JP2008163434A - Method for producing surface-treated aluminum material, and production device for surface-treated aluminum material - Google Patents

Method for producing surface-treated aluminum material, and production device for surface-treated aluminum material Download PDF

Info

Publication number
JP2008163434A
JP2008163434A JP2006356537A JP2006356537A JP2008163434A JP 2008163434 A JP2008163434 A JP 2008163434A JP 2006356537 A JP2006356537 A JP 2006356537A JP 2006356537 A JP2006356537 A JP 2006356537A JP 2008163434 A JP2008163434 A JP 2008163434A
Authority
JP
Japan
Prior art keywords
electrolysis
aluminum material
current density
electrolytic
treated aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006356537A
Other languages
Japanese (ja)
Other versions
JP5014781B2 (en
Inventor
Keitaro Yamaguchi
恵太郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2006356537A priority Critical patent/JP5014781B2/en
Publication of JP2008163434A publication Critical patent/JP2008163434A/en
Application granted granted Critical
Publication of JP5014781B2 publication Critical patent/JP5014781B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a surface-treated aluminum material having a nonporous anodized film capable of obtaining high adhesion and corrosion resistance. <P>SOLUTION: In the method for producing a surface-treated aluminum material where, by performing an electrolysis process of subjecting an aluminum material 6 to electrolysis in an electrolytic solution 2, a nonporous anodized film is formed on the surface of the aluminum material 6, the electrolysis process is composed of three or more times of electrolysis stages, and includes a current density increasing stage performed at an electrolysis current density higher than that in the former electrolysis stage and a current density reducing stage performed after the above current density increasing stage and performed at an electrolysis current density lower than that in the former electrolysis stage. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塗装を施すアルミニウム製品に好適に用いられる表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置に関する。   The present invention relates to a method for producing a surface-treated aluminum material and an apparatus for producing a surface-treated aluminum material that are suitably used for aluminum products to be coated.

電気製品、器物、装飾品、建材などの塗装を施すアルミニウム製品に用いられるアルミニウム材やアルミニウム合金材などのアルミニウム材料は、塗膜の密着性を高めるため、下地処理が行われる。このような下地処理として、アルミニウム材料の表面に無孔質陽極酸化皮膜を形成する方法がある(例えば、特許文献1、特許文献2参照)。
特開平8−283990号公報 特開2003−147550号公報
An aluminum material such as an aluminum material or an aluminum alloy material used in an aluminum product to be coated such as an electric product, an instrument, a decorative article, or a building material is subjected to a ground treatment in order to improve the adhesion of the coating film. As such a base treatment, there is a method of forming a nonporous anodic oxide film on the surface of an aluminum material (see, for example, Patent Document 1 and Patent Document 2).
JP-A-8-283990 JP 2003-147550 A

しかしながら、従来の技術を用いてアルミニウム材料の表面に無孔質陽極酸化皮膜を形成したものでは、密着性や耐食性が不十分である場合があり、より一層高い密着性および耐食性が要求されていた。
本発明は、このような事情に鑑みてなされたものであり、高い密着性および耐食性が得られる無孔質陽極酸化皮膜を有する表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置を提供することを課題としている。
However, when a nonporous anodic oxide film is formed on the surface of an aluminum material using a conventional technique, adhesion and corrosion resistance may be insufficient, and higher adhesion and corrosion resistance are required. .
The present invention has been made in view of such circumstances, and provides a method for producing a surface-treated aluminum material having a nonporous anodized film capable of obtaining high adhesion and corrosion resistance and a device for producing the surface-treated aluminum material. The challenge is to do.

本発明者は、上記課題を解決するために、アルミニウム材料を電解液中で電解する電解工程の電解条件に着目し、電解工程を条件の異なる複数回の電解工程とした場合における各電解工程の最適な条件について、鋭意検討を行ない、本発明を想到した。   In order to solve the above problems, the present inventor paid attention to the electrolysis conditions of an electrolysis process in which an aluminum material is electrolyzed in an electrolytic solution. As a result of intensive studies on the optimum conditions, the present invention has been conceived.

本発明の表面処理アルミニウム材料の製造方法は、アルミニウム材料を電解液中で電解する電解工程を行うことにより、前記アルミニウム材料の表面に無孔質陽極酸化皮膜を形成する表面処理アルミニウム材料の製造方法において、前記電解工程は、3回以上の電解工程からなり、前回の電解工程よりも電解電流密度を高くして行なう電流密度増加工程と、前記電流密度増加工程よりも後に行なわれ、前回の電解工程よりも電解電流密度を低くして行なう電流密度減少工程とを含むことを特徴とする。
本発明において「無孔質陽極酸化皮膜」とは、空孔率が5%以下である陽極酸化皮膜のことを意味する。
The method for producing a surface-treated aluminum material according to the present invention is a method for producing a surface-treated aluminum material in which a nonporous anodized film is formed on the surface of the aluminum material by performing an electrolysis step of electrolyzing the aluminum material in an electrolytic solution. The electrolysis step comprises three or more electrolysis steps, and is performed after a current density increasing step performed with a higher electrolysis current density than the previous electrolysis step, and after the current density increasing step. And a current density reduction step performed by lowering the electrolytic current density than the step.
In the present invention, the “nonporous anodic oxide film” means an anodic oxide film having a porosity of 5% or less.

アルミニウム材料中にはFe、Si、Tiなどの元素が添加されているが、これらの元素が晶析出する部分の周辺部は、電解工程を行なった場合に陽極酸化皮膜が形成されにくい。このため、アルミニウム材料の電解工程を行なうと、これらの元素が存在する部分の周辺部に、皮膜の膜厚が薄くて緻密さが不十分であるバリヤー性の弱い欠陥部分が形成されてしまう場合がある。このような欠陥部分は、腐食の起点となる。また、同一の電解電流密度を保持して電解工程を行なうと、初期に形成された無孔質陽極酸化皮膜のバリヤー性の弱い部分に電流が集中し、バリヤー性の弱い部分が発熱して、無孔質陽極酸化皮膜の表層が多孔質化してしまう場合があった。   Elements such as Fe, Si, and Ti are added to the aluminum material. However, an anodic oxide film is hardly formed in the periphery of the portion where these elements crystallize when the electrolytic process is performed. For this reason, when the electrolytic process of aluminum material is performed, a defective part with a weak barrier property is formed in the peripheral part of the part where these elements exist, and the film thickness is thin and the density is insufficient. There is. Such a defective portion becomes a starting point of corrosion. In addition, when the electrolytic process is performed while maintaining the same electrolytic current density, current concentrates on the weakly barrier portion of the nonporous anodic oxide film formed in the initial stage, and the weakly barrier portion generates heat. In some cases, the surface layer of the nonporous anodized film becomes porous.

