JP2008161000A - Motor and compressor - Google Patents

Motor and compressor Download PDF

Info

Publication number
JP2008161000A
JP2008161000A JP2006349016A JP2006349016A JP2008161000A JP 2008161000 A JP2008161000 A JP 2008161000A JP 2006349016 A JP2006349016 A JP 2006349016A JP 2006349016 A JP2006349016 A JP 2006349016A JP 2008161000 A JP2008161000 A JP 2008161000A
Authority
JP
Japan
Prior art keywords
rotor
rotor core
motor
magnetic flux
fastening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349016A
Other languages
Japanese (ja)
Inventor
Yoshihiro Kataoka
義博 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2006349016A priority Critical patent/JP2008161000A/en
Priority to PCT/JP2007/073384 priority patent/WO2008078515A1/en
Priority to CNA2007800473732A priority patent/CN101563832A/en
Publication of JP2008161000A publication Critical patent/JP2008161000A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor in which the rigidity of a rotor can be enhanced, while suppressing drop in the torque and in the degradation of efficiency. <P>SOLUTION: The motor includes a cylindrical rotor 130 and a stator 140 enclosing the outer peripheral side of the rotor. The rotor 130 includes a rotor core 131 having electromagnetic steel plates laminated, a permanent magnet 132 arranged on the rotor core 131 in the circumferential direction and setinto a convex polygon shape, and a rivet 133 which fastens the rotor core 131 axially passing through, to a position where the magnetic flux is lower than other portions within a region which is in the radial direction outward of the permanent magnets 132 of the rotor core 131. The rivet 133 lies within the range of electrical angles of 60° to 160° of the rotor core 131. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、モータおよびそれを用いた圧縮機に関する。   The present invention relates to a motor and a compressor using the motor.

従来、モータとしては、電磁鋼板を積層してロータコアを形成し、そのロータコアに永久磁石を星形に配置し、さらにその両端に磁石飛び出し防止用の端板を被せ、それらにリベットを軸方向に貫通させて締結することによりロータを一体化したものがある(例えば、特許第3397019号(特許文献1)参照)。   Conventionally, as a motor, a rotor core is formed by laminating electromagnetic steel plates, permanent magnets are arranged in a star shape on the rotor core, and end plates for preventing magnet jumping are put on both ends of the rotor core, and rivets are axially attached to them. There is one in which the rotor is integrated by passing through and fastening (for example, see Japanese Patent No. 3397019 (Patent Document 1)).

一般に、ロータコアを締結するリベットには鉄が用いられるが、磁束がリベットを通過するときにリベット内に鉄損が生じて効率が低下する。また、中空または円筒状のリベットを使用した場合も、磁束の流れを阻害するため、効率が低下する。さらに、リベット、端板が磁性体の場合、極間の漏れ磁束により効率が低下する。一方、リベットの位置は、ロータの外周に近い位置に設けることで、ロータ全体に均等に締結力が加わるため、ロータの剛性向上する。しかし、星形に配置された磁石よりも半径方向外側の磁束密度の高いところにあるため、上記のようにトルク低下や効率低下の影響が大きくなるという問題がある。
特許第3397019号
Generally, iron is used for the rivet for fastening the rotor core, but when the magnetic flux passes through the rivet, iron loss occurs in the rivet and the efficiency is lowered. Further, when a hollow or cylindrical rivet is used, the flow of magnetic flux is obstructed, so that the efficiency is lowered. Further, when the rivet and the end plate are made of a magnetic material, the efficiency is lowered due to the leakage magnetic flux between the poles. On the other hand, by providing the rivet at a position close to the outer periphery of the rotor, the fastening force is evenly applied to the entire rotor, so that the rigidity of the rotor is improved. However, since the magnetic flux density is higher on the outer side in the radial direction than the magnets arranged in a star shape, there is a problem that the influence of torque reduction and efficiency reduction is increased as described above.
Japanese Patent No. 3397019

そこで、この発明の課題は、トルク低下や効率低下を抑えつつロータの剛性を高めることができるモータを提供することにある。   Therefore, an object of the present invention is to provide a motor that can increase the rigidity of the rotor while suppressing a decrease in torque and a decrease in efficiency.

