JPH04173757A - Production of alpha-alkylacrolein - Google Patents

Production of alpha-alkylacrolein

Info

Publication number
JPH04173757A
JPH04173757A JP2300135A JP30013590A JPH04173757A JP H04173757 A JPH04173757 A JP H04173757A JP 2300135 A JP2300135 A JP 2300135A JP 30013590 A JP30013590 A JP 30013590A JP H04173757 A JPH04173757 A JP H04173757A
Authority
JP
Japan
Prior art keywords
reaction
reactor
secondary amine
formaldehyde
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2300135A
Other languages
Japanese (ja)
Inventor
Kazuyuki Matsuoka
一之 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2300135A priority Critical patent/JPH04173757A/en
Publication of JPH04173757A publication Critical patent/JPH04173757A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the title substance by reacting an alkylaldehyde with formaldehyde in the presence of a catalyst comprising specific amounts of an organic carboxylic acid and a secondary amine firstly in a reactor of complete blender, then in a piston flow reactor and introducing the resulting substance to a decomposition column. CONSTITUTION:A compound shown by the formula (R1 is H or 1-10C alkyl) is allowed to react with formaldehyde in a molar ratio of 1:(1-1.5) in the presence of a catalyst comprising an organic carboxylic acid and a secondary amine through three processes to give a corresponding alpha-alkylacrolein. In the catalyst, the amount of the organic acid used (e.g. acetic acid) is 1-5 equivalents to 1mol compound shown by the formula and 0.5-2 equivalents to 1 equivalent of the secondary amine (e.g. dimethylamine). The objective substance is produced through the three processes of the first process in a reactor of complete blender at 30-120 deg.C, the second process in a piston flow type reactor at 30-120 deg.C and the third process in a decomposition column at 80-150 deg.C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、−綴代 %式%(I) (式中、R1はH又は炭素数1〜10のアルキル基を示
す。) で表されるアルデヒドとホルムアルデヒドとの反応によ
るα−アルキルアクロレインの改善された製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides a compound represented by the formula % (I) (wherein R1 represents H or an alkyl group having 1 to 10 carbon atoms). The present invention relates to an improved method for producing α-alkyl acrolein by reacting an aldehyde with formaldehyde.

〔従来の技術及び発明が解決しようとする課題〕α−ア
ルキルアクロレインは工業的に有用な中間原料であり、
その製造方法は多数提案されている。これらの内から、
近年原料物質の入手の容易さから、上記一般式(I)で
表されるアルデヒドとホルムアルデヒドの反応によるα
−アルキルアクロレインの製造方法が重要となっている
[Prior art and problems to be solved by the invention] α-alkyl acrolein is an industrially useful intermediate raw material,
Many manufacturing methods have been proposed. From among these,
In recent years, due to the ease of obtaining raw materials, α by the reaction of the aldehyde represented by the above general formula (I) and formaldehyde
-The method for producing alkyl acrolein has become important.

一般式(I)で表されるアルデヒドとホルムアルデヒド
の反応によるα−アルキルアクロレインの製造方法とし
ては、例えばケミカル・アブストラクト(C,A、)、
第56巻(I962年)、 2321゜2322頁にプ
ロピオンアルデヒドとホルムアルデヒドから酸化ナトリ
ウム及びケイ酸を含有する触媒を用いて275℃で、メ
タアクロレインを46%の収率で得る方法が記載されて
いる。しかしながら、この方法は収率が低く、工業的に
メタアクロレインを製造するには問題がある。。
Examples of the method for producing α-alkyl acrolein by the reaction of the aldehyde represented by the general formula (I) with formaldehyde include Chemical Abstracts (C, A,),
Volume 56 (I962), pages 2321 and 2322, describes a method for obtaining methacrolein from propionaldehyde and formaldehyde using a catalyst containing sodium oxide and silicic acid at 275°C with a yield of 46%. . However, this method has a low yield and is problematic for industrially producing methacrolein. .

西ドイツ国特許第875194号によれば、ホルムアル
デヒドの水溶液と、プロピオンアルデヒド、塩化ナトリ
ウム及び酪酸とからなる混合物の沸謄下に、ピペリジン
を2〜3時間かけて添加し、更に3時間反応させること
により、メタアクロレインを95%の高い収率で得てい
る。この方法による場合、反応時間が非常に長い欠点が
あり、工業的にメタアクロレインを得る方法として満足
出来ない。
According to West German Patent No. 875194, piperidine is added to a boiling mixture of an aqueous formaldehyde solution, propionaldehyde, sodium chloride and butyric acid over a period of 2 to 3 hours, and the reaction is allowed to proceed for a further 3 hours. , metaacrolein was obtained in a high yield of 95%. This method has the disadvantage that the reaction time is very long, and is not satisfactory as a method for industrially obtaining methacrolein.