ここで、電解工程を複数回とし、複数回の電解工程のうち少なくとも1回の電解工程を、前回の電解工程よりも電解電流密度を高くして行なうと、前回までの電解工程で形成された無孔質陽極酸化皮膜のバリヤー性の弱い部分に電流が集中し、バリヤー性の弱い部分が発熱するので、皮膜の局部的な溶解が促進される。その結果、アルミニウム材料中に含まれるFe、Si、Tiなどの晶析出部が化学的に溶解したり、物理的に脱落したりする。このことによって、前回までの電解工程において形成された欠陥部分が修復され、耐食性を低下させる腐食の起点を少なくすることができる。   Here, when the electrolysis process is set to a plurality of times, and at least one of the electrolysis processes is performed with a higher electrolysis current density than the previous electrolysis process, the electrolysis process is formed by the previous electrolysis process. The current concentrates on the weakly barrier portion of the nonporous anodic oxide film, and the weakly barrier portion generates heat, which promotes local dissolution of the film. As a result, crystal precipitates such as Fe, Si, and Ti contained in the aluminum material are chemically dissolved or physically dropped off. As a result, the defective portion formed in the previous electrolysis process is repaired, and the starting point of corrosion that lowers the corrosion resistance can be reduced.

しかし、電解電流密度が高いと、皮膜生成時の発熱が大きくなり、局部的に多孔質化してしまう。このため、前回の電解工程よりも電解電流密度を高くして電解工程を行なった後に、前回の電解工程よりも電解電流密度を低くして電解工程を行なう。前回の電解工程よりも電解電流密度を低くして電解工程を行なうと、前回の電解工程よりも皮膜生成時の発熱が小さくなり、皮膜の成長が均一化するので、前回までの電解工程において局部的に多孔質化した皮膜が修復され、均一で緻密な空孔率の低い皮膜が形成される。   However, when the electrolysis current density is high, heat generation during film formation increases and the film becomes locally porous. For this reason, after performing an electrolysis process with a higher electrolysis current density than the previous electrolysis process, the electrolysis process is performed with a lower electrolysis current density than the previous electrolysis process. If the electrolysis process is performed at a lower electrolysis current density than the previous electrolysis process, the heat generation during film formation is smaller than that of the previous electrolysis process, and the film growth becomes uniform. The porous film is repaired, and a uniform and dense film with a low porosity is formed.

本発明の表面処理アルミニウム材料の製造方法では、電解工程は、3回以上の電解工程からなり、前回の電解工程よりも電解電流密度を高くして行なう電流密度増加工程と、前記電流密度増加工程よりも後に行なわれ、前回の電解工程よりも電解電流密度を低くして行なう電流密度減少工程とを含むので、電流密度増加工程によって、耐食性を低下させる腐食の起点を少なくした後、電流密度減少工程によって、前回までの電解工程において局部的に多孔質化した皮膜が修復され、均一で緻密な空孔率の低い皮膜が形成される。また、このようにして形成された無孔質陽極酸化皮膜は、空孔率が低く均一であるため、無孔質陽極酸化皮膜に含まれる電解液成分や水分などの塗装乾燥で放出されるガス成分が極めて少ないものとなり、密着性に優れたものとなる。したがって、本発明によれば、高い密着性および耐食性の得られる無孔質陽極酸化皮膜を有する表面処理アルミニウム材料が得られる。
本発明において、電流密度を変化させる工程は、直列に配置した電解槽を用いてアルミ条に連続的に行なってもよいし、単一槽のバッチ処理で変化させてもよい。
In the method for producing a surface-treated aluminum material according to the present invention, the electrolysis step comprises three or more electrolysis steps, and the current density increase step is performed by making the electrolysis current density higher than the previous electrolysis step, and the current density increase step. The current density reduction step is performed after lowering the electrolytic current density than the previous electrolysis step. Therefore, the current density reduction step reduces the corrosion starting point that reduces the corrosion resistance by the current density increase step. By the process, the locally porous film in the previous electrolysis process is repaired, and a uniform and dense film with a low porosity is formed. In addition, since the nonporous anodic oxide film thus formed has a low porosity and is uniform, a gas released by coating and drying such as an electrolyte component and moisture contained in the nonporous anodic oxide film It becomes a thing with very few components, and becomes the thing excellent in adhesiveness. Therefore, according to the present invention, it is possible to obtain a surface-treated aluminum material having a nonporous anodic oxide film that provides high adhesion and corrosion resistance.
In the present invention, the step of changing the current density may be continuously performed on the aluminum strip using electrolytic cells arranged in series, or may be changed by batch processing of a single bath.

また、上記の表面処理アルミニウム材料の製造方法では、2回目以降の電解工程は、前回の電解工程終了後0.3秒以上電解を中断する中断工程を行なってから行なうことができる。
このような方法とすることで、皮膜生成時に発生した熱を放散させることができ、皮膜生成時の発熱に起因する局部的な多孔質化を抑制することができる。
In the method for producing the surface-treated aluminum material, the second and subsequent electrolysis steps can be performed after performing an interruption step of interrupting electrolysis for 0.3 seconds or more after the end of the previous electrolysis step.
By setting it as such a method, the heat | fever which generate | occur | produced at the time of film | membrane production | generation can be dissipated, and the local porosity-ization resulting from the heat_generation | fever at the time of film | membrane production | generation can be suppressed.

