal method is performed by a simple centrifugal compressor 27, which sucks this vapor into the upper chamber 29 through the drop separator 28, and constitutes the evaporator unit of the conventional refrigeration apparatus B in the upper chamber 29. The refrigeration condenser 30 is provided, and the condenser of the refrigeration apparatus B is indicated by 31. The pressure in the upper chamber 29 is only slightly higher than in the vacuum vessel 22, which is sufficient for this low temperature vapor condensation to occur without icing the condenser 30. The condensate is collected on the inclined tray 32 and guided back through the tube 33 and directly into the vacuum vessel 22. During “night operation”, this device is used to gradually freeze water 26, which is recirculated through an external heat exchanger 24, and without this unit, this device performs another operation. The conditions are adjusted so that the water 26 is converted to crushed ice as soon as possible, that is, there is no initial total freezing of the water 26, just prior to the next "daytime" period. In other words, the crushed ice floating in the water 26 is optimally made to a degree at the bottom outlet 21 or the pump 23. During “daytime operation”, the heat exchanger 24 is activated. This heat exchanger 24 is additionally included in a circuit comprising one or more devices to be cooled with a capacity greater than that of the pump 23 and the refrigeration system B. Although the refrigeration apparatus B may continue the operation for cooling a large amount of water 26, during the daytime operation, the water 26 is heated through the heat exchanger 24 to a considerable extent for cooling in the vacuum vessel 22. That is, the ice content of the water 26 is continuously reduced, and the heat of fusion is used for cooling the external circuit of the heat exchanger 24. Thereafter, the external circuit pump 34 is turned off and the next night phase begins, at which time the refrigeration system B operates exclusively to fill this large amount of water 26 with fresh crushed ice. During daytime operation, the operating condition of the vacuum cooling device is such that the temperature of the water sprayed through the nozzle 25a is higher than during nighttime operation.
In the figure, 35 is a cooling load, 36 is a motor for driving the centrifugal compressor 27, and 37 to 40 are valves.
Japanese Patent Laid-Open No. 60-62539

一般的に従来の冷凍機は、冷媒蒸発の冷却原理を用いた冷凍機であって、例えば、HFC−134a又はHCFC−123等のフロン系冷媒を使用すると共に地球温暖化係数(GWP)が高く、オゾン層の破壊や地球温暖化の危険性があり、種々の問題点があった。
また、従来の冷凍機は、空調機による除湿のために空調システム内で例えば、7(℃)の冷水を製造して負荷に供給する必要があり、蒸発温度と凝縮温度の差が例えば、20(℃)以上も必要とし、井水に於ける16(℃)以下の熱源水ではそのまま熱源水として利用できず、例えば、27(℃)の冷却水を混合して22(℃)以上としなければならないため凝縮温度を22(℃)以下にすることができず、低い温度の冷却水を有効に利用できないという隘路があった。
Generally, a conventional refrigerator is a refrigerator using a cooling principle of refrigerant evaporation, and uses, for example, a fluorocarbon refrigerant such as HFC-134a or HCFC-123 and has a high global warming potential (GWP). There was a risk of ozone layer destruction and global warming.
Further, the conventional refrigerator needs to produce, for example, 7 (° C.) cold water in the air conditioning system for dehumidification by the air conditioner and supply it to the load, and the difference between the evaporation temperature and the condensation temperature is, for example, 20 (° C) or more is required, and heat source water of 16 (° C) or less in well water cannot be used as heat source water as it is. For example, cooling water of 27 (° C) should be mixed to make 22 (° C) or more. Therefore, the condensation temperature cannot be made 22 (° C.) or less, and there is a bottleneck that the cooling water having a low temperature cannot be effectively used.

ところで、上述した従来の技術に於ける第1の例に示す空調システムは、冷・暖房両用システムであってフロン系冷媒を使用しているが、冷房、暖房の両用を司る冷・温水の媒体を負荷10に切替えて供給するためには、本システムに複雑かつ多数個の第1ないし第8切替弁6、8、11、13、14、16、18及び20を配備すると共に加えて配管構成が複雑になるという問題点があった。
一方、上述した従来の技術に於ける第2の例を示す特開昭60−62539号公開特許公報に開示した冷凍機は、水を用いた真空蒸発方式の冷凍機であって、真空容器22の内部を例えば4.6mmHg以下の真空状態に維持し、その下部に水26を溜めている。真空容器22の底出口21から抜出した水を、ポンプ23によりノズル25aから噴霧すると、水26の一部が活発に蒸発し、蒸発の潜熱により水の残りが微細な氷となる。真空容器22内の上部には一段の遠心蒸気圧縮機27が設けられ、水蒸気を上部室29に吸い上げる。上部室29には従来の冷凍装置Bの蒸発器ユニットを構成するようなフロンなどを用いた圧縮式の冷凍サイクルを使用している冷凍凝縮器30が設けられている。この冷凍機は、一段の遠心蒸気圧縮機27で水蒸気を圧縮するため、その圧縮力が真空容器22内の圧力よりわずかに高い圧力例えば7mmHgであり、この水蒸気を凝縮するために冷媒の温度をフロン等を用いて低くする必要がある。また、この冷凍機は、冷房用の冷水しか製造できず、暖房負荷に対して対応できない技術である。
By the way, the air conditioning system shown in the first example in the above-described prior art is a cooling / heating system and uses a chlorofluorocarbon refrigerant. However, a medium for cooling / heating water that controls both cooling and heating. In order to switch and supply the load 10 to the load 10, a complicated and large number of first to eighth switching valves 6, 8, 11, 13, 14, 16, 18, and 20 are provided in the system, and in addition, a piping configuration There was a problem that became complicated.
On the other hand, the refrigerator disclosed in Japanese Patent Application Laid-Open No. 60-62539 showing the second example in the above-described prior art is a vacuum evaporation type refrigerator using water, and the vacuum vessel 22 The inside is maintained in a vacuum state of, for example, 4.6 mmHg or less, and water 26 is stored in the lower part thereof. When the water extracted from the bottom outlet 21 of the vacuum vessel 22 is sprayed from the nozzle 25a by the pump 23, a part of the water 26 is actively evaporated, and the remaining water becomes fine ice due to the latent heat of evaporation. A single-stage centrifugal vapor compressor 27 is provided in the upper part of the vacuum vessel 22 and sucks water vapor into the upper chamber 29. The upper chamber 29 is provided with a refrigeration condenser 30 using a compression type refrigeration cycle using chlorofluorocarbon or the like that constitutes an evaporator unit of a conventional refrigeration apparatus B. Since this refrigerator compresses water vapor with the one-stage centrifugal vapor compressor 27, the compression force is a pressure slightly higher than the pressure in the vacuum vessel 22, for example, 7 mmHg, and the temperature of the refrigerant is reduced in order to condense this water vapor. It is necessary to lower it using chlorofluorocarbon. In addition, this refrigerator is a technology that can only produce cooling water for cooling and cannot cope with heating loads.

本発明に係る水蒸気圧縮冷凍機による冷暖房システムは、地球温暖化への影響を配慮してフロン系冷媒を使用しないと共に水蒸気圧縮冷凍機の高運転効率(COP)を実現することにより消費電力の削減を図り、高品質な放射冷暖房を実現するため井水等の熱源水を利用し、例えば冷水15(℃)、温水30(℃)程度を高効率に製造可能とし、複雑かつ多数個の切替弁を配備することなく、また、他に熱源を必要とせず冬期や夏期の建物における冷暖房負荷を共存対応させかつ冷暖房の負荷量のバランスが悪い場合は、差分を井水の熱により調整可能なシステムを提供することを目的としたものであって、次の構成・手段から成立する。 The cooling / heating system using the steam compression refrigerator according to the present invention reduces power consumption by not using a chlorofluorocarbon refrigerant in consideration of the effect on global warming and realizing high operating efficiency (COP) of the steam compression refrigerator. In order to realize high-quality radiant cooling and heating, heat source water such as well water is used, and for example, cold water 15 (° C) and hot water 30 (° C) can be produced with high efficiency, and a large number of complicated switching valves If the air conditioning load in the building in winter and summer is coexistent and the load balance of the air conditioning is poor, the difference can be adjusted by the heat of the well water. Is provided by the following configuration / means.

すなわち、請求項1記載の発明によれば、冷房時に蒸発器及び暖房時に凝縮器として機能しかつ冷暖房負荷を配管した一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能しかつ熱源水を供給される他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送する圧縮機とを備えたことを特徴とする。 That is, according to the first aspect of the present invention, the one-side vacuum vessel functioning as an evaporator during cooling and a condenser during heating and piping an air conditioning load, and functioning as a condenser during cooling and an evaporator during heating and a heat source The other side vacuum vessel to which water is supplied, and a compressor that reversibly feeds water vapor into a connecting pipe (duct) connected between both vacuum vessels by cooling or heating operation of the water vapor compression refrigerator. Features.

請求項2記載の発明によれば、冷房時に蒸発器及び暖房時に凝縮器として機能してなりかつ冷暖房負荷を出口側の冷・温水の温度を計測する温度計を有した負荷側連結配管で接続された一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能してなりかつ熱源水を供給すると共に温度計の温度計測信号で制御される三方弁を備えた一次連結配管及び出口側の冷却水の温度を計測する該温度計を有した二次連結配管に接続された他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記一方側真空容器の出口側の冷・温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする。 According to the second aspect of the present invention, the cooling / heating load that functions as an evaporator during cooling and a condenser during heating and that has a thermometer that measures the temperature of cold / hot water on the outlet side is connected. One side vacuum vessel, primary connection piping and outlet side which has a three-way valve which functions as a condenser during cooling and as an evaporator during heating and which supplies heat source water and is controlled by a temperature measurement signal of a thermometer The other side vacuum vessel connected to the secondary connection pipe having the thermometer for measuring the temperature of the cooling water of the pipe, and the connection pipe (duct) connecting the two vacuum vessels by cooling or heating operation of the steam compression refrigerator And a compressor that performs inverter control with a temperature measurement signal of a thermometer that measures the temperature of cold / hot water on the outlet side of the one-side vacuum vessel.

請求項3記載の発明によれば、冷房時に蒸発器及び暖房時に凝縮器として機能してなりかつインテリア部負荷及びぺリメータ部負荷を備えた冷暖房負荷を出口側の冷・温水の温度を計測すると共に圧縮機をインバータ制御する温度計を有した負荷側連結配管で接続された一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能してなりかつ熱源水を供給すると共に温度計の温度計測信号で制御される三方弁を備えた一次連結配管及び出口側の冷・温水の温度を計測して別異の三方弁の弁開度を制御する温度計を有した複数の連結管で構成される二次連結配管に接続された他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記一方側真空容器の出口側の冷・温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする。 According to the third aspect of the present invention, the temperature of the cooling / warm water on the outlet side is measured for the cooling / heating load that functions as an evaporator during cooling and as a condenser during heating and includes an interior load and a perimeter load. And one side vacuum vessel connected by a load side connecting pipe having a thermometer for inverter control of the compressor, and functions as a condenser during cooling and as an evaporator during heating and supplies heat source water and A primary connection pipe with a three-way valve controlled by a temperature measurement signal and a plurality of connection pipes with thermometers that control the opening of different three-way valves by measuring the temperature of cold / hot water at the outlet side The other side vacuum vessel connected to the constructed secondary connection pipe and the steam is reversibly flowed into the connection pipe (duct) connected between the two vacuum vessels by the cooling or heating operation of the steam compression refrigerator. One side vacuum The temperature measurement signal of the thermometer for measuring the cold-hot water temperature at the outlet side of the vessel, characterized in that a compressor for the inverter control.

請求項4記載の発明によれば、暖房機能を有しかつ一方の負荷側連結配管に接続されたぺリメータ部負荷と、冷房機能を有しかつ他方の負荷側連結配管に接続されたインテリア部負荷と、両負荷で構成される冷暖房負荷と、熱源水を供給しかつ温度計の温度計測信号で制御される三方弁を備えた一次連結配管と、該一次連結配管を構成する他方の負荷側連結配管に設置してあって、温度計による温度計測信号で出口側の冷水の弁開度を制御する別異の三方弁を備えた他方真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に一方の負荷側連結配管に接続された一方側真空容器の出口側の温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする。 According to invention of Claim 4, the perimeter part load which has a heating function and was connected to one load side connection piping, and the interior part which has a cooling function and was connected to the other load side connection piping A load, a heating / cooling load composed of both loads, a primary connection pipe that supplies heat source water and is controlled by a temperature measurement signal of a thermometer, and the other load side that constitutes the primary connection pipe The other vacuum vessel that is installed in the connecting pipe and has a different three-way valve that controls the valve opening degree of the cold water on the outlet side by the temperature measurement signal from the thermometer, and the cooling or heating operation of the steam compression refrigerator The temperature of a thermometer that measures the temperature of hot water on the outlet side of one side vacuum vessel connected to one load side connection piping while reversibly flowing water vapor into the connection piping (duct) connecting the two vacuum vessels Inverter controlled by measurement signal Characterized by comprising a compressor.

請求項5記載の発明によれば、暖房機能を有しかつ一方の負荷側連結配管に接続されたぺリメータ部負荷と、冷房機能を有しかつ他方の負荷側連結配管に接続されたインテリア部負荷と、両負荷で構成される冷暖房負荷と、熱源水を供給しかつ温度計の温度計測信号で制御される三方弁を備えた一次連結配管と、該一次連結配管を構成する一方の負荷側連結配管に設置してあって、温度計による出口側の温水の温度計測信号で弁開度を制御する別異の三方弁を備えた一方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記他方の負荷側連結配管に接続された他方側真空容器の出口側の冷水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする。 According to the invention of claim 5, a perimeter load having a heating function and connected to one load side connection pipe, and an interior part having a cooling function and connected to the other load side connection pipe A load, a heating / cooling load composed of both loads, a primary connection pipe that supplies heat source water and is controlled by a temperature measurement signal of a thermometer, and one load side that constitutes the primary connection pipe One side vacuum vessel equipped with a separate three-way valve that controls the valve opening with the temperature measurement signal of the hot water on the outlet side by a thermometer, and cooling or heating of the steam compression refrigerator A thermometer that reversibly feeds water vapor into a connecting pipe (duct) connected between both vacuum vessels by operation and measures the temperature of the cold water on the outlet side of the other vacuum vessel connected to the other load side connecting pipe. Inverter control by temperature measurement signal Characterized by comprising a compressor.

請求項6記載の発明によれば、請求項1、2、3、4又は5記載の発明に於いて、上記冷暖房負荷は、放射パネルで構成したことを特徴とする。 According to a sixth aspect of the present invention, in the first, second, third, fourth, or fifth aspect of the present invention, the cooling / heating load is constituted by a radiating panel.

請求項7記載の発明によれば、請求項1、2、3、4又は5記載の発明に於いて、上記圧縮機はルーツポンプで構成したことを特徴とする。 According to a seventh aspect of the present invention, in the first, second, third, fourth, or fifth aspect, the compressor is constituted by a Roots pump.

請求項8記載の発明によれば、請求項1、2、3、4又は5記載の発明に於いて、上記熱源水は井水で構成したことを特徴とする。 According to the invention described in claim 8, in the invention described in claim 1, 2, 3, 4 or 5, the heat source water is constituted by well water.

本発明に係る水蒸気圧縮冷凍機による冷暖房システムは、上述の構成を有するので次の効果がある。
すなわち、請求項1記載の発明によれば、冷房時に蒸発器及び暖房時に凝縮器として機能しかつ冷暖房負荷を配管した一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能しかつ熱源水を供給される他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、複雑かつ多数の切替弁を備えることなく冷暖房駆動の切替えは、水蒸気圧縮冷凍機に備えたルーツポンプ等の圧縮機の回転方向を可逆運転することにより容易に行ない、配管構成も簡素化すると共に井水等の熱源水を有効活用し地球環境の良好なシステムとし、実現性の高い冷暖房共用システムとすることができる効果がある。
Since the air conditioning system using the steam compression refrigerator according to the present invention has the above-described configuration, it has the following effects.
That is, according to the first aspect of the present invention, the one-side vacuum vessel functioning as an evaporator during cooling and a condenser during heating and piping an air conditioning load, and functioning as a condenser during cooling and an evaporator during heating and a heat source The other side vacuum vessel to which water is supplied, and a compressor that reversibly feeds water vapor into a connecting pipe (duct) connected between both vacuum vessels by cooling or heating operation of the water vapor compression refrigerator. An air-conditioning system using a water vapor compression refrigerator is provided.
Since it is such a configuration, switching of the cooling and heating drive without having a complicated and many switching valves is easily performed by reversibly operating the rotation direction of the compressor such as a roots pump provided in the steam compression refrigerator, The piping configuration is simplified, and heat source water such as well water is effectively used to provide a system with a good global environment.

請求項2記載の発明によれば、冷房時に蒸発器及び暖房時に凝縮器として機能してなりかつ冷暖房負荷を出口側の冷・温水の温度を計測する温度計を有した負荷側連結配管で接続された一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能してなりかつ熱源水を供給すると共に温度計の温度計測信号で制御される三方弁を備えた一次連結配管及び出口側の冷却水の温度を計測する該温度計を有した二次連結配管に接続された他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記一方側真空容器の出口側の冷・温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、上述した請求項1記載の発明の効果に加えて、一方側真空容器及び他方側真空容器の各出口側の冷・温水の温度計測信号を熱源水を供給する連結配管及び負荷側連結配管に設置した各温度計により該熱源水を還流させる三方弁や水蒸気圧縮冷凍機に備えた凝縮器に伝送し、運転効率(COP)の高い冷暖房システムを提供できる効果がある。
According to the second aspect of the present invention, the cooling / heating load that functions as an evaporator during cooling and a condenser during heating and that has a thermometer that measures the temperature of cold / hot water on the outlet side is connected. One side vacuum vessel, primary connection piping and outlet side which has a three-way valve which functions as a condenser during cooling and as an evaporator during heating and which supplies heat source water and is controlled by a temperature measurement signal of a thermometer The other side vacuum vessel connected to the secondary connection pipe having the thermometer for measuring the temperature of the cooling water of the pipe, and the connection pipe (duct) connecting the two vacuum vessels by cooling or heating operation of the steam compression refrigerator And a compressor that performs inverter control with a temperature measurement signal of a thermometer that measures the temperature of cold / hot water on the outlet side of the one-side vacuum vessel. refrigerator To provide a heating and cooling system due.
Since such a configuration is adopted, in addition to the effect of the invention described in claim 1 described above, the temperature measurement signal of the cold / hot water on each outlet side of the one side vacuum vessel and the other side vacuum vessel is connected to supply heat source water. Each thermometer installed in the piping and the load side connection piping is transmitted to a condenser provided in a three-way valve or a steam compression refrigerator that recirculates the heat source water, and has an effect of providing an air conditioning system with high operating efficiency (COP). .