特開昭58−188831号公報によれば、ホルムアル
デヒドの水溶液とプロピオンアルデヒドカラ第二級アミ
ンと酸の存在下でメタアクロレインが高い収率で得られ
ることが報告されている。
According to JP-A-58-188831, it is reported that methacrolein can be obtained in high yield in the presence of an aqueous formaldehyde solution, propionaldehyde, a secondary amine, and an acid.

しかしこの場合、高い圧力と150℃以上の高い温度が
必要であり、工業化の場合、設備費が膨大になり、また
操作面からも工業的にメタアクロレインを得る方法とし
ては満足出来ない。
However, in this case, a high pressure and a high temperature of 150° C. or higher are required, and in the case of industrialization, the equipment cost would be enormous, and also from an operational standpoint it is not satisfactory as a method for obtaining methacrolein industrially.

米国特許第2848499号によれば、ホルムアルデヒ
ドの水溶液と、プロピオンアルデヒド、第二級アミンと
酸の存在下でマンニッヒ塩基を合成し1.この塩基を分
解層に供給し塩基を分解することにより、メタアクロレ
インが高い収率で得られることが報告されている。この
方法による場合、マンニッヒ塩基を合成する段階で、反
応速度を上げるためピストンフロータイプの反応器を使
用している。ピストンフロータイプの反応器は、完全混
合槽タイプの反応器と比較して反応速度は上がるが、本
反応のように激しい −発熱を伴う反応の場合、反応器
入口付近における激しい反応熱を効率的に除去する事は
非常に困難であり副反応生成物の増加、安全性の面から
工業的にメタアクロレインを得る方法としては満足出来
ない。
According to US Pat. No. 2,848,499, a Mannich base is synthesized in the presence of an aqueous solution of formaldehyde, propionaldehyde, a secondary amine and an acid.1. It has been reported that methacrolein can be obtained in high yield by supplying this base to the decomposition layer and decomposing the base. In this method, a piston flow type reactor is used to increase the reaction rate at the stage of synthesizing Mannich base. A piston flow type reactor has a higher reaction rate than a complete mixing tank type reactor, but in the case of an intense and exothermic reaction like this one, it is difficult to efficiently dissipate the intense reaction heat near the reactor inlet. It is very difficult to remove it, and it is not satisfactory as a method for industrially obtaining methacrolein due to the increase in side reaction products and safety.

前記した様に、従来技術により一般式(I)で表される
アルデヒドとホルムアルデヒドから対応するα−アルキ
ルアクロレインを工業的に製造するには多くの問題があ
り、α−アルキルアクロレインを高い収率で、出来るだ
け温和な反応条件下で製造する技術の開発が強く望まれ
ている。
As mentioned above, there are many problems in industrially producing the corresponding α-alkyl acrolein from the aldehyde represented by the general formula (I) and formaldehyde using conventional techniques, and it is difficult to produce α-alkyl acrolein in high yield. , there is a strong desire to develop a technology for producing it under as mild reaction conditions as possible.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は上記課題を解決すべく鋭意検討した結果、本
発明を完成させた。
The present inventor has completed the present invention as a result of intensive studies to solve the above problems.