また、上記の表面処理アルミニウム材料の製造方法では、前記3回以上の電解工程のうち少なくとも最後の1回の電解工程が、前記電解液としてpH8以上のアルカリ性電解液を用いる方法とすることができる。
電解液としてアルカリ性のものを用いると、水酸基などの無孔質陽極酸化皮膜の表面に密着性を高める官能基が形成されやすい。特に、最後の1回の電解工程において、電解液としてpH8以上のアルカリ性電解液を用いると効果的である。このため、上記の表面処理アルミニウム材料の製造方法において、3回以上の電解工程のうち少なくとも最後の1回の電解工程を、電解液としてpH8以上のアルカリ性電解液を用いる方法とすることで、より一層密着性に優れた無孔質陽極酸化皮膜を有する表面処理アルミニウム材料が得られる。
In the method for producing the surface-treated aluminum material, at least the last one of the three or more electrolysis steps may be a method using an alkaline electrolyte having a pH of 8 or more as the electrolyte. .
When an alkaline electrolyte is used, a functional group that improves adhesion is easily formed on the surface of the nonporous anodic oxide film such as a hydroxyl group. In particular, it is effective to use an alkaline electrolyte having a pH of 8 or more as the electrolyte in the last one electrolysis step. For this reason, in the manufacturing method of said surface treatment aluminum material, by making at least the last one electrolysis process among three or more electrolysis processes into a method using alkaline electrolyte solution more than pH8 as electrolyte solution, A surface-treated aluminum material having a nonporous anodic oxide film with better adhesion can be obtained.

また、上記の表面処理アルミニウム材料の製造方法では、前記無孔質陽極酸化皮膜の空孔率が、2%以下である方法とすることができる。
空孔率が2%以下であると、空孔中に含まれる水分や不純物など密着性を低下させる成分が少ないものとなる。また、空孔率が2%以下であると、腐食の起点となる空孔が少ないので、欠陥が少なく、耐食性の高いものとなる。よって、空孔率が2%以下であると、耐食性および密着性に非常に優れたものとなる。さらに、空孔率が1%以下であることが好ましい。
Moreover, in the manufacturing method of said surface treatment aluminum material, it can be set as the method whose porosity of the said nonporous anodic oxide film is 2% or less.
When the porosity is 2% or less, there are few components that reduce adhesion such as moisture and impurities contained in the pores. Further, when the porosity is 2% or less, since there are few vacancies as starting points of corrosion, there are few defects and the corrosion resistance is high. Therefore, when the porosity is 2% or less, the corrosion resistance and the adhesion are very excellent. Furthermore, the porosity is preferably 1% or less.

本発明の表面処理アルミニウム材料の製造装置は、アルミニウム材料を電解液中で電解する電解工程を行うことにより、前記アルミニウム材料の表面に無孔質陽極酸化皮膜を形成する表面処理アルミニウム材料の製造装置であって、上流から下流まで直列に配置された3つ以上の電解槽を備え、前記3つ以上の電解槽は、一つ前の電解槽よりも高い電解電流密度で電解工程を行なう電流密度増加槽と、前記電流密度増加槽よりも下流に配置され、一つ前の電解槽よりも低い電解電流密度で電解工程を行なう電流密度減少槽とを備えることを特徴とする。
このような製造装置とすることで、電解工程を3回以上行うことができ、前回の電解工程よりも電解電流密度を高くして行なう電流密度増加工程と、電流密度増加工程よりも後に前回の電解工程よりも電解電流密度を低くして行なう電流密度減少工程とを行なうことができる。したがって、本発明の表面処理アルミニウム材料の製造装置によれば、高い密着性および耐食性の得られる無孔質陽極酸化皮膜を有する表面処理アルミニウム材料を製造できる。
The apparatus for producing a surface-treated aluminum material according to the present invention is an apparatus for producing a surface-treated aluminum material that forms a nonporous anodic oxide film on the surface of the aluminum material by performing an electrolysis step of electrolyzing the aluminum material in an electrolytic solution. It is provided with three or more electrolytic cells arranged in series from upstream to downstream, and the three or more electrolytic cells perform an electrolysis process at a higher electrolytic current density than the previous electrolytic cell. An increasing tank and a current density decreasing tank disposed downstream of the current density increasing tank and performing an electrolysis process at an electrolytic current density lower than that of the previous electrolytic tank are characterized.
By making such a manufacturing apparatus, the electrolysis process can be performed three times or more, and the current density increasing process performed with a higher electrolysis current density than the previous electrolysis process, and the previous time after the current density increasing process It is possible to perform a current density reduction step performed by lowering the electrolysis current density than the electrolysis step. Therefore, according to the apparatus for producing a surface-treated aluminum material of the present invention, it is possible to produce a surface-treated aluminum material having a nonporous anodic oxide film that provides high adhesion and corrosion resistance.

本発明の表面処理アルミニウム材料の製造方法および表面処理アルミニウム材料の製造装置によれば、空孔率が低く、密着性および耐食性に優れた無孔質陽極酸化皮膜を有し、電気製品、器物、装飾品、建材などの塗装を施すアルミニウム製品に好適な表面処理アルミニウム材料を提供できる。   According to the method for producing a surface-treated aluminum material and the apparatus for producing a surface-treated aluminum material of the present invention, the non-porous anodic oxide film having low porosity and excellent adhesion and corrosion resistance is provided. It is possible to provide a surface-treated aluminum material that is suitable for aluminum products that are used for coating decorative products and building materials.

以下、本発明に係る表面処理アルミニウム材料の製造装置および表面処理アルミニウム材料の製造方法の第1実施形態について詳細に説明する。
本発明において用いられるアルミニウム材料としては、アルミニウムまたはアルミニウム合金を用いることができ、特に限定されない。具体的には、例えば、純アルミ系の1000系合金、Al−Cu系、Al−Cu−Mg系の2000系合金、Al−Mn系の3000系合金、Al−Si系の4000系合金、Al−Mg系の5000系合金、Al−Mg−Si系の6000系合金、Al−Zn−Mg−Cu系、Al−Zn−Mg系の7000系合金、Al−Fe−Mn系の8000系合金などが用いられ、成形用合金、構造用合金、電気用合金、AC1A,AC2A,AC3A,AC4Bなどの鋳造用合金などが用いられる。
Hereinafter, a first embodiment of a surface-treated aluminum material manufacturing apparatus and a surface-treated aluminum material manufacturing method according to the present invention will be described in detail.
As the aluminum material used in the present invention, aluminum or an aluminum alloy can be used and is not particularly limited. Specifically, for example, pure aluminum 1000 series alloy, Al-Cu series, Al-Cu-Mg series 2000 series alloy, Al-Mn series 3000 series alloy, Al-Si series 4000 series alloy, Al -Mg-based 5000 alloy, Al-Mg-Si-based 6000-based alloy, Al-Zn-Mg-Cu-based, Al-Zn-Mg-based 7000-based alloy, Al-Fe-Mn-based 8000-based alloy, etc. And casting alloys such as forming alloys, structural alloys, electrical alloys, AC1A, AC2A, AC3A, AC4B, and the like are used.

