JP2008161848A - Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid - Google Patents

Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid Download PDF

Info

Publication number
JP2008161848A
JP2008161848A JP2007000042A JP2007000042A JP2008161848A JP 2008161848 A JP2008161848 A JP 2008161848A JP 2007000042 A JP2007000042 A JP 2007000042A JP 2007000042 A JP2007000042 A JP 2007000042A JP 2008161848 A JP2008161848 A JP 2008161848A
Authority
JP
Japan
Prior art keywords
meth
acrylic acid
tank
crude
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007000042A
Other languages
Japanese (ja)
Other versions
JP2008161848A5 (en
Inventor
Toshihiro Sato
俊裕 佐藤
Toru Kuroda
徹 黒田
Mieharu Sugiyama
美栄治 杉山
Takehiro Marumoto
武弘 丸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2007000042A priority Critical patent/JP2008161848A/en
Publication of JP2008161848A publication Critical patent/JP2008161848A/en
Publication of JP2008161848A5 publication Critical patent/JP2008161848A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vertical-type multi-blades reaction tank a few in adhesion of a reaction product to the wall surface of a reaction tank and to provide a purification method of (meth)acrylic acid which can efficiently produce, in commercial scale, a (meth)acrylic acid product a few in coloring and good in polymerizability. <P>SOLUTION: The vertical-type multi-blades reaction tank has a plurality of divisions in a vertical cylinder to form a plurality of division tanks and has an agitation blade in each division tank, wherein the agitation blade has a blade style that a deposit adhered to the wall surface of the tank is scraped off by the agitation blade in agitation. The purification method of (meth)acrylic acid has the step of adding the primary and/or the secondary amino group-containing compound to a raw (meth)acrylic acid and the step of treating a raw (meth)acrylic acid mixture obtained by adding the amino group-containing compound to this acid, in a reactor (A) which has the flowing characteristics of a complete-mixing tank series model and two or more tanks. Then, a method for making the above mixture contact treat with a strongly acidic cation-exchange resin, further and addition treating a formaldehyde containing substance, further, is provided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は縦型の多段翼反応槽及び(メタ)アクリル酸を精製する方法に関する。   The present invention relates to a vertical multistage blade reactor and a method for purifying (meth) acrylic acid.

反応液や反応生成物中に粘着性を有するものや固形物を含有する反応系では、反応槽への付着、滞留を抑制する点で、完全混合型の処理装置が好ましい。   In a reaction system containing an adhesive or a solid substance in the reaction solution or reaction product, a complete mixing type processing apparatus is preferable in that adhesion and retention in the reaction tank are suppressed.

また、メタクリル酸の合成で得られた不純分を含む粗メタクリル酸は、抽出、蒸留等の通常の手段により精製処理することにより不純物の少ない製品とすることができる。しかしながら、上記の方法では、微量に存在する、合成時の副反応生成物である不純分(以下「副反応不純分」という)を除去することが難しく、メタクリル酸製品が着色する、又は重合阻害を生じさせるといった問題が生じている。   Moreover, the crude methacrylic acid containing impurities obtained by the synthesis of methacrylic acid can be made into a product with less impurities by purifying it by usual means such as extraction and distillation. However, in the above-mentioned method, it is difficult to remove the impurities that are a side reaction product at the time of synthesis (hereinafter referred to as “side reaction impurity”), and the methacrylic acid product is colored or polymerization is inhibited. The problem of causing

この問題を解決するために、特許文献1では、粗メタクリル酸を、少量のアミノ基含有化合物で処理し、強酸性陽イオン交換樹脂処理した後に、ホルムアルデヒド含有物添加後に強酸性陽イオン交換樹脂処理する方法が提案されている。この方法により、アミノ基含有化合物とメタクリル酸との反応を抑制してメタクリル酸の回収率を低下させないようにし、且つ不純分を除去し易い状態にして精製できる。   In order to solve this problem, in Patent Document 1, after treating a crude methacrylic acid with a small amount of an amino group-containing compound and treating with a strong acid cation exchange resin, a strong acid cation exchange resin treatment is performed after adding a formaldehyde-containing material. A method has been proposed. By this method, the reaction between the amino group-containing compound and methacrylic acid can be suppressed so as not to lower the recovery rate of methacrylic acid, and purification can be performed in a state where impurities can be easily removed.

また、粗メタクリル酸を少量のアミノ基含有化合物で処理する場合、副反応不純分とアミノ基含有化合物との反応生成物は粘着性を有するもの又は固形物であることが多い。   When the crude methacrylic acid is treated with a small amount of amino group-containing compound, the reaction product of the side reaction impurity and the amino group-containing compound is often sticky or solid.

更に、商業規模での生産方式としては、高生産性とするために、通常、完全混合型の連続生産方式が採用されることが多い。   Furthermore, as a production system on a commercial scale, in order to achieve high productivity, a complete mixed type continuous production system is usually adopted in many cases.

しかしながら、上記各種処理工程において、完全混合型の連続生産方式では未処理状態の液が次の工程に流れて漏れ出て行き、出来るだけ少量のアミノ基含有化合物で不純分を処理することが難しい。   However, in the various processing steps described above, in the fully mixed type continuous production method, the unprocessed liquid flows into the next step and leaks, and it is difficult to treat the impurities with as little amino group-containing compound as possible. .

このような状況において、商業規模生産で、着色が少なく、重合性の良好なメタクリル酸製品を効率良く生産できる方法が望まれている。また、商業規模生産で安定に連続生産できるようにするために反応槽の壁面に反応生成物が付着しないようにすることが望まれている。
特開平11−60536号公報
Under such circumstances, there is a demand for a method capable of efficiently producing a methacrylic acid product with little coloration and good polymerizability in commercial scale production. In addition, it is desired to prevent the reaction product from adhering to the wall of the reaction tank in order to enable stable continuous production in commercial scale production.
Japanese Patent Laid-Open No. 11-60536

本発明の目的は、反応槽の壁面に反応生成物が付着しないようにすることが可能な縦型多段翼反応槽を提供すると共に、商業規模生産の連続生産において、着色が少なく、重合性の良好な(メタ)アクリル酸製品を効率良く生産することにある。   An object of the present invention is to provide a vertical multistage blade reaction vessel that can prevent reaction products from adhering to the wall surface of the reaction vessel, and in a continuous production of commercial scale production, it is less colored and has a polymerizable property. The goal is to efficiently produce good (meth) acrylic acid products.