すなわち、本発明は、−綴代 %式%(I) (式中、R1はH又は炭素数1〜10のアルキル基を示
す。) で表されるアルデヒド(以下、アルデヒド(I)と略記
する)とホルムアルデヒドから、対応するα−アルキル
アクロレインを製造する方法において、アルデヒド(I
)1モルに対してホルムアルデヒド1〜1.5モルを用
い、触媒として有機カルボン酸と第二級アミンを、有機
カルボン酸の使用量がアルデヒド(I)1モルに対して
1〜5当量、かつ第二級アミン1当量に対して0.5〜
2当量となるように用い、反応を三工程で実施し、第一
工程では完全混合槽反応器で反応温度を30〜120℃
でアルデヒド(I)の変化率50〜90%まで反応させ
、反応粗液を第二工程に供給し、第二工程ではピストン
フロータイプの反応器で反応温度を30〜120℃で実
施し反応を終結させ、第二工程の反応粗液を第三工程の
分解塔に供給し、80〜150℃で加熱し塔頂よりα−
アルキルアクロレインを得ることを特徴とするα−アル
キルアクロレインの製造方法を提供するものである。
That is, the present invention provides an aldehyde (hereinafter abbreviated as aldehyde (I)) represented by the formula (I) (wherein R1 represents H or an alkyl group having 1 to 10 carbon atoms). ) and formaldehyde to produce the corresponding α-alkylacrolein from aldehyde (I
) 1 to 1.5 moles of formaldehyde are used per mole of aldehyde (I), an organic carboxylic acid and a secondary amine are used as catalysts, and the amount of organic carboxylic acid used is 1 to 5 equivalents per mole of aldehyde (I), and 0.5 to 1 equivalent of secondary amine
2 equivalents, and the reaction was carried out in three steps. In the first step, the reaction temperature was set at 30 to 120°C in a complete mixing tank reactor.
The reaction was carried out to a rate of change of aldehyde (I) of 50 to 90%, and the crude reaction liquid was supplied to the second step. In the second step, the reaction was carried out in a piston flow type reactor at a reaction temperature of 30 to 120 °C. After the reaction is terminated, the crude reaction liquid of the second step is supplied to the decomposition tower of the third step, heated at 80 to 150°C, and α-
The present invention provides a method for producing α-alkyl acrolein, which is characterized by obtaining alkyl acrolein.

本発明の出発物質として使用されるアルデヒド(I)の
−綴代(I)中のアルキル基R,は1〜10の炭素数を
有する。この基は直鎖または分岐鎖であってもよく、ま
た一部分が芳香族で置換されているものであってもよい
。本発明に用いられるアルデヒド(I)の一部を例示す
ると、アセトアルデヒド、プロピオンアルデヒド(プロ
パナール)、n−ブタナール、3−メチルブタナール、
n−ペンクナール、n−ヘキサナール、3−メチルヘキ
サナール、4−メチルヘキサナール、n−ヘプタナール
、フェニルアセトアルデヒド等である。このうち本発明
によると特に、プロパナール、n−ブタナール、3−メ
チルブタナールが有効である。
The alkyl group R in the base (I) of the aldehyde (I) used as a starting material for the present invention has 1 to 10 carbon atoms. This group may be linear or branched, or may be partially substituted with an aromatic group. Some examples of aldehydes (I) used in the present invention include acetaldehyde, propionaldehyde (propanal), n-butanal, 3-methylbutanal,
These include n-pencunal, n-hexanal, 3-methylhexanal, 4-methylhexanal, n-heptanal, and phenylacetaldehyde. Among these, propanal, n-butanal, and 3-methylbutanal are particularly effective according to the present invention.

本発明において、ホルムアルデヒドは水溶液またはトリ
オキザン、バラポルムアルデヒドのような重合した形で
も使用出来るが、一般には水溶液の形で反応させるのが
望ましい。
In the present invention, formaldehyde can be used in an aqueous solution or in a polymerized form such as trioxane or varapormaldehyde, but it is generally preferable to carry out the reaction in the form of an aqueous solution.

反応は通常水溶液の形で行われるが、炭化水素、アルコ
ール等の溶剤中で実施することも可能である。
The reaction is usually carried out in the form of an aqueous solution, but it can also be carried out in a solvent such as a hydrocarbon or alcohol.

本発明において、アルデヒド(I)とホルムアルデヒド
のモル比はアルデヒド(I)1モルに対してホルムアル
デヒド1〜1.5モルにすることが好ましい。アルデヒ
ド(I)1モルに対してホルムアルデヒドが1モル未満
であると、アルデヒド(I)自身の縮合反応が起き、こ
の反応生成物がα−アルキルアクロレインの製品の中に
入り好ましくない。またアルデヒド(J)1モルに対し
てホルムアルデヒドが1.5モルより多い場合は多量の
ホルムアルデヒドを回収する必要があり回収工程での損
失がおきるばかりでなく、ホルムアルデヒドによる触媒
の不活性化で第二級アミンの使用量が増加する等の問題
がある。
In the present invention, the molar ratio of aldehyde (I) to formaldehyde is preferably 1 to 1.5 mol of formaldehyde per 1 mol of aldehyde (I). If the amount of formaldehyde is less than 1 mole per mole of aldehyde (I), a condensation reaction of the aldehyde (I) itself will occur, and this reaction product will enter the α-alkyl acrolein product, which is undesirable. In addition, if formaldehyde is more than 1.5 mol per 1 mol of aldehyde (J), a large amount of formaldehyde must be recovered, which not only causes loss in the recovery process, but also causes secondary damage due to inactivation of the catalyst by formaldehyde. There are problems such as an increase in the amount of grade amine used.