また、アルミニウム材料としては、上記の合金に溶体化処理、時効処理などの種々の調質処理を施したものも用いることができる。さらに、これらのアルミニウム合金を表面にクラディングしたクラッド材も使用できる。また、予めプレス成形加工などを施した加工材であってもよく、未加工の板材、押出材、鋳造品であってもよい。本発明にあっては、これらの合金のなかでも、1000系合金、3000系合金、5000系合金が好ましい。   As the aluminum material, those obtained by subjecting the above alloy to various tempering treatments such as solution treatment and aging treatment can be used. Further, a clad material obtained by cladding these aluminum alloys on the surface can also be used. Moreover, the processed material which gave press-molding processing etc. previously may be sufficient, and an unprocessed board | plate material, an extruded material, and a cast may be sufficient. In the present invention, among these alloys, 1000 series alloys, 3000 series alloys, and 5000 series alloys are preferable.

本実施形態においては、アルミニウム材料に対して電解工程を行う前に前処理を行なう。ここでの前処理は、特に限定されず、アルミニウム材料の表面に付着した油脂分を除去することができ、アルミニウム材料表面の不均質な酸化物皮膜が除去できる処理であればいかなる処理であってもよい。具体的には、例えば、アルミニウム材料に対して、弱アルカリ性の脱脂液による脱脂処理を施したのち、水酸化ナトリウム水溶液でアルカリエッチングをし、硝酸水溶液中でデスマット処理を行う方法や、脱脂処理後に酸洗浄を行う方法などが適宜選択して用いられる。   In the present embodiment, pretreatment is performed before the electrolytic process is performed on the aluminum material. The pretreatment here is not particularly limited, and any treatment can be used as long as it can remove oil and fat adhering to the surface of the aluminum material and remove the heterogeneous oxide film on the surface of the aluminum material. Also good. Specifically, for example, after performing a degreasing treatment with a weak alkaline degreasing solution on an aluminum material, performing alkali etching with a sodium hydroxide aqueous solution and performing a desmut treatment in a nitric acid aqueous solution, or after degreasing treatment An acid cleaning method or the like is appropriately selected and used.

次いで、前処理後のアルミニウム材料を電解液中で電解することにより、アルミニウム材料の表面に無孔質陽極酸化皮膜を形成する電解工程を行う。
本実施形態においては、電解工程は、4つの電解槽を備えた図1に示す表面処理アルミニウム材料の製造装置を用いて複数回行なわれる。図1において、符号1は電解槽、符号2は電解液、符号3は搬送ロール、符号4、5は巻き取りロール、符号6は板状のアルミニウム材料を示している。
図1に示す製造装置では、電解槽1は上流から下流まで直列に配置された第1電解槽1a、第2電解槽1b、第3電解槽1c、第4電解槽1dの4つの電解槽からなる。
Next, an electrolysis process for forming a nonporous anodic oxide film on the surface of the aluminum material is performed by electrolyzing the pretreated aluminum material in an electrolytic solution.
In the present embodiment, the electrolysis step is performed a plurality of times using the surface-treated aluminum material manufacturing apparatus shown in FIG. 1 having four electrolytic cells. In FIG. 1, reference numeral 1 denotes an electrolytic cell, reference numeral 2 denotes an electrolytic solution, reference numeral 3 denotes a transport roll, reference numerals 4 and 5 denote winding rolls, and reference numeral 6 denotes a plate-like aluminum material.
In the manufacturing apparatus shown in FIG. 1, the electrolytic cell 1 is composed of four electrolytic cells, a first electrolytic cell 1a, a second electrolytic cell 1b, a third electrolytic cell 1c, and a fourth electrolytic cell 1d arranged in series from upstream to downstream. Become.

図1に示すように、第1電解槽1a、第2電解槽1b、第3電解槽1c、第4電解槽1dは互いに離間して配置されており、電解槽間の離間距離dが後述する中断工程に対応する時間に相当するように予め設定されている。   As shown in FIG. 1, the 1st electrolytic cell 1a, the 2nd electrolytic cell 1b, the 3rd electrolytic cell 1c, and the 4th electrolytic cell 1d are mutually spaced apart, and the separation distance d between electrolytic cells is mentioned later. It is set in advance so as to correspond to the time corresponding to the interruption process.

本実施形態においては、第1電解槽1aを用いて1回目の電解工程が行なわれ、第2電解槽1bを用いて2回目の電解工程が行なわれ、第3電解槽1cを用いて3回目の電解工程が行なわれ、第4電解槽1dを用いて4回目の電解工程が行なわれるようになっている。
より詳細には、図1に示すように、巻き取りロール4に巻きつけられたアルミニウム材料6は、搬送ロール3によって搬送されて第1電解槽1a内の電解液2中で電解され(1回目)た後、搬送ロール3によって搬送されて第1電解槽1a内から取り出され、0.3秒以上電解を中断する中断工程を行なう。そして、中間工程の終了したアルミニウム材料6は、搬送ロール3によって搬送されて第2電解槽1b内の電解液2中で電解され(2回目)る。その後、搬送ロール3によって搬送されて第2電解槽1b内から取り出され、0.3秒以上電解を中断する中断工程を行なう。そして、中間工程の終了したアルミニウム材料6は、搬送ロール3によって搬送されて第3電解槽1c内の電解液2中で電解され(3回目)る。
In the present embodiment, the first electrolysis process is performed using the first electrolysis tank 1a, the second electrolysis process is performed using the second electrolysis tank 1b, and the third electrolysis process is performed using the third electrolysis tank 1c. The fourth electrolysis process is performed using the fourth electrolysis tank 1d.
More specifically, as shown in FIG. 1, the aluminum material 6 wound around the take-up roll 4 is transported by the transport roll 3 and electrolyzed in the electrolytic solution 2 in the first electrolytic cell 1a (first time). ), And is taken out from the first electrolytic cell 1a by the transport roll 3, and an interruption process for interrupting electrolysis for 0.3 seconds or more is performed. And the aluminum material 6 which the intermediate process was complete | finished is conveyed by the conveyance roll 3, and is electrolyzed in the electrolyte solution 2 in the 2nd electrolytic vessel 1b (2nd time). Then, it is transported by the transport roll 3 and taken out from the second electrolytic cell 1b, and an interruption process for interrupting electrolysis for 0.3 seconds or more is performed. And the aluminum material 6 which the intermediate process was complete | finished is conveyed with the conveyance roll 3, and is electrolyzed in the electrolyte solution 2 in the 3rd electrolytic vessel 1c (3rd time).