上記課題を解決するため、この発明のモータは、
円柱形状のロータと上記ロータの外周側を囲うステータとを備えたモータであって、
上記ロータは、
電磁鋼板が積層されたロータコアと、
上記ロータコアに周方向かつ凸多角形状に配列された磁石と、
上記ロータコアの上記磁石の半径方向外側の領域内で、磁束密度が高い部分と低い部分のうちの低い部分を軸方向に貫通して、上記ロータコアを締結する締結部材と
を有することを特徴とする。
In order to solve the above problems, the motor of the present invention is
A motor comprising a cylindrical rotor and a stator surrounding the outer periphery of the rotor,
The rotor is
A rotor core in which electromagnetic steel sheets are laminated;
Magnets arranged circumferentially and in a convex polygonal shape on the rotor core;
A fastening member for fastening the rotor core through an axial direction through a lower portion of the portion having a high magnetic flux density and a portion having a low magnetic flux density in a region radially outside the magnet of the rotor core. .

上記構成のモータによれば、上記ロータコアに周方向かつ凸多角形状に配列された磁石の半径方向外側の領域内で、磁束密度が高い部分と低い部分のうちの低い部分を軸方向に締結部材を貫通して、その締結部材によりロータコアを締結することによって、磁束の流れを阻害することなくトルク低下や効率低下を抑えると共に、ロータコアが外周側で締結部材により締結されるので、ロータの剛性を高めることができる。   According to the motor having the above-described configuration, the lower portion of the portion having a high magnetic flux density and the portion having a low magnetic flux density are axially fastened in a region radially outside the magnet arranged in the circumferential direction and the convex polygonal shape on the rotor core. And tightening the rotor core with the fastening member suppresses torque reduction and efficiency reduction without hindering the flow of magnetic flux, and the rotor core is fastened by the fastening member on the outer peripheral side, so that the rigidity of the rotor is reduced. Can be increased.

また、一実施形態のモータでは、上記締結部材は、上記ロータコアの電気角60°〜160°の範囲内にある。   In one embodiment of the motor, the fastening member is in the range of 60 ° to 160 ° electrical angle of the rotor core.

上記実施形態によれば、上記ロータコアの電気角60°〜160°の範囲内の磁束の少ない領域で、締結部材を軸方向に貫通して締結することによって、磁束の流れを阻害することなくトルク低下や効率低下を効果的に抑えることができる。   According to the above-described embodiment, torque is obtained without impeding the flow of magnetic flux by penetrating the fastening member in the axial direction and fastening in a region where there is little magnetic flux within the range of electrical angle of 60 ° to 160 ° of the rotor core. Reduction and efficiency reduction can be effectively suppressed.

また、一実施形態のモータでは、上記締結部材は、中空の部材または円筒状の部材からなる。   Moreover, in the motor of one Embodiment, the said fastening member consists of a hollow member or a cylindrical member.

上記実施形態によれば、中空の部材または円筒状の部材からなる締結部材を用いることによって、軸方向に貫通する穴を設けても、磁束密度の低い部分を貫通する締結部材が磁束の流れを阻害することがない。   According to the above-described embodiment, by using a fastening member made of a hollow member or a cylindrical member, the fastening member that penetrates a portion having a low magnetic flux density flows a magnetic flux even if a hole that penetrates in the axial direction is provided. There is no hindrance.

また、一実施形態のモータでは、上記のいずれか1つのモータを搭載したことを特徴とする。   In one embodiment, any one of the above motors is mounted.

上記構成によれば、効率のよい信頼性の高い圧縮機を実現できる。   According to the above configuration, an efficient and highly reliable compressor can be realized.