請求項3記載の発明によれば、冷房時に蒸発器及び暖房時に凝縮器として機能してなりかつインテリア部負荷及びぺリメータ部負荷を備えた冷暖房負荷を出口側の冷・温水の温度を計測すると共に圧縮機をインバータ制御する温度計を有した負荷側連結配管で接続された一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能してなりかつ熱源水を供給すると共に温度計の温度計測信号で制御される三方弁を備えた一次連結配管及び出口側の冷・温水の温度を計測して別異の三方弁の弁開度を制御する温度計を有した複数の連結管で構成される二次連結配管に接続された他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記一方側真空容器の出口側の冷・温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、建物の外壁部分に配備したぺリメータ部負荷とこれにシリーズに接続された居室内壁部に配備したインテリア部負荷を夏期及び冬期に適応させた合理的温度に設定すべくしたシステムであって、上述した請求項1記載の発明の効果に加えて、一方側真空容器及び他方側真空容器の各出口側の冷・温水の温度計測信号を熱源水を供給する連結配管及び負荷側連結配管に設置した各温度計により該熱源水を還流させる三方弁や水蒸気圧縮冷凍機に備えた凝縮器に伝送し、運転効率(COP)の高い冷暖房システムを提供できる効果がある。
According to the third aspect of the present invention, the temperature of the cooling / warm water on the outlet side is measured for the cooling / heating load that functions as an evaporator during cooling and as a condenser during heating and includes an interior load and a perimeter load. And one side vacuum vessel connected by a load side connecting pipe having a thermometer for inverter control of the compressor, and functions as a condenser during cooling and as an evaporator during heating and supplies heat source water and A primary connection pipe with a three-way valve controlled by a temperature measurement signal and a plurality of connection pipes with thermometers that control the opening of different three-way valves by measuring the temperature of cold / hot water at the outlet side The other side vacuum vessel connected to the constructed secondary connection pipe and the steam is reversibly flowed into the connection pipe (duct) connected between the two vacuum vessels by the cooling or heating operation of the steam compression refrigerator. One side vacuum Providing heating and cooling system by water vapor compression refrigeration machine, characterized in that a compressor for the inverter controlled by the temperature measurement signal of the temperature meter for measuring a cold-hot water temperature at the outlet side of the vessel.
With this configuration, the perimeter load placed on the outer wall of the building and the interior load placed on the interior wall connected to the series are set to a reasonable temperature adapted to the summer and winter seasons. In addition to the effect of the first aspect of the invention described above, the connecting pipe for supplying the heat source water with the temperature measurement signal of the cold / hot water on each outlet side of the one side vacuum vessel and the other side vacuum vessel In addition, each thermometer installed in the load side connecting pipe is transmitted to a condenser provided in a three-way valve for recirculating the heat source water or a steam compression refrigerator, and there is an effect that it is possible to provide an air conditioning system with high operating efficiency (COP).

請求項4記載の発明によれば、暖房機能を有しかつ一方の負荷側連結配管に接続されたぺリメータ部負荷と、冷房機能を有しかつ他方の負荷側連結配管に接続されたインテリア部負荷と、両負荷で構成される冷暖房負荷と、熱源水を供給しかつ温度計の温度計測信号で制御される三方弁を備えた一次連結配管と、該一次連結配管を構成する他方の負荷側連結配管に設置してあって、温度計による温度計測信号で出口側の冷水の弁開度を制御する別異の三方弁を備えた他方真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に一方の負荷側連結配管に接続された一方側真空容器の出口側の温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、ぺリメータ部負荷とインテリア部負荷の両者で構成する冷暖房負荷に於いて、各負荷を一方側真空容器及び他方側真空容器に接続される一方及び他方の負荷側連結配管でそれぞれ別異の冷水又は温水で冷房と暖房の同時両用駆動させることができ、上記一方側真空容器の出口側の温水を計測する温度計の温度計測信号により圧縮機の合理的運転を図り地下の熱源水を有効活用すると共に運転効率(COP)の高い冷暖房システムを提供する効果がある。
According to invention of Claim 4, the perimeter part load which has a heating function and was connected to one load side connection piping, and the interior part which has a cooling function and was connected to the other load side connection piping A load, a heating / cooling load composed of both loads, a primary connection pipe that supplies heat source water and is controlled by a temperature measurement signal of a thermometer, and the other load side that constitutes the primary connection pipe The other vacuum vessel that is installed in the connecting pipe and has a different three-way valve that controls the valve opening degree of the cold water on the outlet side by the temperature measurement signal from the thermometer, and the cooling or heating operation of the steam compression refrigerator The temperature of a thermometer that measures the temperature of hot water on the outlet side of one side vacuum vessel connected to one load side connection piping while reversibly flowing water vapor into the connection piping (duct) connecting the two vacuum vessels Inverter controlled by measurement signal Providing heating and cooling system by water vapor compression refrigeration machine, characterized in that a compressor.
With such a configuration, in the cooling / heating load composed of both the perimeter unit load and the interior unit load, each load is connected to the one side vacuum vessel and the other side vacuum vessel, and one load side connection to the other side Piping can be driven for both cooling and heating with different cold water or hot water at the same time, and the compressor is rationally operated by the temperature measurement signal of the thermometer that measures the hot water on the outlet side of the one side vacuum vessel. This has the effect of effectively utilizing underground heat source water and providing an air conditioning system with high operating efficiency (COP).

請求項5記載の発明によれば、暖房機能を有しかつ一方の負荷側連結配管に接続されたぺリメータ部負荷と、冷房機能を有しかつ他方の負荷側連結配管に接続されたインテリア部負荷と、両負荷で構成される冷暖房負荷と、熱源水を供給しかつ温度計の温度計測信号で制御される三方弁を備えた一次連結配管と、該一次連結配管を構成する一方の負荷側連結配管に設置してあって、温度計による出口側の温水の温度計測信号で弁開度を制御する別異の三方弁を備えた一方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記他方の負荷側連結配管に接続された他方側真空容器の出口側の冷水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、ぺリメータ部負荷とインテリア部負荷の両者で構成する冷暖房負荷に於いて、各負荷を一方側真空容器及び他方側真空容器に接続される一方及び他方の負荷側連結配管でそれぞれ別異の冷水又は温水で冷房と暖房の同時両用駆動させることができ、上記他方側真空容器の出口側の冷水を計測する温度計の温度計測信号により圧縮機の合理的運転を図り地下の熱源水を有効活用すると共に運転効率(COP)の高い冷暖房システムを提供する効果がある。
According to the invention of claim 5, a perimeter load having a heating function and connected to one load side connection pipe, and an interior part having a cooling function and connected to the other load side connection pipe A load, a heating / cooling load composed of both loads, a primary connection pipe that supplies heat source water and is controlled by a temperature measurement signal of a thermometer, and one load side that constitutes the primary connection pipe One side vacuum vessel equipped with a separate three-way valve that controls the valve opening with the temperature measurement signal of the hot water on the outlet side by a thermometer, and cooling or heating of the steam compression refrigerator A thermometer that reversibly feeds water vapor into a connecting pipe (duct) connected between both vacuum vessels by operation and measures the temperature of the cold water on the outlet side of the other vacuum vessel connected to the other load side connecting pipe. Inverter control by temperature measurement signal Providing heating and cooling system by water vapor compression refrigeration machine, characterized in that a compressor.
With such a configuration, in the cooling / heating load composed of both the perimeter unit load and the interior unit load, each load is connected to the one side vacuum vessel and the other side vacuum vessel, and one load side connection to the other side Piping can be driven for both cooling and heating using different cold water or hot water at the same time, and the compressor is rationally operated by the thermometer temperature measurement signal that measures the cold water at the outlet side of the other vacuum vessel. This has the effect of effectively utilizing underground heat source water and providing an air conditioning system with high operating efficiency (COP).

請求項6記載の発明によれば、上記冷暖房負荷は、放射パネルで構成したことを特徴とする請求項1、2、3、4又は5記載の水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、冷暖房機能の効率の高い負荷とすることができる効果がある。
According to invention of Claim 6, the said air conditioning load is comprised with the radiation panel, The air conditioning system by the water vapor | steam compression refrigerator of Claim 1, 2, 3, 4 or 5 characterized by the above-mentioned is provided.
Since it was set as such a structure, there exists an effect which can be set as the highly efficient load of an air conditioning function.

請求項7記載の発明によれば、上記圧縮機はルーツポンプで構成したことを特徴とする請求項1、2、3、4又は5記載の水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、水蒸気を一方側真空容器及び他方側真空容器に可逆流送して冷暖房両用機能を容易に実施することができる効果がある。
According to invention of Claim 7, the said compressor was comprised with the Roots pump, The air-conditioning system by the water vapor | steam compression refrigerator of Claim 1, 2, 3, 4 or 5 provided.
Since it was set as such a structure, there exists an effect which can implement | achieve the air-conditioning function easily by reversibly flowing water vapor | steam to one side vacuum container and the other side vacuum container.

請求項8記載の発明によれば、上記熱源水は井水で構成したことを特徴とする請求項1、2、3、4又は5記載の水蒸気圧縮冷凍機による冷暖房システムを提供する。
このような構成としたので、熱源水として大地に存在する井水を利用したので実施化を容易にすると共に本システムを実現するための経済効果を高めることができる。
According to invention of Claim 8, the said heat source water was comprised with well water, The air-conditioning system by the water vapor | steam compression refrigerator of Claim 1, 2, 3, 4 or 5 provided is provided.
Since it was set as such a structure, since the well water which exists in the ground was utilized as heat source water, implementation can be made easy and the economic effect for implement | achieving this system can be heightened.

以下、本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施の形態について、添付図面に基づき詳細に説明する。
図1及び図2は、本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける基本システム構成を示す実施の形態であって、図1は本システムに備えた水蒸気圧縮冷凍機を夏期、すなわち冷房運転した際の動作を示すシステム構成図、図2は本システムに備えた水蒸気圧縮冷凍機を冬期、すなわち暖房運転した際の動作を示すシステム構成図である。図1及び図2を説明することにより、当基本システムを明らかにする。
Hereinafter, an embodiment of an air-conditioning system using a steam compression refrigerator according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 and FIG. 2 are embodiments showing a basic system configuration in an air conditioning system using a steam compression refrigerator according to the present invention. FIG. 1 shows a steam compression refrigerator equipped with this system in summer, that is, cooling. FIG. 2 is a system configuration diagram showing the operation when the steam compression refrigerator provided in the present system is operated in the winter, that is, the heating operation. The basic system will be clarified by explaining FIG. 1 and FIG.

Cは当基本システムに備えた水蒸気圧縮冷凍機の一例である。該水蒸気圧縮冷凍機Cは、いわゆる密閉系の水冷媒冷凍機であって、一方側真空容器40と、これに隣接して配管した他方側真空容器41と、上記一方側真空容器40及び上記他方側真空容器41の相互間を接続する連結配管42(ダクト)に配設した圧縮機43とで構成されている。上記一方側真空容器40は上記水蒸気圧縮冷凍機Cが図1に示す夏期、すなわち冷房運転するときは、蒸発器として機能するよう構成してある。また、他方側真空容器41は同様に運転するときは凝縮器として機能するよう構成してある。
また、上記一方側真空容器40は、上記水蒸気圧縮冷凍機Cが図2に示す冬期、すなわち暖房運転するときは、凝縮器として機能するように構成してある。そして、他方側真空容器41は同様に運転するときは蒸発器として機能するよう構成してある。
C is an example of a steam compression refrigerator provided in the basic system. The water vapor compression refrigerator C is a so-called closed water refrigerant refrigerator, and includes one side vacuum vessel 40, the other side vacuum vessel 41 piped adjacent thereto, the one side vacuum vessel 40 and the other side. It is comprised with the compressor 43 arrange | positioned by the connection piping 42 (duct) which connects between the side vacuum vessels 41 mutually. The one-side vacuum vessel 40 is configured to function as an evaporator when the steam compression refrigerator C is in the summer shown in FIG. The other-side vacuum vessel 41 is configured to function as a condenser when operating in the same manner.
The one-side vacuum container 40 is configured to function as a condenser when the steam compression refrigerator C is in the winter period shown in FIG. And the other side vacuum vessel 41 is comprised so that it may function as an evaporator, when driving | operating similarly.

上記圧縮機43は上記一方側真空容器40又は他方側真空容器41から上記他方側真空容器41又は一方側真空容器40に連結管(ダクト)42を通して水蒸気を流送する働きをする水蒸気圧縮冷凍機Cの圧縮機であって、例えば、ルーツポンプで構成する。
図1及び図2に示すシステム構成は上記一方側真空容器40と上記他方側真空容器41を壁面を介して一体形成した構成例を示したが、この両者は上記水蒸気圧縮冷凍機Cの連結管(ダクト)42に接続可能な位置に分離してもよい。また、上記連結管(ダクト)42の反対位置には水蒸気圧縮冷凍機Cの相互流送管44を配置し、上記一方側、他方側真空容器40、41の底部を相互接続構成する。そして、両真空容器40、41内の冷水又は冷却水の交流を図る。
The compressor 43 is a steam compression refrigerator that serves to flow steam from the one side vacuum container 40 or the other side vacuum container 41 to the other side vacuum container 41 or the one side vacuum container 40 through a connecting pipe (duct) 42. For example, the compressor is a Roots pump.
The system configuration shown in FIGS. 1 and 2 shows a configuration example in which the one-side vacuum vessel 40 and the other-side vacuum vessel 41 are integrally formed through a wall surface, both of which are connecting pipes of the steam compression refrigerator C. You may isolate | separate into the position which can be connected to (duct) 42. Further, a mutual flow pipe 44 of the steam compression refrigerator C is disposed at a position opposite to the connection pipe (duct) 42, and the bottoms of the one side and the other side vacuum containers 40 and 41 are interconnected. And the alternating current of the cold water or cooling water in both the vacuum containers 40 and 41 is aimed at.

ここで上記圧縮機43としてのルーツポンプを説明すれば、このルーツポンプはいわゆる真空用のブースタポンプであって、例えば、楕円形のシリンダ内に同形のまゆ形断面形状を有する2つのロータを互に90°位相をずらせて隣接配置し、各ロータは互に逆方向に等速度で回転する。この2つのロータとシリンダとの間に閉じ込められた水蒸気を吸気口から排気口側つまり、図1に示す他方側真空容器41に流送する。そして、2つのロータの回転制御は該ルーツポンプの軸端に接続されたタイミングギヤによって行ない、駆動軸の他端は軸封部を介して大気中に出しモータによって駆動される。そして、このルーツポンプの特徴点は、シリンダ内に摺動部がなく動力損が少なく高速回転が可能となると共に良好な排気特性が得られることにある。 Here, the roots pump as the compressor 43 will be described. This roots pump is a so-called vacuum booster pump. For example, two rotors having the same eyebrow cross-sectional shape are placed in an elliptical cylinder. The rotors are arranged adjacent to each other with a phase difference of 90 °, and the rotors rotate in the opposite directions at the same speed. Water vapor confined between the two rotors and the cylinder is sent from the intake port to the exhaust port side, that is, to the other-side vacuum vessel 41 shown in FIG. The rotation of the two rotors is controlled by a timing gear connected to the shaft end of the Roots pump, and the other end of the drive shaft is released into the atmosphere via a shaft seal and driven by a motor. The feature point of this Roots pump is that there is no sliding part in the cylinder, there is little power loss, high speed rotation is possible, and good exhaust characteristics are obtained.

尚、図1及び図2に示すシステム構成では単一の圧縮機43としてのルーツポンプの配列例を示したが、本発明は負荷の容量や冷暖房システムの設計思想の程度に合せて多段式に構成しても差支えない。
また、本発明では圧縮機43としてのルーツポンプを例示したがこれに限定されず、本システムに備えた水蒸気圧縮冷凍機Cの冬期又は夏期の運転に際して上記一方側及び他方側真空容器40、41に流送する水蒸気等の媒体を可逆可能にする構成を備えた圧縮機であればよい。
In the system configuration shown in FIG. 1 and FIG. 2, an example of the arrangement of the roots pump as the single compressor 43 is shown. However, the present invention is multi-staged according to the capacity of the load and the design concept of the air conditioning system. It can be configured.
In the present invention, the roots pump as the compressor 43 is exemplified, but the present invention is not limited to this, and the one-side and the other-side vacuum containers 40, 41 are not limited to this and are operated in the winter or summer of the steam compression refrigerator C provided in the present system. Any compressor may be used as long as it has a configuration that allows a medium such as water vapor to be reversible to be reversible.

45は真空ポンプであって、上記他方側真空容器41に配設され、該他方側真空容器41から空気を排出し、例えば、2.65(KPa)程度の圧力値として該他方側真空容器41を真空状態にする。
Dは、大地であり、熱源水46を有する。該熱源水46は例えば井水や河川、海水、地中熱、工場廃水等であって、一方ではポンプ46aの駆動により揚水井として地上に揚水し、また、他方では還元井として再び地下に戻す。
47は熱交換器であり、その一次側47aは上記熱源水46に接続される一次連結配管48に接続されている。上記熱交換器47の二次側47bは上記他方側真空容器41に接続される二次連結配管49に接続されている。上記二次連結配管49は上記水蒸気圧縮冷凍機Cの一次側ループを構成し、該他方側真空容器41の出口側に於ける二次連結配管49に循環ポンプ50を配備している。
45 is a vacuum pump, which is disposed in the other side vacuum container 41 and discharges air from the other side vacuum container 41, and for example, the other side vacuum container 41 has a pressure value of about 2.65 (KPa). To a vacuum.
D is the earth and has heat source water 46. The heat source water 46 is, for example, well water, rivers, seawater, geothermal heat, factory waste water, etc., and on the one hand, it is pumped to the ground as a pumping well by driving a pump 46a, and on the other hand, it is returned to the ground again as a reducing well. .
47 is a heat exchanger, and its primary side 47 a is connected to a primary connection pipe 48 connected to the heat source water 46. The secondary side 47 b of the heat exchanger 47 is connected to a secondary connection pipe 49 connected to the other side vacuum vessel 41. The secondary connection pipe 49 constitutes a primary loop of the steam compression refrigerator C, and a circulation pump 50 is provided in the secondary connection pipe 49 on the outlet side of the other side vacuum vessel 41.