本発明の触媒系は、有機カルボン酸と第二級アミンの混
合物からなる。有機カルボン酸としてはどの様な物でも
使用することは可能であり、モノ−、ジー、又はポリカ
ルボン酸の形で実施される。好ましい有機カルボン酸と
して炭素数が1〜10個のカルボン酸が用いられ、例え
ば、蟻酸、酢酸、プロピオン酸、酪酸、ペンタン酸、ヘ
キサン酸、ヘプタン酸、オクタン酸、ノナン酸、蓚酸、
琥珀酸、グルタル酸、アジピン酸、リンゴ酸、酒石酸、
クエン酸、ピロメリット酸、フタル酸、フマル酸等が挙
げられる。
The catalyst system of the present invention consists of a mixture of an organic carboxylic acid and a secondary amine. Any organic carboxylic acid can be used, and is carried out in the form of mono-, di- or polycarboxylic acids. Preferred organic carboxylic acids include carboxylic acids having 1 to 10 carbon atoms, such as formic acid, acetic acid, propionic acid, butyric acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, oxalic acid,
Succinic acid, glutaric acid, adipic acid, malic acid, tartaric acid,
Examples include citric acid, pyromellitic acid, phthalic acid, and fumaric acid.

本発明で用いられる第二級アミンは、次式で表わされる
第二級アミンであり、低分子ならびに高分子の第二級ア
ミンが使用できる。
The secondary amine used in the present invention is represented by the following formula, and low-molecular and high-molecular secondary amines can be used.

(式中、R2及びR3は同一でも異なっても良い有機の
基を示し、R2及びR3はNと一緒に環を形成しても良
い。) 本発明に用いられる適当な第二級アミンの例としでは、
ジメチルアミン、ジエチルアミン、メチルエチルアミン
、メチルプロピルアミン、ジプロピルアミン、ジブチル
アミン、ジイソプロピルアミン、ジイソブチルアミン、
メチルイソプロピルアミン、メチルイソブチルアミン、
メチル5ec−ブチルアミン、メチル−(2−メチルペ
ンチル)−アミン、メヂルー(2−エチルヘキシル)−
アミン、ピロリジン、ピペリジン、モルホリン、N−メ
チルピペラジン、N−ヒドロキシエチル−ピペラジン、
ピペラジン、ヘキサメチレンイミン、ジェタノールアミ
ン、メチルエタノールアミン、メチルシクロヘキシルア
ミン、メチルシクロペンチルアミン、ジシクロヘキシル
アミン等があり、これらアミン単独又はこれらアミンの
混合物が用いられる。
(In the formula, R2 and R3 represent organic groups which may be the same or different, and R2 and R3 may form a ring together with N.) Examples of suitable secondary amines used in the present invention In Toshi,
Dimethylamine, diethylamine, methylethylamine, methylpropylamine, dipropylamine, dibutylamine, diisopropylamine, diisobutylamine,
Methylisopropylamine, methylisobutylamine,
Methyl 5ec-butylamine, methyl-(2-methylpentyl)-amine, medyl-(2-ethylhexyl)-
Amine, pyrrolidine, piperidine, morpholine, N-methylpiperazine, N-hydroxyethyl-piperazine,
Examples include piperazine, hexamethyleneimine, jetanolamine, methylethanolamine, methylcyclohexylamine, methylcyclopentylamine, dicyclohexylamine, and these amines alone or a mixture of these amines can be used.

触媒の使用量はアルデヒド(I)1モルに対して1〜5
当量の有機カルボン酸の存在下で、第二級アミン1当量
に対し有機カルボン酸0.5〜2当量を用い実施される
。アルデヒド(I)に対する有機カルボン酸の使用量が
上記範囲がら外れた場合は、反応速度が遅くなるばかり
でなく、副反応生成物が増加し好ましくない。また第二
級アミン1当量に対し有機カルボン酸が0.5当量未満
の場合、反応速度は増加するが、反応生成物の重合が促
進される。また第二級アミン1当量に対し有機カルボン
酸が2当量を超える場合、反応速度が低下し好ましくな
い。
The amount of catalyst used is 1 to 5 per mole of aldehyde (I).
It is carried out using 0.5 to 2 equivalents of organic carboxylic acid per equivalent of secondary amine in the presence of an equivalent amount of organic carboxylic acid. If the amount of the organic carboxylic acid used relative to the aldehyde (I) is out of the above range, the reaction rate will not only slow down, but also the amount of side reaction products will increase, which is undesirable. Furthermore, when the amount of organic carboxylic acid is less than 0.5 equivalent per equivalent of secondary amine, the reaction rate increases, but polymerization of the reaction product is promoted. Furthermore, if the amount of organic carboxylic acid exceeds 2 equivalents per equivalent of secondary amine, the reaction rate decreases, which is undesirable.