本発明は、縦型の筒内に複数の仕切りを設けて複数の仕切り槽を形成し、各仕切り槽に撹拌翼を設置した縦型多段翼反応槽であって、前記撹拌翼が撹拌時に槽の壁面に付着した付着物を掻き取るブレード式である縦型多段翼反応槽を第1の発明とする。   The present invention is a vertical multistage blade reaction tank in which a plurality of partitions are provided in a vertical cylinder to form a plurality of partition tanks, and a stirring blade is installed in each partition tank, and the stirring blades are tanks during stirring. A vertical multi-stage blade reaction tank of a blade type that scrapes off deposits adhering to the wall surface of the first invention is defined as the first invention.

また、本発明は、粗(メタ)アクリル酸に第1級及び/又は第2級のアミノ基含有化合物を添加する工程(以下「アミン添加工程」という)と、次いでアミノ基含有化合物が添加された粗(メタ)アクリル酸混合物を完全混合槽列モデルで2槽以上の流れ特性を有する反応装置(A)で処理する工程(以下「反応工程」という)とを有する(メタ)アクリル酸の精製方法を第2の発明とする。   In the present invention, a step of adding a primary and / or secondary amino group-containing compound to crude (meth) acrylic acid (hereinafter referred to as “amine addition step”), and then an amino group-containing compound are added. Purification of (meth) acrylic acid having a step (hereinafter referred to as “reaction step”) in which a crude (meth) acrylic acid mixture is treated with a reactor (A) having flow characteristics of two or more tanks in a complete mixing tank row model The method is the second invention.

また、本発明は、更に、反応装置(A)で処理された粗(メタ)アクリル酸混合物(以下「反応処理粗(メタ)アクリル酸混合物」という)を強酸性陽イオン交換樹脂と接触処理させる工程(以下「イオン交換樹脂処理工程」という)を有する(メタ)アクリル酸の精製方法を第3の発明とする。   In the present invention, the crude (meth) acrylic acid mixture treated in the reactor (A) (hereinafter referred to as “reaction-treated crude (meth) acrylic acid mixture”) is further contacted with a strongly acidic cation exchange resin. A method for purifying (meth) acrylic acid having a step (hereinafter referred to as “ion exchange resin treatment step”) is a third invention.

更に、強酸性陽イオン交換樹脂と接触処理させた粗(メタ)アクリル酸混合物(以下「接触処理粗(メタ)アクリル酸混合物」という)に、強酸性陽イオン交換樹脂の存在下でホルムアルデヒド含有物を添加処理する工程(以下「イオン交換樹脂・HCHO処理工程」という)を有する(メタ)アクリル酸の精製方法を第4の発明とする。   Furthermore, a crude (meth) acrylic acid mixture (hereinafter referred to as a “contact-treated crude (meth) acrylic acid mixture”) that has been contact-treated with a strong acid cation exchange resin in the presence of a strong acid cation exchange resin in the presence of formaldehyde A method for purifying (meth) acrylic acid having a step of adding (hereinafter referred to as “ion exchange resin / HCHO treatment step”) is a fourth invention.

本発明の縦型多段翼反応槽を使用することにより、反応液や反応生成物中に粘着性を有するものや固形物を含有する反応系においても反応槽の壁面への反応生成物の付着を抑制して長期運転することが可能である。また、本発明の精製方法により、商業規模生産において、着色が少なく、重合性の良好なアクリル酸及び/又はメタクリル酸(以下、「(メタ)アクリル酸」という)製品を効率良く生産することが可能である。   By using the vertical multistage blade reaction tank of the present invention, the reaction product adheres to the wall of the reaction tank even in a reaction system containing a sticky or solid substance in the reaction solution or reaction product. It is possible to suppress and operate for a long time. In addition, the purification method of the present invention enables efficient production of acrylic acid and / or methacrylic acid (hereinafter referred to as “(meth) acrylic acid”) products with little coloration and good polymerizability in commercial scale production. Is possible.

[縦型多段翼反応槽]
本発明の縦型多段翼反応槽は、縦型の筒内に複数の仕切りを設けて複数の仕切り槽を形成し、各仕切り槽に撹拌翼を設置したものであって、前記撹拌翼が撹拌時に槽の壁面に付着した付着物を掻き取るブレード式である。
[Vertical multistage blade reactor]
The vertical multistage blade reaction tank of the present invention is a tank in which a plurality of partitions are provided in a vertical cylinder to form a plurality of partition tanks, and a stirring blade is installed in each partition tank. Sometimes it is a blade type that scrapes off deposits adhering to the wall of the tank.

撹拌翼としては、例えば図1に示すようなH型のブレード式のもの及び図2に示す平羽根状のものが挙げられる。撹拌翼の大きさ、形状は、反応装置の容量、撹拌翼回転速度等の各種条件に応じて任意に設定することができる。   Examples of the stirring blade include an H-type blade type as shown in FIG. 1 and a flat blade-like type as shown in FIG. The size and shape of the stirring blade can be arbitrarily set according to various conditions such as the capacity of the reactor and the rotation speed of the stirring blade.

例えば、各撹拌翼は、撹拌翼が筒壁と上下の仕切りと接触せず、且つクリアランスを小さくすることが好ましい。また、撹拌翼の高さは出来るだけ仕切り槽の高さに近いことが好ましい。   For example, it is preferable that each stirring blade does not contact the cylindrical wall and the upper and lower partitions, and the clearance is reduced. Further, the height of the stirring blade is preferably as close to the height of the partition tank as possible.

各仕切り槽における撹拌翼の枚数は1枚以上が用いられ、例えば、図1に示すように、撹拌翼支持具(4)に撹拌翼(1)2枚を撹拌軸(3)に対して対称となるように設置したものが挙げられる。   One or more stirring blades are used in each partition tank. For example, as shown in FIG. 1, two stirring blades (1) are symmetric with respect to the stirring shaft (3) on the stirring blade support (4). The thing installed so that it may become.