尚、上記熱交換器47の一次側には一次連結配管48としての分岐連結管51を配管し、三方弁52を接続している。該三方弁52は、他方側真空容器41の出口側に於ける二次連結配管49内を流送する冷却水の出口温度が該二次連結配管49に接続された第1温度計53(T1)により所定値、例えば、22(℃)になるように上記一次連結配管48及び分岐連結管51を流送する井水等の熱源水46からの流量を制御する。制御線54は上記第1温度計53(T1)と該三方弁52との間に接続されており該三方弁52はこの制御線54により該第1温度計53(T1)の計測温度信号を取込み、該三方弁52の弁開度を制御する。 A branch connection pipe 51 as a primary connection pipe 48 is connected to the primary side of the heat exchanger 47 and a three-way valve 52 is connected thereto. The three-way valve 52 includes a first thermometer 53 (T1) in which the outlet temperature of the cooling water flowing in the secondary connection pipe 49 on the outlet side of the other vacuum vessel 41 is connected to the secondary connection pipe 49. ) To control a flow rate from the heat source water 46 such as well water that flows through the primary connection pipe 48 and the branch connection pipe 51 so as to be a predetermined value, for example, 22 (° C.). A control line 54 is connected between the first thermometer 53 (T1) and the three-way valve 52, and the three-way valve 52 transmits a measured temperature signal of the first thermometer 53 (T1) through the control line 54. Taking in and controlling the valve opening degree of the three-way valve 52.

55は建築物や建造物等の居室であって、冷暖房負荷56つまり、冷房と暖房の両機能を有する負荷を備えている。該冷暖房負荷56は例えば、放射パネル等でなる。この冷暖房負荷56としての放射パネルは、例えば、夏期に於いては、3パネルを1ユニットに構成し、1ユニットの冷水出入口温度差を3(℃)、冷水循環量を2(l/分)とする。そして、1パネルの配管長を約7(m)、パネル能力を試算値から150(W/パネル)程度にする。
また、上記放射パネルはその設置方法としては、例えば、各放射パネルユニットの相互を所定間隔を有して、Tバー受けチャンネルを配置する。その両端は設備プレートを備え、この設備プレートをTバーで支持する。
また、冬期に於いても前述と概ね同様な設計条件とし、及びパネル能力を保有する。
尚、上記冷暖房負荷56は放射パネルに代えて空調機コイル、ファンコイル、コイルユニット等各種冷暖房共用負荷で構成することができる。
55 is a room such as a building or a building, and includes a cooling / heating load 56, that is, a load having both functions of cooling and heating. The cooling / heating load 56 is, for example, a radiation panel. For example, in summer, the radiant panel as the heating / cooling load 56 is composed of three panels as one unit, the chilled water inlet / outlet temperature difference of one unit is 3 (° C.), and the chilled water circulation rate is 2 (l / min). And Then, the pipe length of one panel is set to about 7 (m), and the panel capacity is set to about 150 (W / panel) from the estimated value.
In addition, as a method of installing the radiating panel, for example, a T-bar receiving channel is arranged with a predetermined interval between the radiating panel units. The both ends are provided with equipment plates, which are supported by T-bars.
In winter, the design conditions are almost the same as described above, and the panel capacity is maintained.
The cooling / heating load 56 can be constituted by various cooling / heating loads such as an air conditioner coil, a fan coil, and a coil unit instead of the radiation panel.

57は上記水蒸気圧縮冷凍機Cの二次側ループを構成してなる負荷側連結配管であって、一方側真空容器40に接続されている。一方側真空容器40の出口側に於ける該負荷側連結配管57にはポンプ58を配備している。また、該一方側真空容器40の出口側に於ける負荷側連結配管57には、第2温度計59(T2)を設置し、該一方側真空容器40の出口側を流送する冷却水の温度を計測し、この温度信号を制御線60で上記圧縮機43としてのルーツポンプに伝送する。そして、該圧縮機43の運転動作を制御することにより、上記一方側真空容器40の出口側に於ける負荷側連結配管57内を流送する冷水温度を所定値になるように制御している。 Reference numeral 57 denotes a load side connecting pipe that constitutes a secondary side loop of the steam compression refrigerator C, and is connected to the one side vacuum vessel 40. A pump 58 is provided in the load side connecting pipe 57 on the outlet side of the one side vacuum vessel 40. In addition, a second thermometer 59 (T2) is installed in the load side connection pipe 57 on the outlet side of the one side vacuum vessel 40, and the cooling water that flows on the outlet side of the one side vacuum vessel 40 is provided. The temperature is measured, and this temperature signal is transmitted to the roots pump as the compressor 43 through the control line 60. Then, by controlling the operation of the compressor 43, the temperature of the cold water flowing through the load side connecting pipe 57 on the outlet side of the one side vacuum vessel 40 is controlled to be a predetermined value. .

上記冷暖房負荷56としての放射パネルは、例えば鋼管や樹脂製管等をコイル状に形成し、鉄板等の金属板と組合せて一体化し、天井材として構成し、自立型としてもよい。 The radiant panel as the heating / cooling load 56 may be formed as a ceiling material by forming a steel pipe, a resin pipe, or the like in a coil shape and combining with a metal plate such as an iron plate, or may be a self-supporting type.

次に、図1に基づき、本発明に係る水蒸気圧縮冷凍機による冷暖房の基本システムに於ける夏期、すなわち冷房運転の動作を説明する。
上記水蒸気圧縮冷凍機Cに於いて、夏期運転すなわち冷房運転に際して、一方側真空容器40は蒸発器として動作し、また、他方側真空容器41は凝縮器として動作する。
而して、水蒸気は一方側真空容器40から連結配管42(ダクト)内を流送し、起動された圧縮機43としてのルーツポンプ内を矢印P1で示す方向(上方から下方に)に流れ、他方側真空容器41としての凝縮器に流れ込む。そして、上記一方側真空容器40の水を冷却し、冷水を製造する。上述したように蒸発した水蒸気は圧縮機43、つまりルーツポンプにより他方側真空容器41に流送され、該他方側真空容器41は昇温する。
Next, based on FIG. 1, the operation in the summer period, that is, the cooling operation in the basic system for cooling and heating by the steam compression refrigerator according to the present invention will be described.
In the water vapor compression refrigerator C, during the summer operation, that is, the cooling operation, the one side vacuum vessel 40 operates as an evaporator, and the other side vacuum vessel 41 operates as a condenser.
Thus, the steam flows from the one side vacuum vessel 40 through the connection pipe 42 (duct), and flows in the root pump as the activated compressor 43 in the direction indicated by the arrow P1 (from the top to the bottom) It flows into the condenser as the other side vacuum vessel 41. And the water of the said one side vacuum container 40 is cooled, and cold water is manufactured. As described above, the evaporated water vapor is sent to the other-side vacuum vessel 41 by the compressor 43, that is, the Roots pump, and the other-side vacuum vessel 41 is heated.

また一方、ポンプ46aを駆動することにより井水等の熱源水46を揚水し、該熱源水46は一次連結配管48内を矢印P2に示す方向に流送し、熱交換器47の一次側47a及び三方弁52を駆動して再び大地Dの地下まで還元流送させる。また、該三方弁52が弁の開放動作を行い分岐連結管51にも上記熱源水46の一部が矢印P3に示す方向に流送する。そして、ポンプ46aから熱交換器47の一次側47aまでに配管された入力部分に於ける一次連結配管48内及び分岐連結管51内には例えば16(℃)の熱源水46が揚水される。さらに、熱交換器47の一次側47aから三方弁52までは例えば、21(℃)の熱源水46が流送し、分岐連結管51内には例えば16(℃)の熱源水46が流送され、地下に還元される。
尚、上記三方弁52に代えて2個の二方弁を配設することにより同一の構成、動作とすることができる。すなわち、熱交換器47の一次側47aの出口部分に於ける一次連結配管48及び分岐連結管51にそれぞれ二方弁を配設する。そして、他方側真空容器41の出口側に於ける二次連結配管49内を流送する冷却水の出口温度が該二次連結配管49に接続された第1温度計53(T1)により所定値、例えば、22(℃)になるように上記一次連結配管48及び分岐連結管51を流送する井水等の熱源水46からの流量を制御する。また、制御線54は上記第1温度計53(T1)と各二方弁との間に接続されており各二方弁はこの制御線54により該第1温度計53(T1)の計測温度信号を取込み、各二方弁の弁開度を制御する。
On the other hand, the heat source water 46 such as well water is pumped up by driving the pump 46a, and the heat source water 46 flows in the primary connection pipe 48 in the direction indicated by the arrow P2, and the primary side 47a of the heat exchanger 47 And the three-way valve 52 is driven to reduce and flow again to the ground of the ground D. In addition, the three-way valve 52 opens the valve, and a part of the heat source water 46 is also sent to the branch connecting pipe 51 in the direction indicated by the arrow P3. Then, for example, 16 (° C.) heat source water 46 is pumped into the primary connection pipe 48 and the branch connection pipe 51 in the input portion connected from the pump 46 a to the primary side 47 a of the heat exchanger 47. Further, for example, 21 (° C.) heat source water 46 flows from the primary side 47 a of the heat exchanger 47 to the three-way valve 52, and for example, 16 (° C.) heat source water 46 flows in the branch connection pipe 51. And returned to the basement.
In addition, it can replace with the said three-way valve 52, and can be set as the same structure and operation | movement by arrange | positioning two two-way valves. That is, a two-way valve is provided in each of the primary connection pipe 48 and the branch connection pipe 51 at the outlet portion of the primary side 47a of the heat exchanger 47. The outlet temperature of the cooling water flowing through the secondary connection pipe 49 on the outlet side of the other side vacuum vessel 41 is set to a predetermined value by the first thermometer 53 (T1) connected to the secondary connection pipe 49. For example, the flow rate from the heat source water 46 such as well water flowing through the primary connection pipe 48 and the branch connection pipe 51 is controlled so as to be 22 (° C.). The control line 54 is connected between the first thermometer 53 (T1) and each two-way valve, and each two-way valve is measured by the control line 54 with the measured temperature of the first thermometer 53 (T1). The signal is taken in and the opening degree of each two-way valve is controlled.

そして、上記熱交換器47は二次側47bに接続配管された水蒸気圧縮冷凍機Cの一次側ループとしての冷却水配管である二次連結配管49内にその他方側真空容器41、つまり凝縮器としての入力側に冷却水が噴射ノズル41a等で容器内に噴射されるように矢印P4の方向に流送され、その冷却水の温度が例えば17(℃)である。このとき、該他方側真空容器41は例えば、冷水温度が22(℃)であって、約2.65(KPa)の飽和蒸気圧を有し、その出口側から循環ポンプ50により冷却水が矢印P5の方向に流送される。このとき、他方側真空容器41の出口側から流送される冷却水の温度は第1温度計53(T1)で計測され、この計測温度信号は制御線54により三方弁52に伝送される。該三方弁52は常に当該冷却水の出口温度が例えば22(℃)の所定値になるように弁の開度を制御する。 The heat exchanger 47 is connected to the other side vacuum vessel 41, that is, the condenser, in the secondary connection pipe 49 which is a cooling water pipe as a primary loop of the steam compression refrigerator C connected to the secondary side 47b. The cooling water is flowed in the direction of the arrow P4 so that the cooling water is injected into the container by the injection nozzle 41a or the like, and the temperature of the cooling water is, for example, 17 (° C.). At this time, the other-side vacuum vessel 41 has, for example, a cold water temperature of 22 (° C.) and a saturated vapor pressure of about 2.65 (KPa). It is sent in the direction of P5. At this time, the temperature of the cooling water fed from the outlet side of the other vacuum vessel 41 is measured by the first thermometer 53 (T1), and this measured temperature signal is transmitted to the three-way valve 52 by the control line 54. The three-way valve 52 controls the opening degree of the valve so that the outlet temperature of the cooling water always becomes a predetermined value of, for example, 22 (° C.).

このように、上記噴射ノズル41aから噴射される冷却水の温度が17(℃)であり、その出口温度が22(℃)より高くすれば温度差が5(℃)より大きくなり上記循環ポンプ50を流送する冷却水量を少なくでき、該循環ポンプ50の動力を削減し、消費エネルギー対策ができる。 Thus, if the temperature of the cooling water jetted from the jet nozzle 41a is 17 (° C.) and its outlet temperature is higher than 22 (° C.), the temperature difference becomes larger than 5 (° C.), and the circulation pump 50 As a result, the amount of cooling water flowing in can be reduced, the power of the circulation pump 50 can be reduced, and energy consumption measures can be taken.

而して、井水等の熱源水46により他方側真空容器41を冷却することで冷凍運転を可能とする。そして、一方側真空容器40、つまり蒸発器に接続されている水蒸気圧縮冷凍機Cの二次側ループとしての冷水配管である負荷側連結管57内に冷水を循環流送させ、冷暖房負荷56を冷房する。そして、居室55内は水蒸気圧縮冷凍機Cの夏期運転すなわち、冷房運転され冷房される。
このとき、一方側真空容器40、つまり蒸発器の出口側は冷水温度が例えば15(℃)であり、冷水はポンプ58により矢印P6の方向であって、上記冷暖房負荷56すなわち放射パネル等の入力側に流送される。さらに、該冷暖房負荷56すなわち放射パネル等の出力側から例えば18(℃)の冷水を放出し、一方側真空容器40内に配置された噴射ノズル40aから例えば18(℃)の冷水を噴射する。そして、該一方側真空容器40、つまり、蒸発器内は例えば1.71(KPa)の飽和蒸気圧を有し、15(℃)の冷水をポンプ58で取出することが可能である。また、上記第2温度計59(T2)による計測温度信号は制御線60で圧縮機43、つまりルーツポンプに伝送され、該圧縮機43の運転がコントロールされる。そして、上記第2温度計59(T2)の計測温度値を一定温度に確保するように冷暖房負荷56の負荷量に応じて該圧縮機43の運転を制御する。
かくして、本発明に係る水蒸気圧縮冷凍機による冷暖房の基本システムは夏期に於いて特異な多数個の切替弁を配置することなく、圧縮機43、つまりルーツポンプへの水蒸気の流通方向を制御することにより、水蒸気圧縮冷凍機Cの運転効率(COP)を高めて冷暖房負荷56に好適な冷媒を流送し、居室55の冷房機能を果すことができる。
Thus, the refrigeration operation can be performed by cooling the other-side vacuum vessel 41 with the heat source water 46 such as well water. Then, chilled water is circulated and circulated into the one side vacuum vessel 40, that is, the load side connecting pipe 57 which is a chilled water pipe as a secondary loop of the steam compression refrigerator C connected to the evaporator, Cool down. Then, the interior of the living room 55 is cooled by the summer operation of the steam compression refrigerator C, that is, the cooling operation.
At this time, one side vacuum vessel 40, that is, the outlet side of the evaporator has a chilled water temperature of, for example, 15 (° C.), and the chilled water is in the direction of the arrow P6 by the pump 58, To the side. Further, for example, 18 (° C.) cold water is discharged from the cooling / heating load 56, that is, the output side of the radiant panel or the like, and 18 (° C.) cold water is injected from the injection nozzle 40 a disposed in the one-side vacuum vessel 40. The one-side vacuum container 40, that is, the inside of the evaporator has a saturated vapor pressure of 1.71 (KPa), for example, and 15 (° C.) cold water can be taken out by the pump 58. The temperature signal measured by the second thermometer 59 (T2) is transmitted to the compressor 43, that is, the Roots pump through the control line 60, and the operation of the compressor 43 is controlled. Then, the operation of the compressor 43 is controlled in accordance with the load amount of the cooling / heating load 56 so as to ensure the measured temperature value of the second thermometer 59 (T2) at a constant temperature.
Thus, the basic system for cooling and heating by the steam compression refrigerator according to the present invention controls the flow direction of steam to the compressor 43, that is, the roots pump, without arranging a number of unique switching valves in summer. As a result, the operating efficiency (COP) of the steam compression refrigerator C can be increased and a suitable refrigerant can be flowed to the cooling / heating load 56 to perform the cooling function of the living room 55.

次に、図2に基づき本発明に係る水蒸気圧縮冷凍機による冷暖房の基本システムに於ける冬期、すなわち暖房運転の動作を説明する。
上記水蒸気圧縮冷凍機Cに於いて冬期運転すなわち暖房運転に際して一方側真空容器40は凝縮器として動作し、また、他方側真空容器41は蒸発器として動作する。
而して、水蒸気は他方側真空容器41から連結配管(ダクト)内を流送し起動された圧縮機43としてのルーツポンプを矢印P7で示す方向(下方から上方に)流れ、一方側真空容器40としての凝縮器に流れ込む。そして、上記一方側真空容器40の水を加温し、温水を製造する。
Next, based on FIG. 2, the winter, that is, the heating operation in the basic system for cooling and heating by the steam compression refrigerator according to the present invention will be described.
In the steam compression refrigerator C, the one-side vacuum vessel 40 operates as a condenser and the other-side vacuum vessel 41 operates as an evaporator during a winter operation, that is, a heating operation.
Thus, the water vapor flows from the other side vacuum vessel 41 through the connection pipe (duct) and flows through a roots pump as the compressor 43 that is started up, and flows in the direction indicated by the arrow P7 (from below to above). It flows into the condenser as 40. And the water of the said one side vacuum container 40 is heated, and warm water is manufactured.