以上より明らかなように、この発明のモータによれば、トルク低下や効率低下を抑えつつロータの剛性を高めることができるモータを実現することができる。   As is clear from the above, according to the motor of the present invention, it is possible to realize a motor capable of increasing the rigidity of the rotor while suppressing a decrease in torque and a decrease in efficiency.

また、一実施形態のモータによれば、ロータコアの電気角60°〜160°の範囲内の磁束の少ない領域で、締結部材を軸方向に貫通して締結することによって、トルク低下や効率低下を効果的に抑えることができる。   In addition, according to the motor of one embodiment, torque reduction and efficiency reduction can be achieved by penetrating the fastening member in the axial direction and fastening in a region where the magnetic angle of the rotor core is within a range of 60 ° to 160 ° with little magnetic flux. It can be effectively suppressed.

また、一実施形態のモータによれば、中空の部材または円筒状の部材からなる締結部材を用いることによって、軸方向に貫通する穴を設けても、締結部材が磁束の流れを阻害することがない。   Moreover, according to the motor of one embodiment, by using a fastening member made of a hollow member or a cylindrical member, even if a hole penetrating in the axial direction is provided, the fastening member can inhibit the flow of magnetic flux. Absent.

また、この発明の圧縮機によれば、上記モータを用いることによって、効率のよい信頼性の高い圧縮機を実現することができる。   Further, according to the compressor of the present invention, an efficient and highly reliable compressor can be realized by using the motor.

以下、この発明のモータおよび圧縮機を図示の実施の形態により詳細に説明する。   The motor and compressor of the present invention will be described in detail below with reference to the illustrated embodiments.

図1はこの発明の実施の一形態のモータAの要部の平面図を示している。   FIG. 1 is a plan view of a main part of a motor A according to an embodiment of the present invention.

図1に示すモータAは、電磁鋼板が積層された円柱形状のロータコア131に4つの永久磁石132が周方向にかつ正方形状(凸多角形状)配列されたロータ130と、そのロータ130の外周側を囲うステータ140とを備えている。上記ロータコア131の軸穴131aに回転軸110を挿入して嵌合している。上記ステータ140は、24のティース141aが内周側に設けられたステータコア141と、上記24のティース141aに夫々巻回されたコイル(図示せず)とを有している。   A motor A shown in FIG. 1 includes a rotor 130 in which four permanent magnets 132 are arranged in a circumferential direction and in a square shape (convex polygonal shape) on a cylindrical rotor core 131 in which electromagnetic steel plates are laminated, and an outer peripheral side of the rotor 130. And a stator 140 that surrounds. The rotary shaft 110 is inserted and fitted into the shaft hole 131a of the rotor core 131. The stator 140 includes a stator core 141 in which 24 teeth 141a are provided on the inner peripheral side, and coils (not shown) wound around the 24 teeth 141a.

また、上記円柱形状のロータコア131の軸方向の両端部を端板(図示せず)により挟んだ状態で、締結部材の一例としてのリベット133を、ロータコア131に軸方向に設けられた貫通孔131bに貫通させて締結している。このロータコア131の貫通孔131bは、永久磁石132の半径方向外側、かつ、電気角が略90°の位置に夫々設けられている。   In addition, a rivet 133 as an example of a fastening member is inserted into the rotor core 131 in the axial direction with both end portions in the axial direction of the cylindrical rotor core 131 sandwiched between end plates (not shown). It is pierced and fastened. The through holes 131b of the rotor core 131 are provided on the radially outer side of the permanent magnet 132 and at positions where the electrical angle is approximately 90 °.

図2はこの発明の実施の他の形態のモータBの要部の平面図を示している。   FIG. 2 shows a plan view of the main part of a motor B according to another embodiment of the present invention.