仕切り槽を構成する仕切り(2)の形状は、次の槽との間が完全に仕切られていなくてもよく、例えば、撹拌翼(1)と接触しないようにドーナツ状の円盤状物が挙げられる。仕切り(2)と撹拌翼(1)との隙間は、目的とする反応生成物の付着性及び混合効率に併せて任意に設定できる。   The shape of the partition (2) constituting the partition tank does not have to be completely partitioned from the next tank. For example, a donut-shaped disk-like material is mentioned so as not to contact the stirring blade (1). It is done. The gap between the partition (2) and the stirring blade (1) can be arbitrarily set in accordance with the adhesion and mixing efficiency of the target reaction product.

仕切り槽の数は、目的に応じて設定できるが、反応生成物の排出性の点から2〜10槽が好ましい。   Although the number of partition tanks can be set according to the objective, 2-10 tanks are preferable from the point of discharge | emission of a reaction product.

[粗(メタ)アクリル酸]
本発明で使用される粗(メタ)アクリル酸は、気相接触酸化反応又は液相接触酸化反応で得られたものが使用される。
[Rough (meth) acrylic acid]
The crude (meth) acrylic acid used in the present invention is obtained by a gas phase catalytic oxidation reaction or a liquid phase catalytic oxidation reaction.

気相接触酸化反応の場合には、イソブタン、イソブチレン、第3級ブチルアルコール、メチル第3級ブチルエーテル、メタクロレイン、イソブチルアルデヒド、イソ酪酸からなる群から選ばれる少なくとも一種の化合物から得られた粗メタクリル酸が挙げられる。   In the case of the gas phase catalytic oxidation reaction, crude methacrylic compound obtained from at least one compound selected from the group consisting of isobutane, isobutylene, tertiary butyl alcohol, methyl tertiary butyl ether, methacrolein, isobutyraldehyde, and isobutyric acid. Examples include acids.

粗メタクリル酸の純度としては、50%以上が好ましく、90%以上がより好ましい。更に好ましくは99%以上である。   The purity of the crude methacrylic acid is preferably 50% or more, and more preferably 90% or more. More preferably, it is 99% or more.

[アミン添加工程]
本発明では、粗メタクリル酸に第1級及び/又は第2級のアミノ基含有化合物が添加される。
[Amine addition process]
In the present invention, a primary and / or secondary amino group-containing compound is added to crude methacrylic acid.

[アミノ基含有化合物]
アミノ基含有化合物は脂肪族又は芳香族アミンのいずれでもよく、1分子中に複数個のアミノ基を有するアミン、アンモニア、ヒドラジン及びその誘導体、更にはヒドロキシルアミン及びその無機酸塩等の化合物が挙げられる。
[Amino group-containing compound]
The amino group-containing compound may be either an aliphatic or aromatic amine, and examples thereof include amines having a plurality of amino groups in one molecule, ammonia, hydrazine and derivatives thereof, and hydroxylamine and inorganic acid salts thereof. It is done.

アミノ基含有化合物の具体例としては、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジエチルアミン、ジ−n−プロピルアミン、ジイソプロピルアミン、メチルエチルアミン、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、N,N’−ジフェニルエチレンジアミン、エタノールアミン、ジエタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、テトラエチレンペンタミン、アニリン、トルイジン、N−エチルアニリン、N−プロピルアミン、ジフェニルアミン、フェニレンジアミン、N−メチルフェニレンジアミン、ベンジルアミン、フェネチルアミン、アニシジン等が挙げられる。   Specific examples of the amino group-containing compound include propylamine, butylamine, pentylamine, hexylamine, diethylamine, di-n-propylamine, diisopropylamine, methylethylamine, ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, N, N'-diphenylethylenediamine, ethanolamine, diethanolamine, hexamethylenediamine, diethylenetriamine, tetraethylenepentamine, aniline, toluidine, N-ethylaniline, N-propylamine, diphenylamine, phenylenediamine, N-methylphenylenediamine, benzyl Amine, phenethylamine, anisidine and the like can be mentioned.

アミノ基含有化合物は単独で又は2種以上を組み合わせて用いることができる。また、アミノ基含有化合物の添加量は、粗メタクリル酸100質量部に対して、0.001〜1質量部が好ましく、0.005〜0.8質量部がより好ましい。   The amino group-containing compounds can be used alone or in combination of two or more. Moreover, 0.001-1 mass part is preferable with respect to 100 mass parts of crude methacrylic acid, and, as for the addition amount of an amino group containing compound, 0.005-0.8 mass part is more preferable.

アミン添加工程で使用される容器及びアミノ基含有化合物の添加方法は任意の容器及び方法でよく、連続で生産する場合には、例えばオーバーフロー方式の容器を使用することが出来る。   The container used in the amine addition step and the method for adding the amino group-containing compound may be any container and method. For continuous production, for example, an overflow container can be used.

商業規模生産での連続生産の場合、必要に応じてアミン添加工程と反応工程との間に少なくとも1つの混合工程を設けることが出来る。この混合工程の有無、混合工程数は、粗(メタ)アクリル酸とアミノ基含有化合物との混合撹拌に必要な時間に応じて設置することができる。また、混合工程の設定条件は必要に応じて決めることができ、アミン添加工程と同一でも異なっていても良い。   In the case of continuous production in commercial scale production, if necessary, at least one mixing step can be provided between the amine addition step and the reaction step. The presence or absence of this mixing step and the number of mixing steps can be set according to the time required for mixing and stirring the crude (meth) acrylic acid and the amino group-containing compound. Moreover, the setting conditions of a mixing process can be determined as needed, and may be the same as that of an amine addition process, or may differ.