なお、電解工程は、3回以上行なえばよく、3回以上の電解工程が、前回の電解工程よりも電解電流密度を高くして行なう電流密度増加工程と、電流密度増加工程よりも後に行なわれ、前回の電解工程よりも電解電流密度を低くして行なう電流密度減少工程とを含めばよい。
よって、電解工程は、図1に示す第4電解槽1dにおいて電解工程を行なわず、1回目〜3回目の3回のみで電解工程を終了してもよいが、さらに1回または複数回の電解工程を行なってもよい。本実施形態においては、3回目の電解工程終了後、必要に応じて上記と同様にして中間工程と4回目の電解工程とが行なわれ、巻き取りロール5に巻き取られて、電解工程が終了する。
なお、本実施形態において、電流密度増加工程を行なう電解槽が、図1に示す表面処理アルミニウム材料の製造装置における電流密度増加槽であり、電流密度減少工程を行なう電解槽が、図1に示す表面処理アルミニウム材料の製造装置において電流密度増加槽よりも下流に配置されている電流密度減少槽である。
The electrolysis process may be performed three or more times, and the electrolysis process of three or more times is performed after the current density increasing process performed by making the electrolysis current density higher than the previous electrolysis process and the current density increasing process. And a current density decreasing step performed by lowering the electrolysis current density than the previous electrolysis step.
Therefore, in the electrolysis process, the electrolysis process is not performed in the fourth electrolysis tank 1d shown in FIG. 1, and the electrolysis process may be completed only three times from the first to the third time. You may perform a process. In the present embodiment, after completion of the third electrolysis step, an intermediate step and a fourth electrolysis step are performed in the same manner as described above, wound on the take-up roll 5, and the electrolysis step is completed. To do.
In this embodiment, the electrolytic cell that performs the current density increasing step is the current density increasing cell in the surface-treated aluminum material manufacturing apparatus shown in FIG. 1, and the electrolytic cell that performs the current density decreasing step is shown in FIG. It is the current density decreasing tank arrange | positioned downstream from the current density increasing tank in the manufacturing apparatus of surface treatment aluminum material.

ここで、各電解工程に共通の電解条件について説明する。
電解槽1内に収容される電解液2としては、無孔質陽極酸化皮膜を生成する電解質であるホウ酸、ホウ酸塩、リン酸塩、アジピン酸塩、フタル酸塩、ケイ酸塩、安息香酸塩、酒石酸塩、マロン酸塩、クエン酸塩などの群から選ばれる1種または2種以上の電解質を溶解した水溶液などが用いられる。これらの電解質のなかでもホウ酸、アジピン酸塩、フタル酸塩が酸化皮膜の性状、コストなどの点で好ましい。また、電解液2としてアルカリ性のものを用いる場合、上記の電解質と水酸化ナトリウムとを含む水溶液や、ケイ酸塩を溶解した水溶液などを用いることができる。
Here, electrolysis conditions common to each electrolysis process will be described.
The electrolytic solution 2 contained in the electrolytic cell 1 includes boric acid, borate, phosphate, adipate, phthalate, silicate, benzoate, which are electrolytes that produce a nonporous anodic oxide film. An aqueous solution in which one or more electrolytes selected from the group of acid salts, tartrate salts, malonates, citrates and the like are dissolved is used. Of these electrolytes, boric acid, adipate, and phthalate are preferable in terms of the properties of the oxide film, cost, and the like. Moreover, when using alkaline as the electrolyte solution 2, the aqueous solution containing said electrolyte and sodium hydroxide, the aqueous solution which melt | dissolved the silicate, etc. can be used.

また、電解液2中の電解質濃度は2重量%からその電解質の飽和濃度の範囲で選ばれる。また、電解液2の液温は15〜70℃の範囲とすることができ、浴温を70℃超えの高温とする必要はない。   The electrolyte concentration in the electrolytic solution 2 is selected in the range of 2% by weight to the saturated concentration of the electrolyte. Moreover, the liquid temperature of the electrolyte solution 2 can be made into the range of 15-70 degreeC, and it is not necessary to make bath temperature high temperature exceeding 70 degreeC.

アルミニウム材料6は、各電解槽1a、1b、1c、1d内で、陽極となるように電源(図示略)に接続されて電解される。また、陰極(図示略)には、各電解槽1a、1b、1c、1d内に配置された不溶性の導電材料が用いられる。   The aluminum material 6 is electrolyzed by being connected to a power source (not shown) so as to be an anode in each of the electrolytic cells 1a, 1b, 1c, and 1d. In addition, an insoluble conductive material disposed in each electrolytic cell 1a, 1b, 1c, 1d is used for the cathode (not shown).

また、電解電流としては、直流電流が用いられ、直流電解では直流密度0.2〜20A/dm程度で電解が行われる。また、全ての電解工程の合計の電解時間は数秒〜10分程度とされる。
印加電圧は、直流電流では、電圧1Vに対して形成される酸化皮膜厚さが約1.4nmとなる関係があることから約5〜300V、好ましくは約20〜100Vの範囲とされる。電源装置などの点からは100V以下とすることが好ましく、このような低電圧での電解でも密着性と塗装後耐食性に優れた無孔質陽極酸化皮膜が得られる。
As the electrolysis current, direct current is used, the DC electrolysis electrolysis at DC density 0.2~20A / dm 2 about performed. Moreover, the total electrolysis time of all the electrolysis processes shall be several seconds-about 10 minutes.
The applied voltage is in the range of about 5 to 300 V, preferably about 20 to 100 V, because the thickness of the oxide film formed with respect to a voltage of 1 V is about 1.4 nm in a direct current. From the standpoint of a power supply device and the like, it is preferably 100 V or less, and a nonporous anodic oxide film excellent in adhesion and corrosion resistance after coating can be obtained even by electrolysis at such a low voltage.

