JP2008159411A - Flat battery - Google Patents

Flat battery Download PDF

Info

Publication number
JP2008159411A
JP2008159411A JP2006347137A JP2006347137A JP2008159411A JP 2008159411 A JP2008159411 A JP 2008159411A JP 2006347137 A JP2006347137 A JP 2006347137A JP 2006347137 A JP2006347137 A JP 2006347137A JP 2008159411 A JP2008159411 A JP 2008159411A
Authority
JP
Japan
Prior art keywords
gasket
separator
battery
positive electrode
sealing plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006347137A
Other languages
Japanese (ja)
Inventor
Koichi Chikayama
浩一 近山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006347137A priority Critical patent/JP2008159411A/en
Publication of JP2008159411A publication Critical patent/JP2008159411A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat battery excellent in high-temperature storage characteristics, as rising parts of a gasket are provided in a noncontinuous way on the circumference of a circle. <P>SOLUTION: An internal volume of the battery is aimed to be increased by providing rising parts of a gasket in a noncontinuous way on the circumference of the circle, gaps thus increased are filled with electrolyte solution, and at the same time, a peripheral edge part of a separator is made contained in a separator housing part formed of the rising parts of the gasket and a sealing plate to make up a structure in which the cathode and the sealing plate are isolated by the separator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、正極ケース、封口板およびガスケットにより発電要素を密閉した偏平形電池の、特にそのガスケットの形状に関する。   The present invention relates to a flat battery in which a power generation element is sealed with a positive electrode case, a sealing plate and a gasket, and more particularly to the shape of the gasket.

近年、アルカリ金属またはその合金に非水電解液を組み合わせた発電要素を、偏平形の電池ケースに収容した偏平形非水電解液電池(以下、単に「偏平形電池」という。)は、優れた信頼性を有すると共に高いエネルギー密度を有することから、各種小型電子機器の駆動用電源、及びメモリーバックアップ用電源として、好適に用いられている。これまで、この種の電池は充電できない一次電池が主流であったが、近年、充電可能な二次電池も各種開発され、メモリーや時計機能等のバックアップ用電源としてその需要が増大している。最近では、携帯電話やデジタルスチルカメラ等の電子機器への需要拡大が著しいが、これら電子機器の小形・薄形化に伴い、機器内部に配される偏平形電池に対しても小形・薄形化が要請されている。   In recent years, a flat nonaqueous electrolyte battery (hereinafter simply referred to as a “flat battery”) in which a power generation element in which a nonaqueous electrolyte is combined with an alkali metal or an alloy thereof is housed in a flat battery case is excellent. Since it has reliability and high energy density, it is suitably used as a driving power source for various small electronic devices and a memory backup power source. Up to now, this type of battery has been mainly a primary battery that cannot be recharged. However, in recent years, various rechargeable secondary batteries have been developed, and the demand is increasing as a backup power source for memory and clock functions. Recently, the demand for electronic devices such as mobile phones and digital still cameras has been increasing rapidly. However, along with the downsizing and thinning of these electronic devices, the flat batteries placed inside the devices are also small and thin. Is required.

従来の構造として、特許文献1に示されるように、平板状セパレータの外周縁部を内側に折り曲げ、この外周折り曲げ部分を正極の外周とガスケットの内周との隙間に挿入して配置する偏平形電池が提案されている。しかしながら、この構造の電池では、セパレータの外周折り曲げ部を正極とガスケットの間に挿入する必要があるため、セパレータの厚み分だけ正極径を小さくしなければならず、これにより正極容量を大きくすることが出来ない。この問題を解決するものとして、図3に示されるように、ガスケットの立ち上がり部と封口板とで形成されてなるセパレータ収納部にセパレータの外周縁部を挿入固定させることにより、正極径を小さくすることなく正極容量の減少を抑制できる偏平形電池が提案されている(特許文献2)。
特開昭60−148066号公報 特開平07−282819号公報
As a conventional structure, as shown in Patent Document 1, the outer peripheral edge of the flat plate separator is bent inward, and the outer peripheral bent portion is inserted into the gap between the outer periphery of the positive electrode and the inner periphery of the gasket and arranged. Batteries have been proposed. However, in the battery having this structure, it is necessary to insert the outer peripheral bent portion of the separator between the positive electrode and the gasket. Therefore, the positive electrode diameter must be reduced by the thickness of the separator, thereby increasing the positive electrode capacity. I can't. In order to solve this problem, as shown in FIG. 3, the outer peripheral edge of the separator is inserted and fixed in the separator housing part formed by the rising part of the gasket and the sealing plate, thereby reducing the positive electrode diameter. There has been proposed a flat battery that can suppress a decrease in positive electrode capacity without any change (Patent Document 2).
JP 60-148066 A Japanese Patent Application Laid-Open No. 07-282819