[反応工程]
反応工程で使用される反応装置(A)は、完全混合槽列モデルで2槽以上の流れ特性を有するもので、例えば、図1又は図2に示すような、縦型の筒内に複数の仕切りを設けて複数の仕切り槽とし、各仕切り槽に撹拌翼を設置した縦型多段翼反応槽、図3に示すような、複数の反応槽を連結した横型多段反応槽が挙げられる。
[Reaction process]
The reaction apparatus (A) used in the reaction process has a flow characteristic of two or more tanks in a complete mixing tank row model. For example, as shown in FIG. 1 or FIG. A vertical multistage reaction tank in which partitions are provided to form a plurality of partition tanks, each of which is equipped with a stirring blade, and a horizontal multistage reaction tank in which a plurality of reaction tanks are connected as shown in FIG.

また、本発明においては、反応装置(A)として、前記2種の反応槽だけでなく、図4に示すように、複数の反応槽を設置して連続多槽型のものとし、全体として完全混合槽列モデルで2槽以上の流れ特性とすることができる。   In the present invention, as the reaction apparatus (A), not only the two reaction tanks but also a plurality of reaction tanks as shown in FIG. The mixing tank row model can provide flow characteristics of two or more tanks.

反応工程における処理条件としては、完全混合槽列モデルで2槽以上、好ましくは3槽以上の流れ特性を有するように設定すればよい。   The treatment conditions in the reaction process may be set so that the complete mixing tank array model has flow characteristics of 2 or more, preferably 3 or more.

具体的な処理条件としては、温度は50〜150℃が好ましく、80〜130℃がより好ましい。   As specific processing conditions, the temperature is preferably 50 to 150 ° C, more preferably 80 to 130 ° C.

また、時間は5分〜5時間が好ましく、15分〜3時間がより好ましい。処理の方法は目的に応じて設定すればよく、例えば、粗(メタ)アクリル酸にアミノ基含有化合物を添加して、所定の温度に加熱した後、混合物を撹拌しながら一定時間保持する方法が挙げられる。   The time is preferably 5 minutes to 5 hours, more preferably 15 minutes to 3 hours. The treatment method may be set according to the purpose. For example, an amino group-containing compound is added to crude (meth) acrylic acid, heated to a predetermined temperature, and then the mixture is kept for a certain time while stirring. Can be mentioned.

本発明においては、図5に示すように、前記アミン添加工程で使用されるアミノ基含有化合物を添加する容器を反応装置(A)の1つとして使用することができる。   In this invention, as shown in FIG. 5, the container which adds the amino group containing compound used at the said amine addition process can be used as one of the reactors (A).

反応工程で処理された反応処理粗(メタ)アクリル酸混合物は、次のイオン交換樹脂処理工程の前に蒸留工程を有していても良い。   The reaction-treated crude (meth) acrylic acid mixture treated in the reaction step may have a distillation step before the next ion exchange resin treatment step.

[イオン交換樹脂処理工程]
反応工程での処理だけでは(メタ)アクリル酸の精製が不十分な場合には、反応工程の後にイオン交換樹脂処理工程を有することが好ましい。
[Ion exchange resin treatment process]
When the purification of (meth) acrylic acid is insufficient only by the treatment in the reaction step, it is preferable to have an ion exchange resin treatment step after the reaction step.

強酸性陽イオン交換樹脂としては、例えば、三菱化学(株)製RCP−160H、Rohm & Haas社製アンバーリスト15wet等のスルホン酸基を有するものが挙げられる。   Examples of the strongly acidic cation exchange resin include those having a sulfonic acid group such as RCP-160H manufactured by Mitsubishi Chemical Corporation and Amberlyst 15wet manufactured by Rohm & Haas.

イオン交換樹脂処理の方式は、回分式及び/又は連続式を選択できるが、例えば、強酸性陽イオン交換樹脂を充填した固定床中に反応処理粗(メタ)アクリル酸混合物を通過させる連続式が好ましい。   As a method of ion exchange resin treatment, a batch method and / or a continuous method can be selected. For example, a continuous method in which a reaction-treated crude (meth) acrylic acid mixture is passed through a fixed bed filled with a strong acid cation exchange resin. preferable.

強酸性陽イオン交換樹脂の使用量は、回分式では反応処理粗(メタ)アクリル酸混合物100質量部に対して0.1〜50質量部が好ましく、1〜30質量部がより好ましい。   0.1-50 mass parts is preferable with respect to 100 mass parts of reaction process rough | crude (meth) acrylic acid mixtures in a batch type, and, as for the usage-amount of a strong acidic cation exchange resin, 1-30 mass parts is more preferable.

また、連続式では、反応処理粗(メタ)アクリル酸混合物の流通量が強酸性陽イオン交換樹脂に対して空間速度で0.01〜50L/L・hrとなる強酸性陽イオン交換樹脂の量が好ましく、0.05〜30L/L・hrとなる速度がより好ましい。強酸性陽イオン交換樹脂処理温度は20〜150℃が好ましく、40〜130℃がより好ましく、40〜100℃が特に好ましい。強酸性陽イオン交換樹脂処理時間は5分〜5時間が好ましく、15分〜3時間がより好ましい。   In the continuous method, the amount of the strongly acidic cation exchange resin in which the flow rate of the reaction-treated crude (meth) acrylic acid mixture is 0.01 to 50 L / L · hr at a space velocity with respect to the strongly acidic cation exchange resin. Is preferable, and a speed of 0.05 to 30 L / L · hr is more preferable. The strongly acidic cation exchange resin treatment temperature is preferably 20 to 150 ° C, more preferably 40 to 130 ° C, and particularly preferably 40 to 100 ° C. The strongly acidic cation exchange resin treatment time is preferably 5 minutes to 5 hours, and more preferably 15 minutes to 3 hours.

[イオン交換樹脂・HCHO処理工程]
イオン交換樹脂処理工程での処理を実施しても(メタ)アクリル酸の精製が不十分な場合には、イオン交換樹脂処理工程の後に、更に、イオン交換樹脂・HCHO処理工程を有することが好ましい。
[Ion exchange resin / HCHO treatment process]
If purification of (meth) acrylic acid is insufficient even if the treatment in the ion exchange resin treatment step is performed, it is preferable to further include an ion exchange resin / HCHO treatment step after the ion exchange resin treatment step. .

使用されるホルムアルデヒド含有物としては、ホルムアルデヒド、ホルムアルデヒド溶解溶液、及びパラホルムアルデヒド等のホルムアルデヒドを生成し得る化合物が挙げられる。   Formaldehyde-containing materials used include compounds capable of forming formaldehyde, such as formaldehyde, formaldehyde-dissolved solution, and paraformaldehyde.