また一方、ポンプ46aを駆動することにより井水等の熱源水46を揚水し、該熱源水46は一次連結配管48内を矢印P8に示す方向に流送し、熱交換器47の一次側47a及び三方弁52を駆動して再び大地Dの地下まで還元流送させる。また、該三方弁52が弁の開放動作を行い分岐連結管51にも上記熱源水46の一部が矢印P9に示す方向に流送する。そして、ポンプ46aから熱交換器47の一次側47aまでに配管された入力部分に於ける一次連結配管48内及び分岐連結管51内には例えば16(℃)の熱源水46が揚水される。さらに、熱交換器47の一次側47aから三方弁52までは、例えば、13(℃)の熱源水46が流送し、分岐連結管51内には例えば16(℃)の熱源水46が流送され、地下に還元される。
尚、上記三方弁52に代えて2個の二方弁を配設することにより同一の構成、動作とすることができる。すなわち、熱交換器47の一次側47aの出口部分に於ける一次連結配管48及び分岐連結管51にそれぞれ二方弁を配設する。そして、他方側真空容器41の出口側に於ける二次連結配管49内を流送する冷却水の出口温度が該二次連結配管49に接続された第1温度計53(T1)により所定値、例えば、22(℃)になるように上記一次連結配管48及び分岐連結管51を流送する井水等の熱源水46からの流量を制御する。また、制御線54は上記第1温度計53(T1)と各二方弁との間に接続されており各二方弁はこの制御線54により該第1温度計53(T1)の計測温度信号を取込み、各二方弁の弁開度を制御する。
On the other hand, by driving the pump 46a, the heat source water 46 such as well water is pumped, and the heat source water 46 flows in the primary connection pipe 48 in the direction indicated by the arrow P8, and the primary side 47a of the heat exchanger 47 And the three-way valve 52 is driven to reduce and flow again to the ground of the ground D. The three-way valve 52 opens the valve, and a part of the heat source water 46 is also sent to the branch connecting pipe 51 in the direction indicated by the arrow P9. Then, for example, 16 (° C.) heat source water 46 is pumped into the primary connection pipe 48 and the branch connection pipe 51 in the input portion connected from the pump 46 a to the primary side 47 a of the heat exchanger 47. Further, for example, 13 (° C.) heat source water 46 flows from the primary side 47 a of the heat exchanger 47 to the three-way valve 52, and for example, 16 (° C.) heat source water 46 flows in the branch connection pipe 51. Sent to the basement.
In addition, it can replace with the said three-way valve 52, and can be set as the same structure and operation | movement by arrange | positioning two two-way valves. That is, a two-way valve is provided in each of the primary connection pipe 48 and the branch connection pipe 51 at the outlet portion of the primary side 47a of the heat exchanger 47. The outlet temperature of the cooling water flowing through the secondary connection pipe 49 on the outlet side of the other side vacuum vessel 41 is set to a predetermined value by the first thermometer 53 (T1) connected to the secondary connection pipe 49. For example, the flow rate from the heat source water 46 such as well water flowing through the primary connection pipe 48 and the branch connection pipe 51 is controlled so as to be 22 (° C.). The control line 54 is connected between the first thermometer 53 (T1) and each two-way valve, and each two-way valve is measured by the control line 54 with the measured temperature of the first thermometer 53 (T1). The signal is taken in and the opening degree of each two-way valve is controlled.

そして、上記熱交換器47は二次側47bに接続配管された水蒸気圧縮冷凍機Cの一次側ループとしての冷却水配管である二次連結配管49内にその他方側真空容器41、つまり蒸発器としての入力側に冷却水が噴射ノズル41aで容器内に噴射されるように矢印P10の方向に流送され、その冷却水の温度が例えば15(℃)である。このとき、該他方側真空容器41は例えば、冷却水温度が12(℃)であって、約1.40(KPa)の飽和蒸気圧を有し、その出口側から循環ポンプ50により冷却水が矢印P11の方向に流送される。このとき、他方側真空容器41の出口側から流送される冷却水の温度は第1温度計53(T1)で計測され、この計測温度信号は制御線54により三方弁52に伝送される。該三方弁52は常に当該冷却水の出口温度が例えば12(℃)の所定値になるように弁の開度を制御する。 The heat exchanger 47 is connected to the other side vacuum container 41, that is, the evaporator, in the secondary connection pipe 49, which is a cooling water pipe as a primary loop of the steam compression refrigerator C connected to the secondary side 47b. The cooling water is flowed in the direction of the arrow P10 so that the cooling water is injected into the container by the injection nozzle 41a on the input side, and the temperature of the cooling water is, for example, 15 (° C.). At this time, for example, the other side vacuum vessel 41 has a cooling water temperature of 12 (° C.) and a saturated vapor pressure of about 1.40 (KPa). Flowed in the direction of arrow P11. At this time, the temperature of the cooling water fed from the outlet side of the other vacuum vessel 41 is measured by the first thermometer 53 (T1), and this measured temperature signal is transmitted to the three-way valve 52 by the control line 54. The three-way valve 52 controls the opening degree of the valve so that the outlet temperature of the cooling water always becomes a predetermined value of, for example, 12 (° C.).

而して、他方側真空容器41に井水等熱源水46を供給することでヒートポンプ運転を可能とする。そして、一方側真空容器40、つまり凝縮器に接続されている水蒸気圧縮冷凍機Cの二次側ループとしての温水配管である負荷側連結配管57内に温水を循環流送させ、冷暖房負荷56を暖房する。そして、居室55内は水蒸気圧縮冷凍機Cの冬期運転すなわち、暖房運転され暖房される。
このとき、一方側真空容器40、つまり凝縮器の出口側は温水温度が例えば30(℃)であり、ポンプ58により矢印P12の方向であって、上記冷暖房負荷56すなわち放射パネル等の入力側に流送される。さらに、該冷暖房負荷56すなわち放射パネル等の出力側から例えば27(℃)の温水を放出し、一方側真空容器40内に配置された噴射ノズル40aから例えば27(℃)の温水を噴射する。そして、該一方側真空容器40、つまり、凝縮器内は例えば4.25(KPa)の飽和蒸気圧を有し、30(℃)の温水をポンプ58で取出することが可能である。また、上記第2温度計59(T2)による計測温度信号は制御線60で圧縮機43、つまりルーツポンプに伝送され、該圧縮機43の運転がコントロールされる。そして、上記第2温度計59(T2)の計測温度値を一定温度に確保するように冷暖房負荷56の負荷量に応じて該圧縮機43の運転を制御する。
かくして、本発明に係る水蒸気圧縮冷凍機による冷暖房の基本システムは冬期に於いて特異な多数個の切替弁を配置することなく、圧縮機43、つまりルーツポンプへの水蒸気の流通方向を制御することにより、水蒸気圧縮冷凍機Cの運転効率(COP)を高めて冷暖房負荷56に好適な温水媒体を流送し、居室55の暖房機能を果すことができる。
Thus, the heat pump operation is enabled by supplying the heat source water 46 such as well water to the other side vacuum vessel 41. Then, hot water is circulated through the load side connection pipe 57 which is a hot water pipe as a secondary loop of the steam compression refrigerator C connected to the one side vacuum vessel 40, that is, the steam compression refrigerator C. Heat up. And the inside of the living room 55 is heated by the winter driving | operation of the water vapor | steam compression refrigerator C, ie, heating operation.
At this time, the one side vacuum vessel 40, that is, the outlet side of the condenser, has a hot water temperature of, for example, 30 (° C.), and is directed in the direction of the arrow P12 by the pump 58 to the input side of the cooling / heating load 56, that is, the radiation panel. To be sent. Further, for example, 27 (° C.) hot water is discharged from the output side of the cooling / heating load 56, that is, the radiant panel, and 27 (° C.) hot water is injected from the injection nozzle 40 a disposed in the one-side vacuum vessel 40. The one side vacuum container 40, that is, the inside of the condenser has a saturated vapor pressure of, for example, 4.25 (KPa), and 30 (° C.) hot water can be taken out by the pump 58. The temperature signal measured by the second thermometer 59 (T2) is transmitted to the compressor 43, that is, the Roots pump through the control line 60, and the operation of the compressor 43 is controlled. Then, the operation of the compressor 43 is controlled in accordance with the load amount of the cooling / heating load 56 so as to ensure the measured temperature value of the second thermometer 59 (T2) at a constant temperature.
Thus, the basic system of cooling and heating by the steam compression refrigerator according to the present invention controls the flow direction of steam to the compressor 43, that is, the roots pump, without arranging a number of unique switching valves in winter. As a result, the operating efficiency (COP) of the steam compression refrigerator C can be increased, a hot water medium suitable for the cooling / heating load 56 can be flowed, and the heating function of the living room 55 can be achieved.

次に、本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける実施例1について図3に基づき説明する。 Next, Example 1 in the air conditioning system by the water vapor compression refrigerator which concerns on this invention is demonstrated based on FIG.

47は熱交換器であり、その一次側47aは上記熱源水46に接続される一次連結配管48に接続されている。上記熱交換器47の二次側47bは、その一方と三方弁52a間に接続される第1連結管49aと、該三方弁52aと他方側真空容器41の噴射ノズル41aのノズル管間に接続される第2連結管49bと、該他方側真空容器41の出口側と分岐点A1間に冷水ポンプ50aを介在させて接続される第3連結管49cと、該分岐点A1と上記三方弁52aの入力側間にバルブ61aを介在させて接続される第4連結管49dと、該分岐点A1と上記熱交換器47の二次側47bの他方間にバルブ61bを介在させて接続される第5連結管49eとを備えている。上記第1ないし第5連結管49a〜49eは上記水蒸気圧縮冷凍機Cの一次側ループを構成してあって、いわゆる大概して上記熱交換器47の他方の二次連結配管を構成してある。そして、該二次連結配管は複数の連結管で構成されており、上記他方側真空容器41に接続する構成となる。 47 is a heat exchanger, and its primary side 47 a is connected to a primary connection pipe 48 connected to the heat source water 46. The secondary side 47b of the heat exchanger 47 is connected between the first connecting pipe 49a connected between one side and the three-way valve 52a, and the nozzle pipe of the injection nozzle 41a of the three-way valve 52a and the other side vacuum vessel 41. The second connecting pipe 49b, the third connecting pipe 49c connected between the outlet side of the other vacuum vessel 41 and the branch point A1 with a cold water pump 50a interposed therebetween, the branch point A1 and the three-way valve 52a. A fourth connecting pipe 49d connected via a valve 61a between the input sides of the first and the second connecting pipe 49d between the branch point A1 and the other secondary side 47b of the heat exchanger 47 via a valve 61b. 5 connecting pipes 49e. The first to fifth connection pipes 49a to 49e constitute a primary loop of the steam compression refrigerator C, and generally constitute the other secondary connection pipe of the heat exchanger 47. The secondary connection pipe is composed of a plurality of connection pipes and is connected to the other-side vacuum vessel 41.

尚、上記熱交換器47の一次側47aには一次連結配管としての分岐連結管51を配管し、上記三方弁52aとは別異の三方弁52を接続している。該三方弁52は、上記第1連結管49aに配設した第3温度計53a(T3)による計測温度信号が制御線54aを介して該三方弁52に伝送され、該第1連結管49a内を流送する冷却水の温度を例えば、一次連結配管48に流送する熱源水46の温度に近づけるべく上記熱交換器47に熱源水46、すなわち井水の全水量を該三方弁52に流送し約17(℃)に制御する。
尚、上記三方弁52はこれに代えて前記図1及び図2に示す基本システムの動作等で説明した2個の二方弁を配設することにより同一の構成、動作とすることができる。
而して、上記他方側真空容器41の出口側から流送する例えば22(℃)の循環冷却水を井水等の熱源水46で可能な限り冷却する。また、上記第3連結管49cつまり、二次連結配管には第1温度計53(T1)を配設しており、該第1温度計53(T1)による計測温度信号が制御線54bを介して上記三方弁52aに伝送され、該三方弁52aの動作により上記他方側真空容器41の出口側の冷却水の温度を例えば22(℃)に設定するように弁の開度を動作させる。
A branch connection pipe 51 as a primary connection pipe is connected to the primary side 47a of the heat exchanger 47, and a three-way valve 52 different from the three-way valve 52a is connected. In the three-way valve 52, a temperature signal measured by a third thermometer 53a (T3) disposed in the first connection pipe 49a is transmitted to the three-way valve 52 through a control line 54a, and the three-way valve 52 For example, the heat source water 46, that is, the total amount of well water flows to the three-way valve 52 to the heat exchanger 47 so that the temperature of the cooling water that flows is close to the temperature of the heat source water 46 that flows to the primary connection pipe 48. The feed is controlled to about 17 (° C.).
Note that the three-way valve 52 can have the same configuration and operation by disposing the two two-way valves described in the operation of the basic system shown in FIGS. 1 and 2 instead.
Thus, for example, the circulating cooling water of 22 (° C.) fed from the outlet side of the other vacuum vessel 41 is cooled as much as possible by the heat source water 46 such as well water. Further, a first thermometer 53 (T1) is disposed in the third connection pipe 49c, that is, the secondary connection pipe, and a temperature signal measured by the first thermometer 53 (T1) is transmitted via the control line 54b. Then, the opening of the valve is operated so that the temperature of the cooling water on the outlet side of the other-side vacuum vessel 41 is set to, for example, 22 (° C.) by the operation of the three-way valve 52a.

一方、熱交換器47に於ける二次側47bの一方と三方弁52b間に接続される第6連結管49fと、該三方弁52bと上記一方側真空容器40の噴射ノズル40aのノズル管間に接続される第7連結管49gと、該一方側真空容器40の出口側と分岐点A2間に温水ポンプ58aを介在させて接続される第8連結管49hと、該分岐点A2と上記冷暖房負荷56の他端間にバルブ61cを介在させて接続される第9連結管49iと、一端が上記第5連結管49eに接続する分岐点A3と他端が上記分岐点A2間にバルブ61dを介在させて接続される第10連結管49jと、上記冷暖房負荷56の一端と上記三方弁52b間に接続される第11連結管49kとを備えている。
上記第6ないし第11連結管49f〜49kは上記水蒸気圧縮冷凍機Cの二次側ループを構成してあって、いわゆる大概して上記熱交換器47の一方の二次側連結管を構成してある。そして、該一方の二次連結配管は負荷側連結配管であって上記一方側真空容器40に接続する構成となる。
On the other hand, a sixth connecting pipe 49f connected between one of the secondary sides 47b and the three-way valve 52b in the heat exchanger 47, and between the three-way valve 52b and the nozzle pipe of the injection nozzle 40a of the one-side vacuum vessel 40. A seventh connecting pipe 49g connected to the outlet, the eighth connecting pipe 49h connected via a hot water pump 58a between the outlet side of the one-side vacuum vessel 40 and the branch point A2, and the branch point A2 and the air conditioner A ninth connecting pipe 49i is connected between the other ends of the load 56 with a valve 61c interposed therebetween, a branch point A3 where one end is connected to the fifth connecting pipe 49e, and a valve 61d is connected between the other end and the branch point A2. A tenth connecting pipe 49j connected through the interposition and an eleventh connecting pipe 49k connected between one end of the cooling / heating load 56 and the three-way valve 52b are provided.
The sixth to eleventh connecting pipes 49f to 49k constitute a secondary loop of the steam compression refrigerator C, and generally constitute one secondary side connecting pipe of the heat exchanger 47. is there. The one secondary connection pipe is a load side connection pipe and is configured to be connected to the one side vacuum vessel 40.

また、上記一方側真空容器40の出口側に於ける第8連結管49iには第2温度計59(T2)を設置し、該一方側真空容器40の出口側を流送する冷水の温度を計測し、この計測温度信号を制御線60で上記圧縮機43としてのルーツポンプに伝送する。そして、該圧縮機43の運転動作を制御することにより該一方側真空容器40の出口側の冷却水の温度が所定値例えば15(℃)になるように制御する。 A second thermometer 59 (T2) is installed in the eighth connecting pipe 49i on the outlet side of the one-side vacuum vessel 40, and the temperature of the cold water flowing through the outlet side of the one-side vacuum vessel 40 is set. The measured temperature signal is transmitted to the roots pump as the compressor 43 through the control line 60. Then, by controlling the operation of the compressor 43, the temperature of the cooling water on the outlet side of the one-side vacuum vessel 40 is controlled to a predetermined value, for example, 15 (° C.).

上記冷暖房負荷56は居室55にぺリメータ部負荷56aとインテリア部負荷56bとで構成され、その両者間をバルブ61eで連結配管されている。
上記ぺリメータ部負荷56aは建築物や建造物の主として外周部分又は外壁部分等に配管され、また、上記インテリア部負荷56bは建築物や建造物の主として居室内の内部や内壁部に配管されてなる。
また、上記ぺリメータ部負荷56a及び上記インテリア部負荷56bは、放射パネル等で構成され、例えば鋼管や樹脂製管等をコイル状に形成し、鉄板等の金属板と組合せて一体化し、天井材として構成する。
図中、53aないし53eは第3ないし第7温度計(T3〜T7)であり、61fないし61hはバルブである。そして、上述したバルブ61aないし61hは二方弁又は手動弁で構成されている。図3に於いてほかの構成部材は図1に示すものと略同一であり、同一番号、同一符号を付しその説明を省略する。
The cooling / heating load 56 is composed of a perimeter load 56a and an interior load 56b in the living room 55, and a pipe 61e is connected between the two.
The perimeter portion load 56a is piped mainly on the outer peripheral portion or the outer wall portion of the building or the building, and the interior portion load 56b is mainly piped on the inside or the inner wall portion of the building or the building. Become.
The perimeter unit load 56a and the interior unit load 56b are composed of a radiating panel or the like, for example, a steel pipe or a resin pipe is formed in a coil shape and integrated with a metal plate such as an iron plate, and ceiling material. Configure as.
In the figure, 53a to 53e are third to seventh thermometers (T3 to T7), and 61f to 61h are valves. The above-described valves 61a to 61h are constituted by two-way valves or manual valves. In FIG. 3, the other constituent members are substantially the same as those shown in FIG.

次に、図3に基づき、本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例1の夏期、すなわち冷房運転の動作を説明する。
上記水蒸気圧縮冷凍機Cに於いて、夏期運転すなわち冷房運転に際して、一方側真空容器40は蒸発器として動作し、また、他方側真空容器41は凝縮器として動作する。
而して、水蒸気は一方側真空容器40から連結配管42(ダクト)内を流送し、起動された圧縮機43としてのルーツポンプ内を矢印P1で示す方向(上方から下方に)に流れ、他方側真空容器41としての凝縮器に流れ込む。そして、上記一方側真空容器40の水を冷却し、冷水を製造する。上述したように蒸発した水蒸気は圧縮機43、つまりルーツポンプにより他方側真空容器41に流送され、該他方側真空容器41は昇温する。
Next, based on FIG. 3, the operation | movement of the summer of Example 1 of the air-conditioning system by the water vapor compression refrigerator which concerns on this invention, ie, the air_conditionaing | cooling operation, is demonstrated.
In the water vapor compression refrigerator C, during the summer operation, that is, the cooling operation, the one side vacuum vessel 40 operates as an evaporator, and the other side vacuum vessel 41 operates as a condenser.
Thus, the steam flows from the one side vacuum vessel 40 through the connection pipe 42 (duct), and flows in the root pump as the activated compressor 43 in the direction indicated by the arrow P1 (from the top to the bottom) It flows into the condenser as the other side vacuum vessel 41. And the water of the said one side vacuum container 40 is cooled, and cold water is manufactured. As described above, the evaporated water vapor is sent to the other-side vacuum vessel 41 by the compressor 43, that is, the Roots pump, and the other-side vacuum vessel 41 is heated.