図2に示すモータBは、電磁鋼板が積層された円柱形状のロータコア231に4つの永久磁石232が周方向にかつ正方形状(凸多角形状)配列されたロータ230と、そのロータ230の外周側を囲うステータ240とを備えている。上記ロータコア231の軸穴231aに回転軸210を挿入して嵌合している。上記ステータ240は、6つのティース241aが内周側に設けられたステータコア241と、上記6つのティース241aに夫々巻回されたコイル(図示せず)とを有している。   A motor B shown in FIG. 2 includes a rotor 230 in which four permanent magnets 232 are arranged in a circumferential direction and in a square shape (convex polygonal shape) on a cylindrical rotor core 231 in which electromagnetic steel plates are laminated, and an outer peripheral side of the rotor 230. And a stator 240 that surrounds. The rotating shaft 210 is inserted and fitted into the shaft hole 231a of the rotor core 231. The stator 240 includes a stator core 241 provided with six teeth 241a on the inner peripheral side, and coils (not shown) wound around the six teeth 241a.

また、上記締結部材の一例としてのリベット233を、ロータコア231に軸方向に設けられた貫通孔231bに貫通させて締結している。このロータコア231の貫通孔231bは、永久磁石232の半径方向外側、かつ、電気角が略90°の位置に夫々設けられている。   A rivet 233 as an example of the fastening member is passed through a through hole 231b provided in the axial direction in the rotor core 231 and fastened. The through holes 231b of the rotor core 231 are provided on the radially outer side of the permanent magnet 232 and at positions where the electrical angle is approximately 90 °.

また、図3はモータAのステータコア表面とロータコア表面の磁束の分布を示し、図4はモータBのステータコア表面とロータコア表面の磁束の分布を示している。図3,図4に示すθは、1つの永久磁石が配置された機械角0°〜90°の範囲において、電気角0°〜180°となる。   3 shows the distribution of magnetic flux on the stator core surface and the rotor core surface of the motor A, and FIG. 4 shows the distribution of magnetic flux on the stator core surface and the rotor core surface of the motor B. The θ shown in FIGS. 3 and 4 is an electrical angle of 0 ° to 180 ° in a mechanical angle range of 0 ° to 90 ° where one permanent magnet is arranged.

図5において、横軸は電気角を表し、縦軸はロータコア表面の磁束密度を表しており、ロータコアの電気角60°〜160°の範囲は、他の部分よりも磁束密度の低い領域である。このように、ロータに周方向かつ凸多角形状に配列される磁石の数によらず、電気角60°〜160°の範囲で締結部材を設ければ同様の効果が得られる。   In FIG. 5, the horizontal axis represents the electrical angle, the vertical axis represents the magnetic flux density on the rotor core surface, and the range of the electrical angle of 60 ° to 160 ° of the rotor core is a region where the magnetic flux density is lower than other portions. . Thus, the same effect can be obtained if the fastening member is provided in the electrical angle range of 60 ° to 160 ° regardless of the number of magnets arranged in the circumferential direction and in the convex polygonal shape on the rotor.

上記構成のモータによれば、ロータコア131,231に周方向かつ凸多角形状に配列された磁石132,232と、ロータコア131の磁石132,232の半径方向外側の領域内で、磁束密度が高い部分と低い部分のうちの低い部分を軸方向に貫通するリベット(締結部材)133,233により、ロータコア131,231を締結することによって、磁束の流れを阻害することなくトルク低下や効率低下を抑えと共に、ロータコア131,231が外周側でリベット(締結部材)133,233により締結されるので、ロータ130,230の剛性を高めることができる。   According to the motor having the above configuration, the magnets 132 and 232 arranged in the circumferential direction and the convex polygonal shape on the rotor cores 131 and 231, and the portion where the magnetic flux density is high in the radially outer region of the magnets 132 and 232 of the rotor core 131. By fastening the rotor cores 131 and 231 with the rivets (fastening members) 133 and 233 that penetrate the lower part of the lower part in the axial direction, torque reduction and efficiency reduction can be suppressed without hindering the flow of magnetic flux. Since the rotor cores 131 and 231 are fastened by rivets (fastening members) 133 and 233 on the outer peripheral side, the rigidity of the rotors 130 and 230 can be increased.