ホルムアルデヒド含有物の使用量は、接触処理粗(メタ)アクリル酸混合物中のホルムアルデヒド含有率が10〜10,000ppmとなる量が好ましく、50〜5,000ppmとなる量がより好ましい。   The amount of formaldehyde-containing material used is preferably such that the formaldehyde content in the contact-treated crude (meth) acrylic acid mixture is 10 to 10,000 ppm, more preferably 50 to 5,000 ppm.

ホルムアルデヒド含有物は、接触処理粗(メタ)アクリル酸混合物が強酸性陽イオン交換樹脂と接触する前又は接触中に、接触処理粗(メタ)アクリル酸混合物に添加することができる。ホルムアルデヒド含有物は、添加効果の点で、接触処理粗(メタ)アクリル酸混合物が強酸性陽イオン交換樹脂と接触する前に添加することが好ましい。   The formaldehyde-containing material can be added to the contact treated crude (meth) acrylic acid mixture before or during contact of the contact treated crude (meth) acrylic acid mixture with the strongly acidic cation exchange resin. The formaldehyde-containing material is preferably added before the contact-treated crude (meth) acrylic acid mixture comes into contact with the strongly acidic cation exchange resin in terms of the addition effect.

本工程での強酸性陽イオン交換樹脂との接触処理は、前記のイオン交換樹脂処理工程と同様の処理が適用できる。   For the contact treatment with the strongly acidic cation exchange resin in this step, the same treatment as in the ion exchange resin treatment step can be applied.

本発明の方法で得られた(メタ)アクリル酸処理物は、常法の蒸留によって精製することが出来る。アミン含有化合物との反応物、アミン含有化合物又はホルムアルデヒド含有物の未反応物及びその他の不純分は、この蒸留により分離除去される。   The (meth) acrylic acid treated product obtained by the method of the present invention can be purified by conventional distillation. A reaction product with an amine-containing compound, an unreacted product of an amine-containing compound or a formaldehyde-containing product, and other impurities are separated and removed by this distillation.

尚、蒸留工程においては、例えば、フェノチアジン、ベンゾフェノチアジン等の重合禁止剤を添加しておくことが好ましい。   In the distillation step, for example, it is preferable to add a polymerization inhibitor such as phenothiazine or benzophenothiazine.

以下、実施例を用いて本発明を詳細に説明する。また、以下において、部及び%は、それぞれ質量部及び質量%を示す。   Hereinafter, the present invention will be described in detail using examples. Moreover, below, a part and% show a mass part and mass%, respectively.

反応装置(A)の完全混合槽列モデルの槽数は、着色されたチェッカー液を装置内に流入させ、装置出口における着色レベルの経時変化を測定して得られる着色分布(δ応答曲線)を用い、完全混合槽列モデルの各種槽数における着色分布との比較により求めた。(昭和63年3月18日丸善(株)発行、「改定版化学工学便覧」第988頁(iii)完全混合槽列モデルに記載の方法に基づく。)
メタクリル酸の回収率は、下式により求めた。
The number of tanks of the complete mixing tank array model of the reactor (A) is the color distribution (δ response curve) obtained by allowing the colored checker liquid to flow into the apparatus and measuring the color level change at the outlet of the apparatus. It was determined by comparison with the color distribution in various tank numbers of the complete mixing tank row model. (Based on the method described in Maruzen Co., Ltd., March 18, 1988, “Revised Chemical Engineering Handbook”, page 988 (iii) Complete Mixing Tank Model)
The recovery rate of methacrylic acid was determined by the following formula.

回収率(%)=B/A×100
A:精製処理前の粗製メタクリル酸含有物に含まれるメタクリル酸の質量
B:精製処理後の精製メタクリル酸に含まれるメタクリル酸の質量
誘導期間の測定は次のように行った。すなわち、試験管に測定対象の精製メタクリル酸100ml、ヒドロキノンモノメチルエーテル5mg及び重合促進剤として過酸化ベンゾイル0.1gを加えて溶解した。これに水10mlを加え、温度65℃の恒温槽に浸漬し、熱電対を用いて試験管内の液温を測定した。液温が65℃より上昇した時点、即ち重合熱の発生し始めた時点を測定し、恒温槽に浸漬してから重合開始までに要した時間を誘導期間とした。重合性能は誘導期間が短いものほど優れている。
Recovery rate (%) = B / A × 100
A: Mass of methacrylic acid contained in crude methacrylic acid-containing material before purification treatment B: Mass of methacrylic acid contained in purified methacrylic acid after purification treatment The induction period was measured as follows. That is, 100 ml of purified methacrylic acid to be measured, 5 mg of hydroquinone monomethyl ether and 0.1 g of benzoyl peroxide as a polymerization accelerator were added to a test tube and dissolved. 10 ml of water was added thereto, immersed in a thermostatic bath at a temperature of 65 ° C., and the liquid temperature in the test tube was measured using a thermocouple. The time when the liquid temperature rose from 65 ° C., that is, the time when the polymerization heat began to be generated was measured, and the time required from the immersion in the thermostat until the start of the polymerization was taken as the induction period. The shorter the induction period, the better the polymerization performance.

[実施例1]
図1に示すように、縦型の筒内に3つの仕切り槽を有し、各仕切り槽に撹拌翼を設置した縦型多段翼反応槽を作製した。各撹拌翼は、筒壁と上下の仕切り部と接触せず、仕切り槽の高さとほぼ同じ長さで、幅が筒半径の1/30である撹拌翼(1)2枚を撹拌翼支持具(4)に撹拌軸(3)に対して対称となるように設置したものを使用した。この縦型多段翼反応槽の前に、図5に示すように、前記アミン添加工程で使用されるアミノ基含有化合物を添加する完全混合型の反応槽(7)を反応装置(A)の1つとして併用するタイプの反応装置(A)を設置した。
[Example 1]
As shown in FIG. 1, a vertical multistage blade reaction tank having three partition tanks in a vertical cylinder and a stirring blade installed in each partition tank was produced. Each stirring blade is not in contact with the cylindrical wall and the upper and lower partition parts, and has two stirring blades (1) having the same length as the height of the partition tank and 1/30 the width of the cylindrical radius. The one installed so as to be symmetrical with respect to the stirring axis (3) was used in (4). Before this vertical multistage blade reaction tank, as shown in FIG. 5, a complete mixing type reaction tank (7) to which the amino group-containing compound used in the amine addition step is added is a reactor 1 (A). A reactor (A) of the type that is used together is installed.