本反応を実施する場合の大きな特徴は反応を三工程で実
施するところにある。第一工程は完全混合槽反応器を用
いて、原料のアルデヒド(I)とホルムアルデヒド及び
触媒の有機カルボン酸と第二級アミンを連続的に供給し
、反応温度を30〜120℃でアルデヒド(I)の変化
率50〜90%まで反応させる。反応温度が30℃未満
の場合は反応速度が遅く成り好ましくない。また120
℃を超えると反応速度は速くなるが、反応圧力が高くな
り、設備費が膨大になり好ましくない。
A major feature of carrying out this reaction is that the reaction is carried out in three steps. The first step uses a completely mixed tank reactor to continuously supply the raw materials aldehyde (I) and formaldehyde and the catalyst organic carboxylic acid and secondary amine, and the reaction temperature is 30 to 120°C. ) to a rate of change of 50 to 90%. If the reaction temperature is less than 30°C, the reaction rate becomes slow, which is not preferable. 120 again
If the temperature exceeds .degree. C., the reaction rate will be faster, but the reaction pressure will be higher and the equipment cost will be enormous, which is not preferable.

原料アルデヒド(I)の第一工程における変化率が50
%未満の場合は第二工程でのピストンフロータイプの反
応器の入口部での発熱が大きくなり好ましくない。また
変化率が90%を超える場合は第二工程での反応器入口
部の発熱は小さくなるが、第一工程での反応時間が長く
なり経済的に不利である。この第一工程で用いる完全混
合槽反応器とは、種型反応器であり、器内の反応液体は
十分に混合され、濃度、温度が、反応器内の各点で均一
と見なされる反応器のことである。反応操作法としては
、連続式、回分式、半回分式のいずれの方法によること
も可能であるが、連続式で実施するのが好ましい。連続
種型反応器では、送入された反応原料成分は直ちに混合
され、反応が進行し、反応器内の濃度と温度の等しい状
態で反応器から反応生成物が流出される。
The rate of change of raw material aldehyde (I) in the first step is 50
If it is less than %, heat generation at the inlet of the piston flow type reactor in the second step becomes large, which is not preferable. If the rate of change exceeds 90%, the heat generation at the inlet of the reactor in the second step will be reduced, but the reaction time in the first step will be longer, which is economically disadvantageous. The fully mixed tank reactor used in this first step is a seed reactor, in which the reaction liquid in the reactor is sufficiently mixed and the concentration and temperature are considered to be uniform at each point within the reactor. It is about. The reaction operation method may be continuous, batch, or semi-batch, but it is preferable to carry out the reaction continuously. In a continuous seed reactor, the introduced reaction raw materials are immediately mixed, the reaction proceeds, and the reaction products are discharged from the reactor with the same concentration and temperature within the reactor.

第一工程で生成した反応粗液はピストンフロータイプの
第二反応器に供給し反応を完結させる。ここで用いられ
るピストンフロータイプの反応器とは、背型反応器で、
反応器内の液体はピストンで押し出されるように流れ、
流れ方向には流体は混合されないので濃度分布が生じる
反応器のことである。この第二工程での反応温度及び反
応時間は第一工程での原料変化率によるが、反応温度3
0〜120℃で数分から1時間程度である。第二工程の
反応粗液を第三工程の分解塔に供給し、80〜150 
’Cで加熱し塔頂よりα−アルキルアクロレインを得る
。分解温度が8゜℃未満の場合は分解時間が長くなり経
済的に不利である。また150℃を超える場合は圧力が
高くなり、設備費が膨大になり好ましくない。また塔底
より回収した触媒液は第一工程にリサイクルして使用す
ることが出来、工業的には触媒液をリサイクル使用する
ことが好ましい。
The reaction crude liquid produced in the first step is supplied to a piston flow type second reactor to complete the reaction. The piston flow type reactor used here is a back type reactor.
The liquid in the reactor flows as if being pushed out by a piston,
This is a reactor in which concentration distribution occurs because fluids are not mixed in the flow direction. The reaction temperature and reaction time in this second step depend on the raw material change rate in the first step, but the reaction temperature
The temperature is from 0 to 120°C for a few minutes to about 1 hour. The reaction crude liquid of the second step is supplied to the decomposition column of the third step,
The mixture is heated at 100° C. to obtain α-alkyl acrolein from the top of the column. If the decomposition temperature is less than 8°C, the decomposition time will be long, which is economically disadvantageous. Moreover, if the temperature exceeds 150°C, the pressure will be high and the equipment cost will be enormous, which is not preferable. Further, the catalyst liquid recovered from the bottom of the column can be recycled and used in the first step, and industrially it is preferable to recycle the catalyst liquid.