また一方、ポンプ46aを駆動することにより井水等の熱源水46を揚水し、該熱源水46は一次連結配管48内を矢印P13に示す方向に流送し、熱交換器47の一次側47a及び三方弁52を駆動して再び大地Dの地下まで還元流送させる。また、該三方弁52が弁の開放動作を行い分岐連結管51にも上記熱源水46の一部が矢印P14に示す方向に流送する。そして、ポンプ46aから熱交換器47の一次側47aまでに配管された入力部分に於ける一次連結配管48内及び分岐連結管51内には例えば16(℃)の熱源水46が揚水される。さらに、熱交換器47の一次側47aから三方弁52までは例えば、21(℃)の熱源水46が流送し、分岐連結管51内には例えば16(℃)の熱源水46が流送され、地下に還元される。 On the other hand, by driving the pump 46a, the heat source water 46 such as well water is pumped, and the heat source water 46 flows in the primary connection pipe 48 in the direction indicated by the arrow P13, and the primary side 47a of the heat exchanger 47 And the three-way valve 52 is driven to reduce and flow again to the ground of the ground D. The three-way valve 52 opens the valve, and a part of the heat source water 46 is also sent to the branch connecting pipe 51 in the direction indicated by the arrow P14. Then, for example, 16 (° C.) heat source water 46 is pumped into the primary connection pipe 48 and the branch connection pipe 51 in the input portion connected from the pump 46 a to the primary side 47 a of the heat exchanger 47. Further, for example, 21 (° C.) heat source water 46 flows from the primary side 47 a of the heat exchanger 47 to the three-way valve 52, and for example, 16 (° C.) heat source water 46 flows in the branch connection pipe 51. And returned to the basement.

そして、上記熱交換器47は二次側47bに接続配管された第1連結管49a、三方弁52a及び第2連結管49bを経由して他方側真空容器41、つまり凝縮器としての入力側に冷却水が噴射ノズル41aで容器内に噴射されるように矢印P15の方向に流送され、その冷却水の温度が例えば17(℃)である。このとき、前記第6連結管49fが閉止した状態であり、これに冷却水は流れない。また、該他方側真空容器41は例えば、冷水温度が22(℃)であって、約2.65(KPa)の飽和蒸気圧を有し、その出口側からバルブ61bは開放されており冷水ポンプ50aにより冷却水が矢印P16及び矢印P17の方向に流送される。このとき、他方側真空容器41の出口側から流送される冷却水の温度は第3連結管49cに設置された第1温度計53(T1)で計測され、この計測温度信号は制御線54bにより三方弁52aに伝送される。該三方弁52aは常に当該冷却水の出口温度が例えば22(℃)の所定値になるように弁の開度を制御する。
尚、上記三方弁52aに代えて2個の二方弁を配設することにより同一の構成、動作とすることができる。すなわち、熱交換器47の二次側47bに接続配管された第1連結管49a及び第4連結管49dにそれぞれ各二方弁を配設する。そして、他方側真空容器41の出口側から流送される冷却水の温度は第3連結管49cに設置された第1温度計53(T1)で計測され、この計測温度信号は制御線54bにより各二方弁に伝送される。各二方弁は常に当該冷却水の出口温度が例えば22(℃)の所定値になるように弁の開度を制御する。
The heat exchanger 47 passes through the first connecting pipe 49a, the three-way valve 52a and the second connecting pipe 49b connected to the secondary side 47b to the other side vacuum vessel 41, that is, the input side as a condenser. The cooling water is fed in the direction of arrow P15 so that the cooling water is injected into the container by the injection nozzle 41a, and the temperature of the cooling water is, for example, 17 (° C.). At this time, the sixth connecting pipe 49f is closed, and cooling water does not flow through this. The other-side vacuum vessel 41 has, for example, a cold water temperature of 22 (° C.) and a saturated vapor pressure of about 2.65 (KPa), and the valve 61b is opened from the outlet side of the cold water pump. 50a causes the cooling water to flow in the directions of arrows P16 and P17. At this time, the temperature of the cooling water fed from the outlet side of the other vacuum vessel 41 is measured by the first thermometer 53 (T1) installed in the third connecting pipe 49c, and this measured temperature signal is the control line 54b. Is transmitted to the three-way valve 52a. The three-way valve 52a controls the opening degree of the valve so that the outlet temperature of the cooling water always becomes a predetermined value of, for example, 22 (° C.).
In addition, it can replace with the said three-way valve 52a, and can be set as the same structure and operation | movement by arrange | positioning two two-way valves. That is, each two-way valve is disposed in each of the first connecting pipe 49a and the fourth connecting pipe 49d connected to the secondary side 47b of the heat exchanger 47. And the temperature of the cooling water sent from the outlet side of the other side vacuum vessel 41 is measured by the first thermometer 53 (T1) installed in the third connecting pipe 49c, and this measured temperature signal is transmitted by the control line 54b. Transmitted to each two-way valve. Each two-way valve controls the opening degree of the valve so that the outlet temperature of the cooling water always becomes a predetermined value of, for example, 22 (° C.).

然るに、冷却水は熱交換器47の二次側47b、第1連結管49a、三方弁52a、第2連結管49b、他方側真空容器41及び冷水ポンプ50aに流送し、そして一方では第4連結管49d、バルブ61a、三方弁52a、第2連結管49bに、さらに他方ではバルブ61b、第5連結管49e、熱交換器47の二次側47bに循環流送される。
このように、上記噴射ノズル41aから噴射される冷却水の温度が17(℃)であり、その出口温度が22(℃)であるとき、温度差が5(℃)となりさらに、該温度差を5(℃)以上とすれば上記冷水ポンプ50aを流送する冷却水量を少なくでき、該冷水ポンプ50aの動力を削減し、消費エネルギー対策ができる。
However, the cooling water is sent to the secondary side 47b of the heat exchanger 47, the first connecting pipe 49a, the three-way valve 52a, the second connecting pipe 49b, the other side vacuum vessel 41 and the cold water pump 50a, and on the other hand, the fourth side. It is circulated and sent to the connecting pipe 49d, the valve 61a, the three-way valve 52a and the second connecting pipe 49b, and on the other side to the valve 61b, the fifth connecting pipe 49e and the secondary side 47b of the heat exchanger 47.
Thus, when the temperature of the cooling water sprayed from the spray nozzle 41a is 17 (° C.) and the outlet temperature thereof is 22 (° C.), the temperature difference becomes 5 (° C.), and the temperature difference is further reduced. If the temperature is 5 (° C.) or higher, the amount of cooling water flowing through the cold water pump 50a can be reduced, the power of the cold water pump 50a can be reduced, and energy consumption can be taken.

而して、井水等の熱源水46により他方側真空容器41を冷却することで冷凍運転を可能とする。そして、一方側真空容器40、つまり蒸発器に接続されている水蒸気圧縮冷凍機Cの二次側ループとしての冷水配管である負荷側連結管内に冷水を循環流送させ、冷暖房負荷56を冷房する。そして、居室55内は水蒸気圧縮冷凍機Cの夏期運転すなわち、冷房運転され冷房される。
ここに於いて、一方側真空容器40、つまり蒸発器の出口側は冷水温度が例えば15(℃)であり、冷水はバルブ61dが閉止されており、第10連結管49jには流送されず温水ポンプ58aにより第9連結管49i内を流れ矢印P18の方向に流送される。そして、該冷水は上記冷暖房負荷56すなわちインテリア部負荷56b、弁が開放されたバルブ61eを経由してぺリメータ部負荷56a及び第11連結管49k内に矢印P19及び矢印P20に示す方向に流送する。そして、該冷水は、三方弁52bを介して第7連結管49g内を経由して矢印P21方向に流送し、一方側真空容器40に備えた噴射ノズル40aで噴射させ該一方側真空容器40に流送する。
尚、上記バルブ61f、61g及び61hは閉止動作となっておりインテリア部負荷56bから前述した第4連結管49dへの流送回路及びぺリメータ部負荷56aと第9連結管49iへの流送回路は遮断状態となっている。
尚、上記三方弁52bに代えて2個の二方弁を配設することにより同一の構成、動作とすることができる。すなわち、第11連結管49k及び第6連結管49fにそれぞれ二方弁を配設する。そして、該第6連結管49fに接続した二方弁の弁開度を閉止した状態とする。
Thus, the refrigeration operation can be performed by cooling the other-side vacuum vessel 41 with the heat source water 46 such as well water. Then, chilled water is circulated and circulated into the one side vacuum vessel 40, that is, the load side connecting pipe which is the chilled water pipe as the secondary side loop of the steam compression refrigerator C connected to the evaporator, thereby cooling the cooling / heating load 56. . Then, the interior of the living room 55 is cooled by the summer operation of the steam compression refrigerator C, that is, the cooling operation.
Here, the cold water temperature of the one side vacuum vessel 40, that is, the outlet side of the evaporator is, for example, 15 (° C.), the valve 61d is closed, and the cold water is not sent to the tenth connecting pipe 49j. The hot water pump 58a flows in the ninth connecting pipe 49i in the direction of the arrow P18. The cold water flows in the directions indicated by arrows P19 and P20 into the perimeter load 56a and the eleventh connecting pipe 49k through the cooling / heating load 56, that is, the interior load 56b and the valve 61e with the valve opened. To do. Then, the cold water is flowed in the direction of arrow P21 via the three-way valve 52b through the seventh connecting pipe 49g, and is injected by the injection nozzle 40a provided in the one-side vacuum vessel 40. To stream.
The valves 61f, 61g, and 61h are closed so that the flow circuit from the interior portion load 56b to the fourth connection pipe 49d and the flow circuit from the perimeter section load 56a to the ninth connection pipe 49i are provided. Is cut off.
In addition, it can replace with the said three-way valve 52b, and can be set as the same structure and operation | movement by arrange | positioning two two-way valves. That is, a two-way valve is provided in each of the eleventh connecting pipe 49k and the sixth connecting pipe 49f. The valve opening degree of the two-way valve connected to the sixth connecting pipe 49f is closed.

かくして、上記インテリア部負荷56b及びぺリメータ部負荷56aに上記一方側真空容器40の出口側から例えば15(℃)の冷水が流送され、該インテリア部負荷56bでは例えば15(℃)を該ぺリメータ部負荷56aでは例えば16.5(℃)の冷房温度を確保できる。そして、該ぺリメータ部負荷56aから例えば18(℃)の冷水を放出し、一方側真空容器40内に配置された噴射ノズル40aから例えば18(℃)の冷水を噴射する。そして、該一方側真空容器40、つまり、蒸発器内は例えば1.71(KPa)の飽和蒸気圧を有し、15(℃)の冷水を温水ポンプ58aで取出することが可能である。また、上記第2温度計59(T2)による計測温度信号は制御線60で圧縮機43、つまりルーツポンプに伝送され、該圧縮機43の運転がコントロールされる。そして、上記第2温度計59(T2)の計測温度値を一定温度に確保するように冷暖房負荷56の負荷量に応じて該圧縮機43の運転を制御する。 Thus, for example, 15 (° C.) cold water is fed from the outlet side of the one-side vacuum vessel 40 to the interior portion load 56b and the perimeter portion load 56a, and the interior portion load 56b, for example, 15 (° C.). For example, a cooling temperature of 16.5 (° C.) can be secured in the remeter unit load 56a. Then, for example, 18 (° C.) cold water is discharged from the perimeter unit load 56 a, and for example, 18 (° C.) cold water is injected from the injection nozzle 40 a disposed in the one-side vacuum vessel 40. The one side vacuum container 40, that is, the inside of the evaporator has a saturated vapor pressure of, for example, 1.71 (KPa), and cold water of 15 (° C.) can be taken out by the hot water pump 58a. The temperature signal measured by the second thermometer 59 (T2) is transmitted to the compressor 43, that is, the Roots pump through the control line 60, and the operation of the compressor 43 is controlled. Then, the operation of the compressor 43 is controlled in accordance with the load amount of the cooling / heating load 56 so as to ensure the measured temperature value of the second thermometer 59 (T2) at a constant temperature.

かくして、本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例1は夏期に於いて特異な多数個の切替弁を配置することなく、圧縮機43、つまりルーツポンプへの水蒸気の流通方向を制御することにより、水蒸気圧縮冷凍機Cの運転効率(COP)を高めて冷暖房負荷56に好適な冷媒を流送し、居室55の冷房機能を果すことができる。
尚、上記圧縮機43、つまりルーツポンプは上記冷暖房負荷56に応じて、インバータ等を使用し、該冷暖房負荷56が所定温度つまり15(℃)から18(℃)に確保すべく冷水の流送容量を制御運転する。また、別置したインバータで上記第4温度計53bと第7温度計53eによる冷水の計測温度差が例えば3(℃)になるように温水ポンプ58aを制御調整する。また、該三方弁52は、上記第1連結管49aに配設した第3温度計53a(T3)による計測温度信号が制御線54aを介して該三方弁52に伝送され、該第1連結管49a内を流送する冷却水の温度を例えば、一次連結配管48に流送する熱源水46の温度に近づけるべく上記熱交換器47に熱源水46、すなわち井水の全水量を該三方弁52に流送し約17(℃)に制御する。
Thus, the first embodiment of the cooling and heating system using the steam compression refrigerator according to the present invention controls the flow direction of steam to the compressor 43, that is, the roots pump, without arranging a number of unique switching valves in summer. By doing so, the operating efficiency (COP) of the steam compression refrigerator C can be increased, and a suitable refrigerant can be flowed to the cooling / heating load 56, and the cooling function of the living room 55 can be achieved.
The compressor 43, that is, the Roots pump, uses an inverter or the like according to the cooling / heating load 56. Control the capacity. Further, the hot water pump 58a is controlled and adjusted so that the measured temperature difference between the fourth thermometer 53b and the seventh thermometer 53e is, for example, 3 (° C.) using a separate inverter. Further, the three-way valve 52 transmits a temperature signal measured by a third thermometer 53a (T3) disposed in the first connection pipe 49a to the three-way valve 52 via a control line 54a. In order to bring the temperature of the cooling water flowing through 49a close to the temperature of the heat source water 46 flowing into the primary connection pipe 48, for example, the heat source water 46, that is, the total amount of well water is transferred to the heat exchanger 47. And is controlled to about 17 (° C.).

次に、図3に基づき、本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例1の冬期、すなわち、暖房運転の動作を説明する。
上記水蒸気圧縮冷凍機Cに於いて冬期運転すなわち暖房運転に際して一方側真空容器40は凝縮器として動作し、また、他方側真空容器41は蒸発器として動作する。
而して、水蒸気は他方側真空容器41から連結配管(ダクト)内を流送し起動された圧縮機43としてのルーツポンプを矢印P7で示す方向(下方から上方に)流れ、一方側真空容器40としての凝縮器に流れ込む。そして、上記一方側真空容器40の水を加温し、温水を製造する。
Next, based on FIG. 3, the winter of Example 1 of the air-conditioning system by the steam compression refrigerator which concerns on this invention, ie, the operation | movement of heating operation, is demonstrated.
In the steam compression refrigerator C, the one-side vacuum vessel 40 operates as a condenser and the other-side vacuum vessel 41 operates as an evaporator during a winter operation, that is, a heating operation.
Thus, the water vapor flows from the other side vacuum vessel 41 through the connection pipe (duct) and flows through a roots pump as the compressor 43 that is started up, and flows in the direction indicated by the arrow P7 (from below to above). It flows into the condenser as 40. And the water of the said one side vacuum container 40 is heated, and warm water is manufactured.

また一方、ポンプ46aを駆動することにより井水等の熱源水46を揚水し、該熱源水46は一次連結配管48内を矢印P13に示す方向に流送し、熱交換器47の一次側47a及び三方弁52を駆動して再び大地Dの地下まで還元流送させる。また、該三方弁52が弁の開放動作を行い分岐連結管51にも上記熱源水46の一部が矢印P14に示す方向に流送する。そして、ポンプ46aから熱交換器47の一次側47aまでに配管された入力部分に於ける一次連結配管48内及び分岐連結管51内には例えば16(℃)の熱源水46が揚水される。さらに、熱交換器47の一次側47aから三方弁52まで及び該三方弁52から地下に還元されるために配管された出力部分に於ける一次連結配管48内には例えば13(℃)の熱源水46が流送されると共に還元される。 On the other hand, by driving the pump 46a, the heat source water 46 such as well water is pumped, and the heat source water 46 flows in the primary connection pipe 48 in the direction indicated by the arrow P13, and the primary side 47a of the heat exchanger 47 And the three-way valve 52 is driven to reduce and flow again to the ground of the ground D. The three-way valve 52 opens the valve, and a part of the heat source water 46 is also sent to the branch connecting pipe 51 in the direction indicated by the arrow P14. Then, for example, 16 (° C.) heat source water 46 is pumped into the primary connection pipe 48 and the branch connection pipe 51 in the input portion connected from the pump 46 a to the primary side 47 a of the heat exchanger 47. Further, a heat source of, for example, 13 (° C.) is provided in the primary connection pipe 48 from the primary side 47a of the heat exchanger 47 to the three-way valve 52 and in the output portion piped for reduction to the underground from the three-way valve 52. Water 46 is flowed and reduced.

そして、上記熱交換器47は二次側47bに接続配管された第1連結管49a、三方弁52a及び第2連結管49bを経由して他方側真空容器41、つまり蒸発器としての入力側に冷却水が噴射ノズル41aで容器内に噴射されるように矢印P15の方向に流送され、その冷却水の温度が例えば15(℃)である。このとき、該他方側真空容器41は例えば、冷水温度が12(℃)であって、約1.40(KPa)の飽和蒸気圧を有し、その出口側からバルブ61bは開放されており冷水ポンプ50aにより冷却水が矢印P16及び矢印P17の方向に流送される。このとき、他方側真空容器41の出口側から流送される冷却水の温度は第3連結管49cに設置された第1温度計53(T1)で計測され、この計測温度信号は制御線54bにより三方弁52aに伝送される。該三方弁52aは常に当該冷水の出口温度が例えば12(℃)の所定値になるように弁の開度を制御する。 The heat exchanger 47 passes through the first connecting pipe 49a, the three-way valve 52a and the second connecting pipe 49b connected to the secondary side 47b to the other side vacuum vessel 41, that is, the input side as an evaporator. The cooling water is flowed in the direction of the arrow P15 so as to be injected into the container by the injection nozzle 41a, and the temperature of the cooling water is, for example, 15 (° C.). At this time, the other-side vacuum vessel 41 has, for example, a cold water temperature of 12 (° C.) and a saturated vapor pressure of about 1.40 (KPa), and the valve 61b is opened from the outlet side thereof. Cooling water is sent in the directions of arrows P16 and P17 by the pump 50a. At this time, the temperature of the cooling water fed from the outlet side of the other vacuum vessel 41 is measured by the first thermometer 53 (T1) installed in the third connecting pipe 49c, and this measured temperature signal is the control line 54b. Is transmitted to the three-way valve 52a. The three-way valve 52a controls the opening of the valve so that the outlet temperature of the cold water always becomes a predetermined value of 12 (° C.), for example.