イソブチレンを出発原料として気相接触酸化によって得られたメタクリル酸を抽出及び蒸留によって精製し、純度99.2%の粗メタクリル酸(8)を得た。この粗メタクリル酸(8)の色数はAPHA75であった。   Methacrylic acid obtained by gas phase catalytic oxidation using isobutylene as a starting material was purified by extraction and distillation to obtain crude methacrylic acid (8) having a purity of 99.2%. The color number of this crude methacrylic acid (8) was APHA75.

この粗メタクリル酸(8)を、内温100℃の反応槽(7)内に処理時間30分となる速度で供給した。同時に、粗メタクリル酸(8)100部に対して、重合禁止剤としてフェノチアジンを0.05部及びアミノ基含有化合物としてエチレンジアミンを0.05部となる量で、この反応槽内に供給した。   This crude methacrylic acid (8) was supplied into the reaction vessel (7) having an internal temperature of 100 ° C. at a rate of 30 minutes. Simultaneously, with respect to 100 parts of crude methacrylic acid (8), 0.05 parts of phenothiazine as a polymerization inhibitor and 0.05 parts of ethylenediamine as an amino group-containing compound were fed into the reaction vessel.

次いで、エチレンジアミンが添加された粗メタクリル酸混合物を、液温100℃、処理時間90分となる条件で縦型多段翼反応槽にて撹拌処理した。この処理条件では、反応装置(A)として完全混合槽列モデルで3槽の流れ特性を有していた。   Subsequently, the crude methacrylic acid mixture to which ethylenediamine was added was stirred in a vertical multistage blade reaction vessel under the conditions of a liquid temperature of 100 ° C. and a treatment time of 90 minutes. Under these treatment conditions, the reactor (A) had a flow characteristic of 3 tanks in a complete mixing tank row model.

この処理液(6)を10mmHg減圧下で単蒸留して精製メタクリル酸を得た。得られた精製メタクリル酸の回収率は94.3%、色数はAPHA3.5、誘導期間は8.2分であった。また、半年間連続運転した後に、反応装置内の付着物の有無を調べてみた処、付着物は非常に少なく、液の排出口が閉塞する心配もなく、良好な運転を継続できた。   This treatment liquid (6) was simply distilled under reduced pressure of 10 mmHg to obtain purified methacrylic acid. The recovery rate of the obtained purified methacrylic acid was 94.3%, the number of colors was APHA 3.5, and the induction period was 8.2 minutes. In addition, after a continuous operation for half a year, when the presence or absence of deposits in the reactor was examined, the deposits were very small, and there was no concern about the clogging of the liquid discharge port, and good operation could be continued.

[実施例2及び3]
表1に記載の下記条件のイオン交換樹脂処理工程及び下記条件のイオン交換樹脂・HCHO処理工程で処理する以外は実施例1と同様にして粗メタクリル酸の精製処理を実施した。また、半年間連続運転した後に、反応装置内の付着物の有無を調べてみた処、付着物は非常に少なく、液の排出口が閉塞する心配もなく、良好な運転を継続できた。評価結果を表1に示す。
[Examples 2 and 3]
The crude methacrylic acid was purified in the same manner as in Example 1 except that the treatment was performed in the ion exchange resin treatment step under the following conditions shown in Table 1 and the ion exchange resin / HCHO treatment step under the following conditions. In addition, after a continuous operation for half a year, when the presence or absence of deposits in the reactor was examined, the deposits were very small, and there was no concern about the clogging of the liquid discharge port, and good operation could be continued. The evaluation results are shown in Table 1.

<イオン交換樹脂処理>
強酸性陽イオン交換樹脂アンバーリスト15E(Rohm & Haas社製)を充填した筒内で、処理温度80℃、空間速度1L/L・hrの条件でイオン交換樹脂処理した。
<Ion exchange resin treatment>
In a cylinder filled with strongly acidic cation exchange resin Amberlyst 15E (manufactured by Rohm & Haas), the ion exchange resin treatment was performed under the conditions of a treatment temperature of 80 ° C. and a space velocity of 1 L / L · hr.

<イオン交換樹脂・HCHO処理>
接触処理粗メタクリル酸混合物100部に対してホルムアルデヒド0.05部となる量のホルムアルデヒドを添加した。次いで、強酸性陽イオン交換樹脂アンバーリスト15E(Rohm & Haas社製)を充填した筒内で、処理温度80℃、処理時間30分の条件でイオン交換樹脂・HCHO処理した。
<Ion exchange resin / HCHO treatment>
Formaldehyde was added in an amount of 0.05 parts formaldehyde to 100 parts of the contact-treated crude methacrylic acid mixture. Subsequently, in a cylinder filled with strongly acidic cation exchange resin Amberlyst 15E (manufactured by Rohm & Haas), ion exchange resin / HCHO treatment was performed under conditions of a treatment temperature of 80 ° C. and a treatment time of 30 minutes.