次に、各電解工程において変化させる電解条件について説明する。
(電解電流密度)
本実施形態においては、電解工程は、3回以上の電解工程からなり、前回の電解工程よりも電解電流密度を高くして行なう電流密度増加工程と、前記電流密度増加工程よりも後に行なわれ、前回の電解工程よりも電解電流密度を低くして行なう電流密度減少工程とを含む。
具体的には、例えば、電解工程として1回目〜4回目の4回の電解工程を行なう場合、電解電流密度は以下に示すように増減させることができる。
1回目<2回目<3回目>4回目、1回目<2回目=3回目>4回目、1回目=2回目<3回目>4回目など。
Next, electrolysis conditions to be changed in each electrolysis process will be described.
(Electrolytic current density)
In the present embodiment, the electrolysis step includes three or more electrolysis steps, and is performed after the current density increase step performed by increasing the electrolysis current density higher than the previous electrolysis step, and the current density increase step, And a current density reduction step performed by lowering the electrolysis current density than the previous electrolysis step.
Specifically, for example, when performing the first to fourth electrolysis steps as the electrolysis step, the electrolysis current density can be increased or decreased as shown below.
1st <2nd <3rd> 4th, 1st <2nd = 3rd> 4th, 1st = 2nd <3rd> 4th, etc.

また、例えば、電解工程として1回目〜3回目の3回の電解工程を行なう場合、電解電流密度は以下に示すように増減させることができる。
1回目<2回目>3回目。
Further, for example, when performing the first to third electrolysis steps as the electrolysis step, the electrolysis current density can be increased or decreased as shown below.
1st <2nd> 3rd.

前回の電解工程と今回の電解工程との電解電流密度の差は、前回の電解工程の電解電流密度の3%以上であることが好ましく、6%以上であることがより好ましい。前回の電解工程と今回の電解工程との電解電流密度の差を、前回の電解工程の電解電流密度の3%以上とすることで、電流密度増加工程による耐食性を低下させる腐食の起点を少なくする効果や、電流密度減少工程による前回までの電解工程において局部的に多孔質化した皮膜の修復効果をより高めることができ、より一層密着性および耐食性に優れた無孔質陽極酸化皮膜が得られる。   The difference in electrolysis current density between the previous electrolysis process and the current electrolysis process is preferably 3% or more, more preferably 6% or more of the electrolysis current density of the previous electrolysis process. By setting the difference in electrolytic current density between the previous electrolysis process and the current electrolysis process to 3% or more of the electrolysis current density of the previous electrolysis process, the starting point of corrosion that reduces the corrosion resistance due to the current density increase process is reduced. The effect and the repair effect of the locally porous film in the previous electrolysis process due to the current density reduction process can be further enhanced, and a nonporous anodic oxide film with further excellent adhesion and corrosion resistance can be obtained. .

(電解液のpH)
電解液2のpHは、2〜12とすることができ、全ての電解工程のうち少なくとも最後の1回の電解工程に用いる電解液のpHを8以上、好ましくは9以上、より好ましくは10以上のアルカリ性電解液とすることが望ましい。
(PH of electrolyte)
The pH of the electrolytic solution 2 can be 2 to 12, and the pH of the electrolytic solution used in at least the last electrolytic step among all electrolytic steps is 8 or more, preferably 9 or more, more preferably 10 or more. It is desirable to use an alkaline electrolyte.

また、図1に示すように、2回目以降の電解工程は、前回の電解工程終了後0.3秒以上電解を中断する中断工程を行なってから行なうことが望ましい。中断工程において電解を中断する時間は0.3秒以上、より好ましくは0.8秒以上とされる。なお、電解を中断する時間が30秒を超えると、製造に要する時間が長くなるため、好ましくない。   Further, as shown in FIG. 1, it is desirable that the second and subsequent electrolysis processes be performed after an interruption process for interrupting electrolysis for 0.3 seconds or more after the end of the previous electrolysis process. The time during which the electrolysis is interrupted in the interruption step is set to 0.3 seconds or more, more preferably 0.8 seconds or more. It should be noted that if the time for interrupting electrolysis exceeds 30 seconds, the time required for production becomes longer, which is not preferable.

このようにして得られた表面処理アルミニウム材料は、空孔率が5%以下、好ましくは2%以下、より好ましくは1%以下で、密着性および耐食性に優れた無孔質陽極酸化皮膜を有するものとなる。   The surface-treated aluminum material thus obtained has a porosity of 5% or less, preferably 2% or less, more preferably 1% or less, and has a nonporous anodic oxide film excellent in adhesion and corrosion resistance. It will be a thing.

アルミニウム材料として幅1000mm、厚み0.3mmのコイル状のJIS1100アルミニウム合金板材を用い、5%水酸化ナトリウム水溶液で50℃、10秒間エッチング処理を行い、水で10秒間洗浄したのち、5%硝酸水溶液を用いて室温で10秒間中和処理を行い、水で10秒間洗浄する前処理を行なった。次いで、図1に示す製造装置を用い、前処理後のアルミニウム材料を、表1および表2に示す電解液、電解電流密度(直流)、電解時間で1回または複数回の電解工程を行なうとともに、各電解工程の間に表1および表2に示す電解を中断する時間の中断工程を行い実施例1〜4および比較例1〜2の無孔質陽極酸化皮膜を有する表面処理アルミニウム材料を得た。   Using a coiled JIS1100 aluminum alloy plate having a width of 1000 mm and a thickness of 0.3 mm as an aluminum material, etching is performed with a 5% aqueous sodium hydroxide solution at 50 ° C. for 10 seconds, washed with water for 10 seconds, and then a 5% aqueous nitric acid solution. The sample was neutralized at room temperature for 10 seconds and washed with water for 10 seconds. Next, using the manufacturing apparatus shown in FIG. 1, the pre-treated aluminum material is subjected to one or a plurality of electrolysis steps according to the electrolytic solution, electrolytic current density (direct current), and electrolysis time shown in Table 1 and Table 2. The surface treatment aluminum material which has the nonporous anodized film of Examples 1-4 and Comparative Examples 1-2 by performing the interruption process of the time which interrupts the electrolysis shown in Table 1 and Table 2 between each electrolysis process is obtained. It was.

Figure 2008163434
Figure 2008163434

Figure 2008163434
Figure 2008163434

なお、電解工程の回数が4回未満である場合、電解工程を行なわない電解槽に電解液を入れないでアルミニウム材料を通過させた。また、表1に示すアルカリ性の電解液は、水酸化ナトリウムを含有させることによって電解液のpHを調整して得られたものである。   In addition, when the frequency | count of the electrolysis process was less than 4, it was made to pass aluminum material, without putting electrolyte solution into the electrolytic cell which does not perform an electrolysis process. Moreover, the alkaline electrolyte shown in Table 1 is obtained by adjusting the pH of the electrolyte by containing sodium hydroxide.