〔実施例〕〔Example〕

以下に実施例を挙げてより具体的に本発明を説明するが
、本発明はその主旨を越えないかぎり本実施例により規
制されるものではない。
The present invention will be described in more detail with reference to Examples below, but the present invention is not limited by these Examples unless the gist thereof is exceeded.

尚、例中の部は重量基準である。Note that parts in the examples are based on weight.

実施例1 撹拌式の完全混合槽反応器に毎時37%ホルムアルデヒ
ド水溶液81部(Iモル)、プロピオンアルデヒド58
部(Iモル)、プロピオン酸148部(2モル)、ノル
マルジブチルアミン258部(2モル)、と水327部
を供給し、反応温度90℃1滞留時間30分で反応させ
連続的に反応粗液を取り出した。プロピオンアルデヒド
の変化率は85%であった。90℃の温水で加熱してい
るピストンフロータイプの反応器に反応粗液を供給し滞
留時間20分で反応を完結させた。反応器入口での反応
温度の上昇は1℃以下であった。第二の反応器から毎時
872部の反応粗液を取りだし、分解塔に連続的に供給
し滞留時間20〜25分で分解温度105℃で実施し、
塔頂よりメタアクロレイン69.3 gとメタアクロレ
インの二量体及び2−メチルベンテナールを0.14g
含む液139gを得た。塔底よりプロピオン酸148部
、ノルマルジブチルアミン258部、と水327部を得
、第一の反応器にリサイクルした。
Example 1 81 parts (1 mole) of a 37% formaldehyde aqueous solution and 58 parts of propionaldehyde were added to a stirred complete mixing tank reactor per hour.
1 mol), 148 parts (2 mol) of propionic acid, 258 parts (2 mol) of n-dibutylamine, and 327 parts of water were reacted at a reaction temperature of 90° C. and a residence time of 30 minutes to continuously form a reaction crude. I took out the liquid. The conversion rate of propionaldehyde was 85%. The reaction crude liquid was supplied to a piston flow type reactor heated with hot water at 90°C, and the reaction was completed in a residence time of 20 minutes. The rise in reaction temperature at the reactor inlet was less than 1°C. 872 parts of the reaction crude liquid per hour is taken out from the second reactor and continuously supplied to the decomposition column, and the decomposition is carried out at a residence time of 20 to 25 minutes and a decomposition temperature of 105°C.
69.3 g of methacrolein and 0.14 g of methacrolein dimer and 2-methylbentenal were added from the top of the column.
139 g of the liquid containing the filtrate was obtained. 148 parts of propionic acid, 258 parts of n-dibutylamine, and 327 parts of water were obtained from the bottom of the column and recycled to the first reactor.

比較例1 毎時37%ホルムアルデヒド水溶液81部、プロピオン
アルデヒド58部、プロピオン酸148 部、ノルマル
ジブチルアミン258部と、水327部を90℃の温水
で加熱しているピストンフロータイプの反応器に供給し
、滞留時間35分で反応させ、連続的に反応粗液を取り
出した。反応器入口での反応温度は21℃上昇し激しい
反応が観察された。反応器から毎時872部の反応粗液
を取りだし、分解塔に連続的に供給し滞留時間20〜2
5分で分解温度105℃で実施し、塔頂よりメタアクロ
レイン68.3gとメタアクロレインの二量体及び2−
メチルペンテナール0.97gを含む液を得た。
Comparative Example 1 81 parts of a 37% formaldehyde aqueous solution, 58 parts of propionaldehyde, 148 parts of propionic acid, 258 parts of n-dibutylamine, and 327 parts of water were supplied per hour to a piston flow type reactor heated with hot water at 90°C. The reaction was carried out for a residence time of 35 minutes, and the reaction crude liquid was continuously taken out. The reaction temperature at the inlet of the reactor rose by 21°C, and a vigorous reaction was observed. 872 parts of the reaction crude liquid per hour is taken out from the reactor and continuously fed to the decomposition column for a residence time of 20 to 2 hours.
The decomposition was carried out for 5 minutes at a temperature of 105°C, and 68.3 g of methacrolein, methacrolein dimer and 2-
A liquid containing 0.97 g of methylpentenal was obtained.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、驚くべきことに、比較的温和な反応条
件下で、短時間に高い収率でα−アルキルアクロレイン
を得ることが出来、またアルデヒドの二量化物等の不純
物の少ない純度の高いα−アルキルアクロレインを得る
ことが出来るために、例えば製造したメタアクロレイン
を用いて、メタクリル酸を製造する場合特別な精製工程
を必要としない等の利点がある。
According to the present invention, it is surprisingly possible to obtain α-alkyl acrolein in a high yield in a short time under relatively mild reaction conditions, and it is also possible to obtain α-alkyl acrolein in a high yield in a short period of time, and also to obtain a product of high purity with less impurities such as aldehyde dimers. Since a high amount of α-alkyl acrolein can be obtained, for example, when producing methacrylic acid using the produced methacrolein, there is an advantage that no special purification process is required.