然るに、冷却水は熱交換器47の二次側47b、第1連結管49a、三方弁52a、第2連結管49b、他方側真空容器41及び冷水ポンプ50aに流送し、そして一方では第4連結管49d、バルブ61a、三方弁52a、第2連結管49bに、さらに他方ではバルブ61b、第5連結管49e、熱交換器47の二次側47bに循環流送される。 However, the cooling water is sent to the secondary side 47b of the heat exchanger 47, the first connecting pipe 49a, the three-way valve 52a, the second connecting pipe 49b, the other side vacuum vessel 41 and the cold water pump 50a, and on the other hand, the fourth side. It is circulated and sent to the connecting pipe 49d, the valve 61a, the three-way valve 52a and the second connecting pipe 49b, and on the other side to the valve 61b, the fifth connecting pipe 49e and the secondary side 47b of the heat exchanger 47.

而して、井水等の熱源水46により一方側真空容器40を加温することで冷凍運転を可能とする。そして、一方側真空容器40、つまり凝縮器に接続されている水蒸気圧縮冷凍機Cの二次側ループとしての冷・温水配管である負荷側連結管内に温水を循環流送させ、冷暖房負荷56を暖房する。そして、居室55内は水蒸気圧縮冷凍機Cの冬期運転すなわち、暖房運転され暖房される。
ここに於いて、一方側真空容器40、つまり凝縮器の出口側は温水温度が例えば30(℃)であり、温水はバルブ61dが閉止されており、第10連結管49jには流送されず温水ポンプ58aにより第9連結管49i内を流れ矢印P18の方向に流送される。そして、該温水は上記冷暖房負荷56すなわちインテリア部負荷56b、バルブ61eを経由してぺリメータ部負荷56a及び第11連結管49k内に矢印P19及び矢印P20に示す方向に流送する。そして、該温水は、三方弁52bを介して第7連結管49g内を経由して矢印P21方向に流送し、一方側真空容器40に備えた噴射ノズル40aで噴射させ該一方側真空容器40に流送する。
尚、上記バルブ61f、61g及び61hは閉止動作となっておりインテリア部負荷56bから前述した第4連結管49dへの流送回路及びぺリメータ部負荷56aと第9連結管49iへの流送回路は遮断状態となっている。
Thus, the refrigeration operation can be performed by heating the one-side vacuum vessel 40 with the heat source water 46 such as well water. Then, hot water is circulated in the load side connecting pipe, which is a cold / hot water pipe as a secondary loop of the steam compression refrigerator C connected to the condenser on the one side, that is, the heating / cooling load 56. Heat up. And the inside of the living room 55 is heated by the winter driving | operation of the water vapor | steam compression refrigerator C, ie, heating operation.
Here, the one side vacuum vessel 40, that is, the outlet side of the condenser, has a hot water temperature of 30 (° C.), for example, and the valve 61d is closed and the hot water is not sent to the tenth connecting pipe 49j. The hot water pump 58a flows in the ninth connecting pipe 49i in the direction of the arrow P18. Then, the hot water flows in the directions indicated by the arrows P19 and P20 into the perimeter load 56a and the eleventh connecting pipe 49k via the cooling / heating load 56, that is, the interior load 56b and the valve 61e. Then, the hot water flows in the direction of arrow P21 via the three-way valve 52b through the seventh connecting pipe 49g, and is jetted by the jet nozzle 40a provided in the one-side vacuum vessel 40. To stream.
The valves 61f, 61g, and 61h are closed so that the flow circuit from the interior portion load 56b to the fourth connection pipe 49d and the flow circuit from the perimeter section load 56a to the ninth connection pipe 49i are provided. Is cut off.

かくして、上記インテリア部負荷56b及びぺリメータ部負荷56aに上記一方側真空容器40の出口側から例えば30(℃)の温水が流送され、該インテリア部負荷56bでは例えば30(℃)を該ぺリメータ部負荷56aでは例えば28.5(℃)の暖房温度を確保できる。そして、該ぺリメータ部負荷56aから例えば27(℃)の温水を放出し、一方側真空容器40内に配置された噴射ノズル40aから例えば27(℃)の温水を噴射する。そして、該一方側真空容器40、つまり、凝縮器内は例えば2.65(KPa)の飽和蒸気圧を有し、30(℃)の温水を温水ポンプ58aで取出することが可能である。また、上記第2温度計59(T2)による計測温度信号は制御線60で圧縮機43、つまりルーツポンプに伝送され、該圧縮機43の運転がコントロールされる。そして、上記第2温度計59(T2)の計測温度値を一定温度に確保するように冷暖房負荷56の負荷量に応じて該圧縮機43の運転を制御する。 Thus, for example, 30 (° C.) hot water is fed from the outlet side of the one-side vacuum vessel 40 to the interior portion load 56b and the perimeter portion load 56a, and the interior portion load 56b, for example, 30 (° C.). For example, the heating temperature of 28.5 (° C.) can be ensured in the remeter unit load 56a. Then, for example, 27 (° C.) warm water is discharged from the perimeter unit load 56 a, and for example, 27 (° C.) warm water is injected from the injection nozzle 40 a disposed in the one-side vacuum vessel 40. The one-side vacuum vessel 40, that is, the inside of the condenser has a saturated vapor pressure of 2.65 (KPa), for example, and 30 (° C.) hot water can be taken out by the hot water pump 58a. The temperature signal measured by the second thermometer 59 (T2) is transmitted to the compressor 43, that is, the Roots pump through the control line 60, and the operation of the compressor 43 is controlled. Then, the operation of the compressor 43 is controlled in accordance with the load amount of the cooling / heating load 56 so as to ensure the measured temperature value of the second thermometer 59 (T2) at a constant temperature.

かくして、本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例1は冬期に於いて特異な多数個の切替弁を配置することなく、圧縮機43、つまりルーツポンプへの水蒸気の流通方向を制御することにより、水蒸気圧縮冷凍機Cの運転効率(COP)を高めて冷暖房負荷56に好適な温水を流送し、居室55の暖房機能を果すことができる。
尚、上記圧縮機43、つまりルーツポンプは上記冷暖房負荷56に応じて、インバータ等を使用し、該冷暖房負荷56が所定温度つまり27(℃)から30(℃)に確保すべく温水の流送容量を制御運転する。また、別置したインバータで上記第4温度計53bと第7温度計53eによる温水の計測温度差が例えば3(℃)になるように温水ポンプ58aを制御調整する。また、該三方弁52は、上記第1連結管49aに配設した第3温度計53a(T3)による計測温度信号が制御線54aを介して該三方弁52に伝送され、該第1連結管49a内を流送する冷却水の温度を例えば、一次連結配管48に流送する熱源水46の温度に近づけるべく上記熱交換器47に熱源水46、すなわち井水の全水量を該三方弁52に流送し約15(℃)に制御する。
Thus, the first embodiment of the cooling and heating system using the steam compression refrigerator according to the present invention controls the flow direction of steam to the compressor 43, that is, the roots pump, without arranging a number of unique switching valves in winter. By doing so, the operating efficiency (COP) of the steam compression refrigerator C can be increased, and hot water suitable for the cooling / heating load 56 can be flowed to fulfill the heating function of the living room 55.
The compressor 43, that is, the Roots pump, uses an inverter or the like according to the cooling / heating load 56, and supplies warm water to ensure that the cooling / heating load 56 is maintained at a predetermined temperature, that is, 27 (° C.) to 30 (° C.). Control the capacity. Further, the hot water pump 58a is controlled and adjusted so that the difference in temperature measured by the fourth thermometer 53b and the seventh thermometer 53e is, for example, 3 (° C.) using a separate inverter. Further, the three-way valve 52 transmits a temperature signal measured by a third thermometer 53a (T3) disposed in the first connection pipe 49a to the three-way valve 52 via a control line 54a. In order to bring the temperature of the cooling water flowing through 49a close to the temperature of the heat source water 46 flowing into the primary connection pipe 48, for example, the heat source water 46, that is, the total amount of well water is transferred to the heat exchanger 47. And is controlled to about 15 (° C.).

次に、本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける実施例2について図4に基づき説明する。 Next, Example 2 in the air-conditioning system by the water vapor compression refrigerator which concerns on this invention is demonstrated based on FIG.

当該実施例2に示す構成は、特に、冷暖房負荷56に於けるぺリメータ部負荷56aとインテリア部負荷56bを別異の温水又は冷水流送ルートを設けて居室55に於けるそれぞれの部位に適した空調システムを構築する技術である。
そして、図4によれば、二方弁又は手動弁で構成されるバルブ61a、61c及び61dの弁を閉止動作させ、かつバルブ61f、61g及び61hの弁を開放動作させる。さらに、上記ぺリメータ部負荷56aと上記インテリア部負荷56b間に介在させたバルブ61eを閉止動作させる。
The configuration shown in the second embodiment is particularly suitable for each part in the living room 55 by providing different warm water or cold water flow routes for the perimeter load 56a and the interior load 56b in the cooling / heating load 56. It is a technology to build an air conditioning system.
Then, according to FIG. 4, the valves 61a, 61c and 61d constituted by two-way valves or manual valves are closed, and the valves 61f, 61g and 61h are opened. Further, the valve 61e interposed between the perimeter unit load 56a and the interior unit load 56b is closed.

このように構成したので、一方に於いて蒸発器として機能する他方側真空容器41の出口側から流出される冷水が冷水ポンプ50a、第3連結管49c、分岐点A1、第4連結管49d’、バルブ61f、インテリア部負荷56b、第4連結管49d’、三方弁52a、第2連結管49b及び他方側真空容器41の放射ノズル41aでなる循環ループが形成され、他方の負荷側連結配管を構成し、冷水が循環流送し、当該インテリア部負荷56bが冷房作用を行なう。
また、他方に於いて、凝縮器として機能する一方側真空容器40の出口側から流出される温水が温水ポンプ58a、第8連結管49h、分岐点A2、第9連結管49i’、バルブ61g、ぺリメータ部負荷56a、第11連結管49k、三方弁52b、第7連結管49g及び一方側真空容器40の噴射ノズル40aでなる循環ループが形成され、一方の負荷側連結配管を構成し、温水が循環流送し、当該ぺリメータ部負荷56aが暖房作用を行なう。
Since it comprised in this way, the cold water which flows out from the exit side of the other side vacuum vessel 41 which functions as an evaporator in one side is the cold water pump 50a, the 3rd connection pipe 49c, the branch point A1, and the 4th connection pipe 49d '. , A circulation loop composed of the valve 61f, the interior load 56b, the fourth connecting pipe 49d ′, the three-way valve 52a, the second connecting pipe 49b, and the radiation nozzle 41a of the other side vacuum vessel 41 is formed, and the other load side connecting pipe is connected. The cooling water is circulated and the interior load 56b performs a cooling operation.
On the other hand, hot water flowing out from the outlet side of the one-side vacuum vessel 40 functioning as a condenser is a hot water pump 58a, an eighth connecting pipe 49h, a branch point A2, a ninth connecting pipe 49i ′, a valve 61g, A circulation loop composed of a perimeter load 56a, an eleventh connection pipe 49k, a three-way valve 52b, a seventh connection pipe 49g, and an injection nozzle 40a of the one-side vacuum vessel 40 is formed to constitute one load-side connection pipe. Circulates and the perimeter load 56a performs a heating action.

尚、当該実施例2の外の構成は、上述した本発明に係る水蒸気圧縮冷凍機による冷房システムに於ける実施例1の構成と略同一であり、同一番号、同一符号を付してその説明を省略する。 In addition, the structure outside the said Example 2 is substantially the same as the structure of Example 1 in the cooling system by the water vapor | steam compression refrigerator which concerns on this invention mentioned above, attaches | subjects the same number and the same code | symbol, and demonstrates the description. Is omitted.

次に本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける実施例2の冬期運転、つまり、負荷容量が小さいインテリア部負荷が冷房運転であり、負荷容量が大きいぺリメータ部負荷が暖房運転の場合の動作を説明する。
上記冷暖房負荷56は居室55にぺリメータ部負荷56aとインテリア部負荷56bとで構成され、その両者間をバルブ61eで連結配管されている。
上記ぺリメータ部負荷56aは建築物や建造物の主として外周部分又は外壁部分に配管され、また、上記インテリア部負荷56bは建築物や建造物の主として居室内の内部又は内壁部に配管されてなる。而して、冬期には外壁部分に配置したぺリメータ部負荷56aで暖房し、また、OA機器等の駆動により加温状態の居室55内をインテリア部負荷56bで冷房する要請がある。
Next, the winter operation of Example 2 in the air conditioning system using the steam compression refrigerator according to the present invention, that is, the interior part load with a small load capacity is the cooling operation, and the perimeter part load with a large load capacity is the heating operation. The operation in this case will be described.
The cooling / heating load 56 is composed of a perimeter load 56a and an interior load 56b in the living room 55, and a pipe 61e is connected between the two.
The perimeter portion load 56a is mainly piped to the outer peripheral portion or the outer wall portion of the building or building, and the interior portion load 56b is mainly piped to the inside or the inner wall portion of the building or building. . Thus, in winter, there is a demand for heating with the perimeter unit load 56a disposed on the outer wall portion, and cooling the interior of the heated room 55 with the interior unit load 56b by driving OA equipment or the like.

ポンプ46aから熱交換器47の一次側47aまでに配管された入力部分に於ける一次連結配管48内及び分岐連結管51内には例えば16(℃)の熱源水46が揚水される。さらに、熱交換器47の一次側47aから三方弁52まで及び一次連結配管48に備えた該三方弁52から地下に還元されるために配管された出力部分に於ける一次連結配管48内及び一次連結配管48としての分岐連結管51内には例えば13(℃)の熱源水46が流送されると共に還元される。 For example, 16 (° C.) heat source water 46 is pumped into the primary connection pipe 48 and the branch connection pipe 51 at the input portion connected from the pump 46 a to the primary side 47 a of the heat exchanger 47. Further, the primary side 47a of the heat exchanger 47 to the three-way valve 52 and the primary connection pipe 48 in the primary connection pipe 48 at the output portion piped to be returned to the underground from the three-way valve 52 provided in the primary connection pipe 48 and the primary For example, 13 (° C.) heat source water 46 is fed into the branch connecting pipe 51 as the connecting pipe 48 and is reduced.

そして、他方側真空容器41は他方の負荷側連結配管に接続されてあって、つまり蒸発器としての入力側に冷水が噴射ノズル41aで容器内に噴射されるように矢印P15の方向に流送され、その冷水の温度が例えば15(℃)である。このとき、該他方側真空容器41は例えば、冷水温度が12(℃)であって、約1.40(KPa)の飽和蒸気圧を有し、その出口側から冷水ポンプ50aにより冷水が矢印P16及びP17の方向に流送される。そして、冷水は一方に於いて、蒸発器として機能する他方側真空容器41の出口側から冷水ポンプ50a、第3連結管49c、分岐点A1、第4連結管49d’、バルブ61f、インテリア部負荷56b、バルブ61h、第4連結管49d’、三方弁52a、第2連結管49b及び他方側真空容器41の噴射ノズル41aでなる循環ループができ冷水が循環流送し、当該インテリア部負荷56bが冷房作用を行う。 The other-side vacuum vessel 41 is connected to the other load-side connecting pipe, that is, the cold water is flowed in the direction of the arrow P15 so that cold water is injected into the vessel by the injection nozzle 41a on the input side as an evaporator. The temperature of the cold water is, for example, 15 (° C.). At this time, the other side vacuum vessel 41 has, for example, a chilled water temperature of 12 (° C.) and a saturated vapor pressure of about 1.40 (KPa). And P17. And in one side, the cold water from the outlet side of the other side vacuum vessel 41 functioning as an evaporator, the cold water pump 50a, the third connecting pipe 49c, the branch point A1, the fourth connecting pipe 49d ′, the valve 61f, the interior load 56b, the valve 61h, the fourth connecting pipe 49d ′, the three-way valve 52a, the second connecting pipe 49b, and the injection nozzle 41a of the other-side vacuum vessel 41 are formed, and the cold water is circulated and the interior portion load 56b is Performs cooling.

また、他方に於いて、凝縮器として機能する一方側真空容器40の出口側から流出される温水が温水ポンプ58a、第8連結管49h、分岐点A2、第9連結管49i’、バルブ61g、ぺリメータ部負荷56a、第11連結管49k、三方弁52b、第7連結管49g及び一方側真空容器40の噴射ノズル40aでなる循環ループが形成され、一方の負荷側連結配管を構成し、温水が循環流送し、当該ぺリメータ部負荷56aが暖房作用を行なう。 On the other hand, hot water flowing out from the outlet side of the one-side vacuum vessel 40 functioning as a condenser is a hot water pump 58a, an eighth connecting pipe 49h, a branch point A2, a ninth connecting pipe 49i ′, a valve 61g, A circulation loop composed of a perimeter load 56a, an eleventh connection pipe 49k, a three-way valve 52b, a seventh connection pipe 49g, and an injection nozzle 40a of the one-side vacuum vessel 40 is formed to constitute one load-side connection pipe. Circulates and the perimeter load 56a performs a heating action.

他方側真空容器41の出口側から流送される冷水の温度は第1温度計53(T1)で計測され、この計測温度信号は制御線54bにより三方弁52aに伝送される。該三方弁52aは常に当該冷水の出口温度が例えば、12(℃)の所定値になるように弁の開度を制御される。そして、該圧縮機43内を流送する水蒸気は矢印P7の方向となる。 The temperature of the cold water fed from the outlet side of the other vacuum vessel 41 is measured by the first thermometer 53 (T1), and this measured temperature signal is transmitted to the three-way valve 52a by the control line 54b. The opening degree of the three-way valve 52a is controlled so that the outlet temperature of the cold water always becomes a predetermined value of 12 (° C.), for example. The water vapor flowing through the compressor 43 is in the direction of the arrow P7.