このようにして得られた表面処理アルミニウム材料の無孔質陽極酸化皮膜の膜厚を調べた。また、以下に示すようにして、表面処理アルミニウム材料の密着性、耐食性、空孔率を調べた。その結果を表1および表2に示す。
(密着性)
実施例1〜4および比較例1〜2の表面処理アルミニウム材料に、アクリル系樹脂を5μmの厚みで塗装し、260℃で20秒の焼付け処理を行ない、120℃の温水に30分間浸漬させた後、碁盤目試験を行なった。密着性は、100桝中に剥離のない場合を◎、剥離が5個以下である場合を○、剥離が5個を超える場合を×として評価した。
(耐食性)
実施例1〜4および比較例1〜2の表面処理アルミニウム材料に、アクリル系樹脂を5μmの厚みで塗装し、260℃で20秒の焼付け処理を行なった。次いで、JIS規格の塩水噴霧試験を270日間行って腐食状態を観察した。耐食性は、腐食がない場合を◎、腐食面積が3%以下である場合を○、腐食面積が3%を超える場合を×として評価した。
(空孔率)
表面処理アルミニウム材料の陽極酸化皮膜の任意の表面を20箇所、5万倍の倍率で透過電子顕微鏡を用いて観察し、孔の面積率を測定した。
The film thickness of the nonporous anodized film of the surface-treated aluminum material thus obtained was examined. Further, the adhesion, corrosion resistance, and porosity of the surface-treated aluminum material were examined as described below. The results are shown in Tables 1 and 2.
(Adhesion)
The surface-treated aluminum materials of Examples 1 to 4 and Comparative Examples 1 and 2 were coated with an acrylic resin at a thickness of 5 μm, subjected to baking treatment at 260 ° C. for 20 seconds, and immersed in warm water at 120 ° C. for 30 minutes. Later, a cross-cut test was performed. The adhesion was evaluated as ◎ when there was no peeling in 100 mm, ○ when the peeling was 5 or less, and × when the peeling exceeded 5 pieces.
(Corrosion resistance)
The surface-treated aluminum materials of Examples 1 to 4 and Comparative Examples 1 and 2 were coated with an acrylic resin with a thickness of 5 μm and subjected to a baking treatment at 260 ° C. for 20 seconds. Next, a JIS standard salt spray test was conducted for 270 days to observe the corrosion state. Corrosion resistance was evaluated as ◎ when there was no corrosion, ◯ when the corrosion area was 3% or less, and x when the corrosion area exceeded 3%.
(Porosity)
Arbitrary surfaces of the anodized film of the surface-treated aluminum material were observed at 20 places at a magnification of 50,000 times using a transmission electron microscope, and the area ratio of the holes was measured.

表1および表2より、本発明の実施例では、全て密着性および耐食性の評価が◎または○となり、比較例と比較して高い密着性および耐食性が得られることが確認できた。
また、表1に示すように、本発明の実施例の陽極酸化皮膜は、空孔率が0.3%以下の無孔質陽極酸化皮膜であった。
また、中断工程の時間以外の条件は同じである実施例1と実施例4とを比較すると、中断工程の時間が0.3秒以上である実施例1では、中断工程の時間が0.3未満である実施例4と比較して、耐食性および密着性に優れていることが確認できた。
From Tables 1 and 2, in the examples of the present invention, the adhesion and corrosion resistance were all evaluated as ◎ or ◯, and it was confirmed that higher adhesion and corrosion resistance were obtained compared to the comparative example.
Moreover, as shown in Table 1, the anodized film of the example of the present invention was a nonporous anodized film having a porosity of 0.3% or less.
Further, comparing Example 1 and Example 4 in which the conditions other than the interruption process time are the same, in Example 1 in which the interruption process time is 0.3 seconds or more, the interruption process time is 0.3. Compared with Example 4 which is less than this, it has confirmed that it was excellent in corrosion resistance and adhesiveness.

図1は本発明の表面処理アルミニウム材料の製造装置の一例を示した図であって、本発明の製造装置を用いる本発明の表面処理アルミニウム材料の製造方法の一例を説明するための図である。FIG. 1 is a diagram showing an example of a production apparatus for a surface-treated aluminum material according to the present invention, and is a diagram for explaining an example of a method for producing a surface-treated aluminum material according to the present invention using the production apparatus according to the present invention. .

符号の説明Explanation of symbols

1…電解槽、2…電解液、3…搬送ロール、4、5…巻き取りロール、6…アルミニウム材料、1a…第1電解槽、1b…第2電解槽、1c…第3電解槽、1d…第4電解槽。 DESCRIPTION OF SYMBOLS 1 ... Electrolytic cell, 2 ... Electrolytic solution, 3 ... Conveyance roll, 4, 5 ... Winding roll, 6 ... Aluminum material, 1a ... 1st electrolytic cell, 1b ... 2nd electrolytic cell, 1c ... 3rd electrolytic cell, 1d ... 4th electrolytic cell.

Claims (5)