しかしながら、図3の電池構造、特に小径サイズの電池においては、電池内容積に占めるガスケットの立ち上がり部の体積が大きくなる。そして、高容量化のため正極容量を大きくする場合、正極容量に対する電解液量が十分に確保できなくなるため、長期保存や高温保存によって電解液の枯渇が起こり、電池特性劣化を早めると言う課題があった。   However, in the battery structure of FIG. 3, particularly in a small-diameter battery, the volume of the rising portion of the gasket that occupies the internal volume of the battery increases. When the positive electrode capacity is increased for higher capacity, the amount of the electrolytic solution relative to the positive electrode capacity cannot be secured sufficiently, so that the electrolyte solution is depleted due to long-term storage or high-temperature storage, and the battery characteristic deterioration is accelerated. there were.

本発明は、このような課題を解決し、保存性に優れかつ内部短絡を引き起こさない偏平形電池を提供することを目的とする。   An object of the present invention is to solve such problems, and to provide a flat battery that is excellent in storage stability and does not cause an internal short circuit.

上記課題を解決するために、本発明の偏平形電池は、正極、負極、電解液、セパレータを、ガスケットを介し負極端子を兼ねる封口板と正極端子を兼ねる正極ケースにより密封する偏平形電池において、前記ガスケットの立ち上がり部が円周上に非連続に設けられ、前記立ち上がり部と前記封口板とで形成されてなるセパレータ収納部に前記セパレータの周縁部を収納させることにより、前記セパレータをカップ状に形成させたものである。   In order to solve the above problems, the flat battery of the present invention is a flat battery in which a positive electrode, a negative electrode, an electrolyte, and a separator are sealed with a sealing plate that also serves as a negative electrode terminal and a positive electrode case that also serves as a positive electrode terminal through a gasket. The separator is cup-shaped by allowing the rising portion of the gasket to be discontinuously provided on the circumference and storing the peripheral portion of the separator in a separator storage portion formed by the rising portion and the sealing plate. It is formed.

本発明のガスケットを用いることによって放電時に正極が膨張してもカップ状セパレータによって封口板と隔離されているため、正極と封口板が接触を起こすことなく、内容積の増大が図られる。また、増大した空隙を電解液で満たすことにより、長期保存による電
解液の枯渇に伴う電池特性劣化を緩和することが可能となる。
By using the gasket of the present invention, even if the positive electrode expands during discharge, the cup-shaped separator separates the sealing plate from the sealing plate. Therefore, the positive electrode and the sealing plate do not come into contact with each other, and the internal volume can be increased. In addition, by filling the increased voids with the electrolytic solution, it is possible to alleviate the deterioration of battery characteristics due to the depletion of the electrolytic solution due to long-term storage.

本発明により、小形であっても、保存性に優れかつ、内部短絡を起こすことのない偏平形電池を提供することができる。   According to the present invention, it is possible to provide a flat battery that is excellent in storability and does not cause an internal short circuit even if it is small.

正極、負極、電解液、セパレータを、ガスケットを介し負極端子を兼ねる封口板と正極端子を兼ねる正極ケースとにより密封する偏平形電池であって、前記ガスケットの立ち上がり部が円周上に非連続に設けられ、前記立ち上がり部と前記封口板とで形成されてなるセパレータ収納部に前記セパレータの周縁部を収納させることにより、前記セパレータをカップ状に形成させる構造にすることで、放電時に正極が膨張してもカップ状セパレータによって封口板と隔離されているため、正極と封口板が接触を起こすことなく、内容積の増大が図られる。さらには増大した空隙を電解液で満たすことにより、長期保存による電解液の枯渇に伴う電池特性劣化を緩和することができる。   A flat battery in which a positive electrode, a negative electrode, an electrolyte, and a separator are sealed by a sealing plate that also serves as a negative electrode terminal and a positive electrode case that also serves as a positive electrode terminal via a gasket, and the rising portion of the gasket is discontinuous on the circumference. The positive electrode expands at the time of discharge by providing a structure in which the separator is formed in a cup shape by storing the peripheral portion of the separator in a separator storage portion formed by the rising portion and the sealing plate. Even if it is isolated from the sealing plate by the cup-shaped separator, the internal volume can be increased without causing contact between the positive electrode and the sealing plate. Furthermore, by filling the increased voids with the electrolytic solution, it is possible to mitigate the deterioration of battery characteristics accompanying the depletion of the electrolytic solution due to long-term storage.

以下本発明の好ましい実施形態について、非水電解液二次電池を例として図面を参照しながら説明する。なお本発明は二次電池に限定されるものではない。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings, taking a non-aqueous electrolyte secondary battery as an example. The present invention is not limited to the secondary battery.