Claims (1)

【特許請求の範囲】 1、一般式 R_1−CH_2−CHO…( I ) (式中、R_1はH又は炭素数1〜10のアルキル基を
示す。) で表されるアルデヒドとホルムアルデヒドから、対応す
るα−アルキルアクロレインを製造する方法において、
一般式( I )で表されるアルデヒド1モルに対してホ
ルムアルデヒド1〜1.5モルを用い、触媒として有機
カルボン酸と第二級アミンを、有機カルボン酸の使用量
が一般式( I )で表されるアルデヒド1モルに対して
1〜5当量、かつ第二級アミン1当量に対して0.5〜
2当量となるように用い、反応を三工程で実施し、第一
工程では完全混合槽反応器で反応温度を30〜120℃
で一般式( I )で表されるアルデヒドの変化率50〜
90%まで反応させ、反応粗液を第二工程に供給し、第
二工程ではピストンフロータイプの反応器で反応温度を
30〜120℃で実施し反応を終結させ、第二工程の反
応粗液を第三工程の分解塔に供給し、80〜150℃で
加熱し塔頂よりα−アルキルアクロレインを得ることを
特徴とするα−アルキルアクロレインの製造方法。 2、第三工程の塔底より触媒の有機カルボン酸及び第二
級アミンを回収し、第一工程にリサイクルして使用する
請求項1記載のα−アルキルアクロレインの製造方法。
[Claims] 1. Corresponding aldehydes and formaldehydes represented by the general formula R_1-CH_2-CHO...(I) (wherein R_1 represents H or an alkyl group having 1 to 10 carbon atoms) In a method for producing α-alkyl acrolein,
1 to 1.5 mol of formaldehyde is used per 1 mol of aldehyde represented by general formula (I), an organic carboxylic acid and a secondary amine are used as catalysts, and the amount of organic carboxylic acid used is according to general formula (I). 1 to 5 equivalents per mole of aldehyde expressed, and 0.5 to 5 equivalents per equivalent of secondary amine
2 equivalents, and the reaction was carried out in three steps. In the first step, the reaction temperature was set at 30 to 120°C in a complete mixing tank reactor.
The rate of change of aldehyde represented by general formula (I) is 50~
After reacting to 90%, the crude reaction liquid is supplied to the second step, and in the second step, the reaction temperature is carried out in a piston flow type reactor at 30 to 120°C to terminate the reaction, and the crude reaction liquid of the second step is A method for producing α-alkyl acrolein, which comprises supplying α-alkyl acrolein to a cracking tower in the third step, heating it at 80 to 150°C, and obtaining α-alkyl acrolein from the top of the tower. 2. The method for producing α-alkyl acrolein according to claim 1, wherein the organic carboxylic acid and secondary amine of the catalyst are recovered from the bottom of the column in the third step and recycled for use in the first step.
JP2300135A 1990-11-06 1990-11-06 Production of alpha-alkylacrolein Pending JPH04173757A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300135A JPH04173757A (en) 1990-11-06 1990-11-06 Production of alpha-alkylacrolein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300135A JPH04173757A (en) 1990-11-06 1990-11-06 Production of alpha-alkylacrolein

Publications (1)

Publication Number Publication Date
JPH04173757A true JPH04173757A (en) 1992-06-22

Family

ID=17881161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300135A Pending JPH04173757A (en) 1990-11-06 1990-11-06 Production of alpha-alkylacrolein

Country Status (1)