[比較例1]
縦型多段翼反応槽を使用する代わりに、図6に示すように完全混合型の反応槽を使用した反応装置(A)とする以外は実施例1と同様にして粗メタクリル酸の精製処理を実施した。この処理条件では、反応装置(A)として完全混合槽列モデルで1槽と2槽の中間に相当する流れ特性を有していた。評価結果を表1に示す。また、半年間連続運転した後に、反応装置内の付着物の有無を調べてみた処、多くの付着物が確認され、液の排出口を閉塞する心配があり、運転を止めて、付着物を除去する必要があった。

Figure 2008161848
[Comparative Example 1]
Instead of using a vertical multistage blade reaction tank, the purification treatment of crude methacrylic acid was carried out in the same manner as in Example 1 except that the reaction apparatus (A) used a complete mixing type reaction tank as shown in FIG. Carried out. Under this processing condition, the reactor (A) had a flow characteristic corresponding to the middle of one tank and two tanks in the complete mixing tank array model. The evaluation results are shown in Table 1. Also, after six months of continuous operation, when the presence or absence of deposits in the reactor was examined, a large amount of deposits were confirmed and there was a risk of clogging the liquid outlet. It was necessary to remove.
Figure 2008161848

本発明の、ブレード式の縦型多段翼反応槽の一例を示す説明図である。It is explanatory drawing which shows an example of the blade type | mold vertical multistage blade reaction tank of this invention. 本発明に用いられる縦型多段翼反応槽の一例を示す説明図である。It is explanatory drawing which shows an example of the vertical multistage blade reaction tank used for this invention. 本発明に用いられる横型多段翼反応槽の一例を示す説明図である。It is explanatory drawing which shows an example of the horizontal type | mold multistage blade reaction tank used for this invention. 本発明における連続多槽型の反応装置(A)の一例を示す説明図である。It is explanatory drawing which shows an example of the continuous multi tank type reactor (A) in this invention. 本発明の縦型多段翼反応槽の前にアミノ基含有化合物を添加する容器を設置した本発明の一例を示す説明図である。It is explanatory drawing which shows an example of this invention which installed the container which adds an amino group containing compound in front of the vertical multistage blade reaction tank of this invention. 図5において、縦型多段翼反応槽を完全混合型反応槽に変更した場合の一例を示す説明図である。In FIG. 5, it is explanatory drawing which shows an example at the time of changing a vertical multistage blade reaction tank into a complete mixing type reaction tank.

符号の説明Explanation of symbols

1:撹拌翼
2:仕切り
3:撹拌軸
4:撹拌翼支持具
5:液入り口
6:液出口
7:アミノ基含有化合物を添加する容器
8:粗(メタ)アクリル酸
9:アミノ基含有化合物
1: Stirring blade 2: Partition 3: Stirring shaft 4: Stirring blade support 5: Liquid inlet 6: Liquid outlet 7: Container for adding amino group-containing compound 8: Crude (meth) acrylic acid 9: Amino group-containing compound

Claims (6)

縦型の筒内に複数の仕切りを設けて複数の仕切り槽を形成し、各仕切り槽に撹拌翼を設置した縦型多段翼反応槽であって、前記撹拌翼が撹拌時に槽の壁面に付着した付着物を掻き取るブレード式である縦型多段翼反応槽。   A vertical multistage reaction vessel in which a plurality of partitions are provided in a vertical cylinder to form a plurality of partition tanks, and a stirring blade is installed in each partition tank, and the stirring blades adhere to the wall surface of the tank during stirring. Vertical multistage blade reaction tank which is a blade type that scrapes off the adhered matter. 粗(メタ)アクリル酸に第1級及び/又は第2級のアミノ基含有化合物を添加する工程と、次いでアミノ基含有化合物が添加された粗(メタ)アクリル酸混合物を完全混合槽列モデルで2槽以上の流れ特性を有する反応装置(A)で処理する工程とを有する(メタ)アクリル酸の精製方法。   A step of adding a primary and / or secondary amino group-containing compound to the crude (meth) acrylic acid, and then a crude (meth) acrylic acid mixture to which the amino group-containing compound has been added, in a complete mixing tank model (Meth) acrylic acid refinement | purification method which has a process with a reactor (A) which has the flow characteristic of 2 or more tanks. アミノ基含有化合物が添加された粗(メタ)アクリル酸混合物を反応装置(A)で処理する工程の後に、反応装置(A)で処理された粗(メタ)アクリル酸混合物を強酸性陽イオン交換樹脂と接触処理させる工程を有する請求項2に記載の(メタ)アクリル酸の精製方法。   After the step of treating the crude (meth) acrylic acid mixture to which the amino group-containing compound has been added with the reactor (A), the crude (meth) acrylic acid mixture treated with the reactor (A) is subjected to strong acid cation exchange. The method for purifying (meth) acrylic acid according to claim 2, further comprising a step of contact treatment with a resin. 強酸性陽イオン交換樹脂と接触処理させる工程の後に、強酸性陽イオン交換樹脂と接触処理させた粗(メタ)アクリル酸混合物に、強酸性陽イオン交換樹脂の存在下でホルムアルデヒド含有物を添加処理する工程を有する請求項3に記載の(メタ)アクリル酸の精製方法。   After the step of contact treatment with the strong acid cation exchange resin, the formaldehyde-containing material is added to the crude (meth) acrylic acid mixture contacted with the strong acid cation exchange resin in the presence of the strong acid cation exchange resin. The method for purifying (meth) acrylic acid according to claim 3, further comprising the step of: 粗メタクリル酸が、イソブタン、イソブチレン、第3級ブチルアルコール、メチル第3級ブチルエーテル、メタクロレイン、イソブチルアルデヒド、イソ酪酸からなる群から選ばれる少なくとも一種の化合物の気相接触酸化反応で得られたものである請求項2〜4のいずれか一項に記載の(メタ)アクリル酸の精製方法。   Crude methacrylic acid obtained by a gas phase catalytic oxidation reaction of at least one compound selected from the group consisting of isobutane, isobutylene, tertiary butyl alcohol, methyl tertiary butyl ether, methacrolein, isobutyraldehyde, and isobutyric acid The method for purifying (meth) acrylic acid according to any one of claims 2 to 4. 反応装置(A)として請求項1に記載の縦型多段翼反応槽を使用する請求項2〜5のいずれか一項に記載の(メタ)アクリル酸の精製方法。   The method for purifying (meth) acrylic acid according to any one of claims 2 to 5, wherein the vertical multistage reaction vessel according to claim 1 is used as the reactor (A).
JP2007000042A 2007-01-04 2007-01-04 Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid Pending JP2008161848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000042A JP2008161848A (en) 2007-01-04 2007-01-04 Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000042A JP2008161848A (en) 2007-01-04 2007-01-04 Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid

Publications (2)