また、上記ロータコア131,231の電気角60°〜160°の範囲内の磁束の少ない領域で、リベット(締結部材)133,233を軸方向に貫通して締結することによって、磁束の流れを阻害することなくトルク低下や効率低下を効果的に抑えることができる。   Further, the flow of magnetic flux is obstructed by penetrating rivets (fastening members) 133 and 233 in the axial direction and fastening them in an area where the magnetic angle of the rotor cores 131 and 231 is small within an electric angle range of 60 ° to 160 °. Torque reduction and efficiency reduction can be effectively suppressed without doing so.

上記実施の形態では、電磁鋼板が積層された円柱形状のロータコア131,231に4つの永久磁石132,232が周方向にかつ正方形状(凸多角形状)配列されたロータ130,230を有するモータについて説明したが、モータの構成はこれに限らず、円柱形状のロータコアに周方向にかつ凸多角形状に磁石が配列されたロータを有するモータであればよく、磁石の数は限定されない。また、全ての磁石の半径方向外側に締結部材はなくともよく、少なくとも3つの締結部材によりロータコアが締結されていればよい。   In the above embodiment, a motor having rotors 130 and 230 in which four permanent magnets 132 and 232 are arranged in a circumferential shape and in a square shape (convex polygonal shape) on cylindrical rotor cores 131 and 231 in which electromagnetic steel plates are laminated. Although described, the configuration of the motor is not limited to this, and any motor may be used as long as it has a rotor in which magnets are arranged in a circumferential shape and a convex polygonal shape on a cylindrical rotor core, and the number of magnets is not limited. Moreover, there is no need to have a fastening member on the outer side in the radial direction of all the magnets, and it is sufficient that the rotor core is fastened by at least three fastening members.

また、上記実施の形態では、締結部材としてリベット133,233を用いたが、締結部材はこれに限らず、ボルトとナット等の他の締結部材を用いてもよい。   In the above embodiment, the rivets 133 and 233 are used as the fastening members. However, the fastening members are not limited to this, and other fastening members such as bolts and nuts may be used.

また、中空の部材または円筒状の部材からなるリベット(締結部材)を用いることによって、軸方向に貫通する穴を設けても、磁束密度の低い部分を貫通するリベット(締結部材)が磁束の流れを阻害することがない。   Further, by using a rivet (fastening member) made of a hollow member or a cylindrical member, the rivet (fastening member) that penetrates a portion having a low magnetic flux density flows even if a hole that penetrates in the axial direction is provided. Will not be disturbed.

また、上記モータを搭載することによって、効率のよい信頼性の高い圧縮機を実現することができる。   Further, by mounting the motor, an efficient and highly reliable compressor can be realized.

この発明の具体的な実施の形態について説明したが、この発明は上記実施の形態に限定されるものではなく、この発明の範囲内で種々変更して実施することができる。   Although specific embodiments of the present invention have been described, the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the present invention.

図1はこの発明の実施の一形態のモータAの要部の平面図である。FIG. 1 is a plan view of a main part of a motor A according to an embodiment of the present invention. 図2はこの発明の実施の他の形態のモータBの要部の平面図である。FIG. 2 is a plan view of a main part of a motor B according to another embodiment of the present invention. 図3はモータAのステータコア表面とロータコア表面の磁束の分布を示す図である。FIG. 3 is a diagram showing a magnetic flux distribution on the stator core surface and the rotor core surface of the motor A. 図4はモータBのステータコア表面とロータコア表面の磁束の分布を示す図である。FIG. 4 is a view showing the distribution of magnetic flux on the stator core surface and the rotor core surface of the motor B. 図5はモータAとモータBの電気角に対するロータコア表面の磁束密度を表す図である。FIG. 5 is a diagram showing the magnetic flux density on the surface of the rotor core with respect to the electrical angles of the motor A and the motor B.