図1に示す本発明の偏平形電池は、一方の電極端子を兼ねる正極ケース12、他方の電極端子を兼ねリチウムを吸蔵・放出することができるアルミニウム合金とステンレス鋼とのクラッド材を用いて一体成型された封口板11、正極ケース12と封口板11とを絶縁するガスケット13により発電要素を密封してなる。   The flat battery of the present invention shown in FIG. 1 is integrally formed using a positive electrode case 12 that also serves as one electrode terminal, and a clad material of aluminum alloy and stainless steel that also serves as the other electrode terminal and can absorb and release lithium. The power generating element is sealed by a molded sealing plate 11, a gasket 13 that insulates the positive electrode case 12 and the sealing plate 11.

ガスケット13には立ち上がり部が円周上に非連続に設けられており、この立ち上がり部と封口板11とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が収納させることにより、その形状をカップ状にすることに特徴を有する。すなわち、本実施の形態においては、ガスケット13の形状に最大の特徴を有する。本発明におけるガスケット13を前記のような構造にすることにより、正極16の側から見て、封口板11のアルミニウム面がセパレータ14で覆われているため、アルニウム面が露出しない状態が作り出せる。このため、電池の放電に伴う正極16の膨張が起こる場合においても、正極16と、アルミニウム面が接触することがない。   The gasket 13 has a rising portion discontinuously provided on the circumference, and the peripheral portion of the separator 14 is stored in a separator storage portion formed by the rising portion and the sealing plate 11, so that the shape thereof is obtained. It is characterized by making it into a cup shape. In other words, in the present embodiment, the shape of the gasket 13 has the greatest feature. By making the gasket 13 in the present invention have the above-described structure, the aluminum surface of the sealing plate 11 is covered with the separator 14 when viewed from the positive electrode 16 side, so that a state in which the aluminum surface is not exposed can be created. For this reason, even when the positive electrode 16 expands due to battery discharge, the positive electrode 16 and the aluminum surface do not come into contact with each other.

さらに、ガスケット13の立ち上がり部が円周上に非連続に設けられていることで電池内容積の増大を図ることができる。増大した空隙を電解液で満たすことにより図3に示す従来の偏平形電池と比べて正極容量に対する電解液量を大きくすることが可能となる。正極容量に対する電解液量を大きくする方法として正極容量の減量が挙げられるが、この場合、電池容量の低下を招くと言う点において不利である。本発明の偏平形電池では、電池容量の低下を招くことなく、長期保存や高温保存における電解液の枯渇による電池特性劣化を抑制することが出来る。このため高容量でかつ長期保存性に優れた偏平形電池を得ることができる。特に小径サイズのものではガスケット側厚を加工性の問題から、薄くすることが難しいため、ガスケットの立ち上がり部は径方向に対して相対的に大きくなる。このため、小径サイズになればなるほど、図1に示す本発明の偏平形電池は、図3に示す従来の偏平形電池と比べて、保存特性に関してより有利となる。   Furthermore, since the rising part of the gasket 13 is provided discontinuously on the circumference, the battery internal volume can be increased. By filling the increased gap with the electrolytic solution, the amount of the electrolytic solution with respect to the positive electrode capacity can be increased as compared with the conventional flat battery shown in FIG. As a method of increasing the amount of the electrolyte solution with respect to the positive electrode capacity, there is a reduction in the positive electrode capacity, but in this case, it is disadvantageous in that the battery capacity is reduced. In the flat battery of the present invention, battery characteristic deterioration due to depletion of the electrolyte during long-term storage or high-temperature storage can be suppressed without causing a decrease in battery capacity. Therefore, a flat battery having a high capacity and excellent long-term storage can be obtained. In particular, in the case of a small-diameter size, it is difficult to reduce the thickness on the gasket side due to the problem of workability, so that the rising portion of the gasket is relatively large with respect to the radial direction. For this reason, the smaller the size, the more the flat battery of the present invention shown in FIG. 1 is more advantageous in terms of storage characteristics than the conventional flat battery shown in FIG.

また、ガスケット13の立ち上がり部が少なくとも2箇所設けられ、ガスケット13の立ち上がり部の先端部最内径の円弧の弦の長さが、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離の0.1倍以上であることが好ましい。この距離が0.1倍未満の場合、セパレータ14を固定するガスケット13の立ち上がり部分が少なくなりすぎるため、セパレータ14が部分的に平板状に戻ろう
とする。このためセパレータ14をカップ状に安定に固定することが難しくなる。これにより、正極16の側から見て、封口板11のアルミニウム面が部分的にセパレータ14で覆われず、アルニウム面が部分的に露出した状態となる。このため、電池の放電に伴う正極16の膨張が起こる場合、正極16とアルミニウム面が接触し、内部短絡を引き起こす危険性がある。
Further, at least two rising portions of the gasket 13 are provided, and the length of the chord of the arc at the innermost diameter of the leading end of the rising portion of the gasket 13 is close to the end of the arc at the innermost diameter of the leading end of the rising portion. It is preferable that it is 0.1 times or more of the distance of the end of the arc of the innermost diameter of the tip. When this distance is less than 0.1 times, the rising portion of the gasket 13 for fixing the separator 14 becomes too small, and the separator 14 tries to partially return to a flat plate shape. For this reason, it becomes difficult to fix the separator 14 in a cup shape stably. Thereby, when viewed from the positive electrode 16 side, the aluminum surface of the sealing plate 11 is not partially covered with the separator 14, and the aluminum surface is partially exposed. For this reason, when the positive electrode 16 expands due to the battery discharge, the positive electrode 16 and the aluminum surface come into contact with each other, and there is a risk of causing an internal short circuit.