Publication Number Publication Date
JP2008161848A true JP2008161848A (en) 2008-07-17
JP2008161848A5 JP2008161848A5 (en) 2010-12-24

Family

ID=39692019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000042A Pending JP2008161848A (en) 2007-01-04 2007-01-04 Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid

Country Status (1)

Country Link
JP (1) JP2008161848A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512859A (en) * 2008-12-18 2012-06-07 ルーサイト インターナショナル ユーケー リミテッド Methyl methacrylate purification method
JP2015515963A (en) * 2012-05-03 2015-06-04 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Method for producing high purity, non-yellowing (meth) acrylic acid
WO2017179327A1 (en) * 2016-04-13 2017-10-19 株式会社クレハ Device for continuously producing poly(arylene sulfide) and process for continuously producing poly(arylene sulfide)
CN107583586A (en) * 2017-10-13 2018-01-16 安徽天意环保科技有限公司 The ester exchange reaction device of surfactant
WO2019074054A1 (en) * 2017-10-12 2019-04-18 株式会社クレハ Continuous polymerization device and continuous production method for polymer
US10807062B2 (en) 2017-10-12 2020-10-20 Kureha Corporation Continuous production apparatus and continuous production method for polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271828A (en) * 1989-12-15 1992-09-28 Yuka Shell Epoxy Kk Multi-stage reactor
JPH1160536A (en) * 1997-08-11 1999-03-02 Mitsubishi Rayon Co Ltd Purification of methacrylic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04271828A (en) * 1989-12-15 1992-09-28 Yuka Shell Epoxy Kk Multi-stage reactor
JPH1160536A (en) * 1997-08-11 1999-03-02 Mitsubishi Rayon Co Ltd Purification of methacrylic acid

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012512859A (en) * 2008-12-18 2012-06-07 ルーサイト インターナショナル ユーケー リミテッド Methyl methacrylate purification method
JP2015515963A (en) * 2012-05-03 2015-06-04 エボニック インダストリーズ アクチエンゲゼルシャフトEvonik Industries AG Method for producing high purity, non-yellowing (meth) acrylic acid
WO2017179327A1 (en) * 2016-04-13 2017-10-19 株式会社クレハ Device for continuously producing poly(arylene sulfide) and process for continuously producing poly(arylene sulfide)
US10538629B2 (en) 2016-04-13 2020-01-21 Kureha Corporation Device for continuously producing poly(arylene sulfide) and method for continuously producing poly(arylene sulfide)
JPWO2017179327A1 (en) * 2016-04-13 2018-10-18 株式会社クレハ Continuous production apparatus for polyarylene sulfide and continuous production method for polyarylene sulfide
KR20190042497A (en) * 2017-10-12 2019-04-24 가부시끼가이샤 구레하 Continuous polymerization apparatus and continuous production method of polymer
WO2019074054A1 (en) * 2017-10-12 2019-04-18 株式会社クレハ Continuous polymerization device and continuous production method for polymer
CN110088171A (en) * 2017-10-12 2019-08-02 株式会社吴羽 The method for continuous production of continuous polymerization unit and polymer
JPWO2019074054A1 (en) * 2017-10-12 2019-11-14 株式会社クレハ Continuous polymerization apparatus and continuous production method of polymer
US10807062B2 (en) 2017-10-12 2020-10-20 Kureha Corporation Continuous production apparatus and continuous production method for polymer
KR102183734B1 (en) * 2017-10-12 2020-11-30 가부시끼가이샤 구레하 Continuous polymerization apparatus and continuous production method of polymer
US20200391172A1 (en) 2017-10-12 2020-12-17 Kureha Corporation Continuous polymerization apparatus and continuous production method for polymer
US11185840B2 (en) 2017-10-12 2021-11-30 Kureha Corporation Continuous polymerization apparatus and continuous production method for polymer
CN110088171B (en) * 2017-10-12 2022-03-04 株式会社吴羽 Continuous polymerization apparatus and method for continuously producing polymer
CN107583586A (en) * 2017-10-13 2018-01-16 安徽天意环保科技有限公司 The ester exchange reaction device of surfactant

Similar Documents

Publication Publication Date Title
CN101238091B (en) Production of di-(2-ethylhexyl) terephthalate
CN106687437B (en) Optimized method for preparing methylacrolein
JP2008161848A (en) Vertical-type multi-blades reaction tank and purification method of (meth)acrylic acid
TWI454452B (en) PROCESS FOR PREPARING α,β-UNSATURATED C10-ALDEHYDES
JP3835843B2 (en) Method for producing pure grade acrylic acid
JP4755692B2 (en) Method for synthesizing N, N-dimethyl-1,3-diaminoplan (DMAPA)
CN109180428B (en) Production process of 2, 2-dimethyl-1, 3-propylene glycol
CN108137474A (en) From the alkyl methacrylate synthesizing methyl acrylic acid based on methacrolein
US8278481B2 (en) Method for producing (meth)acrylic acid
JP2008161848A5 (en)
US9102589B2 (en) Reactive distillation process for preparation of acetaminophen
JP3672818B2 (en) (Meth) acrylic acid ester purification method
US6552218B2 (en) Process for producing hydroxyalkyl (meth)acrylate
US10329239B2 (en) Minimizing water content in ethanolamine product streams
JP4733275B2 (en) (Meth) acrylic acid ester purification method
JP3792449B2 (en) Purification method of methacrylic acid
JP3871406B2 (en) Method for purifying methacrylic acid
CN102007094B (en) Improved method for eliminating color forming impurities from nitro compounds
JP3792448B2 (en) Purification method of methacrylic acid
JPH04173757A (en) Production of alpha-alkylacrolein
RU2703275C2 (en) Method of producing (s)-2-acetyloxypropionic acid and derivatives thereof
US3880939A (en) Continuous process for the production of a diol from a diol ester
JP4319565B2 (en) Polymerization suppression method.
US3809722A (en) Process for producing alkoxy aldehydes
JP2002234863A (en) Method for purifying (meth)acrylic ester and (meth) acrylic ester

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20091221

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

A521 Written amendment

Effective date: 20101105

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110425

A131 Notification of reasons for refusal

Effective date: 20110510

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111027