符号の説明Explanation of symbols

110…回転軸
130…ロータ
131…ロータコア
131a…軸穴
131b…貫通穴
132…永久磁石
133…リベット
140…ステータ
141…ステータコア
141a…ティース
210…回転軸
230…ロータ
231…ロータコア
231a…軸穴
231b…貫通穴
232…永久磁石
233…リベット
240…ステータ
241…ステータコア
241a…ティース
DESCRIPTION OF SYMBOLS 110 ... Rotating shaft 130 ... Rotor 131 ... Rotor core 131a ... Shaft hole 131b ... Through hole 132 ... Permanent magnet 133 ... Rivet 140 ... Stator 141 ... Stator core 141a ... Teeth 210 ... Rotating shaft 230 ... Rotor 231 ... Rotor core 231a ... Shaft hole 231b ... Through-hole 232 ... Permanent magnet 233 ... Rivet 240 ... Stator 241 ... Stator core 241a ... Teeth

Claims (4)

円柱形状のロータ(130,230)と上記ロータ(130,230)の外周側を囲うステータ(140,240)とを備えたモータであって、
上記ロータ(130,230)は、
電磁鋼板が積層されたロータコア(131,231)と、
上記ロータコア(131,231)に周方向かつ凸多角形状に配列された磁石(132,232)と、
上記ロータコア(131,231)の上記磁石(132,232)の半径方向外側の領域内で、磁束密度が高い部分と低い部分のうちの低い部分を軸方向に貫通して、上記ロータコア(131)を締結する締結部材(133,233)と
を有することを特徴とするモータ。
A motor comprising a cylindrical rotor (130, 230) and a stator (140, 240) surrounding the outer periphery of the rotor (130, 230),
The rotor (130, 230)
A rotor core (131, 231) in which electromagnetic steel sheets are laminated;
Magnets (132, 232) arranged in a circumferential and convex polygonal shape on the rotor core (131, 231);
Within the region of the rotor core (131, 231) on the outer side in the radial direction of the magnet (132, 232), the rotor core (131) is penetrated in the axial direction through the lower portion of the high magnetic flux density portion and the low magnetic flux density portion. And a fastening member (133, 233) for fastening the motor.
請求項1に記載のモータにおいて、
上記締結部材(133,233)は、上記ロータコア(131,231)の電気角60°〜160°の範囲内にあることを特徴とするモータ。
The motor according to claim 1,
The motor according to claim 1, wherein the fastening members (133, 233) are within an electrical angle range of 60 ° to 160 ° of the rotor core (131, 231).
請求項1または2に記載のモータにおいて、
上記締結部材(133,233)は、中空の部材または円筒状の部材からなることを特徴とするモータ。
The motor according to claim 1 or 2,
The said fastening member (133,233) consists of a hollow member or a cylindrical member, The motor characterized by the above-mentioned.
請求項1乃至3のいずれか1つに記載のモータを搭載したことを特徴とする圧縮機。   A compressor equipped with the motor according to any one of claims 1 to 3.
JP2006349016A 2006-12-26 2006-12-26 Motor and compressor Pending JP2008161000A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006349016A JP2008161000A (en) 2006-12-26 2006-12-26 Motor and compressor
PCT/JP2007/073384 WO2008078515A1 (en) 2006-12-26 2007-12-04 Motor and compressor
CNA2007800473732A CN101563832A (en) 2006-12-26 2007-12-04 Motor and compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349016A JP2008161000A (en) 2006-12-26 2006-12-26 Motor and compressor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008250742A Division JP2008312443A (en) 2008-09-29 2008-09-29 Motor and compressor

Publications (1)