また、一方側真空容器40は一方の負荷側連結配管に接続されてあって、つまり凝縮器の出口側は温水温度が例えば30(℃)であり、温水は、温水ポンプ58aにより矢印P18の方向であって、ぺリメータ部負荷56aの入力側に流送される。さらに、ぺリメータ部負荷56aの出力側から例えば27(℃)の温水を放出し、該温水が第11連結管49k、三方弁52b、第7連結管49gを矢印P20、P21に示すように経由して、一方側真空容器40内に配置された噴射ノズル40aから例えば27(℃)の温水を噴射する。そして、該一方側真空容器40、つまり、凝縮器内は例えば2.65(KPa)の飽和蒸気圧を有し、30(℃)の温水を温水ポンプ58aで取出することが可能である。また、上記第2温度計59(T2)による計測温度信号は例えば、30(℃)になるように制御線60で圧縮機43、つまりルーツポンプに伝送され、該圧縮機43の運転をコントロールすると共に、上記第4温度計と第5温度計の計測温度差が3(℃)になるように該一方側真空容器40の出口側から流出する温水流量を調整する。 The one-side vacuum vessel 40 is connected to one load-side connection pipe, that is, the outlet side of the condenser has a hot water temperature of, for example, 30 (° C.), and the hot water is supplied in the direction of arrow P18 by the hot water pump 58a. And it is sent to the input side of the perimeter unit load 56a. Further, for example, 27 (° C.) warm water is discharged from the output side of the perimeter load 56a, and the warm water passes through the eleventh connecting pipe 49k, the three-way valve 52b, and the seventh connecting pipe 49g as shown by arrows P20 and P21. Then, for example, 27 (° C.) hot water is sprayed from the spray nozzle 40 a disposed in the one-side vacuum container 40. The one-side vacuum vessel 40, that is, the inside of the condenser has a saturated vapor pressure of 2.65 (KPa), for example, and 30 (° C.) hot water can be taken out by the hot water pump 58a. Further, the temperature signal measured by the second thermometer 59 (T2) is transmitted to the compressor 43, that is, the roots pump through the control line 60 so as to be 30 (° C.), for example, and the operation of the compressor 43 is controlled. At the same time, the flow rate of hot water flowing out from the outlet side of the one-side vacuum vessel 40 is adjusted so that the measured temperature difference between the fourth thermometer and the fifth thermometer is 3 (° C.).

ぺリメータ部負荷56aがインテリア部負荷56bより多い場合は、圧縮機43は、第2温度計による計測温度を例えば30(℃)に一定にするために圧縮機43による回転数制御をする。このとき、インテリア部負荷56bは、ぺリメータ部負荷56aの絶対値より小さいため、この負荷以外に冷水を温める手段を必要とする。本システムでは、この手段を熱源水46としての井水とし、井水が16(℃)であるとすれば、12(℃)の冷水を熱交換器47を介して15(℃)まで温めることが可能である。これにより他方側真空容器41における冷却量と一方側真空容器40における加熱量がバランスし、建物の冷暖房をそれぞれの負荷に応じて最適に制御できる。
該三方弁52は、上記第1連結管49aに配設した第3温度計53a(T3)による計測温度信号が制御線54aを介して該三方弁52に伝送され、該第1連結管49a内を流送する冷却水の温度を例えば、一次連結配管48に流送する熱源水46の温度に近づけるべく上記熱交換器47に熱源水46、すなわち井水の全水量を該三方弁52に流送し約15(℃)に制御する。
When the perimeter unit load 56a is larger than the interior unit load 56b, the compressor 43 controls the rotation speed by the compressor 43 in order to make the temperature measured by the second thermometer constant, for example, 30 (° C.). At this time, since the interior portion load 56b is smaller than the absolute value of the perimeter portion load 56a, a means for warming the cold water is required in addition to this load. In this system, if this means is well water as the heat source water 46 and the well water is 16 (° C.), 12 (° C.) cold water is heated to 15 (° C.) via the heat exchanger 47. Is possible. Thereby, the cooling amount in the other side vacuum vessel 41 and the heating amount in the one side vacuum vessel 40 are balanced, and the cooling and heating of the building can be optimally controlled according to each load.
In the three-way valve 52, a temperature signal measured by a third thermometer 53a (T3) disposed in the first connection pipe 49a is transmitted to the three-way valve 52 through a control line 54a, and the three-way valve 52 For example, the heat source water 46, that is, the total amount of well water flows to the three-way valve 52 to the heat exchanger 47 so that the temperature of the cooling water that flows is close to the temperature of the heat source water 46 that flows to the primary connection pipe 48. The feed is controlled to about 15 (° C.).

かくして、本発明に係る水蒸気圧縮冷凍機による実施例2のシステムは冬期に於いて特異な多数個の切替弁を配置することなく、各インテリア部負荷56bとぺリメータ部負荷56aを冷・暖区分けして空調制御することにより、水蒸気圧縮冷凍機Cの運転効率(COP)を高めて居室55の空調コントロール機能を果すことができる。
尚、上記三方弁52、52a及び52bはこれに代えて上述した図1及び図2に示す基本システムや実施例1で説明した2個の二方弁をそれぞれ同様に配設することにより同一の構成、動作とすることができる。
Thus, the system of the second embodiment using the steam compression refrigerator according to the present invention separates each interior portion load 56b and the perimeter portion load 56a from cold and warm without disposing a large number of unique switching valves in winter. By performing the air conditioning control, the operation efficiency (COP) of the steam compression refrigerator C can be increased and the air conditioning control function of the living room 55 can be achieved.
The three-way valves 52, 52a and 52b are replaced by the same basic system shown in FIGS. 1 and 2 and the two two-way valves described in the first embodiment. It can be configured and operated.

次に、本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける実施例3について図5に基づき説明する。 Next, Example 3 in the air-conditioning system by the water vapor compression refrigerator which concerns on this invention is demonstrated based on FIG.

当該実施例3に示す構成は、前記実施例2と同様に特に、冷暖房負荷56に於けるぺリメータ部負荷56aとインテリア部負荷56bを別異の温水又は冷水流送ルートを設けて居室55に於けるそれぞれの部位に適した空調システムを構築する技術である。
実施例2との相違点は、上記熱交換器47の二次側の一方と三方弁52b間に接続される第6連結管49fと、分岐点A2及び分岐点A3間に配管された第10連結管49jとが導通状態に構成されていること及び第1連結管49aが非導通状態に構成されていることである。
そして、図5によれば、二方弁又は手動弁で構成されるバルブ61a、61b及び61cの弁を閉止動作させ、かつバルブ61d、61f、61g及び61hの弁を開放動作させる。さらに、上記ぺリメータ部負荷56aと上記インテリア部負荷56b間に介在させたバルブ61eを閉止動作させる。
このように構成したので、一方に於いて蒸発器として機能する他方側真空容器41の出口側から送出される冷水が冷水ポンプ50a、第3連結管49c、分岐点A1、第4連結管49d’、バルブ61f、インテリア部負荷56b、第4連結管49d’、三方弁52a、第2連結管49b及び他方側真空容器41の放射ノズル41aでなる循環ループが形成され、他方の負荷側連結配管を構成し、冷水が循環流送し、当該インテリア部負荷56bが冷房作用を行なう。
また、他方に於いて、凝縮器として機能する一方側真空容器40の出口側から流出される温水が温水ポンプ58a、第8連結管49h、分岐点A2、第9連結管49i’、バルブ61g、ぺリメータ部負荷56a、第11連結管49k、三方弁52b、第7連結管49g及び一方側真空容器40の噴射ノズル40aでなる循環ループ、さらに上記分岐点A2から第10連結管49j、バルブ61d、分岐点A3、第5連結管49e、熱交換器47の二次側47b、第6連結管49f、三方弁52b、第7連結管49g及び一方側真空容器40の噴射ノズル40aでなる循環ループがそれぞれ形成され、一方の負荷側連結配管を構成し、温水が循環流送し、当該ぺリメータ部負荷56aが暖房作用を行なう。
The configuration shown in the third embodiment is similar to that of the second embodiment, in particular, the perimeter section load 56a and the interior section load 56b in the cooling / heating load 56 are provided with different hot water or cold water flow routes in the room 55. It is a technology to construct an air conditioning system suitable for each part in the system.
The difference from the second embodiment is that a sixth connecting pipe 49f connected between one side of the secondary side of the heat exchanger 47 and the three-way valve 52b and a tenth pipe connected between the branch point A2 and the branch point A3. That is, the connecting pipe 49j is in a conductive state and the first connecting pipe 49a is in a non-conductive state.
Then, according to FIG. 5, the valves 61a, 61b and 61c constituted by two-way valves or manual valves are closed, and the valves 61d, 61f, 61g and 61h are opened. Further, the valve 61e interposed between the perimeter unit load 56a and the interior unit load 56b is closed.
Since it comprised in this way, the cold water sent out from the exit side of the other side vacuum vessel 41 which functions as an evaporator in one side is the cold water pump 50a, the 3rd connection pipe 49c, the branch point A1, and the 4th connection pipe 49d '. , A circulation loop composed of the valve 61f, the interior load 56b, the fourth connecting pipe 49d ′, the three-way valve 52a, the second connecting pipe 49b, and the radiation nozzle 41a of the other side vacuum vessel 41 is formed, and the other load side connecting pipe is connected. The cooling water is circulated and the interior load 56b performs a cooling operation.
On the other hand, hot water flowing out from the outlet side of the one-side vacuum vessel 40 functioning as a condenser is a hot water pump 58a, an eighth connecting pipe 49h, a branch point A2, a ninth connecting pipe 49i ′, a valve 61g, A circulation loop composed of a perimeter load 56a, an eleventh connection pipe 49k, a three-way valve 52b, a seventh connection pipe 49g, and an injection nozzle 40a of the one-side vacuum vessel 40, and further, from the branch point A2 to the tenth connection pipe 49j, a valve 61d. A circulation loop including a branch point A3, a fifth connecting pipe 49e, a secondary side 47b of the heat exchanger 47, a sixth connecting pipe 49f, a three-way valve 52b, a seventh connecting pipe 49g, and an injection nozzle 40a of the one-side vacuum vessel 40. Are formed, constituting one load side connecting pipe, hot water circulating and flowing, and the perimeter load 56a performs a heating action.

尚、当該実施例3の外の構成は、上述した本発明に係る水蒸気圧縮冷凍機による冷房システムに於ける実施例2の構成と略同一であり、同一番号、同一符号を付してその説明を省略する。 In addition, the structure outside the said Example 3 is substantially the same as the structure of Example 2 in the cooling system by the water vapor | steam compression refrigerator which concerns on this invention mentioned above, attaches | subjects the same number and the same code | symbol, and demonstrates the description. Is omitted.

次に本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける実施例3の冬期運転、つまり、負荷容量が大きいインテリア部負荷が冷房運転であり、負荷容量が小さいぺリメータ部負荷が暖房運転の場合の動作を説明する。
上記冷暖房負荷56は居室55にぺリメータ部負荷56aとインテリア部負荷56bとで構成され、その両者間をバルブ61eで連結配管されている。
上記ぺリメータ部負荷56aは建築物や建造物の主として外周部分又は外壁部分に配管され、また、上記インテリア部負荷56bは建築物や建造物の主として居室内の内部又は内壁部に配管されてなる。而して、冬期には外壁部分に配置したぺリメータ部負荷56aで暖房し、また、OA機器等の駆動により加温状態の居室55内をインテリア部負荷56bで冷房する要請がある。
Next, the winter operation of the third embodiment in the air conditioning system using the steam compression refrigerator according to the present invention, that is, the interior load having a large load capacity is the cooling operation, and the perimeter load having a small load capacity is the heating operation. The operation in this case will be described.
The cooling / heating load 56 is composed of a perimeter load 56a and an interior load 56b in the living room 55, and a pipe 61e is connected between the two.
The perimeter portion load 56a is mainly piped to the outer peripheral portion or the outer wall portion of the building or building, and the interior portion load 56b is mainly piped to the inside or the inner wall portion of the building or building. . Thus, in winter, there is a demand for heating with the perimeter unit load 56a disposed on the outer wall portion, and cooling the interior of the heated room 55 with the interior unit load 56b by driving OA equipment or the like.

ポンプ46aから熱交換器47の一次側47aまでに配管された入力部分に於ける一次連結配管48内及び分岐連結管51内には例えば16(℃)の熱源水46が揚水される。さらに、熱交換器47の一次側47aから三方弁52まで及び一次連結配管48に備えた該三方弁52から地下に還元されるために配管された出力部分に於ける一次連結配管48内及び一次連結配管48としての分岐連結管51内には例えば19(℃)の熱源水46が流送されると共に還元される。 For example, 16 (° C.) heat source water 46 is pumped into the primary connection pipe 48 and the branch connection pipe 51 at the input portion connected from the pump 46 a to the primary side 47 a of the heat exchanger 47. Further, the primary side 47a of the heat exchanger 47 to the three-way valve 52 and the primary connection pipe 48 in the primary connection pipe 48 at the output portion piped to be returned to the underground from the three-way valve 52 provided in the primary connection pipe 48 and the primary For example, 19 (° C.) heat source water 46 is fed into the branch connecting pipe 51 as the connecting pipe 48 and is reduced.

そして、他方側真空容器41、つまり蒸発器としての入力側に冷水が噴射ノズル41aで容器内に噴射されるように矢印P22の方向に流送され、その冷水の温度が例えば15(℃)である。このとき、該他方側真空容器41は例えば、冷水温度が12(℃)であって、約1.40(KPa)の飽和蒸気圧を有し、その出口側から冷水ポンプ50aにより冷水が矢印P16の方向に流送される。このとき、他方側真空容器41の出口側から流送される冷水の温度は第1温度計53(T1)で計測され、この計測温度信号は制御線54bにより圧縮機43としてのルーツポンプに伝送される。該圧縮機43は常に当該冷水の出口温度が例えば12(℃)の所定値になるようにインバータ運転制御される。そして、該圧縮機43内を流送する水蒸気は矢印P7の方向となる。また、上記第6温度計53d(T6)と第7温度計53e(T7)の計測温度差が3(℃)になるように他方側真空容器41の出口側から冷水ポンプ50aが流出する冷水の流量を三方弁52aにより弁開度を制御する。 Then, cold water is fed in the direction of the arrow P22 so that the cold water is injected into the container by the injection nozzle 41a to the other side vacuum container 41, that is, the input side as an evaporator, and the temperature of the cold water is 15 (° C.), for example. is there. At this time, the other side vacuum vessel 41 has, for example, a chilled water temperature of 12 (° C.) and a saturated vapor pressure of about 1.40 (KPa). In the direction of At this time, the temperature of the cold water fed from the outlet side of the other vacuum vessel 41 is measured by the first thermometer 53 (T1), and this measured temperature signal is transmitted to the roots pump as the compressor 43 by the control line 54b. Is done. The compressor 43 is inverter-controlled so that the outlet temperature of the cold water is always a predetermined value of 12 (° C.), for example. The water vapor flowing through the compressor 43 is in the direction of the arrow P7. Further, the chilled water from which the chilled water pump 50a flows out from the outlet side of the other vacuum vessel 41 so that the measured temperature difference between the sixth thermometer 53d (T6) and the seventh thermometer 53e (T7) becomes 3 (° C.). The flow rate is controlled by the three-way valve 52a.

また、このとき、一方側真空容器40、つまり凝縮器の出口側は温水温度が例えば30(℃)であり、温水ポンプ58aにより矢印P18の方向であって、ぺリメータ部負荷56aの入力側に流送される。さらに、該冷暖房負荷56すなわちぺリメータ部負荷56aの出力側から例えば27(℃)の温水を放出し、該温水が矢印P20、矢印P21に示すように第11連結管49k、三方弁52b、第7連結管49gを経由し、一方側真空容器40内に配置された噴射ノズル40aから例えば27(℃)の温水を噴射する。そして、該一方側真空容器40、つまり、凝縮器内は例えば2.65(KPa)の飽和蒸気圧を有し、30(℃)の温水を温水ポンプ58aで取出することが可能である。また、上記第2温度計59(T2)による計測温度信号は制御線60で上記三方弁52bに伝送され、第2温度計59(T2)による計測温度が例えば30(℃)になるように該三方弁52bにより弁開度を制御する。また、上記第4温度計53b(T4)と、第5温度計53c(T5)の計測温度差が3(℃)になるように他方側真空容器41の出口側から温水ポンプ58aが流出する温水の流量を上記三方弁52bにより弁開度を制御する。 At this time, the one side vacuum vessel 40, that is, the outlet side of the condenser, has a hot water temperature of, for example, 30 (° C.), and is directed in the direction of arrow P18 by the hot water pump 58a to the input side of the perimeter unit load 56a. To be sent. Furthermore, for example, 27 (° C.) of warm water is discharged from the output side of the cooling / heating load 56, that is, the perimeter load 56a, and the warm water is indicated by arrows P20 and P21, and the eleventh connecting pipe 49k, the three-way valve 52b, The hot water of 27 (° C.), for example, is sprayed from the spray nozzle 40 a disposed in the one-side vacuum vessel 40 via the seven connecting pipe 49 g. The one-side vacuum vessel 40, that is, the inside of the condenser has a saturated vapor pressure of 2.65 (KPa), for example, and 30 (° C.) hot water can be taken out by the hot water pump 58a. The measured temperature signal from the second thermometer 59 (T2) is transmitted to the three-way valve 52b through the control line 60, and the measured temperature by the second thermometer 59 (T2) is, for example, 30 (° C.). The valve opening degree is controlled by the three-way valve 52b. Moreover, the hot water from which the hot water pump 58a flows out from the exit side of the other vacuum vessel 41 so that the measured temperature difference between the fourth thermometer 53b (T4) and the fifth thermometer 53c (T5) becomes 3 (° C.). The valve opening degree is controlled by the three-way valve 52b.

かくして、本発明に係る水蒸気圧縮冷凍機による実施例3のシステムは冬期に於いて特異な多数個の切替弁を配置することなく、圧縮機43、つまりルーツポンプへの水蒸気の空調制御することにより、水蒸気圧縮冷凍機Cの運転効率(COP)を高めて居室55の空調コントロール機能を果すことができる。
尚、上記三方弁52、52a及び52bはこれに代えて上述した図1及び図2に示す基本システムや実施例1及び2で説明した2個の二方弁をそれぞれ同様に配設することにより同一の構成、動作とすることができる。
Thus, the system of the third embodiment using the steam compression refrigerator according to the present invention controls the air conditioning of steam to the compressor 43, that is, the roots pump, without arranging a number of unique switching valves in winter. The operating efficiency (COP) of the steam compression refrigerator C can be increased and the air conditioning control function of the living room 55 can be achieved.
The three-way valves 52, 52a and 52b are replaced with the basic system shown in FIGS. 1 and 2 and the two two-way valves described in the first and second embodiments. The same configuration and operation can be obtained.