Country Link
JP (1) JPH04173757A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39333E1 (en) * 1999-06-04 2006-10-10 Kaneka Corporation Process for the preparation of 5-hydroxy-3-oxopentanoic acid derivatives
EP2829531A1 (en) 2013-07-24 2015-01-28 Evonik Industries AG Method for regulating the water content in a continuous process for producing methacrolein
CN104557490A (en) * 2014-12-24 2015-04-29 成都建中香料香精有限公司 Synthetic process of methylacrolein
EP2998284A1 (en) 2014-09-18 2016-03-23 Evonik Röhm GmbH Optimised method for the production of methacrolein
EP3608305A1 (en) 2018-08-10 2020-02-12 Röhm GmbH Process for producing methacrylic acid or methacrylic acid esters
EP3613726A1 (en) 2018-08-21 2020-02-26 Röhm GmbH Continuous process for preparing methacrolein
EP3945088A1 (en) 2020-07-30 2022-02-02 Röhm GmbH Process for minimising the loss of activity in reaction steps carried out in circulation

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE39333E1 (en) * 1999-06-04 2006-10-10 Kaneka Corporation Process for the preparation of 5-hydroxy-3-oxopentanoic acid derivatives
EP2829531A1 (en) 2013-07-24 2015-01-28 Evonik Industries AG Method for regulating the water content in a continuous process for producing methacrolein
JP2016527239A (en) * 2013-07-24 2016-09-08 エボニック レーム ゲゼルシャフト ミット ベシュレンクテル ハフツングEvonik Roehm GmbH Method for adjusting water content in continuous production process of methacrolein
EP2998284A1 (en) 2014-09-18 2016-03-23 Evonik Röhm GmbH Optimised method for the production of methacrolein
CN104557490A (en) * 2014-12-24 2015-04-29 成都建中香料香精有限公司 Synthetic process of methylacrolein
EP3608305A1 (en) 2018-08-10 2020-02-12 Röhm GmbH Process for producing methacrylic acid or methacrylic acid esters
WO2020030374A1 (en) 2018-08-10 2020-02-13 Röhm Gmbh Process for producing methacrylic acid or methacrylic acid esters
EP3613726A1 (en) 2018-08-21 2020-02-26 Röhm GmbH Continuous process for preparing methacrolein
WO2020038696A1 (en) 2018-08-21 2020-02-27 Röhm Gmbh Continuous process for preparing methacrolein
EP3945088A1 (en) 2020-07-30 2022-02-02 Röhm GmbH Process for minimising the loss of activity in reaction steps carried out in circulation
WO2022022939A1 (en) 2020-07-30 2022-02-03 Röhm Gmbh Process for minimising the loss of activity in reaction steps carried out in circulation

Similar Documents

Publication Publication Date Title
CN106687437B (en) Optimized method for preparing methylacrolein
JPS58188831A (en) Manufacture of alpha-alkylacrolein
KR20000062250A (en) Method for Producing Polyalcohols
CN111187148B (en) Method for simultaneously preparing o-hydroxy phenetole and 1, 3-benzodioxole-2-one
JP2001151703A (en) Method of producing alpha, beta-unsaturated keto compound
CN110573484B (en) Method for preparing methacrolein
TW201536732A (en) Tertiary alkylamines as cocatalysts in the synthesis of methacrolein
JPH04244043A (en) Process for preparing 4-acetoxystyrene
CA2505094A1 (en) Continuous process for producing pseudoionones and ionones
CN110678439A (en) Method for preparing methacrolein
JP2021535114A (en) Continuous method for producing methacrolein
JPH04173757A (en) Production of alpha-alkylacrolein
US4346239A (en) Process for the preparation of 2-methylene aldehydes
JP2002193854A (en) Method for producing trimethylol compound and formic acid
JP3497867B2 (en) Method for producing α-methylene aldehyde
JPH05279286A (en) Production of alpha-alkylacrolein
JPH04173759A (en) Production of alpha-alkylacrolein
JPH1059892A (en) Production of alpha,beta-unsaturated aldehyde
JPH04173760A (en) Production of alpha-alkylacrolein
KR20240097112A (en) Synthesis method of compound applying acetoxylation reaction to lactic acid derivative
JPH04173761A (en) Production of alpha-alkylacrolein
JPH05989A (en) Production of alpha-alkylacrolein
JP4854836B2 (en) Process for producing N-alkyl-N'-methylalkyleneurea substantially free of formic acid
JPH04338352A (en) Production of alpha-alkylacrolein
PL242802B1 (en) Method of obtaining hydroxypivalaldehyde