Publication Number Publication Date
JP2008161000A true JP2008161000A (en) 2008-07-10

Family

ID=39562309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349016A Pending JP2008161000A (en) 2006-12-26 2006-12-26 Motor and compressor

Country Status (3)

Country Link
JP (1) JP2008161000A (en)
CN (1) CN101563832A (en)
WO (1) WO2008078515A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125104A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Ipm motor rotor and ipm motor
JP2013153554A (en) * 2012-01-24 2013-08-08 Daikin Ind Ltd Rotor and compressor
WO2014104184A1 (en) * 2012-12-28 2014-07-03 株式会社Ihi Double stator switched reluctance rotating machine
KR101526206B1 (en) * 2008-12-15 2015-06-05 엘지전자 주식회사 Interior permanent magnet type brushless direct current motor
US9647520B2 (en) 2013-01-10 2017-05-09 Ihi Corporation Double stator switched reluctance rotating machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011091969A (en) * 2009-10-26 2011-05-06 Nippon Densan Corp Motor, disk drive, method for manufacturing rotor yoke, and method for manufacturing motor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10136594A (en) * 1996-10-31 1998-05-22 Daikin Ind Ltd Brushless dc motor and compressor using it

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101526206B1 (en) * 2008-12-15 2015-06-05 엘지전자 주식회사 Interior permanent magnet type brushless direct current motor
JP2011125104A (en) * 2009-12-09 2011-06-23 Toyota Motor Corp Ipm motor rotor and ipm motor
JP2013153554A (en) * 2012-01-24 2013-08-08 Daikin Ind Ltd Rotor and compressor
WO2014104184A1 (en) * 2012-12-28 2014-07-03 株式会社Ihi Double stator switched reluctance rotating machine
JP5867626B2 (en) * 2012-12-28 2016-02-24 株式会社Ihi Double stator type switched reluctance rotating machine
EP2940841A4 (en) * 2012-12-28 2016-08-10 Ihi Corp Double stator switched reluctance rotating machine
US9692267B2 (en) 2012-12-28 2017-06-27 Ihi Corporation Double stator switched reluctance rotating machine
US9647520B2 (en) 2013-01-10 2017-05-09 Ihi Corporation Double stator switched reluctance rotating machine

Also Published As

Publication number Publication date
CN101563832A (en) 2009-10-21
WO2008078515A1 (en) 2008-07-03

Similar Documents

Publication Publication Date Title
EP1801952B1 (en) Electrical rotating machine
JP2008131813A (en) Permanent magnet electrical rotating machine, wind power generation system, and magnetization method of permanent magnet
JP2015115973A (en) Rotor of rotary electric machine and rotary electric machine
JP5347588B2 (en) Embedded magnet motor
JP2013021776A (en) Rotary electric machine
US20130278106A1 (en) Rotor assembly
JP5240592B2 (en) Rotating electric machine
JP2008161000A (en) Motor and compressor
JP2011024291A (en) Stator core and axial gap motor
JP5271147B2 (en) Rotor and motor
JP5573109B2 (en) Permanent magnet motor rotor
WO2013065110A1 (en) Interior permanent magnet motor and compressor
KR101897635B1 (en) Permanent magnet-embedded motor and rotor thereof
JP2012244649A (en) Rotor and rotary electric machine
JP4209885B2 (en) Motor stator structure
JP2008259376A (en) Motor device
JP2007282325A (en) Permanent-magnet motor
JP5677212B2 (en) Rotating electric machine
JP2014112999A (en) Rotor and rotary electric machine using the same
JP6237412B2 (en) Rotor structure of embedded magnet type rotating electrical machine
JP2008109784A (en) Stator structure
JP2015047009A (en) Rotary electric machine
JP2009077491A (en) Stator core laminated body and electric motor
JP2008283737A (en) Salient-pole rotating electrical machine
JP2008312443A (en) Motor and compressor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104