アルミニウム材料を電解液中で電解する電解工程を行うことにより、前記アルミニウム材料の表面に無孔質陽極酸化皮膜を形成する表面処理アルミニウム材料の製造方法において、
前記電解工程は、3回以上の電解工程からなり、前回の電解工程よりも電解電流密度を高くして行なう電流密度増加工程と、前記電流密度増加工程よりも後に行なわれ、前回の電解工程よりも電解電流密度を低くして行なう電流密度減少工程とを含むことを特徴とする表面処理アルミニウム材料の製造方法。
In the method for producing a surface-treated aluminum material for forming a nonporous anodic oxide film on the surface of the aluminum material by performing an electrolysis step of electrolyzing the aluminum material in an electrolytic solution,
The electrolysis step comprises three or more electrolysis steps, and is performed after the current density increase step performed by increasing the electrolysis current density higher than the previous electrolysis step, and after the current density increase step. A method for producing a surface-treated aluminum material, comprising a step of reducing a current density by reducing an electrolytic current density.
2回目以降の電解工程は、前回の電解工程終了後0.3秒以上電解を中断する中断工程を行なってから行なうことを特徴とする請求項1に記載の表面処理アルミニウム材料の製造方法。   2. The method for producing a surface-treated aluminum material according to claim 1, wherein the second and subsequent electrolysis steps are performed after an interruption step of interrupting electrolysis for 0.3 seconds or more after the end of the previous electrolysis step. 前記3回以上の電解工程のうち少なくとも最後の1回の電解工程が、前記電解液としてpH8以上のアルカリ性電解液を用いることを特徴とする請求項1または請求項2に記載の表面処理アルミニウム材料の製造方法。   3. The surface-treated aluminum material according to claim 1, wherein an alkaline electrolytic solution having a pH of 8 or more is used as the electrolytic solution in at least one last electrolytic step among the three or more electrolytic steps. Manufacturing method. 前記無孔質陽極酸化皮膜の空孔率が、2%以下であることを特徴とする請求項1〜請求項3のいずれかに記載の表面処理アルミニウム材料の製造方法。   The method for producing a surface-treated aluminum material according to any one of claims 1 to 3, wherein the porosity of the nonporous anodic oxide film is 2% or less. アルミニウム材料を電解液中で電解する電解工程を行うことにより、前記アルミニウム材料の表面に無孔質陽極酸化皮膜を形成する表面処理アルミニウム材料の製造装置であって、
上流から下流まで直列に配置された3つ以上の電解槽を備え、
前記3つ以上の電解槽は、一つ前の電解槽よりも高い電解電流密度で電解工程を行なう電流密度増加槽と、前記電流密度増加槽よりも下流に配置され、一つ前の電解槽よりも低い電解電流密度で電解工程を行なう電流密度減少槽とを備えることを特徴とする表面処理アルミニウム材料の製造装置。
An apparatus for producing a surface-treated aluminum material that forms a nonporous anodized film on the surface of the aluminum material by performing an electrolysis step of electrolyzing the aluminum material in an electrolyte solution,
Comprising three or more electrolyzers arranged in series from upstream to downstream;
The three or more electrolytic cells are disposed at a downstream of the current density increasing tank, the current density increasing tank performing an electrolysis process at a higher electrolytic current density than the previous electrolytic tank, and the previous electrolytic tank. An apparatus for producing a surface-treated aluminum material, comprising: a current density reduction tank that performs an electrolysis process at a lower electrolysis current density.
JP2006356537A 2006-12-28 2006-12-28 Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material Expired - Fee Related JP5014781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356537A JP5014781B2 (en) 2006-12-28 2006-12-28 Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356537A JP5014781B2 (en) 2006-12-28 2006-12-28 Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material

Publications (2)

Publication Number Publication Date
JP2008163434A true JP2008163434A (en) 2008-07-17
JP5014781B2 JP5014781B2 (en) 2012-08-29

Family

ID=39693282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356537A Expired - Fee Related JP5014781B2 (en) 2006-12-28 2006-12-28 Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material

Country Status (1)

Country Link
JP (1) JP5014781B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644795A (en) * 1979-09-20 1981-04-24 Toyota Motor Corp Anodic oxidation of aluminum
JPS61198245A (en) * 1985-02-28 1986-09-02 Showa Alum Corp Treatment of undercoat layer of electrophotographic sensitive body
JP2001232965A (en) * 2000-02-24 2001-08-28 Fuji Photo Film Co Ltd Method for manufacturing original plate for lithographic printing plate
JP2005023411A (en) * 2003-07-02 2005-01-27 Mitsubishi Alum Co Ltd Surface treated aluminum material, and aluminum formed body
JP2006028535A (en) * 2004-07-12 2006-02-02 Mitsubishi Alum Co Ltd Surface-treated aluminum material, and heat exchanger
JP2006348368A (en) * 2005-06-20 2006-12-28 Ulvac Kyushu Corp Method for surface treating aluminum and aluminum alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644795A (en) * 1979-09-20 1981-04-24 Toyota Motor Corp Anodic oxidation of aluminum
JPS61198245A (en) * 1985-02-28 1986-09-02 Showa Alum Corp Treatment of undercoat layer of electrophotographic sensitive body
JP2001232965A (en) * 2000-02-24 2001-08-28 Fuji Photo Film Co Ltd Method for manufacturing original plate for lithographic printing plate
JP2005023411A (en) * 2003-07-02 2005-01-27 Mitsubishi Alum Co Ltd Surface treated aluminum material, and aluminum formed body
JP2006028535A (en) * 2004-07-12 2006-02-02 Mitsubishi Alum Co Ltd Surface-treated aluminum material, and heat exchanger
JP2006348368A (en) * 2005-06-20 2006-12-28 Ulvac Kyushu Corp Method for surface treating aluminum and aluminum alloy

Also Published As

Publication number Publication date
JP5014781B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP2009256778A (en) Method for forming alumite film and alumite film
JP2013060613A (en) Method for forming oxide film
JP5014781B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
JP5143416B2 (en) Method for producing surface-treated aluminum material
JP5014782B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
JP5149591B2 (en) Method for producing surface-treated aluminum material
JP5073287B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
JP5073288B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
JP5352204B2 (en) Surface-treated aluminum material for vacuum equipment
JPH07138687A (en) Aluminum alloy base material for planographic printing plate
JP5074145B2 (en) Method for producing surface-treated aluminum material and apparatus for producing surface-treated aluminum material
JP5017050B2 (en) Method for producing surface-treated aluminum material
JP5149590B2 (en) Method for producing surface-treated aluminum material
JP5086688B2 (en) Method for producing surface-treated aluminum
JP2005015916A (en) Method of producing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method of producing electrode material for electrolytic capacitor and aluminum electrolytic capacitor
JP5397884B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP5173185B2 (en) Method for producing surface-treated aluminum material
JP5144206B2 (en) Method for producing surface-treated aluminum material
JP5426956B2 (en) Manufacturing method of surface treatment member for semiconductor liquid crystal manufacturing apparatus
JP5928664B2 (en) Method for anodizing aluminum material
JP5352203B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP2007092167A (en) Etching method for forming etching pits
JP5419066B2 (en) Method for producing surface-treated aluminum material for vacuum equipment
JP2011122219A (en) Method for manufacturing surface-treated aluminum material for vacuum equipment
JP2005171340A (en) Anodized aluminum catalyst carrier thin sheet, and method of continuously producing heat resistant alumina-coated thin sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5014781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees