JP2008162754A - Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported - Google Patents

Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported Download PDF

Info

Publication number
JP2008162754A
JP2008162754A JP2006354328A JP2006354328A JP2008162754A JP 2008162754 A JP2008162754 A JP 2008162754A JP 2006354328 A JP2006354328 A JP 2006354328A JP 2006354328 A JP2006354328 A JP 2006354328A JP 2008162754 A JP2008162754 A JP 2008162754A
Authority
JP
Japan
Prior art keywords
rotor
transferred
transfer
drum
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006354328A
Other languages
Japanese (ja)
Inventor
Akio Kojima
朗夫 小島
Noriaki Kojima
徳明 小島
Tadayori Suzuki
忠順 鈴木
Tomonori Kojima
智徳 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOJIMAGUMI KK
Kojimagumi Co Ltd
Original Assignee
KOJIMAGUMI KK
Kojimagumi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOJIMAGUMI KK, Kojimagumi Co Ltd filed Critical KOJIMAGUMI KK
Priority to JP2006354328A priority Critical patent/JP2008162754A/en
Publication of JP2008162754A publication Critical patent/JP2008162754A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constant volume feeder for articles to be transported having a housing with a hopper simplified in structure, reduced in size and weight, and contributing to the saving of cost. <P>SOLUTION: A large-diameter through hole is formed at each of both end walls of a drum Hd of the housing. Recessed grooves forming conveying chambers arranged in the circumferential direction between themselves and the inner peripheral surface of the drum Hd are formed at the outer peripheral surface of a rotor body Rm. A pair of disk-like end walls closing axial both ends of the recessed grooves are formed integrally with the rotor body Rm. Both ends of a rotor shaft Rj extend from the disk-like end walls to the outside through the large-diameter through holes and pivotally supported on an installation wall B independently of the housing H. One end thereof is connected to a rotatingly driving means M outside the housing H. The gaps between the outer peripheral parts of the disk-like end walls and the opening edges of the large-diameter through holes are sealed by first seal devices allowing the relative rotation and misalignment thereof. The gap between the portion of the outer peripheral part of the rotor body Rm held by the adjacent conveying chambers and the inner peripheral surface of the drum Hd is sealed by a second seal device allowing the relative rotation and misalignment thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、スラリ状又は無数の粒状の被移送物の定量供給装置、並びにこの装置を用いた移送システムにおける被移送物の供給量算出方法に関する。   The present invention relates to a quantitative supply device for a slurry-like or countless granular object to be transferred, and a method for calculating the supply amount of the object to be transferred in a transfer system using this apparatus.

本発明において、スラリ状の被移送物とは、水を多量に含んだ浚渫土砂その他の土砂や、種々の泥土を含み、また無数の粒状の被移送物とは、水を殆ど含まない無数の粒状体群或いは無数の粉粒体群であって流動性を有するものを含む。   In the present invention, the slurry-like transferred object includes dredged sand and other earth and sand containing a large amount of water, various mud soils, and the innumerable granular transferred object is an infinite number of hardly containing water. It includes a granular group or an infinite number of granular groups that have fluidity.

従来よりスラリ状被移送物、例えば浚渫土砂を移送管を通して遠隔地まで風力圧送するに当たり、ホッパ内に投入、貯留した浚渫土砂を定量供給装置を用いて移送管内に供給することが知られている。この場合に使用する定量供給装置としては、例えば、下記特許文献1に示されるように、軸線が略水平な円筒状のドラム部を有して設置面に固定されると共に該ドラム部の周壁上部に入口が、また下部に出口がそれぞれ開口するハウジングと、ドラム部内に収容されて該ドラム部の軸線回りに回転するロータとを備え、そのロータのロータ本体外周面には、ドラム部内周面との間に周方向に並ぶ複数の移送室を画成する複数の凹溝部が設けられ、ハウジングの上部には、入口に連通するホッパが一体的に連設されると共に、ハウジングの下部には、出口に連通する移送管の上流端部が接続され、ホッパ内に投入、堆積した流動可能なスラリ状又は無数の粒状の被移送物を、ロータの回転に応じて回転する複数の移送室に入口を通して順次に落下、収容する一方、それら移送室内の被移送物を出口を通して移送管内に順次に供給するものが既に提案されている。
特公平7−76454号公報
Conventionally, it is known that slurry-like objects to be transported, for example, dredged sand, are fed into a transfer pipe by using a quantitative supply device, when the wind pressure is fed to a remote place through a transfer pipe by wind force. . As a quantitative supply device used in this case, for example, as shown in Patent Document 1 below, an axial line has a substantially horizontal cylindrical drum portion and is fixed to an installation surface, and an upper portion of a peripheral wall of the drum portion. And a rotor that is housed in the drum portion and rotates about the axis of the drum portion, and an outer peripheral surface of the rotor body of the rotor includes an inner peripheral surface of the drum portion. A plurality of concave grooves defining a plurality of transfer chambers arranged in the circumferential direction are provided between the hopper, a hopper communicating with the inlet is integrally connected to the upper portion of the housing, and a lower portion of the housing is The upstream end of the transfer pipe communicating with the outlet is connected, and the flowable slurry-like or innumerable granular materials to be transferred that have been charged and accumulated in the hopper are entered into a plurality of transfer chambers that rotate according to the rotation of the rotor. Fall sequentially through While accommodated, which sequentially supplied to the transfer pipe to be transferred thereof transfer chamber and through the outlet have already been proposed.
Japanese Patent Publication No. 7-76454

ところが上記従来装置では、ハウジングにおけるドラム部の両端壁が、ロータ本体の両端面全面を覆えるように大型に形成され、そのドラム部の両端壁には、ロータ軸の両端部を回転自在に嵌合、支持させる軸受部がそれぞれ設けられ、そのロータ軸を回転駆動する駆動手段もドラム部と一体的に設置されており、全体としてドラム部ひいてはハウジングが大型化し且つ構造複雑化してコストが嵩む問題がある。またロータ回転時において、ロータ本体とドラム部との相互の摺動領域がロータ両端部においても比較的広範囲に存するため、それだけシール面積が広くなってシール構造が大掛かりとなると共に、ロータに作用する摺動抵抗が大きくなる等の問題があった。   However, in the above-described conventional device, both end walls of the drum portion of the housing are formed large so as to cover the entire surface of both end surfaces of the rotor body, and both end portions of the rotor shaft are rotatably fitted to both end walls of the drum portion. In this case, bearing parts to be supported are provided, and driving means for rotating the rotor shaft is also installed integrally with the drum part. As a whole, the drum part and thus the housing becomes larger and the structure becomes complicated and the cost increases. There is. Further, when the rotor rotates, the mutual sliding area between the rotor main body and the drum portion exists in a relatively wide range at both ends of the rotor, so that the seal area becomes large and the seal structure becomes large and acts on the rotor. There were problems such as an increase in sliding resistance.

また装置の組立完成後において、ロータ軸とハウジングのドラム部内周面との間に、装置各部の製作誤差や組立誤差に起因して芯ずれが生じた場合には、ロータ軸とドラム部内周面との間から被移送物が漏洩し易くなるので、このような芯ずれ防止のために、装置各部の製作精度や組立精度を特別に高くする必要があり、それだけコスト増となる問題もあった。   In addition, after the assembly of the device is completed, if there is a misalignment between the rotor shaft and the drum portion inner peripheral surface of the housing due to manufacturing errors or assembly errors of each part of the device, the rotor shaft and drum portion inner peripheral surface Since it is easy for the transferred object to leak from between the two, it is necessary to increase the manufacturing accuracy and assembly accuracy of each part of the device in order to prevent such misalignment, which increases the cost. .

本発明は、かかる実情に鑑みてなされたものであり、従来の上記問題を簡単な構造で一挙に解決できるようにした被移送物の定量供給装置、およびこれを用いた移送システムにおいて被移送物の供給流量を極力正確に算出できるようにした供給量算出方法を提供することを目的とする。   The present invention has been made in view of such a situation, and a fixed-quantity supply device for a material to be transported that can solve the above-described conventional problems at once with a simple structure, and a material to be transported in a transport system using the device. It is an object of the present invention to provide a supply amount calculation method capable of calculating the supply flow rate of the above as accurately as possible.

上記目的を達成するために請求項1の発明は、軸線が略水平な円筒状のドラム部を有して設置面に固定されると共に該ドラム部の周壁上部に入口が、また周壁下部に出口がそれぞれ開口するハウジングと、前記ドラム部内に収容されて該ドラム部の軸線回りに回転するロータとを備え、そのロータのロータ本体外周面には、前記ドラム部内周面との間に周方向に並ぶ複数の移送室を画成する複数の凹溝部が設けられ、前記ハウジングの上部には、前記入口に連通するホッパが一体的に連設されると共に、前記ハウジングの下部には、前記出口に連通する移送管の上流端部が接続され、前記ホッパ内に投入、堆積した流動可能なスラリ状又は無数の粒状の被移送物を、前記ロータの回転に応じて回転する前記複数の移送室に前記入口を通して順次に落下、収容する一方、それら移送室内の前記被移送物を前記出口を通して前記移送管内に順次に落下、供給する被移送物の定量供給装置であって、前記ドラム部の両端壁には、前記ロータ本体の外径とほぼ等しい内径の大径貫通孔がそれぞれ形成され、前記ロータ本体には、前記複数の凹溝部の軸方向両端を閉じる一対の円板状端壁と、その一対の円板状端壁より前記大径貫通孔を通して外方に両端部がそれぞれ突出するロータ軸とが一体的に設けられ、そのロータ軸の両端部は、前記ハウジングから独立して設置面に回転自在に支持されると共に、その少なくとも一端部が前記ハウジング外で回転駆動手段に連動連結され、前記円板状端壁の外周部と、これに対応する前記大径貫通孔の開口縁部との間が、その両者の相対回転及び芯ずれを許容する第1シール装置により全周に亘りシールされ、前記ロータ本体外周部の、相隣なる移送室に挟まれた部分と、前記ドラム部内周面との間が、その両者の相対回転及び芯ずれを許容する第2シール装置により該ロータ本体の軸方向全長に亘りシールされることを特徴とする。   In order to achieve the above object, the invention of claim 1 has a cylindrical drum portion whose axis is substantially horizontal and is fixed to the installation surface, and has an inlet at the upper peripheral wall of the drum portion and an outlet at the lower peripheral wall. Respectively, and a rotor that is housed in the drum portion and rotates about the axis of the drum portion, and the rotor body outer peripheral surface of the rotor is circumferentially spaced between the inner peripheral surface of the drum portion. A plurality of concave grooves defining a plurality of transfer chambers arranged are provided, and a hopper communicating with the inlet is integrally connected to the upper portion of the housing, and the outlet is connected to the lower portion of the housing. An upstream end of a communicating transfer pipe is connected, and a slurry-like or innumerable granular material to be transferred, which is charged and accumulated in the hopper, is transferred to the plurality of transfer chambers which rotate according to the rotation of the rotor. In order through the entrance A fixed quantity supply device for the object to be transferred, which is sequentially dropped and supplied into the transfer pipe through the outlet, on both end walls of the drum portion, A large-diameter through hole having an inner diameter substantially equal to the outer diameter of the rotor body is formed, and the rotor body has a pair of disk-like end walls that close both axial ends of the plurality of concave grooves, and the pair of disks. A rotor shaft with both ends projecting outwardly from the end wall through the large-diameter through hole is integrally provided, and both ends of the rotor shaft are rotatably supported on the installation surface independently of the housing. In addition, at least one end of the disk-shaped end wall is interlocked and connected outside the housing, and the space between the outer peripheral portion of the disc-shaped end wall and the corresponding opening edge of the large-diameter through hole, Relative rotation and centering of both Between the portion of the outer peripheral portion of the rotor body sandwiched between adjacent transfer chambers and the inner peripheral surface of the drum portion, and the relative rotation of both of them. Sealing is performed over the entire axial length of the rotor body by a second sealing device that allows misalignment.

また請求項2の発明は、請求項1の上記構成に加えて、前記第1シール装置は、前記ドラム部又は前記円板状端壁の何れか一方に着脱可能に固着されてその何れか他方を空隙を存して覆うリング状の蓋板と、その蓋板と前記ドラム部又は前記円板状端壁の何れか他方との間に設けられてその間を相対摺動可能に摺接させる少なくとも1組の環状シール手段とを備えることを特徴とする。   According to a second aspect of the present invention, in addition to the above-described configuration of the first aspect, the first sealing device is detachably fixed to either the drum portion or the disc-shaped end wall, and the other one of them. At least a ring-shaped lid plate covering the gap, and the lid plate and either the drum portion or the disk-shaped end wall, and at least slidably contact therebetween. And a set of annular sealing means.

更に請求項3の発明は、請求項2の上記構成に加えて、前記第2シール装置は、前記ロータ本体の軸方向全長に亘り直線状に延びていて前記ロータ本体外周部の、相隣なる移送室に挟まれた部分にそれぞれ径方向摺動可能に且つ液密に嵌合支持された複数のシール部材と、その各シール部材をロータの径方向外方に付勢して該シール部材の径方向外端部を前記ドラム部の内周面に摺動可能に圧接させる付勢手段とを備えることを特徴とする。   Furthermore, the invention of claim 3 adds to the above-described configuration of claim 2, and the second sealing device extends linearly over the entire axial length of the rotor body and is adjacent to the outer periphery of the rotor body. A plurality of seal members that are slidably and liquid-tightly fitted and supported by the portions sandwiched between the transfer chambers, and urging each of the seal members radially outward of the rotor. And an urging means that slidably presses the radially outer end portion against the inner peripheral surface of the drum portion.

さらに請求項4の発明は、請求項3の上記構成に加えて、前記円板状端壁の外面外周部には環状ボス部が突設され、そのボス部に設けた径方向支持孔に前記シール部材の基部が径方向摺動可能に支持され、その支持部よりも径方向内方側で前記シール部材の基部と、前記円板状端壁の外面との間に、前記付勢手段が外側から脱着可能に設けられることを特徴とする。   Furthermore, in addition to the above-described configuration of claim 3, the invention of claim 4 further includes an annular boss projecting from the outer peripheral portion of the outer surface of the disk-shaped end wall, and the radial support hole provided in the boss has A base portion of the seal member is supported so as to be slidable in the radial direction, and the biasing means is disposed between the base portion of the seal member and the outer surface of the disk-shaped end wall on the radially inner side of the support portion. It is provided to be removable from the outside.

さらに請求項5の発明は、請求項3又は4の前記構成に加えて、各々の前記シール部材は、前記部分にこれを軸方向に横切るように形成された支持溝に嵌合され、前記蓋板には、前記複数のシール部材の前記支持溝に対する抜差を許容する複数の作業窓が形成され、その各作業窓を液密に塞ぐ小蓋が前記蓋板に着脱可能に装着されることを特徴とする。   Furthermore, in the invention of claim 5, in addition to the structure of claim 3 or 4, each of the sealing members is fitted into a support groove formed in the portion so as to cross the axial direction, and the lid The plate is formed with a plurality of work windows that allow the plurality of sealing members to be inserted into and removed from the support groove, and a small lid that liquid-tightly closes each work window is detachably attached to the lid plate. It is characterized by.

さらに請求項6の発明は、請求項3,4又は5の前記構成に加えて、前記ドラム部の大径貫通孔の内周面と、前記円板状端壁の外周面との対向面間には、その対向面間を通して前記移送室から前記第1シール装置側へ被移送物が移動するのを抑制する第3シール装置が設けられることを特徴とする。   Furthermore, the invention of claim 6 provides the structure between the opposed surface of the inner peripheral surface of the large-diameter through hole of the drum portion and the outer peripheral surface of the disc-shaped end wall in addition to the configuration of claim 3, 4 or 5. Is provided with a third seal device that suppresses movement of the transferred object from the transfer chamber to the first seal device side through the opposing surfaces.

さらに請求項7の発明は、請求項1〜6の何れか1項の前記構成に加えて、前記ロータ本体には、前記被移送物が前記移送室内から前記出口を通して前記移送管内に落下する際に該被移送物の移送室内面からの剥離を促進する剥離促進手段が設けられることを特徴とする。   Furthermore, the invention according to claim 7 is the configuration according to any one of claims 1 to 6, wherein the object to be transferred falls on the rotor body from the transfer chamber through the outlet into the transfer pipe. Further, a peeling accelerating means for accelerating the peeling of the transferred object from the inner surface of the transfer chamber is provided.

さらに請求項8の発明は、請求項1〜7の何れかに記載の定量供給装置を用いた移送システムにおける被移送物の供給量算出方法であって、前記ロータの回転速度と、前記定量供給装置から前記移送管への被移送物の供給流量との相関関係を予め求めておき、そのロータの回転速度を計測し、その計測値と前記相関関係とに基づいて前記供給流量を算出することを特徴とする。   Furthermore, the invention of claim 8 is a method for calculating a supply amount of an object to be transferred in a transfer system using the quantitative supply device according to any one of claims 1 to 7, wherein the rotational speed of the rotor and the quantitative supply Correlating the supply flow rate of the object to be transferred from the apparatus to the transfer pipe in advance, measuring the rotational speed of the rotor, and calculating the supply flow rate based on the measured value and the correlation It is characterized by.

さらに請求項9の発明は、請求項1〜7の何れかに記載の定量供給装置を用いた移送システムにおける被移送物の供給量算出方法であって、前記移送室内から前記出口を通して前記移送管内に落下する際の前記被移送物の落下量を予め求めておき、前記被移送物が前記移送室内から前記出口を通して前記移送管内に落下する回数を計測し、その計測値と前記落下量とに基づいて前記被移送物の供給量を算出することを特徴とする。   Furthermore, the invention of claim 9 is a method for calculating the supply amount of an object to be transferred in a transfer system using the quantitative supply device according to any one of claims 1 to 7, wherein the supply amount is calculated in the transfer pipe from the transfer chamber through the outlet. The amount of the object to be transported when falling is determined in advance, the number of times the object to be transported falls from the transfer chamber through the outlet into the transfer pipe, and the measured value and the amount of fall are The supply amount of the transferred object is calculated based on the above.

以上のように本発明によれば、ハウジングにおける円筒状ドラム部の両端壁には、ロータ本体の外径とほぼ等しい内径の大径貫通孔がそれぞれ形成され、ロータ本体は、それの外周面に設けた、移送室画成用の複数の凹溝部の軸方向両端を閉じる一対の円板状端壁と、その一対の円板状端壁より大径貫通孔を通して外方に両端部がそれぞれ突出するロータ軸とを一体的に備え、そのロータ軸の両端部は、ハウジングから独立して設置面に回転自在に支持されるので、ハウジング(ドラム部)よりロータに対する軸受支持機能を取り除いて、設置面上においてハウジングおよびロータの支持を別個独立化することができ、これにより、装置の主体をなすホッパ付きハウジング(特にドラム部)の構造を大幅に簡素化し且つ小型軽量化することができる。その上、ドラム部の両端部にそれぞれ設けた大径貫通孔の内周部と、これに対応するロータ本体の円板状端壁の外周部との間が、その両者の相対回転及び芯ずれを許容する第1シール装置により全周に亘りシールされ、ロータ本体外周部の、相隣なる移送室に挟まれた部分と、ドラム部内周面との間が、その両者の相対回転及び芯ずれを許容する第2シール装置により該ロータ本体の軸方向全長に亘りシールされるので、ドラム部とロータ相互に多少の芯ずれが生じても、ロータとドラム部との間の必要なシール領域を的確にシールできて、被移送物の長期間に亘る安定した定量供給が可能となり、しかもそのシール領域を比較的狭小にできるためシール構造を極力簡素化できると共に、ロータに作用するシール部の摺動抵抗を極力軽減できる。しかもこのようにドラム部とロータ相互の多少の芯ずれが許容されるシール構造としたことで、従来装置の如く芯ずれ防止のために装置各部の製作精度や組立精度を特別に高くする必要はなくなり、コスト節減にも大いに寄与することができる。   As described above, according to the present invention, large-diameter through holes having an inner diameter substantially equal to the outer diameter of the rotor body are formed in both end walls of the cylindrical drum portion in the housing, and the rotor body is formed on the outer circumferential surface thereof. A pair of disc-shaped end walls that closes both axial ends of the plurality of groove portions for defining the transfer chamber, and both ends project outward from the pair of disc-shaped end walls through large-diameter through holes. Since both ends of the rotor shaft are rotatably supported on the installation surface independently of the housing, the bearing support function for the rotor is removed from the housing (drum portion) and installed. The support of the housing and the rotor can be made independent on the surface, thereby greatly simplifying the structure of the housing with a hopper (particularly the drum portion) which is the main body of the apparatus and reducing the size and weight. Kill. In addition, the relative rotation and misalignment between the inner peripheral part of the large-diameter through hole provided at both ends of the drum part and the outer peripheral part of the corresponding disk-shaped end wall of the rotor body are provided. Between the part of the outer peripheral part of the rotor body sandwiched between adjacent transfer chambers and the inner peripheral surface of the drum part, and the relative rotation and misalignment between them. Is sealed over the entire length in the axial direction of the rotor main body by the second sealing device that allows for a sufficient amount of misalignment between the drum portion and the rotor. Sealing can be performed accurately, and a stable quantitative supply of the transferred object can be performed over a long period of time. Moreover, the sealing area can be made relatively narrow, so that the sealing structure can be simplified as much as possible, and the sliding of the sealing portion acting on the rotor can be achieved. Dynamic resistance can be reduced as much as possible . In addition, since the drum structure and the rotor allow a slight misalignment between the rotor and the conventional device, it is necessary to increase the manufacturing accuracy and assembly accuracy of each part of the device to prevent misalignment. This can greatly contribute to cost savings.

また特に請求項2の発明によれば、前記第1シール装置は、ドラム部又は円板状端壁の何れか一方に着脱可能に固着されてその何れか他方を空隙を存して覆うリング状の蓋板と、その蓋板とドラム部又は円板状端壁の何れか他方との間に設けられてその間を相対摺動可能に摺接させる少なくとも1組の環状シール手段とを備えるので、ドラム部とロータ相互に多少の芯ずれが生じても、ロータ本体の円板状端壁とドラム部端壁との間を簡単な構造で的確にシールすることができ、また上記蓋板を取り外すことで第1シール装置に対する点検整備等のメンテナンス作業を頗る容易に実施可能である。   In particular, according to the invention of claim 2, the first sealing device is detachably fixed to either the drum portion or the disk-shaped end wall and covers the other with a gap. And at least one set of annular sealing means provided between the lid plate and either the drum portion or the disk-shaped end wall and slidingly slidable therebetween. Even if a slight misalignment occurs between the drum and the rotor, the disc-shaped end wall of the rotor body and the end wall of the drum can be accurately sealed with a simple structure, and the cover plate can be removed. Thus, maintenance work such as inspection and maintenance for the first seal device can be easily performed.

また特に請求項3の発明によれば、前記第2シール装置は、ロータ本体の軸方向全長に亘り直線状に延びていてロータ本体外周部の、相隣なる移送室に挟まれた部分に径方向摺動可能に且つ液密に嵌合支持されたシール部材と、このシール部材をロータの径方向外方に付勢して該シール部材の径方向外端部をドラム部の内周面に摺動可能に圧接させる付勢手段とを備えるので、ドラム部とロータ相互に多少の芯ずれが生じても、ロータ外周部とドラム部内周面との間を簡単な構造で的確にシールすることができ、またそのシール材先端部(即ちドラム部との当たり面)が使用により多少摩耗しても長期間に亘り十分なシール性能を維持することができる。   Further, in particular, according to the invention of claim 3, the second sealing device extends linearly over the entire axial length of the rotor body and has a diameter at a portion of the outer periphery of the rotor body sandwiched between adjacent transfer chambers. A seal member that is slidable in the direction and is liquid-tightly fitted and supported, and this seal member is urged radially outward of the rotor so that the radially outer end of the seal member is brought to the inner peripheral surface of the drum portion. With urging means that slidably press-contacts, even if there is a slight misalignment between the drum part and the rotor, the gap between the rotor outer peripheral part and the drum part inner peripheral surface is accurately sealed with a simple structure. In addition, even if the front end portion of the sealing material (ie, the contact surface with the drum portion) is somewhat worn by use, a sufficient sealing performance can be maintained over a long period of time.

また特に請求項4の発明によれば、円板状端壁の外面外周部には環状ボス部が突設され、そのボス部に設けた径方向支持孔にシール部材の基部が径方向摺動可能に支持され、その支持部よりも径方向内方側でシール部材の基部と、円板状端壁の外面との間に、付勢手段が外側から脱着可能に設けられるので、第2シール装置に対する点検整備等のメンテナンス作業を容易に実施可能である。   In particular, according to the invention of claim 4, an annular boss is projected on the outer peripheral portion of the outer surface of the disc-shaped end wall, and the base of the seal member is slid in the radial direction in the radial support hole provided in the boss. Since the urging means is detachably provided from the outside between the base portion of the seal member and the outer surface of the disc-shaped end wall on the radially inner side of the support portion, the second seal Maintenance work such as inspection and maintenance of the equipment can be easily performed.

また特に請求項5の発明によれば、各々のシール部材は、ロータ本体外周の前記部分にこれを軸方向に横切るように形成された支持溝に嵌合され、蓋板には、複数のシール部材の前記支持溝に対する抜差を許容する複数の作業窓が形成され、その各作業窓を液密に覆う小蓋が蓋板に着脱可能に装着されるので、小蓋を取り外すと、蓋板を一々取り外さなくても作業窓を通してシール部材を支持溝より容易に抜差することができ、シール部材に対する点検整備等のメンテナンス作業を容易に実施可能である。   In particular, according to the invention of claim 5, each seal member is fitted in a support groove formed in the outer peripheral portion of the rotor body so as to cross the axial direction, and the lid plate has a plurality of seals. A plurality of work windows that allow the member to be inserted into and removed from the support groove are formed, and a small lid that covers each work window in a liquid-tight manner is detachably attached to the lid plate. The seal member can be easily inserted / removed from the support groove through the work window without removing each of them, and maintenance work such as inspection and maintenance on the seal member can be easily performed.

また特に請求項6の発明によれば、ドラム部の大径貫通孔の内周面と、円板状端壁の外周面との対向面間には、その対向面間を通して前記移送室から前記第1シール装置側へ被移送物が移動するのを抑制する第3シール装置が設けられるので、この第3シール装置により、移送室から第1シール装置側への被移送物の漏洩、移動を効果的に抑制でき、それだけ第1シール装置のシール負担を軽減して、その耐久性向上が図られる。   In particular, according to the invention of claim 6, between the opposing surfaces of the inner peripheral surface of the large-diameter through-hole of the drum portion and the outer peripheral surface of the disc-shaped end wall, the transfer chamber passes through the space between the opposing surfaces. Since a third sealing device that suppresses the movement of the transferred object to the first sealing device side is provided, the third sealing device prevents leakage and movement of the transferred material from the transfer chamber to the first sealing device side. As a result, it is possible to effectively suppress the sealing load of the first sealing device, and the durability can be improved.

また特に請求項7の発明によれば、ロータ本体には、被移送物が移送室内から移送管内に落下する際に該被移送物の移送室内面からの剥離を促進する剥離促進手段が設けられるので、各移送室内の被移送物の移送室内面からの剥離が迅速且つ確実になされ、従って、各移送室内の被移送物を該移送室から出口を通して移送管内にスムーズに落下、移動させることができるから、定量供給を一層確実に行うことができる。   In particular, according to the invention of claim 7, the rotor body is provided with a peeling promoting means for promoting peeling of the transferred object from the inner surface of the transfer chamber when the transferred object falls from the transfer chamber into the transfer pipe. Therefore, the objects to be transferred in the respective transfer chambers can be quickly and reliably separated from the surface of the transfer chamber, and accordingly, the objects to be transferred in each transfer chamber can be smoothly dropped and moved from the transfer chamber through the outlet into the transfer pipe. As a result, quantitative supply can be performed more reliably.

また特に請求項8の発明によれば、本発明の定量供給装置で比較的精度の高い安定した定量供給が可能となることから、その定量供給装置を用いた移送システムにおいて、ロータの回転速度と、定量供給装置から移送管への被移送物の供給流量との相関関係を予め求めておき、且つそのロータの回転速度を計測することで、その計測値と前記相関関係とに基づいて前記供給流量が長期に亘り精度よく算出可能となる。   In particular, according to the invention of claim 8, since the quantitative supply device of the present invention enables stable quantitative supply with relatively high accuracy, in the transfer system using the quantitative supply device, the rotational speed of the rotor In addition, a correlation with the supply flow rate of the object to be transferred from the quantitative supply device to the transfer pipe is obtained in advance, and the rotation speed of the rotor is measured, so that the supply based on the measured value and the correlation The flow rate can be calculated accurately over a long period of time.

また特に請求項9の発明によれば、本発明の定量供給装置で比較的精度の高い安定した定量供給(即ち移送室から移送管への1回当りの被搬送物の落下量を均等化すること)が可能となることから、その定量供給装置を用いた移送システムにおいて、落下量を予め求めておくと共に、被移送物が移送室内から移送管内に落下する回数を計測し、その計測値と前記落下量とに基づいて前記被移送物の供給量を算出することで、前記供給量が長期に亘り精度よく算出可能となる。   Further, according to the invention of claim 9 in particular, the quantitative supply device of the present invention equalizes the amount of fall of the object to be conveyed per transfer from the transfer chamber to the transfer pipe with relatively high accuracy. In the transfer system using the quantitative supply device, the fall amount is obtained in advance, and the number of times the transferred object falls into the transfer pipe from the transfer chamber is measured. By calculating the supply amount of the transferred object based on the fall amount, the supply amount can be accurately calculated over a long period of time.

本発明の実施の形態を、添付図面に例示した本発明の実施例に基づいて以下に具体的に説明する。   Embodiments of the present invention will be specifically described below based on the embodiments of the present invention illustrated in the accompanying drawings.

添付図面において、図1〜図9は、本発明の一実施例を示すものであって、図1は、浚渫土砂用空気圧式移送システムの概略を示す全体縦断面図、図2は、定量供給装置の要部を示す正面図(図1の2部矢視拡大図)、図3は図2の3−3線断面図、図4は図2の4−4線断面図、図5は図4の5−5線拡大断面図、図6は図5の6部矢視拡大図、図7は図5の7部矢視拡大図、図8は図6の8−8線断面図、図9は図6の9−9線断面図である。更に図10は、第3シール装置の変形例を示す図7対応図、図11は、第3シール装置の変形例を示す図8対応図である。   In the accompanying drawings, FIGS. 1 to 9 show an embodiment of the present invention, FIG. 1 is an overall longitudinal sectional view showing an outline of a pneumatic transfer system for dredged sand, and FIG. 2 is a quantitative supply. FIG. 3 is a sectional view taken along line 3-3 in FIG. 2, FIG. 4 is a sectional view taken along line 4-4 in FIG. 2, and FIG. 4 is an enlarged cross-sectional view taken along line 5-5, FIG. 6 is an enlarged view taken along arrow 6 in FIG. 5, FIG. 7 is an enlarged view taken along arrow 7 in FIG. 5, and FIG. 9 is a cross-sectional view taken along line 9-9 of FIG. 10 is a diagram corresponding to FIG. 7 showing a modification of the third seal device, and FIG. 11 is a diagram corresponding to FIG. 8 showing a variation of the third seal device.

先ず、図1〜図3において、スラリ状被移送物としての浚渫土砂を連続的に大量移送するための空気圧式移送システムは、他の浚渫作業場所で発生した浚渫土砂1を内部に貯留して水上移送可能な土運搬船BBと、その土運搬船BBが横付け可能な揚泥作業船BAと、その揚泥作業船BAから土砂処分地としての埋め立て地Uまで延びる移送管Pとを備え、その移送管Pを経由して揚泥作業船BAから埋め立て地Uまで浚渫土砂1が空気圧を利用して大量移送される。移送管Pは、その水上部分においては、フロートfで浮遊状態に支持される。   First, in FIGS. 1 to 3, a pneumatic transfer system for continuously transferring a large amount of dredged sand as a slurry-like object to be stored stores dredged sand 1 generated in another dredging work place inside. A soil transport ship BB that can be transported on the water, a mud working ship BA that can be placed next to the soil transport ship BB, and a transfer pipe P that extends from the mud work ship BA to a landfill U as a soil disposal site. A large amount of dredged sand 1 is transferred from the mud working ship BA to the landfill U via the pipe P using air pressure. The transfer pipe P is supported in a floating state by a float f in the water portion.

揚泥作業船BAには、土運搬船BB内に貯留される浚渫土砂1を掻き出す定置式の土砂取出装置SHと、この土砂取出装置SHにより土運搬船BB内より取り出された浚渫土砂1が投入されるホッパHOと、そのホッパHOの下部に連設されて該ホッパHO内の浚渫土砂1を移送管P内に定量供給し得る定量供給装置SSと、移送管Pの上流端部に圧縮空気を混入して土砂の移送を助勢するための圧縮空気混入装置SAとが搭載される。   The dredging work ship BA is charged with a stationary type earth and sand take-out device SH that scrapes the dredged sand 1 stored in the earth transport vessel BB and the dredged sand 1 taken out from the earth carrying vessel BB by the earth and sand take-out device SH. A hopper HO, a fixed amount supply device SS connected to the lower portion of the hopper HO and capable of supplying the fixed amount of the clay 1 in the hopper HO into the transfer pipe P, and compressed air at the upstream end of the transfer pipe P A compressed air mixing device SA for mixing and supporting the transfer of earth and sand is mounted.

前記土砂取出装置SHは、通称バックホーと呼ばれるもので、揚泥作業船BAの船体に鉛直軸回りに360°旋回可能に立設される旋回台3と、その旋回台3の前部に俯仰可能に設けられた屈折ブーム4と、その屈折ブーム4の先端に首振り可能に連結されたバケット5とを備えており、それら旋回台3、屈折ブーム4及びバケット5の協働により、土運搬船BB内の浚渫土砂1を揚泥作業船BAのホッパHO内に間欠的に投入できるようになっている。   The earth and sand take-out device SH is commonly referred to as a backhoe, and can be raised on a swivel base 3 standing on a hull of a mud working vessel BA so as to be able to turn 360 ° around a vertical axis, and on the front of the swivel base 3. And a bucket 5 connected to the tip of the refracting boom 4 so as to be swingable. By the cooperation of the swivel base 3, the refracting boom 4 and the bucket 5, the earth transport ship BB is provided. The dredged sand 1 can be intermittently thrown into the hopper HO of the mud working vessel BA.

次に図2〜図9を併せて参照して前記定量供給装置SSの具体的構成を説明する。この定量供給装置SSは、軸線が略水平な円筒状のドラム部Hdを有して設置面としての揚泥作業船BAの船体上面Bに着脱可能に固定されるハウジングHと、前記ドラム部Hd内に収容されて該ドラム部Hdの軸線回りに回転するロータRとを備える。   Next, a specific configuration of the quantitative supply device SS will be described with reference to FIGS. This fixed quantity supply device SS has a cylindrical drum portion Hd whose axis is substantially horizontal and is detachably fixed to the hull upper surface B of the mud working vessel BA as an installation surface, and the drum portion Hd. And a rotor R that is housed inside and rotates about the axis of the drum portion Hd.

そのドラム部Hdの周壁上部には上向きの入口Iが、またその周壁下部には下向きの出口Oがそれぞれ開口しており、前記入口Iは、ハウジングHの上部に一体的に立設したホッパHO内の底部に直接連通し、また前記出口Oには、中間部が横向きに屈曲した土砂排出管6を介して移送管Pの上流端が接続される。   An upward inlet I is opened in the upper part of the peripheral wall of the drum portion Hd, and a downward outlet O is opened in the lower part of the peripheral wall. The inlet I is a hopper HO that stands integrally with the upper part of the housing H. The upstream end of the transfer pipe P is connected to the outlet O through a sediment discharge pipe 6 whose middle part is bent sideways.

ロータRのロータ本体Rm外周面には、ドラム部Hd内周面との間に周方向に等間隔おきに並ぶ複数の移送室Cを画成する複数の凹溝部Rmaが設けられる。即ち、ロータ本体Rmは、ドラム部Hd内を貫通する略水平なロータ軸Rjと、そのロータ軸Rjの中間部外周部より放射方向に且つ周方向等間隔で延びる複数のロータ羽根Rwと、複数の凹溝部Rmaの軸方向両端を閉じる一対の円板状端壁Reとを相互に一体化して構成され、周方向に相隣なる2つのロータ羽根Rw間に前記凹溝部Rmaが形成される。   On the outer peripheral surface of the rotor main body Rm of the rotor R, a plurality of concave groove portions Rma that define a plurality of transfer chambers C arranged at equal intervals in the circumferential direction are provided between the inner peripheral surface of the drum portion Hd. That is, the rotor body Rm includes a substantially horizontal rotor shaft Rj penetrating through the drum portion Hd, a plurality of rotor blades Rw extending radially from the outer periphery of the intermediate portion of the rotor shaft Rj at equal intervals in the circumferential direction, and a plurality of rotor blades Rw. A pair of disk-shaped end walls Re that close both ends in the axial direction of the concave groove portion Rma are integrated with each other, and the concave groove portion Rma is formed between two rotor blades Rw adjacent to each other in the circumferential direction.

而してロータRを回転させると、その回転に応じて前記複数の移送室Cが回転して、その各移送室Cを前記入口I及び出口Oに周期的に連通させるので、ホッパ2内に投入、堆積した流動可能な浚渫土砂1が、ロータRの回転に応じて複数の移送室C内に入口Iを通して順次に落下、収容され、一方、それら移送室C内の浚渫土砂1が出口Oを通して土砂排出管6内、更には移送管P内に順次に落下、供給される。   Thus, when the rotor R is rotated, the plurality of transfer chambers C are rotated according to the rotation, and the transfer chambers C are periodically communicated with the inlet I and the outlet O. The flowable dredged sand 1 that has been thrown in and deposited is sequentially dropped and accommodated in the plurality of transfer chambers C through the inlet I according to the rotation of the rotor R, while the dredged sand 1 in the transfer chambers C is discharged from the outlet O. Then, it is dropped and supplied sequentially into the sediment discharge pipe 6 and further into the transfer pipe P.

ドラム部Hdの両端壁には、ロータ本体Rmの外径とほぼ等しい(図示例では僅かに小さい)内径の円形の大径貫通孔Hdhがそれぞれ形成されている。尚、図示例では上記大径貫通孔Hdhの内径と、ドラム部Hdの胴部内周面の内径とが同径である。   Circular large-diameter through holes Hdh having an inner diameter that is substantially the same as the outer diameter of the rotor body Rm (slightly smaller in the illustrated example) are formed in both end walls of the drum portion Hd. In the illustrated example, the inner diameter of the large-diameter through hole Hdh and the inner diameter of the inner peripheral surface of the drum portion Hd are the same.

ロータ軸Rjの両端部は、一対の円板状端壁Reの外面中心部より大径貫通孔Hdhを通して外方にそれぞれ突出していて、設置面としての船体上面BにハウジングHから独立して支持されると共に、その一端部が前記ハウジングH外で回転駆動手段Mに連動連結される。即ち、船体上面Bには、ハウジングHの両側で一対の支持腕10,11が一体的に立設されており、その両支持腕10,11の上端部に軸受(図示せず)を介してロータ軸Rjの両端部がそれぞれ回転自在に支持され、そのロータ軸Rjの一端部には、回転駆動手段としてのモータMの出力軸が一体的に回転するよう連動、連結され、そのモータMのモータケーシングは、船体上面Bに固定的に支持される。   Both end portions of the rotor shaft Rj protrude outward from the center portions of the outer surfaces of the pair of disk-shaped end walls Re through the large-diameter through holes Hdh, and are supported independently from the housing H on the hull upper surface B as an installation surface. At the same time, one end thereof is interlocked and connected to the rotation driving means M outside the housing H. That is, on the upper surface B of the hull, a pair of support arms 10 and 11 are integrally erected on both sides of the housing H, and bearings (not shown) are provided at the upper ends of the support arms 10 and 11. Both end portions of the rotor shaft Rj are rotatably supported, and one end portion of the rotor shaft Rj is interlocked and connected so that the output shaft of the motor M as a rotation driving means rotates integrally. The motor casing is fixedly supported on the hull upper surface B.

ロータ本体Rmにおける円板状端壁Reの外周部と、これに対応するドラム部Hd端壁における大径貫通孔Hdhの開口縁部との間が、その両者の相対回転及び芯ずれを許容する第1シール装置S1により全周に亘りシールされ、またロータ本体Rm外周部の、相隣なる移送室Cに挟まれた部分と、ドラム部Hd内周面との間が、その両者の相対回転及び芯ずれを許容する第2シール装置S2により該ロータ本体Rmの軸方向全長に亘りシールされる。   Between the outer peripheral portion of the disc-shaped end wall Re in the rotor body Rm and the opening edge portion of the large-diameter through hole Hdh in the corresponding end wall of the drum portion Hd, relative rotation and misalignment of both of them are allowed. Relative rotation between the part sealed between the transfer chambers C adjacent to the outer peripheral part of the rotor body Rm and the inner peripheral surface of the drum part Hd is sealed by the first sealing device S1. And the second sealing device S2 that allows misalignment seals the entire length of the rotor body Rm in the axial direction.

前記第1シール装置S1は、ドラム部Hd又は円板状端壁Reの何れか一方(図示例では円板状端壁Re)にボルトB1を以て着脱可能に固着されてその何れか他方(図示例ではドラム部Hd)の大径貫通穴Hdh周囲の外端面を軸方向の空隙を存して覆うリング状の蓋板Tと、その蓋板Tと前記何れか他方(図示例ではドラム部Hd)との間に設けられてその間を相対摺動可能に摺接させる少なくとも1組の環状シール手段12,13とを備えている。蓋板Tの内面内周部は、弾性シールリングを介して円板状端壁Reの外端面に液密に接触している。   The first seal device S1 is detachably fixed to either one of the drum portion Hd or the disk-shaped end wall Re (disk-shaped end wall Re in the illustrated example) with a bolt B1, and the other (illustrated example). Then, the ring-shaped lid plate T that covers the outer end surface around the large-diameter through hole Hdh of the drum portion Hd) with an axial gap, and the lid plate T and one of the other (in the illustrated example, the drum portion Hd). And at least one pair of annular sealing means 12 and 13 which are slidably contacted with each other so as to be slidable relative to each other. The inner peripheral portion of the inner surface of the lid plate T is in liquid-tight contact with the outer end surface of the disc-shaped end wall Re via an elastic seal ring.

前記第1環状シール手段12は、蓋板Tの内面外周部にボルトB5を以て着脱可能に且つ全周に亘り液密に接合された第1環状シール板12aと、ドラム部Hdの外端面にボルトB4を以て着脱可能に且つ全周に亘り液密に接合されたリング状のシール受板14に装着されて互いに同心状に配列される一対の弾性シールリング12b,12cとで構成される。その一対の弾性シールリング12b,12cは、第1環状シール板12aに相対摺動可能に圧接する。   The first annular seal means 12 includes a first annular seal plate 12a which is detachably attached to the inner periphery of the cover plate T with a bolt B5 and is liquid-tightly joined over the entire circumference, and a bolt on the outer end surface of the drum portion Hd. It is composed of a pair of elastic seal rings 12b and 12c which are attached to a ring-shaped seal receiving plate 14 which is detachably attached with B4 and is liquid-tightly joined over the entire circumference and arranged concentrically with each other. The pair of elastic seal rings 12b and 12c are in pressure contact with the first annular seal plate 12a so as to be slidable relative to each other.

また前記第2環状シール手段13は、第1環状シール手段12の径方向内側において蓋板Tの内面に全周に亘り弾性シール材を挟んでフローティング支持された第2環状シール板13aと、これに対向するよう前記シール受板14に固設された第2シールリング13bとで構成される。その第2シールリング13bは、それの外端面が第2環状シール板13aに相対摺動可能に圧接する。尚、このシールリング13bの内周面は、後述するシール部材15の先部(径方向外端部)およびロータ本体Rm(円板状端壁Re)外周部の分割弾性シール体24にもそれぞれ相対摺動可能に圧接する。   The second annular seal means 13 includes a second annular seal plate 13a that is floatingly supported on the inner surface of the lid plate T across the entire circumference on the radially inner side of the first annular seal means 12, and this. And a second seal ring 13b fixed to the seal receiving plate 14 so as to face each other. The outer end surface of the second seal ring 13b is in pressure contact with the second annular seal plate 13a so as to be capable of relative sliding. Incidentally, the inner peripheral surface of the seal ring 13b is also respectively provided at a tip portion (radially outer end portion) of a seal member 15 to be described later and a divided elastic seal body 24 at the outer peripheral portion of the rotor body Rm (disk-shaped end wall Re). Press contact so that relative sliding is possible.

また前記第2シール装置S2は、ロータ本体Rmの軸方向全長に亘り直線状に延びていてロータ本体Rm外周部の、相隣なる移送室Cに挟まれた部分に径方向摺動可能に支持されたシール部材15と、このシール部材15をロータRの径方向外方に付勢して該シール部材15の径方向外端部をドラム部Hdの内周面および端壁の大径貫通孔Hdhに摺動可能に圧接させる付勢手段としての付勢ばね16とを備える。   Further, the second sealing device S2 extends linearly over the entire axial length of the rotor body Rm, and is supported so as to be slidable in the radial direction at a portion sandwiched between adjacent transfer chambers C on the outer periphery of the rotor body Rm. And the sealing member 15 is urged radially outward of the rotor R so that the radially outer end of the sealing member 15 is connected to the inner peripheral surface of the drum portion Hd and the large-diameter through hole in the end wall. And an urging spring 16 as urging means for slidably contacting the Hdh.

各々のシール部材15は、矩形断面に形成されてロータ軸線方向に直線状に延びる弾性シール体15sと、その弾性シール体15sの基部(ロータ径方向内端部)を抱持するように横断面U字状に形成された剛体よりなるシールホルダ15mとより構成される。そして、ロータ本体Rm外周部の、相隣なる移送室Cに挟まれた各部分には、これを軸方向に横切るように形成された支持溝17が凹設され、その支持溝17内にシール部材15の基部(特にシールホルダ15m)が径方向摺動可能に且つ液密に嵌合、支持される。   Each seal member 15 is formed in a rectangular cross section and extends in a straight line in the rotor axial direction, and has a transverse cross section so as to hold the base (rotor radial inner end) of the elastic seal body 15s. It is comprised from the seal holder 15m which consists of a rigid body formed in U shape. A support groove 17 formed so as to cross the axial direction is formed in each portion of the outer periphery of the rotor body Rm sandwiched between adjacent transfer chambers C, and a seal is formed in the support groove 17. The base portion (particularly, the seal holder 15m) of the member 15 is fitted and supported so as to be slidable in the radial direction and liquid-tight.

蓋板Tには、複数のシール部材15の前記支持溝17に対する抜差を許容する形状、大きさに形成された複数の作業窓Taが設けられており、その各作業窓Taを液密に塞ぐ小蓋20が蓋板TにボルトB2を以て着脱可能に装着される。その小蓋20の内面には、シール部材15の軸方向端面に相対摺動可能に圧接して該端面と蓋板Tとの間をシールする平板状ゴム材よりなるシール体22が接合される。尚、このシール体22は、小蓋20の内面に固着しないで、分離可能に当接させてもよい。   The cover plate T is provided with a plurality of work windows Ta formed in a shape and size that allow a plurality of seal members 15 to be inserted into and removed from the support groove 17, and each of the work windows Ta is liquid-tight. The small lid 20 to be closed is detachably attached to the lid plate T with a bolt B2. The inner surface of the small lid 20 is joined to a sealing body 22 made of a flat rubber material that presses against the axial end surface of the seal member 15 so as to be relatively slidable and seals between the end surface and the lid plate T. . The seal body 22 may be brought into contact with the inner surface of the small lid 20 so as to be separable without being fixed.

而して、小蓋20を取り外すと、蓋板Tをロータ本体Rmより一々取り外さなくても作業窓Taを通してシール部材15を支持溝17より容易に抜差できるため、シール部材15に対する点検整備等のメンテナンス作業を容易に実施可能である。   Thus, when the small lid 20 is removed, the seal member 15 can be easily inserted and removed from the support groove 17 through the work window Ta without removing the lid plate T from the rotor body Rm one by one. The maintenance work can be easily performed.

またロータ本体Rmにおける円板状端壁Reの外面外周部には、円環状のボス部Rebが一体に突設されており、そのボス部Rebには径方向に延びる支持孔18が形成される。その支持孔18には、シール部材15の基部(シールホルダ15m)に着脱可能に固着(図示例では螺着)した支持杆19が径方向摺動可能に嵌合、支持されており、その支持部よりも径方向内方側で支持杆19と、円板状端壁Reの外面にボルトB3を以て着脱可能に固着した支持ブラケット21との間に、前記付勢ばね16が設けられる。このばね16の弾性付勢力により、シール部材15の先部(径方向外端部)がドラム部Hdの胴部内周面および端壁の大径貫通孔Hdh内周面に相対摺動可能に圧接される。   An annular boss portion Reb is integrally projected on the outer peripheral portion of the disc-shaped end wall Re in the rotor body Rm, and a support hole 18 extending in the radial direction is formed in the boss portion Reb. . A support rod 19 detachably fixed (screwed in the illustrated example) to the base portion (seal holder 15m) of the seal member 15 is fitted and supported in the support hole 18 so as to be slidable in the radial direction. The biasing spring 16 is provided between the support rod 19 and the support bracket 21 which is detachably fixed to the outer surface of the disc-shaped end wall Re by a bolt B3 on the inner side in the radial direction from the portion. Due to the elastic biasing force of the spring 16, the front portion (radially outer end portion) of the seal member 15 is pressed against the inner peripheral surface of the drum portion Hd and the inner peripheral surface of the large-diameter through hole Hdh of the end wall so as to be slidable relative to each other. Is done.

さらに図7,図8に示されるように、ロータ本体Rmにおける円板状端壁Reの外面外周部(ボス部Rebの外面外周縁部)には、周方向に相隣なる一対の前記支持溝17に両端が開口する6つの切欠溝25が形成され、この一連の切欠溝25により、ドラム部端壁の大径貫通孔Hdhの内周面と、円板状端壁Reの外周面との対向面間には、複数のシール部材15(特にシール体15s)により複数の円弧状空隙に分割された環状シール空隙50が設けられる。そして、各円弧状空隙(即ち切欠溝25)には、前記対向面間を通して移送室Cから前記第1シール装置S1側へ被移送物(浚渫土砂)が漏出、移動するのを抑制する第3シール装置S3が設けられる。図示例では、その第3シール装置S3は、各円弧状空隙(即ち切欠溝25)に圧縮状態で嵌装される円弧状の分割弾性シール体24と、そのシール体24の両端とシール部材15との間の隙間を埋める一対の小シール片24′とで構成される。その各弾性シール体24及び小シール片24′の外周面は、図示例では前記第1シール装置Sにおける第1環状シール手段13の第2シールリング13bの内周面、又は大径貫通孔Hdhの内周面に相対摺動可能に圧接する。これにより、ロータ本体Rmにおける円板状端壁Reの外周面の大部分(即ちシール部材15に対応する部分以外の部分)と、大径貫通孔Hdh内周面との対向面間が第3シール装置S3によりシールされるので、その対向面間を通しての移送室Cから第1シール装置S1側への浚渫土砂の漏洩、移動を効果的に抑制でき、それだけ第1シール装置S1のシール負担が軽減されて、その耐久性向上が図られる。   Further, as shown in FIGS. 7 and 8, a pair of the support grooves adjacent to each other in the circumferential direction is formed on the outer peripheral portion of the disc-shaped end wall Re (the outer peripheral portion of the boss portion Reb) of the rotor body Rm. 17 is formed with six notch grooves 25 having both ends open, and the series of notch grooves 25 allows the inner peripheral surface of the large-diameter through hole Hdh in the drum portion end wall and the outer peripheral surface of the disk-shaped end wall Re to be formed. Between the opposing surfaces, an annular seal gap 50 is provided which is divided into a plurality of arc-shaped gaps by a plurality of seal members 15 (especially seal bodies 15s). And in each arc-shaped space | gap (namely, notch groove 25), it is the 3rd which suppresses that a to-be-transferred object (sediment sand) leaks and moves to the 1st sealing device S1 side from the transfer chamber C through between the said opposing surfaces. A sealing device S3 is provided. In the illustrated example, the third seal device S3 includes an arc-shaped split elastic seal body 24 fitted in a compressed state in each arc-shaped gap (ie, the cutout groove 25), both ends of the seal body 24, and the seal member 15. And a pair of small seal pieces 24 'filling the gap between the two. In the illustrated example, the outer peripheral surfaces of the elastic seal bodies 24 and the small seal pieces 24 'are the inner peripheral surface of the second seal ring 13b of the first annular seal means 13 in the first seal device S or the large-diameter through hole Hdh. It is press-contacted to the inner peripheral surface of the slidably relative to the inner peripheral surface. As a result, the distance between the opposing surfaces of the outer peripheral surface of the disc-shaped end wall Re in the rotor body Rm (that is, the portion other than the portion corresponding to the seal member 15) and the inner peripheral surface of the large-diameter through hole Hdh is third. Since sealing is performed by the sealing device S3, leakage and movement of dredged sand from the transfer chamber C to the first sealing device S1 through the opposed surfaces can be effectively suppressed, and the sealing burden of the first sealing device S1 is correspondingly increased. As a result, the durability is improved.

而して、小蓋20を蓋板Tより取り外して作業窓Taを開放し、さらに支持ブラケット21及び付勢ばね16をドラム部Hdより取外して、支持杆19をシール部材15(シールホルダ15m)より離脱させた状態にすれば、作業窓Taを通してシール部材15を支持溝17より容易に抜差することができ、シール部材15に対する点検整備等のメンテナンス作業を容易に行うことが可能となる。   Thus, the small lid 20 is removed from the lid plate T, the work window Ta is opened, the support bracket 21 and the urging spring 16 are removed from the drum portion Hd, and the support rod 19 is attached to the seal member 15 (seal holder 15m). In a more separated state, the seal member 15 can be easily inserted and removed from the support groove 17 through the work window Ta, and maintenance work such as inspection and maintenance on the seal member 15 can be easily performed.

ロータ本体Rmの、移送室Cに臨む凹溝部Rma及び円板状端壁Reの内面全面には、被移送物(浚渫土砂1)が移送室C内から出口Oを通して移送管P内に落下する際に該被移送物1の移送室C内面からの剥離を促進する剥離促進手段として、セラミック加工その他の摩擦係数低減のための表面処理加工が施される。しかも凹溝部Rmaの内面は、図4に示されるようにその全面が滑らかな凹曲面に形成されていて、土砂の溜まりそうな隅角部(エッジ状の凹面)が形成されないようにしており、この凹曲面も前記剥離促進手段を構成する。また図示はしないが、凹溝部Rmaの内面と円板状端壁Reとの境界部も、前記剥離促進手段としてのアール面(円弧面)で滑らかに接続されている。これらにより、定量供給装置SSの運転時に各移送室C内の被移送物(浚渫土砂1)の移送室C内面からの剥離が無理なく極めて迅速且つ確実になされるため、各移送室C内の被移送物を該移送室Cからドラム部Hdの出口Oを通して土砂排出管6(従って移送管P)内にスムーズに落下、移動させることができ、土砂排出管6(延いては移送管P)への浚渫土砂の定量供給を確実に行うことができる。   On the entire inner surface of the concave groove portion Rma facing the transfer chamber C and the disk-shaped end wall Re of the rotor body Rm, an object to be transferred (salt sand 1) falls into the transfer pipe P from the transfer chamber C through the outlet O. At this time, as a peeling accelerating means for accelerating the peeling of the transfer object 1 from the inner surface of the transfer chamber C, ceramic processing or other surface treatment processing for reducing the friction coefficient is performed. Moreover, the inner surface of the concave groove portion Rma is formed as a smooth concave curved surface as shown in FIG. 4 so that corner portions (edge-shaped concave surfaces) that are likely to accumulate earth and sand are not formed. This concave curved surface also constitutes the peeling promoting means. Although not shown, the boundary portion between the inner surface of the concave groove portion Rma and the disc-shaped end wall Re is also smoothly connected by a rounded surface (arc surface) as the separation promoting means. As a result, during the operation of the quantitative supply device SS, the object to be transferred (the dredged sand 1) in each transfer chamber C can be peeled off from the inner surface of the transfer chamber C without any difficulty. The object to be transferred can be smoothly dropped and moved from the transfer chamber C through the outlet O of the drum portion Hd into the sediment discharge pipe 6 (and hence the transfer pipe P), and the sediment discharge pipe 6 (and hence the transfer pipe P). A certain amount of dredged soil and sand can be supplied reliably.

前記土砂排出管6内には、定量供給装置SSにより移送管P内に供給された浚渫土砂1を下流側に圧送するための圧縮空気をその浚渫土砂中に連続的に混入し得る圧縮空気混入装置SAが接続される。この圧縮空気混入装置SAは、移送管P近くの適所(図示例では揚泥作業船BA上)に設置されたコンプレッサ2と、このコンプレッサ2の吐出側に開閉弁7v付きのエア配管7を経て連通するノズル管8とを備えており、このノズル管8は、土砂排出管6の管壁を液密に貫通してその管内に開口し、その噴口Nが移送管P内を指向していて、そこから移送管P内に向けて圧縮空気を投入することができる。   In the earth and sand discharge pipe 6, compressed air that can continuously mix into the earth and sand compressed air for pressure-feeding the earth and sand 1 supplied into the transfer pipe P by the quantitative supply device SS. The device SA is connected. This compressed air mixing device SA passes through a compressor 2 installed at an appropriate location near the transfer pipe P (on the pumping work ship BA in the illustrated example), and an air pipe 7 with an open / close valve 7v on the discharge side of the compressor 2. The nozzle pipe 8 communicates with the earth and sand discharge pipe 6 through the pipe wall in a liquid-tight manner and opens into the pipe, and the nozzle N is directed into the transfer pipe P. From there, the compressed air can be introduced into the transfer pipe P.

而して前記定量供給装置SSと圧縮空気混入装置SAとにより、浚渫土砂1及び圧縮空気を移送管Pの上流端部に供給する土砂搬送機が構成される。このような土砂搬送機を用いた空気圧式移送システムにおいては、ホッパ2内に浚渫土砂を十分投入した状態で定量供給装置SSのモーターM及び圧縮空気混入装置SAのコンプレッサ2をそれぞれ作動させると、移送管Pの上流端部に定量供給装置SSから浚渫土砂が定量ずつ供給されると同時に、ノズル管8より圧縮空気が勢いよく噴出して浚渫土砂中に混入され、これにより移送管Pを通して浚渫土砂1を効率よく大量移送可能となる。   Thus, the fixed quantity supply device SS and the compressed air mixing device SA constitute a sediment transport machine for supplying the dredged sand 1 and the compressed air to the upstream end of the transfer pipe P. In the pneumatic transfer system using such a sediment transporter, when the dredged soil is sufficiently charged into the hopper 2 and the motor M of the quantitative supply device SS and the compressor 2 of the compressed air mixing device SA are respectively operated, A fixed amount of dredged sand is supplied to the upstream end of the transfer pipe P from the quantitative supply device SS, and at the same time, compressed air is ejected vigorously from the nozzle pipe 8 and mixed into the dredged sand. Sediment 1 can be efficiently transferred in large quantities.

次に前記実施例の作用を説明する。図示しない浚渫作業現場で採取された水を含む浚渫土砂1(即ち被移送物)は、土運搬船BB内に貯留されて、最終処分地である埋め立て地Uの近くの水域まで水上移送される。その水域では揚泥作業船BAが待機しており、その作業船BAから埋め立て地Uまでは移送管Pが予め設備されている。   Next, the operation of the embodiment will be described. The dredged soil 1 including water collected at a dredging work site (not shown) (that is, an object to be transported) is stored in the earth transport ship BB and transferred to the water near the landfill U that is the final disposal site. In the water area, a mud working ship BA is waiting, and a transfer pipe P is installed in advance from the working ship BA to the landfill U.

そこで揚泥作業船BAに土運搬船Bを横付けした後、土砂取出装置SHにより土運搬船BB内の貯留土砂1を掻き出してホッパHO内に投入し、その投入量が規定量以上になると、定量供給装置SSのモータMと、圧縮空気混入装置SAのコンプレッサ2の運転を開始する。これにより、ホッパHO内の浚渫土砂1が定量供給装置SSにより土砂排出管6を通して定量ずつ移送管P内に供給され、それと同時にコンプレッサ2からの圧縮空気がエア配管7及び土砂排出管6を通して移送管Pの上流端近くの浚渫土砂1中に混入され、これにより移送管Pを通して浚渫土砂1を埋め立て地Uまで効率よく大量移送することができる。   Therefore, after laying the earth transport ship B on the mud work ship BA, the stored earth and sand 1 in the earth transport ship BB is scraped out by the earth and sand take-out device SH and put into the hopper HO. The operation of the motor M of the device SS and the compressor 2 of the compressed air mixing device SA is started. Thereby, the dredged sand 1 in the hopper HO is supplied to the transfer pipe P by the fixed quantity supply device SS through the sediment discharge pipe 6 in a fixed amount, and at the same time, the compressed air from the compressor 2 is transferred through the air pipe 7 and the sediment discharge pipe 6. It is mixed in the dredged sand 1 near the upstream end of the pipe P, whereby the dredged sand 1 can be efficiently transferred in large quantities to the landfill U through the transfer pipe P.

この場合、定量供給装置SSにおいて、ハウジングHにおける円筒状ドラム部Hdの両端壁には、ロータ本体Rmの外径とほぼ等しい内径の大径貫通孔Hdhがそれぞれ形成され、ロータ本体Rmには、それの外周面の複数の凹溝部Rmaの軸方向両端を閉じる一対の円板状端壁Reが一体的に設けられ、ロータ軸RJの両端部は、一対の円板状端壁Reより大径貫通孔Hdhを通して外方にそれぞれ突出していて、ハウジングHから独立して設置面Bに回転自在に支持されている。このようにハウジングH(ドラム部Hd)よりロータRに対する軸受支持機能を取り除いて、設置面B上においてハウジングおよびロータの支持を別個独立化したことにより、定量供給装置SSの主体をなすホッパHO付きハウジングHの構造を大幅に簡素化し且つ小型軽量化できる。   In this case, in the quantitative supply device SS, large-diameter through holes Hdh having an inner diameter substantially equal to the outer diameter of the rotor main body Rm are formed in both end walls of the cylindrical drum portion Hd in the housing H, respectively. A pair of disk-shaped end walls Re that close both axial ends of the plurality of concave grooves Rma on the outer peripheral surface thereof are integrally provided, and both ends of the rotor shaft RJ have a larger diameter than the pair of disk-shaped end walls Re. It protrudes outward through the through hole Hdh, and is rotatably supported on the installation surface B independently of the housing H. Thus, the bearing support function for the rotor R is removed from the housing H (drum portion Hd), and the support of the housing and the rotor is made independent on the installation surface B, thereby providing a hopper HO that forms the main body of the quantitative supply device SS. The structure of the housing H can be greatly simplified and reduced in size and weight.

その上、ドラム部Hdの両端部にそれぞれ設けた大径貫通孔Hdhの内周部と、これに対応するロータ本体Rmの円板状端壁Re外周部との間が、その両者の相対回転及び芯ずれを許容する前記第1シール装置S1を以て全周に亘りシールされ、またロータ本体Rm外周部の、相隣なる移送室Cに挟まれた部分と、ドラム部Hd内周面との間が、その両者の相対回転及び芯ずれを許容する前記第2シール装置S2を以て該ロータ本体Rmの軸方向全長に亘りシールされるので、ドラム部HdとロータR相互に多少の芯ずれが生じても、ロータRとドラム部Hdとの間の必要なシール領域を的確にシール可能となって、長期間に亘る安定した浚渫土砂の定量供給が可能となる。しかもそのシール領域を比較的狭小にできるためシール構造を極力簡素化できると共に、ロータRに作用するシール部からの摺動抵抗を極力軽減できる。そして、このようにドラム部HdとロータR相互の多少の芯ずれが許容されるシール構造としたことで、従来装置の如く芯ずれ防止のために装置各部の製作精度や組立精度を特別に高くする必要はなくなり、コスト節減が図られる。   In addition, the relative rotation between the inner peripheral portion of the large-diameter through hole Hdh provided at both ends of the drum portion Hd and the corresponding disk-shaped end wall Re outer peripheral portion of the rotor body Rm. And between the portion of the outer peripheral portion of the rotor main body Rm sandwiched between adjacent transfer chambers C and the inner peripheral surface of the drum portion Hd, with the first sealing device S1 that allows misalignment. However, since the sealing is performed over the entire axial length of the rotor body Rm with the second sealing device S2 that allows relative rotation and misalignment of the two, there is some misalignment between the drum portion Hd and the rotor R. In addition, a necessary sealing region between the rotor R and the drum portion Hd can be accurately sealed, and stable quantitative supply of dredged soil can be performed over a long period of time. Moreover, since the seal region can be made relatively narrow, the seal structure can be simplified as much as possible, and the sliding resistance from the seal portion acting on the rotor R can be reduced as much as possible. Since the drum structure Hd and the rotor R have a seal structure that allows a slight misalignment between the drum portion Hd and the rotor R, the manufacturing accuracy and assembly accuracy of each part of the device are specially increased to prevent misalignment as in the conventional device. This eliminates the need to do so and saves costs.

また図示例のように前記第1シール装置S1を、ロータRの円板状端壁Reに着脱可能に固着されてドラム部Hdの大径貫通孔Hdh周辺部を空隙を存して覆うリング状の蓋板Tと、その蓋板T及びドラム部Hdとの間に設けられてその間を相対摺動可能に摺接させる少なくとも1組の環状シール手段12,13とで構成すれば、ドラム部HdとロータR相互に多少の芯ずれが生じても、ロータRの円板状端壁Reとドラム部Hd端壁との間を簡単な構造で的確にシールすることができ、しかも蓋板Tを取り外すことで第1シール装置S1に対する点検整備等のメンテナンス作業を頗る容易に行える。   Further, as shown in the figure, the first seal device S1 is detachably fixed to the disc-shaped end wall Re of the rotor R, and covers the periphery of the large-diameter through hole Hdh of the drum portion Hd with a gap therebetween. And the at least one pair of annular sealing means 12 and 13 which are provided between the cover plate T and the drum plate Hd and are slidably contacted with each other so as to be slidable therebetween. Even if a slight misalignment occurs between the rotor R and the rotor R, the disc-shaped end wall Re of the rotor R and the end wall of the drum portion Hd can be accurately sealed with a simple structure. By removing, maintenance work such as inspection and maintenance for the first seal device S1 can be easily performed.

また図示例のように前記第2シール装置S2を、ロータ本体Rmの軸方向全長に亘り直線状に延びていてロータ本体Rm外周部の、相隣なる移送室Cに挟まれた部分に径方向摺動可能に且つ液密に嵌合支持されたシール部材15と、このシール部材15をロータ径方向外方に付勢して該シール部材15の径方向外端部をドラム部の内周面に摺動可能に圧接させる付勢手段とを備えるので、ドラム部とロータ相互に多少の芯ずれが生じても、ロータR外周部とドラム部Hd内周面との間を簡単な構造で的確にシールすることができ、しかもそのシール材15先端部(即ちドラム部Hdとの当たり面)が使用により多少摩耗しても長期間に亘り十分なシール性能を維持することができる。   Further, as shown in the illustrated example, the second sealing device S2 extends in a radial direction at a portion extending linearly over the entire axial length of the rotor body Rm and sandwiched between adjacent transfer chambers C on the outer periphery of the rotor body Rm. A seal member 15 slidably and liquid-tightly fitted and supported, and the seal member 15 is urged outward in the radial direction of the rotor so that the radially outer end of the seal member 15 is the inner peripheral surface of the drum portion. The urging means for slidably press-contacting to the rotor is provided, so that even if a slight misalignment occurs between the drum part and the rotor, the structure between the outer peripheral part of the rotor R and the inner peripheral surface of the drum part Hd can be accurately determined with a simple structure. In addition, even if the tip of the sealing material 15 (that is, the contact surface with the drum portion Hd) is worn slightly by use, sufficient sealing performance can be maintained over a long period of time.

また図10,図11には、第3シール装置S3の変形例が示される。この変形例では、ドラム部端壁の大径貫通孔Hdhの内周面と、円板状端壁Reの外周面との対向面間には、複数のシール部材15(特にシール体15s)により複数の円弧状空隙25…に分割された、軸方向に比較的幅広の環状シール空隙50が設けられる。そして、前記対向面間を通して移送室Cから前記第1シール装置S1側への被移送物(浚渫土砂)の漏出、移動を抑制する第3シール装置S3は、各円弧状空隙25に圧縮状態で嵌装される円弧状の分割弾性シール体24と、そのシール体24の両端とシール部材15との間の隙間を埋める一対の小シール片24′と、弾性シール体24の背面に凹凸係合されてロータ本体Reの端壁外周面に着脱可能にボルトB7止めされる裏金52とで構成される。その各弾性シール体24及び小シール片24′の外周面は、図示例では前記第1シール装置Sにおける第1環状シール手段13の第2シールリング13bの内周面及び大径貫通孔Hdhの内周面に相対摺動可能に圧接する。これにより、ロータ本体Rmにおける円板状端壁Reの外周面の大部分(即ちシール部材15に対応する部分以外の部分)と、大径貫通孔Hdh内周面との対向面間が第3シール装置S3によりシールされるので、その対向面間を通しての移送室Cから第1シール装置S1側への浚渫土砂の漏洩、移動を効果的に抑制でき、それだけ第1シール装置S1のシール負担が軽減されて、その耐久性向上が図られる。   10 and 11 show a modified example of the third sealing device S3. In this modification, a plurality of seal members 15 (especially seal bodies 15s) are provided between opposing surfaces of the inner peripheral surface of the large-diameter through hole Hdh in the drum portion end wall and the outer peripheral surface of the disc-shaped end wall Re. A relatively wide annular seal gap 50 is provided which is divided into a plurality of arcuate gaps 25 in the axial direction. The third sealing device S3 that suppresses leakage and movement of the transfer object (sediment sand) from the transfer chamber C to the first sealing device S1 side through the opposed surfaces is compressed in each arcuate gap 25. An arc-shaped split elastic seal body 24 to be fitted, a pair of small seal pieces 24 ′ that fills the gap between both ends of the seal body 24 and the seal member 15, and an uneven engagement with the back surface of the elastic seal body 24. And a back metal 52 that is detachably secured to the outer peripheral surface of the end wall of the rotor body Re by a bolt B7. In the illustrated example, the outer peripheral surfaces of the respective elastic seal bodies 24 and small seal pieces 24 ′ are formed on the inner peripheral surface of the second seal ring 13 b of the first annular seal means 13 and the large-diameter through hole Hdh in the first seal device S. Press contact with the inner peripheral surface so as to allow relative sliding. As a result, the distance between the opposing surfaces of the outer peripheral surface of the disc-shaped end wall Re in the rotor body Rm (that is, the portion other than the portion corresponding to the seal member 15) and the inner peripheral surface of the large-diameter through hole Hdh is third. Since sealing is performed by the sealing device S3, leakage and movement of dredged sand from the transfer chamber C to the first sealing device S1 through the opposed surfaces can be effectively suppressed, and the sealing burden of the first sealing device S1 is correspondingly increased. As a result, the durability is improved.

ところで本実施例のようにホッパHO、定量供給装置SS、移送管Pを連ねた浚渫土砂移送システムにおいては、被移送物である浚渫土砂1の、定量供給装置SSから移送管Pへの供給流量(従って移送管Pにおける土砂流量)が判れば、その流量データをシステムにおける種々の工程管理に役立たせることができ、例えば土砂取出装置SHによるホッパHO内土砂投入作業の段取りや作業速度、圧縮空気混入装置SAから移送管Pへの圧縮空気供給量の調整等を効率よく的確に行う上で有益である。   By the way, in the dredged sand transfer system in which the hopper HO, the quantitative supply device SS, and the transfer pipe P are connected as in the present embodiment, the supply flow rate of the dredged sand 1 that is the object to be transferred from the quantitative supply device SS to the transfer pipe P. If the sediment flow rate in the transfer pipe P is known, the flow rate data can be used for various process management in the system. For example, the setup and work speed of the sediment loading operation in the hopper HO by the sediment take-out device SH, the compressed air, This is useful for adjusting the amount of compressed air supplied from the mixing device SA to the transfer pipe P efficiently and accurately.

そこで従来の浚渫作業現場では、電磁流量計で移送管内の土砂流量を計測するようにしていたが、この流量計は、配管内における流動体の電気・電磁伝導率の変化等から管内流速を測定して土砂流量を算出する仕組みであることから、精確な流量測定は困難であった。即ち、浚渫土砂には、土砂以外の異物(例えば金属片、木片、粘度等)が混在するため、電気・電磁伝導率の計測値にばらつきが生じ易く、その上、上記異物が混じらない場合でも浚渫土砂のように水、石、砂、シルト、粘度等がばらばらに混入した流動体は、移送管内で均一な状態の流体とならず、管内流速が均一ではなくなるため、流量測定に大きな計測誤差が発生し易い問題がある。   Therefore, in the conventional dredging work site, the sediment flow rate in the transfer pipe was measured with an electromagnetic flowmeter, but this flowmeter measures the flow velocity in the pipe from changes in the electrical and electromagnetic conductivity of the fluid in the pipe. Therefore, since it is a mechanism for calculating the sediment flow rate, accurate flow rate measurement was difficult. That is, dredged soil is mixed with foreign matters (such as metal pieces, wood pieces, viscosity, etc.) other than earth and sand, so that the measured values of electrical and electromagnetic conductivity are likely to vary, and even when the foreign matter is not mixed. Fluid such as dredged soil that contains water, stones, sand, silt, viscosity, etc., is not a uniform fluid in the transfer pipe, and the flow velocity in the pipe is not uniform. There is a problem that is likely to occur.

これに対し本実施例では、前記定量供給装置SSから移送管Pへの浚渫土砂の、比較的精度の高い安定した定量供給が可能となって、その浚渫土砂の供給流量がロータRの回転速度とリニアな関係となる点に着目し、そのロータRの回転速度と、定量供給装置SSから移送管Pへの土砂供給流量との相関関係を予め求めておき、そのロータRの回転速度を計測し、その計測値に基づいて前記供給流量を算出するものであり、これにより、電磁流量計を用いた従来例と比べて土砂流量の計測精度を効果的に高めることができ、土砂流量を長期に亘り精度よく算出することが可能となる。   On the other hand, in this embodiment, it is possible to stably supply a fixed amount of dredged sand from the fixed amount supply device SS to the transfer pipe P with relatively high accuracy, and the flow rate of dredged sand is determined by the rotational speed of the rotor R. The relationship between the rotational speed of the rotor R and the sediment supply flow rate from the quantitative supply device SS to the transfer pipe P is obtained in advance, and the rotational speed of the rotor R is measured. Then, the supply flow rate is calculated based on the measured value. This makes it possible to effectively increase the measurement accuracy of the sediment flow rate compared to the conventional example using the electromagnetic flow meter, and to increase the sediment flow rate for a long time. Thus, it is possible to calculate with high accuracy.

具体的な手法としては、例えばロータR又はモータMの回転速度を計測する回転速度センサ(図示せず)の出力信号をパソコン等のコンピュータに取り込み、そのコンピュータに予め記憶させておいた前記回転速度と定量供給装置SSから移送管Pへの土砂供給流量との相関関係式または表またはマップを用いて、前記回転速度の計測データから土砂供給流量を算出し、その算出値をパソコンのモニターに表示する。現場の作業員は、この表示を見て、土砂供給流量の算出値を、作業現場における前記した種々の工程管理に有効に活用する。   As a specific method, for example, an output signal of a rotational speed sensor (not shown) for measuring the rotational speed of the rotor R or the motor M is taken into a computer such as a personal computer, and the rotational speed stored in advance in the computer. Using the correlation equation or table or map between the sediment supply flow rate from the metering supply device SS to the transfer pipe P, the sediment supply flow rate is calculated from the rotational speed measurement data, and the calculated value is displayed on the PC monitor. To do. The worker on the site sees this display and effectively uses the calculated value of the sediment supply flow rate for the various process management described above at the work site.

また定量供給装置SSによる土砂供給量を算出するための本発明の別の手法として、例えば移送室C内から出口Oを通して移送管P内に落下する際の浚渫土砂の落下量を計算或いは実測等により予め求めておき、浚渫土砂が移送室C内から出口Oを通して移送管P内に落下する回数を計測し、その計測値と、予め求めておいた前記落下量とに基づいて浚渫土砂の供給量を算出するようにしてもよい。これは、定量供給装置SSから移送管Pへの浚渫土砂の、比較的精度の高い安定した定量供給(即ち移送室Cから移送管Pへの1回当りの浚渫土砂の落下量を均等化すること)が可能である点に鑑み、予め求めておいた浚渫土砂の前記落下量と、浚渫土砂の移送室C内から移送管P内への実際の落下回数とに基づいて、浚渫土砂の供給量を算出するものであり、これにより、定量供給装置SSから移送管Pへの浚渫土砂の供給量が長期に亘り精度よく算出可能となる。   Further, as another method of the present invention for calculating the amount of earth and sand supplied by the quantitative supply device SS, for example, the amount of dredged sand falling when falling into the transfer pipe P from the transfer chamber C through the outlet O is calculated or measured. Measure the number of times dredged sand falls from the transfer chamber C through the outlet O into the transfer pipe P, and supply dredged sand based on the measured value and the amount of fall previously obtained. The amount may be calculated. This is a stable quantitative supply of dredged sand from the quantitative supply device SS to the transfer pipe P with a relatively high accuracy (that is, the amount of dredged sand per drop from the transfer chamber C to the transfer pipe P is equalized. Supply of dredged sand based on the previously determined amount of dredged dredged sand and the actual number of drops of dredged sand from the transfer chamber C into the transfer pipe P. Thus, the amount of dredged sand supplied from the quantitative supply device SS to the transfer pipe P can be accurately calculated over a long period of time.

具体的な手法としては、例えば、上記落下回数は、ロータ本体Rmの外周部の、各移送室Cに対応した適所に設けた被検出部と、これの接近を検知可能としてドラム部Hdに設けた近接センサ等の検出部とからなるセンサ装置(図示せず)により検出可能である。またこのようなセンサ装置に代えて、出口Oに設けられて該出口Oの土砂通過(落下)を検出可能なセンサ装置(図示せず)によっても、上記落下回数を検出可能である。そして、前記センサ装置の出力信号をパソコン等のコンピュータに取り込み、そのコンピュータに予め記憶させておいた前記落下量のデータと、落下回数の積算値とに基づいて土砂供給量を算出し、その算出値をパソコンのモニターに表示する。現場の作業員は、この表示を見て、土砂供給量の算出値を、作業現場における前記した種々の工程管理に有効に活用する。   As a specific method, for example, the number of times of dropping is provided in the drum portion Hd so that the detected portion provided at an appropriate position corresponding to each transfer chamber C on the outer peripheral portion of the rotor main body Rm can be detected. It can be detected by a sensor device (not shown) including a detection unit such as a proximity sensor. Further, instead of such a sensor device, the number of drops can also be detected by a sensor device (not shown) provided at the outlet O and capable of detecting passage (falling) of the sediment at the outlet O. Then, the output signal of the sensor device is taken into a computer such as a personal computer, and the sediment supply amount is calculated based on the fall amount data stored in the computer in advance and the integrated value of the number of drops, and the calculation Display the value on the computer monitor. The worker on the site sees this display and effectively uses the calculated value of the earth and sand supply amount for the various process management described above at the work site.

以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.

例えば、前記実施例では、移送管Pの大部分を水面上に浮遊させて土砂処分地としての埋め立て地Uまで敷設しているが、本発明では、移送管Pの一部又は全部を地面に敷設するようにしてもよい。   For example, in the above embodiment, most of the transfer pipe P is suspended on the surface of the water and laid down to the landfill U as a sediment disposal site. However, in the present invention, part or all of the transfer pipe P is placed on the ground. You may make it lay.

また前記実施例では、定量供給装置SSを、揚泥作業船Aと、土砂処分地としての埋め立て地Uとの間の移送管Pによるスラリ状土砂(浚渫土砂)の風力移送に利用しているが、本発明の定量供給装置は、被移送物のスラリ状土砂の出発地と到着地は実施例に限定されず、また風力によらない移送方式にも適用可能である。   Moreover, in the said Example, fixed_quantity | feed_rate supply apparatus SS is utilized for the wind power transfer of the slurry-like earth and sand (soil earth sand) by the transfer pipe P between the mud working ship A and the landfill U as a earth and sand disposal site. However, the starting point and the arrival point of the slurry-like earth and sand of the object to be transferred are not limited to the embodiment, and the fixed amount supply device of the present invention can also be applied to a transfer method not using wind power.

また前記実施例では、定量供給装置SS(ハウジングH)の出口Oを土砂排出管6を介して移送管Pに接続したものを示したが、本発明では、その出口Oを移送管Pに直接接続するようにしてもよい。   In the above embodiment, the outlet O of the fixed amount supply device SS (housing H) is connected to the transfer pipe P via the earth and sand discharge pipe 6. However, in the present invention, the outlet O is directly connected to the transfer pipe P. You may make it connect.

また前記実施例では、圧縮空気混入装置SAからの圧縮空気を移送管P上流端手前の土砂排出管6に噴射するようにしたものを示したが、本発明では、その圧縮空気を移送管P内に直接噴射するようにしてもよい。   Moreover, in the said Example, although what compressed the compressed air from compressed air mixing apparatus SA was injected to the earth and sand discharge pipe 6 in front of the transfer pipe P upstream was shown, in this invention, the compressed air is transferred to the transfer pipe P. You may make it inject directly.

本発明の一実施例に係る浚渫土砂用空気圧式移送システムの概略を示す全体縦断面図1 is an overall longitudinal sectional view showing an outline of a pneumatic transfer system for dredged sand according to one embodiment of the present invention. 定量供給装置の要部を示す正面図(図1の2部矢視拡大図)Front view showing the main part of the fixed-quantity supply device (part 2 arrow enlarged view of FIG. 1) 図2の3−3線断面図3-3 sectional view of FIG. 図2の4−4線断面図Sectional view along line 4-4 in FIG. 図4の5−5線拡大断面図FIG. 4 is an enlarged sectional view taken along line 5-5. 図5の6部矢視拡大図6 part enlarged view of FIG. 図5の7部矢視拡大図7 part enlarged view of FIG. 図6の8−8線断面図Sectional view taken along line 8-8 in FIG. 図6の9−9線断面図Sectional view taken along line 9-9 in FIG. 第3シール装置の変形例を示す図7対応図FIG. 7 is a view corresponding to FIG. 7 showing a modification of the third sealing device. 第3シール装置の変形例を示す図8対応図FIG. 8 is a view corresponding to FIG. 8 showing a modification of the third sealing device.

符号の説明Explanation of symbols

B・・・・設置面としての船体上面
C・・・・移送室
H・・・・ハウジング
HO・・・ホッパ
Hd・・・ドラム部
Hdh・・大径貫通孔
I・・・・入口
M・・・・回転駆動手段としてのモータ
O・・・・出口
R・・・・ロータ
Rm・・・ロータ本体
Rma・・凹溝部
Rj・・・ロータ軸
Re・・・円板状端壁
Reb・・環状ボス部
SS・・・定量供給装置
S1・・・第1シール装置
S2・・・第2シール装置
S3・・・第3シール装置
T・・・・蓋板
Ta・・・作業窓
1・・・・被移送物としての浚渫土砂
12,13・・第1,第2環状シール手段
15・・・シール部材
16・・・付勢手段としての付勢ばね
18・・・支持孔
17・・・支持溝
20・・・小蓋
25・・・円弧状間隙(切欠溝)
50・・・環状シール間隙
B ··· Hull upper surface as installation surface ··· Transfer chamber H ··· Housing HO · · · Hopper Hd · · · Drum portion Hdh · · · Large diameter through hole I · · · Inlet M · · · ... Motor O as rotational drive means ... Exit R ... Rotor Rm ... Rotor body Rma ... Dove groove Rj ... Rotor shaft Re ... Disk end wall Reb ... Annular boss SS ... Quantitative supply device S1 ... first sealing device S2 ... second sealing device S3 ... third sealing device T ... lid plate Ta ... work window 1 ... ..Sediment sand 12 and 13 as the object to be transferred First and second annular sealing means 15... Sealing member 16 .. Biasing spring 18 as urging means. Support groove 20 ... small lid 25 ... arc-shaped gap (notch groove)
50 ... annular seal gap

Claims (9)

軸線が略水平な円筒状のドラム部(Hd)を有して設置面(B)に固定されると共に該ドラム部(Hd)の周壁上部に入口(I)が、また周壁下部に出口(O)がそれぞれ開口するハウジング(H)と、
前記ドラム部(Hd)内に収容されて該ドラム部(Hd)の軸線回りに回転するロータ(R)とを備え、
そのロータ(R)のロータ本体(Rm)外周面には、前記ドラム部(Hd)内周面との間に周方向に並ぶ複数の移送室(C)を画成する複数の凹溝部(Rma)が設けられ、
前記ハウジング(H)の上部には、前記入口(I)に連通するホッパ(HO)が一体的に連設されると共に、前記ハウジング(H)の下部には、前記出口(O)に連通する移送管(P)の上流端部が接続され、
前記ホッパ(HO)内に投入、堆積した流動可能なスラリ状又は無数の粒状の被移送物(1)を、前記ロータ(R)の回転に応じて回転する前記複数の移送室(C)に前記入口(I)を通して順次に落下、収容する一方、それら移送室(C)内の前記被移送物(1)を前記出口(O)を通して前記移送管(P)内に順次に落下、供給する被移送物の定量供給装置であって、
前記ドラム部(Hd)の両端壁には、前記ロータ本体(Rm)の外径とほぼ等しい内径の大径貫通孔(Hdh)がそれぞれ形成され、
前記ロータ本体(Rm)には、前記複数の凹溝部(Rma)の軸方向両端を閉じる一対の円板状端壁(Re)と、その一対の円板状端壁(Re)より前記大径貫通孔(Hdh)を通して外方に両端部がそれぞれ突出するロータ軸(Rj)とが一体的に設けられ、
そのロータ軸(Rj)の両端部は、前記ハウジング(H)から独立して設置面(B)に回転自在に支持されると共に、その少なくとも一端部が前記ハウジング(H)外で回転駆動手段(M)に連動連結され、
前記円板状端壁(Re)の外周部と、これに対応する前記大径貫通孔(Hdh)の開口縁部との間が、その両者の相対回転及び芯ずれを許容する第1シール装置(S1)により全周に亘りシールされ、
前記ロータ本体(Rm)外周部の、相隣なる移送室(C)に挟まれた部分と、前記ドラム部(Hd)内周面との間が、その両者の相対回転及び芯ずれを許容する第2シール装置(S2)により該ロータ本体(Rm)の軸方向全長に亘りシールされることを特徴とする、被移送物の定量供給装置。
It has a cylindrical drum portion (Hd) whose axis is substantially horizontal and is fixed to the installation surface (B), and has an inlet (I) at the upper peripheral wall of the drum portion (Hd) and an outlet (O) at the lower peripheral wall. ) Each having an opening (H),
A rotor (R) housed in the drum part (Hd) and rotating around the axis of the drum part (Hd);
A plurality of concave grooves (Rma) defining a plurality of transfer chambers (C) arranged in the circumferential direction between the outer peripheral surface of the rotor main body (Rm) of the rotor (R) and the inner peripheral surface of the drum portion (Hd). )
A hopper (HO) communicating with the inlet (I) is integrally connected to an upper portion of the housing (H), and communicated to the outlet (O) at a lower portion of the housing (H). The upstream end of the transfer pipe (P) is connected,
The flowable slurry-like or innumerable granular objects to be transferred (1) charged and accumulated in the hopper (HO) are transferred to the plurality of transfer chambers (C) that rotate according to the rotation of the rotor (R). While dropping and accommodating sequentially through the inlet (I), the transferred object (1) in the transfer chamber (C) is sequentially dropped and supplied into the transfer pipe (P) through the outlet (O). A device for quantitatively supplying a material to be transferred,
Large diameter through holes (Hdh) having an inner diameter substantially equal to the outer diameter of the rotor body (Rm) are formed in both end walls of the drum portion (Hd), respectively.
The rotor main body (Rm) has a pair of disk-shaped end walls (Re) that close both axial ends of the plurality of concave grooves (Rma), and a larger diameter than the pair of disk-shaped end walls (Re). A rotor shaft (Rj) whose both ends protrude outwardly through the through hole (Hdh) is integrally provided,
Both end portions of the rotor shaft (Rj) are rotatably supported on the installation surface (B) independently of the housing (H), and at least one end portion of the rotor shaft (Rj) is a rotation drive means (outside the housing (H). M)
A first sealing device that allows relative rotation and misalignment between the outer peripheral portion of the disk-shaped end wall (Re) and the opening edge portion of the corresponding large-diameter through hole (Hdh). Sealed over the entire circumference by (S1),
Between the outer peripheral portion of the rotor body (Rm) sandwiched between adjacent transfer chambers (C) and the inner peripheral surface of the drum portion (Hd), relative rotation and misalignment of both are allowed. An apparatus for quantitatively supplying an object to be transferred, wherein the second sealing device (S2) seals the entire length of the rotor body (Rm) in the axial direction.
前記第1シール装置(S1)は、前記ドラム部(Hd)又は前記円板状端壁(Re)の何れか一方に着脱可能に固着されてその何れか他方を空隙を存して覆うリング状の蓋板(T)と、その蓋板(T)と前記ドラム部(Hd)又は前記円板状端壁(Re)の何れか他方との間に設けられてその間を相対摺動可能に摺接させる少なくとも1組の環状シール手段(12,13)とを備えることを特徴とする、請求項1に記載の被移送物の定量供給装置。   The first sealing device (S1) is a ring-shaped member that is detachably fixed to either the drum portion (Hd) or the disc-shaped end wall (Re) and covers the other with a gap. The lid plate (T), and the lid plate (T) and either the drum portion (Hd) or the disk-shaped end wall (Re), are slidably slidable therebetween. The device for quantitatively supplying an object to be transferred according to claim 1, comprising at least one set of annular sealing means (12, 13) in contact with each other. 前記第2シール装置(S2)は、前記ロータ本体(Rm)の軸方向全長に亘り直線状に延びていて前記ロータ本体(Rm)外周部の、相隣なる移送室(C)に挟まれた部分に径方向摺動可能に且つ液密に嵌合支持された複数のシール部材(15)と、その各シール部材(15)をロータ(R)の径方向外方に付勢して該シール部材(15)の径方向外端部を前記ドラム部(Hd)の内周面に摺動可能に圧接させる付勢手段(16)とを備えることを特徴とする、請求項2に記載の被移送物の定量供給装置。   The second sealing device (S2) extends linearly over the entire axial length of the rotor body (Rm) and is sandwiched between adjacent transfer chambers (C) on the outer periphery of the rotor body (Rm). A plurality of seal members (15) that are slidable in a radial direction and supported in a liquid-tight manner on the portion, and the seal members (15) are urged outward in the radial direction of the rotor (R). The bearing (16) according to claim 2, further comprising urging means (16) for slidably pressing the radially outer end of the member (15) against the inner peripheral surface of the drum (Hd). A fixed-quantity supply device for transported materials. 前記円板状端壁(Re)の外面外周部には環状ボス部(Reb)が突設され、そのボス部(Reb)に設けた径方向支持孔(18)に前記シール部材(15)の基部が径方向摺動可能に支持され、その支持部よりも径方向内方側で前記シール部材(15)の基部と、前記円板状端壁(Re)の外面との間に、前記付勢手段(16)が外側から脱着可能に設けられることを特徴とする、請求項3に記載の被移送物の定量供給装置。   An annular boss portion (Reb) projects from the outer peripheral portion of the outer surface of the disc-shaped end wall (Re), and the seal member (15) is inserted into a radial support hole (18) provided in the boss portion (Reb). A base portion is supported so as to be slidable in the radial direction, and is disposed between the base portion of the seal member (15) and the outer surface of the disk-shaped end wall (Re) on the radially inner side of the support portion. 4. The apparatus for quantitatively supplying an object to be transferred according to claim 3, wherein the biasing means (16) is detachably provided from the outside. 各々の前記シール部材(15)は、前記部分にこれを軸方向に横切るように形成された支持溝(17)に嵌合され、前記蓋板(T)には、前記複数のシール部材(15)の前記支持溝(17)に対する抜差を許容する複数の作業窓(Ta)が形成され、その各作業窓(Ta)を液密に塞ぐ小蓋(20)が前記蓋板(T)に着脱可能に装着されることを特徴とする、請求項3又は4に記載の被移送物の定量供給装置。   Each of the sealing members (15) is fitted into a support groove (17) formed in the portion so as to cross the axial direction in the portion, and the sealing plate (T) is provided with the plurality of sealing members (15). A plurality of work windows (Ta) that allow the insertion and removal of the support grooves (17) with respect to the support grooves (17) are formed, and small lids (20) that liquid-tightly close the work windows (Ta) are formed on the lid plate (T). The fixed-quantity supply apparatus of the to-be-transported object of Claim 3 or 4 characterized by the above-mentioned. 前記ドラム部(Hd)の大径貫通孔(Hdh)の内周面と、前記円板状端壁(Re)の外周面との対向面間には、その対向面間を通して前記移送室(C)から前記第1シール装置(S1)側へ被移送物が移動するのを抑制する第3シール装置(S3)が設けられることを特徴とする、請求項3,4又は5に記載の被移送物の定量供給装置。   Between the opposing surfaces of the inner peripheral surface of the large-diameter through hole (Hdh) of the drum portion (Hd) and the outer peripheral surface of the disc-shaped end wall (Re), the transfer chamber (C 6) A third sealing device (S3) is provided for suppressing movement of the transferred object from the first sealing device (S1) to the first sealing device (S1) side. Equipment for quantitative supply of things. 前記ロータ本体(Rm)には、前記被移送物(1)が前記移送室(C)内から前記出口(O)を通して前記移送管(P)内に落下する際に該被移送物(1)の移送室(C)内面からの剥離を促進する剥離促進手段が設けられることを特徴とする、請求項1〜6の何れかに記載の被移送物の定量供給装置。   In the rotor body (Rm), the object to be transferred (1) is dropped when the object to be transferred (1) falls from the transfer chamber (C) into the transfer pipe (P) through the outlet (O). The apparatus for quantitatively supplying an object to be transferred according to any one of claims 1 to 6, further comprising a peeling accelerating means for accelerating peeling from the inner surface of the transfer chamber (C). 請求項1〜7の何れかに記載の定量供給装置を用いた移送システムにおける被移送物の供給量算出方法であって、
前記ロータ(R)の回転速度と、前記定量供給装置(SS)から前記移送管(P)への被移送物(1)の供給流量との相関関係を予め求めておき、
そのロータ(R)の回転速度を計測し、その計測値と前記相関関係とに基づいて前記供給流量を算出することを特徴とする、被移送物の供給量算出方法。
A method for calculating a supply amount of an object to be transferred in a transfer system using the quantitative supply device according to claim 1,
The correlation between the rotational speed of the rotor (R) and the supply flow rate of the object to be transferred (1) from the quantitative supply device (SS) to the transfer pipe (P) is obtained in advance.
A method for calculating a supply amount of an object to be transferred, which measures the rotational speed of the rotor (R) and calculates the supply flow rate based on the measured value and the correlation.
請求項1〜7の何れかに記載の定量供給装置を用いた移送システムにおける被移送物の供給量算出方法であって、
前記移送室(C)内から前記出口(O)を通して前記移送管(P)内に落下する際の前記被移送物(1)の落下量を予め求めておき、
前記被移送物(1)が前記移送室(C)内から前記出口(O)を通して前記移送管(P)内に落下する回数を計測し、その計測値と前記落下量とに基づいて前記被移送物の供給量を算出することを特徴とする、被移送物の供給量算出方法。
A method for calculating a supply amount of an object to be transferred in a transfer system using the quantitative supply device according to claim 1,
The amount of fall of the transferred object (1) when falling into the transfer pipe (P) from the transfer chamber (C) through the outlet (O) is obtained in advance,
The number of times that the object to be transferred (1) falls from the transfer chamber (C) through the outlet (O) into the transfer pipe (P) is measured, and the object to be transferred is based on the measured value and the amount of fall. A method for calculating a supply amount of an object to be transferred, wherein the supply amount of a transfer object is calculated.
JP2006354328A 2006-12-28 2006-12-28 Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported Pending JP2008162754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354328A JP2008162754A (en) 2006-12-28 2006-12-28 Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354328A JP2008162754A (en) 2006-12-28 2006-12-28 Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported

Publications (1)

Publication Number Publication Date
JP2008162754A true JP2008162754A (en) 2008-07-17

Family

ID=39692735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354328A Pending JP2008162754A (en) 2006-12-28 2006-12-28 Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported

Country Status (1)

Country Link
JP (1) JP2008162754A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU181787U1 (en) * 2018-03-12 2018-07-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) WEIGHT CONTINUOUS DISPENSER
CN113734488A (en) * 2021-09-10 2021-12-03 章丘华明水泥新型建材有限公司 Discharging mechanism for mortar packaging machine
JP7479089B1 (en) 2023-04-05 2024-05-08 精研工業株式会社 Rotary Valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3047623U (en) * 1997-09-30 1998-04-24 有限会社アサヒエンジニヤリング Rotary valve
JPH10157855A (en) * 1996-11-29 1998-06-16 Amano Corp Rotary feeder
JP2005200173A (en) * 2004-01-16 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Rotary feeder and sealing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10157855A (en) * 1996-11-29 1998-06-16 Amano Corp Rotary feeder
JP3047623U (en) * 1997-09-30 1998-04-24 有限会社アサヒエンジニヤリング Rotary valve
JP2005200173A (en) * 2004-01-16 2005-07-28 Ishikawajima Harima Heavy Ind Co Ltd Rotary feeder and sealing device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU181787U1 (en) * 2018-03-12 2018-07-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Волгоградский государственный технический университет" (ВолгГТУ) WEIGHT CONTINUOUS DISPENSER
CN113734488A (en) * 2021-09-10 2021-12-03 章丘华明水泥新型建材有限公司 Discharging mechanism for mortar packaging machine
CN113734488B (en) * 2021-09-10 2023-02-03 章丘华明水泥新型建材有限公司 Discharging mechanism for mortar packaging machine
JP7479089B1 (en) 2023-04-05 2024-05-08 精研工業株式会社 Rotary Valve

Similar Documents

Publication Publication Date Title
US20100021247A1 (en) Transporting particulate material
CA2663703C (en) Placement of fluids in ground by pulse-injection
KR20080093893A (en) An apparatus for supplying constant quantity of abrasive
JP2008162754A (en) Constant volume feeder for article to be transported and method of calculating feed amount of article to be transported
JPH0621850B2 (en) Slurry viscometer and method for measuring slurry viscosity
CA2974035C (en) Erosion detection of rotating equipment with harmonic frequencies
CN108956352A (en) For evaluating the experimental rig and test method of exemplar erosive wear resistant performance
JPH03207458A (en) Bearing shield of power auger device
CN206223241U (en) Agricultural plant protection machine and the flowmeter for the agricultural plant protection machine
JP2006337035A (en) Powder weighing/supplying device
JP5090845B2 (en) Method and apparatus for measuring sediment flow rate in sediment transport system
EP0974816A1 (en) Method and device for measuring a flow of granular solid materials
CN212178556U (en) Portable ultrasonic detector for nondestructive testing
JP4690542B2 (en) Solid-liquid two-phase flow piping
JPH08258980A (en) Transporting condition determining method for powder and granular material inside hopper and device thereof
EP2001637B1 (en) Particulate material blasting apparatus with a dosing device
JP4368512B2 (en) Sediment transport equipment
CN219657438U (en) Sludge concentration meter for cutter suction dredger
CN216743315U (en) Conduit coupling device
CN210922993U (en) Sealing performance testing device of oil film sealing assembly
JPH0539129A (en) Volumetric feeder for earth and sand
CN202177409U (en) Gear flow transducer
CN210513585U (en) Water injection pump filler seals leakage quantity monitoring devices
SU779689A1 (en) Plant for investigating and seals
FR2778460A1 (en) ROTATING DEVICE FOR MEASURING THE AERODYNAMIC CHARACTERISTICS OF A WALL AND ITS METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090507

A131 Notification of reasons for refusal

Effective date: 20111214

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Effective date: 20120627

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20121107

Free format text: JAPANESE INTERMEDIATE CODE: A02