本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける基本システム構成を示す実施の形態であって、冷房運転した際の動作を示すシステム構成図である。It is an embodiment showing a basic system configuration in an air conditioning system using a steam compression refrigerator according to the present invention, and is a system configuration diagram showing an operation at the time of cooling operation. 本発明に係る水蒸気圧縮冷凍機による冷暖房システムに於ける基本システム構成を示す実施の形態であって、暖房運転した際の動作を示すシステム構成図である。。It is an embodiment showing a basic system configuration in an air conditioning system using a steam compression refrigerator according to the present invention, and is a system configuration diagram showing an operation at the time of heating operation. . 本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例1を示すシステム構成図である。It is a system configuration figure showing Example 1 of an air conditioning system by a steam compression refrigerator concerning the present invention. 本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例2を示すシステム構成図である。It is a system block diagram which shows Example 2 of the air conditioning system by the water vapor | steam compression refrigerator which concerns on this invention. 本発明に係る水蒸気圧縮冷凍機による冷暖房システムの実施例3を示すシステム構成図である。It is a system block diagram which shows Example 3 of the air-conditioning system by the water vapor compression refrigerator which concerns on this invention. 従来の技術に於ける第1の例としての空調システムの構成図である。It is a block diagram of the air conditioning system as a 1st example in a prior art. 従来の技術に於ける第2の例としての冷凍機システムの構成図である。It is a block diagram of the refrigerator system as a 2nd example in a prior art.

符号の説明Explanation of symbols

40 一方側真空容器
40a 一方側噴射ノズル
41 他方側真空容器
41a 他方側噴射ノズル
42 連結管(ダクト)
43 圧縮機
44 相互流送管
45 真空ポンプ
46 熱源水
46a ポンプ
47 熱交換器
47a 熱交換器の一次側
47b 熱交換器の二次側
48 一次連結配管
49 二次連結配管
49a 第1連結管
49b 第2連結管
49c 第3連結管
49d 第4連結管
49d’ 第4連結管
49e 第5連結管
49f 第6連結管
49g 第7連結管
49h 第8連結管
49i 第9連結管
49i’ 第9連結管
49j 第10連結管
49k 第11連結管
50 循環ポンプ
50a 冷水ポンプ
51 分岐連結管
52 三方弁
52a 三方弁
52b 三方弁
53 第1温度計(T1)
53a〜53e 第3ないし第7温度計(T3〜T7)
54 制御線
54a 制御線
54b 制御線
55 居室
56 冷暖房負荷
56a ぺリメータ部負荷
56b インテリア部負荷
57 負荷側連結配管
58 ポンプ
58a 温水ポンプ
59 第2温度計(T2)
60 制御線
61a バルブ
61b バルブ
61c バルブ
61d バルブ
61e バルブ
61f バルブ
61g バルブ
61h バルブ
C 水蒸気圧縮冷凍機
D 大地
40 One side vacuum vessel 40a One side injection nozzle 41 The other side vacuum vessel 41a The other side injection nozzle 42 Connecting pipe (duct)
43 Compressor 44 Mutual feed pipe 45 Vacuum pump 46 Heat source water 46a Pump 47 Heat exchanger 47a Heat exchanger primary side 47b Heat exchanger secondary side 48 Primary connection pipe 49 Secondary connection pipe 49a First connection pipe 49b Second connecting pipe 49c Third connecting pipe 49d Fourth connecting pipe 49d 'Fourth connecting pipe 49e Fifth connecting pipe 49f Sixth connecting pipe 49g Seventh connecting pipe 49h Eight connecting pipe 49i Nine connecting pipe 49i' Ninth connection Pipe 49j Tenth connection pipe 49k Eleventh connection pipe 50 Circulation pump 50a Cold water pump 51 Branch connection pipe 52 Three-way valve 52a Three-way valve 52b Three-way valve 53 First thermometer (T1)
53a to 53e 3rd to 7th thermometers (T3 to T7)
54 control line 54a control line 54b control line 55 living room 56 air-conditioning load 56a perimeter load 56b interior load 57 load-side connecting pipe 58 pump 58a hot water pump 59 second thermometer (T2)
60 Control line 61a Valve 61b Valve 61c Valve 61d Valve 61e Valve 61f Valve 61g Valve 61h Valve C Steam compression refrigerator D Ground

Claims (8)

冷房時に蒸発器及び暖房時に凝縮器として機能しかつ冷暖房負荷を配管した一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能しかつ熱源水を供給される他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システム。 One side vacuum container that functions as an evaporator during cooling and a condenser during heating and piping an air conditioning load, the other side vacuum container that functions as a condenser during cooling and an evaporator during heating and is supplied with heat source water, steam An air-conditioning system using a water vapor compression refrigerator, comprising: a compressor that reversibly feeds water vapor into a connecting pipe (duct) connected between both vacuum vessels by cooling or heating operation of the compression refrigerator. 冷房時に蒸発器及び暖房時に凝縮器として機能してなりかつ冷暖房負荷を出口側の冷・温水の温度を計測する温度計を有した負荷側連結配管で接続された一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能してなりかつ熱源水を供給すると共に温度計の温度計測信号で制御される三方弁を備えた一次連結配管及び出口側の冷却水の温度を計測する該温度計を有した二次連結配管に接続された他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記一方側真空容器の出口側の冷・温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システム。 One side vacuum vessel that functions as an evaporator during cooling and a condenser during heating, and that is connected to a load-side connecting pipe having a thermometer that measures the temperature of the cooling / heating water on the outlet side of the cooling / heating load, and during cooling The temperature for measuring the temperature of the cooling water on the outlet side and the primary connection pipe provided with a three-way valve that functions as an evaporator during heating and supplying heat source water and is controlled by a thermometer temperature measurement signal. While reversibly flowing water vapor into the other side vacuum vessel connected to the secondary connection pipe having a meter and the connection pipe (duct) connecting the two vacuum vessels by cooling or heating operation of the water vapor compression refrigerator An air-conditioning system using a water vapor compression refrigerator, comprising: a compressor that performs inverter control using a temperature measurement signal of a thermometer that measures the temperature of cold / hot water on the outlet side of the one-side vacuum vessel. 冷房時に蒸発器及び暖房時に凝縮器として機能してなりかつインテリア部負荷及びぺリメータ部負荷を備えた冷暖房負荷を出口側の冷・温水の温度を計測すると共に圧縮機をインバータ制御する温度計を有した負荷側連結配管で接続された一方側真空容器と、冷房時に凝縮器及び暖房時に蒸発器として機能してなりかつ熱源水を供給すると共に温度計の温度計測信号で制御される三方弁を備えた一次連結配管及び出口側の冷・温水の温度を計測して別異の三方弁の弁開度を制御する温度計を有した複数の連結管で構成される二次連結配管に接続された他方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記一方側真空容器の出口側の冷・温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システム。 A thermometer that functions as an evaporator during cooling and a condenser during heating and that measures the temperature of cold / hot water on the outlet side of the cooling / heating load equipped with interior load and perimeter load and controls the compressor with an inverter A one-side vacuum vessel connected by a load-side connecting pipe having a three-way valve that functions as a condenser during cooling and as an evaporator during heating and that supplies heat source water and is controlled by a temperature measurement signal of a thermometer Connected to the primary connection pipe provided and the secondary connection pipe composed of a plurality of connection pipes with thermometers that control the opening of different three-way valves by measuring the temperature of the cold / hot water on the outlet side The other side vacuum vessel is reversibly flowed into a connecting pipe (duct) connected between the two vacuum vessels by cooling or heating operation of the water vapor compression refrigerator, and the outlet side of the one side vacuum vessel is cooled and cooled. Hot water temperature Heating and cooling system by water vapor compression refrigeration machine, characterized in that a compressor for the inverter controlled by the temperature measurement signal of the temperature meter for measuring. 暖房機能を有しかつ一方の負荷側連結配管に接続されたぺリメータ部負荷と、冷房機能を有しかつ他方の負荷側連結配管に接続されたインテリア部負荷と、両負荷で構成される冷暖房負荷と、熱源水を供給しかつ温度計の温度計測信号で制御される三方弁を備えた一次連結配管と、該一次連結配管を構成する他方の負荷側連結配管に設置してあって、温度計による温度計測信号で出口側の冷水の弁開度を制御する別異の三方弁を備えた他方真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に一方の負荷側連結配管に接続された一方側真空容器の出口側の温水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システム。 Air conditioning and heating comprising a perimeter load connected to one load-side connecting pipe, an interior load connected to the other load-side connecting pipe and a cooling function It is installed in the load, the primary connection pipe with a three-way valve that supplies heat source water and is controlled by the temperature measurement signal of the thermometer, and the other load side connection pipe that constitutes the primary connection pipe. Connected piping connecting the other vacuum vessel with another three-way valve that controls the valve opening of the chilled water on the outlet side with the temperature measurement signal from the gauge, and the two vacuum vessels by cooling or heating operation of the steam compression refrigerator A compressor that performs inverter control by a temperature measurement signal of a thermometer that reversibly feeds water vapor into the (duct) and measures the temperature of hot water on the outlet side of the one-side vacuum vessel connected to one load-side connecting pipe With the features Heating and cooling system by water vapor compression refrigerator that. 暖房機能を有しかつ一方の負荷側連結配管に接続されたぺリメータ部負荷と、冷房機能を有しかつ他方の負荷側連結配管に接続されたインテリア部負荷と、両負荷で構成される冷暖房負荷と、熱源水を供給しかつ温度計の温度計測信号で制御される三方弁を備えた一次連結配管と、該一次連結配管を構成する一方の負荷側連結配管に設置してあって、温度計による出口側の温水の温度計測信号で弁開度を制御する別異の三方弁を備えた一方側真空容器と、水蒸気圧縮冷凍機の冷房又は暖房の運転により両真空容器間を接続した連結配管(ダクト)内に水蒸気を可逆流送すると共に前記他方の負荷側連結配管に接続された他方側真空容器の出口側の冷水の温度を計測する温度計の温度計測信号によりインバータ制御する圧縮機とを備えたことを特徴とする水蒸気圧縮冷凍機による冷暖房システム。 Air conditioning and heating comprising a perimeter load connected to one load-side connecting pipe, an interior load connected to the other load-side connecting pipe and a cooling function It is installed in the load, the primary connection pipe with a three-way valve that supplies heat source water and is controlled by the temperature measurement signal of the thermometer, and one load side connection pipe that constitutes the primary connection pipe. One side vacuum vessel equipped with a different three-way valve that controls the valve opening by the temperature measurement signal of hot water on the outlet side by a meter, and a connection where both vacuum vessels are connected by cooling or heating operation of a steam compression refrigerator Compressor that performs reversible flow of water vapor into a pipe (duct) and performs inverter control by a temperature measurement signal of a thermometer that measures the temperature of cold water on the outlet side of the other vacuum vessel connected to the other load side connection pipe And provided that Heating and cooling system by water vapor compression refrigeration machine according to symptoms. 上記冷暖房負荷は、放射パネルで構成したことを特徴とする請求項1、2、3、4又は5記載の水蒸気圧縮冷凍機による冷暖房システム。 The said heating / cooling load is comprised by the radiation panel, The cooling / heating system by the water vapor | steam compression refrigerator of Claim 1, 2, 3, 4 or 5 characterized by the above-mentioned. 上記圧縮機はルーツポンプで構成したことを特徴とする請求項1、2、3、4又は5記載の水蒸気圧縮冷凍機による冷暖房システム。 6. The air conditioning system using a steam compression refrigerator according to claim 1, wherein the compressor is a roots pump. 上記熱源水は井水で構成したことを特徴とする請求項1、2、3、4又は5記載の水蒸気圧縮冷凍機による冷暖房システム。 6. The air conditioning system using a water vapor compression refrigerator according to claim 1, wherein the heat source water is well water.
JP2004218202A 2004-07-27 2004-07-27 Heating and cooling system using steam compression refrigerator Active JP4573263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004218202A JP4573263B2 (en) 2004-07-27 2004-07-27 Heating and cooling system using steam compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004218202A JP4573263B2 (en) 2004-07-27 2004-07-27 Heating and cooling system using steam compression refrigerator

Publications (2)

Publication Number Publication Date
JP2006038333A true JP2006038333A (en) 2006-02-09
JP4573263B2 JP4573263B2 (en) 2010-11-04

Family

ID=35903505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004218202A Active JP4573263B2 (en) 2004-07-27 2004-07-27 Heating and cooling system using steam compression refrigerator

Country Status (1)

Country Link
JP (1) JP4573263B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145000A (en) * 2006-12-07 2008-06-26 Sasakura Engineering Co Ltd Evaporative air conditioner
JP2008164187A (en) * 2006-12-27 2008-07-17 Sasakura Engineering Co Ltd Air conditioning device utilizing groundwater
JP2008215653A (en) * 2007-02-28 2008-09-18 Sasakura Engineering Co Ltd Air conditioning system
JP2008261522A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Hot water utilizing device and steam processing equipment
JP2008275288A (en) * 2007-05-07 2008-11-13 Sasakura Engineering Co Ltd Evaporation type air conditioner
JP2009058165A (en) * 2007-08-31 2009-03-19 Sasakura Engineering Co Ltd Evaporation type air conditioning device
JP2009115387A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant heater and water refrigerant water heater using the same
JP2009115379A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant refrigerating device and heating/cooling system comprising the same
JP2010133658A (en) * 2008-12-05 2010-06-17 Sasakura Engineering Co Ltd Air conditioning system
JP2012145328A (en) * 2012-03-26 2012-08-02 Sasakura Engineering Co Ltd Water refrigerant heater and water refrigerant water heater using the same
JP2012177543A (en) * 2012-06-18 2012-09-13 Sasakura Engineering Co Ltd Evaporation type air conditioning device
WO2012147366A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Freezer
WO2014057656A1 (en) * 2012-10-10 2014-04-17 パナソニック株式会社 Heat exchanging device and heat pump

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291466A (en) * 1990-04-07 1991-12-20 Ranco Japan Ltd Cooling or heating apparatus
JPH0783520A (en) * 1993-09-16 1995-03-28 Hitachi Ltd Air conditioner
JPH08247496A (en) * 1995-03-14 1996-09-27 Mayekawa Mfg Co Ltd Heat pump utilizing system using underground water as heat source, and district heat supplying system incorporating the system
JP2001165514A (en) * 1999-10-25 2001-06-22 Electricite De France Service National Heat pump device especially with cooling function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03291466A (en) * 1990-04-07 1991-12-20 Ranco Japan Ltd Cooling or heating apparatus
JPH0783520A (en) * 1993-09-16 1995-03-28 Hitachi Ltd Air conditioner
JPH08247496A (en) * 1995-03-14 1996-09-27 Mayekawa Mfg Co Ltd Heat pump utilizing system using underground water as heat source, and district heat supplying system incorporating the system
JP2001165514A (en) * 1999-10-25 2001-06-22 Electricite De France Service National Heat pump device especially with cooling function

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145000A (en) * 2006-12-07 2008-06-26 Sasakura Engineering Co Ltd Evaporative air conditioner
JP2008164187A (en) * 2006-12-27 2008-07-17 Sasakura Engineering Co Ltd Air conditioning device utilizing groundwater
JP2008215653A (en) * 2007-02-28 2008-09-18 Sasakura Engineering Co Ltd Air conditioning system
JP2008261522A (en) * 2007-04-10 2008-10-30 Kobe Steel Ltd Hot water utilizing device and steam processing equipment
JP2008275288A (en) * 2007-05-07 2008-11-13 Sasakura Engineering Co Ltd Evaporation type air conditioner
JP2009058165A (en) * 2007-08-31 2009-03-19 Sasakura Engineering Co Ltd Evaporation type air conditioning device
JP2009115387A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant heater and water refrigerant water heater using the same
JP2009115379A (en) * 2007-11-06 2009-05-28 Sasakura Engineering Co Ltd Water refrigerant refrigerating device and heating/cooling system comprising the same
JP2010133658A (en) * 2008-12-05 2010-06-17 Sasakura Engineering Co Ltd Air conditioning system
WO2012147366A1 (en) * 2011-04-28 2012-11-01 パナソニック株式会社 Freezer
US9157684B2 (en) 2011-04-28 2015-10-13 Panasonic Intellectual Property Management Co., Ltd. Refrigeration apparatus
JP2012145328A (en) * 2012-03-26 2012-08-02 Sasakura Engineering Co Ltd Water refrigerant heater and water refrigerant water heater using the same
JP2012177543A (en) * 2012-06-18 2012-09-13 Sasakura Engineering Co Ltd Evaporation type air conditioning device
WO2014057656A1 (en) * 2012-10-10 2014-04-17 パナソニック株式会社 Heat exchanging device and heat pump
US9683762B2 (en) 2012-10-10 2017-06-20 Panasonic Intellectual Property Management Co., Ltd. Heat exchanging device and heat pump

Also Published As

Publication number Publication date
JP4573263B2 (en) 2010-11-04

Similar Documents

Publication Publication Date Title
CN203323456U (en) Heat pump device
AU614181B2 (en) Absorption refrigeration and heat pump system
CN104813122B (en) For a pair method and apparatus for the evaporator deicing being connected with air-conditioning unit
JP4573263B2 (en) Heating and cooling system using steam compression refrigerator
CN102422092B (en) Air conditioning device
JP5166385B2 (en) Air conditioning and hot water supply system
CN102753914B (en) Air conditioner and air-conditioning hot-water-supplying system
JP2005315558A (en) Heat pump water heater
US8959940B2 (en) Refrigeration cycle apparatus
JP2006234376A (en) Heating and cooling system using geothermal source allowing simultaneous operation for heating and cooling, and control method therefor
CN102062492A (en) Air conditioner
CN105593610A (en) Heat pump system, and heat pump water heater
JP2005257127A (en) Natural refrigerant heat pump system
CN102753916B (en) Air-conditioning hot-water-supply system
US20150210563A1 (en) Water purification by batch crystallization process
WO1997015789A1 (en) Air conditioner
CN102472534A (en) Air conditioner
CN106164610A (en) Refrigerator
JP2009052880A (en) Heat pump water heater
JP2009236441A (en) Heat pump type refrigerating device
KR100599854B1 (en) Regenerative heat pump unit using geothermics
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JPH10300265A (en) Refrigerating equipment
CN109791006B (en) Heat pump system with CO2 as a first heat pump medium and water as a second heat pump medium
KR102536079B1 (en) Heat recovery type complex chiller system and operation method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070123

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070123

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070123

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100811

R150 Certificate of patent or registration of utility model

Ref document number: 4573263

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250