それに対して、ガスケット13の立ち上がり部の先端部最内径の円弧の弦の長さが、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離の0.5倍以上である場合、セパレータ14をカップ状により安定に固定することが出来る。このため、電池の放電に伴う正極16の膨張が起こる場合においても、正極16と、アルミニウム面が接触することがない。   On the other hand, the length of the chord of the arc of the innermost diameter of the tip of the rising portion of the gasket 13 is the end of the arc of the innermost arc of the tip of the rising portion adjacent to the end of the arc of the innermost diameter of the tip of the rising portion. When the distance is 0.5 times or more, the separator 14 can be stably fixed in a cup shape. For this reason, even when the positive electrode 16 expands due to battery discharge, the positive electrode 16 and the aluminum surface do not come into contact with each other.

一方、ガスケット13の立ち上がり部の先端部最内径の円弧の弦の長さが、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離の2.0倍より大きくなる場合、電池内容積の大幅な増大が図れない、このため正極ペレットに対する電解液量を多くすることが出来ず、高温保存における電解液の枯渇に起因する特性劣化を十分に防ぐことが出来ない。   On the other hand, the length of the chord length of the arc of the innermost inner diameter of the tip of the rising portion of the gasket 13 is the distance between the end of the innermost arc of the uppermost inner diameter of the tip of the rising portion If it is larger than 2.0 times, the battery internal volume cannot be increased significantly. Therefore, the amount of the electrolyte with respect to the positive electrode pellet cannot be increased, and the characteristic deterioration caused by the depletion of the electrolyte during high-temperature storage can be prevented. It cannot be prevented sufficiently.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
図1は本発明の偏平形電池の断面図である。
(Example 1)
FIG. 1 is a cross-sectional view of a flat battery of the present invention.

実施例1として、図1に示す直径4.8mm、厚さ1.4mmの偏平形電池を以下の条件で作製した。封口板11は、負極端子を兼ねており、耐食性に優れたステンレス鋼(SUS304、厚さ0.10mm)とリチウムを吸蔵・放出することができるアルミニウム合金(厚さ0.10mm)とのクラッド材からなる。正極ケース12は、正極端子を兼ねており、耐食性に優れたステンレス鋼(SUS444、 厚さ0.10mm)からなる。正極16とリチウム金属15との間に配されるセパレータ14には、厚み0.10mmのポリプロピレンを使用した。ガスケット13は、封口板11と正極ケース12とを絶縁するとともに、物理的に発電要素を電池容器内に封止しており、ポリプロピレンを使用している。ガスケット13の平面図および断面図を図2(a)、(b)に示す。ガスケット13は側厚、底厚ともに0.25mmであり、ガスケットの立ち上がり部がないガスケット底部の最内径が3.0mmである。また、ガスケットの立ち上がり部は厚み0.20mmで高さ0.50mmのものが3箇所あり、ガスケットの立ち上がり部の先端部最内径の円弧の弦の長さaは1.2mm、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離bは1.2mmで弦の長さaは距離bの1.0倍である。このガスケット13の立ち上がり部と封口板11とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が収納させることにより、その形状をカップ状にさせている。このガスケット13と封口板11及び正極ケース12とガスケット13との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラントとした。   As Example 1, a flat battery having a diameter of 4.8 mm and a thickness of 1.4 mm shown in FIG. 1 was produced under the following conditions. The sealing plate 11 also serves as a negative electrode terminal, and is a clad material of stainless steel (SUS304, thickness 0.10 mm) having excellent corrosion resistance and an aluminum alloy (thickness 0.10 mm) capable of inserting and extracting lithium. Consists of. The positive electrode case 12 also serves as a positive electrode terminal and is made of stainless steel (SUS444, thickness 0.10 mm) having excellent corrosion resistance. For the separator 14 disposed between the positive electrode 16 and the lithium metal 15, polypropylene having a thickness of 0.10 mm was used. The gasket 13 insulates the sealing plate 11 and the positive electrode case 12 and physically seals the power generation element in the battery container, and uses polypropylene. A plan view and a cross-sectional view of the gasket 13 are shown in FIGS. The gasket 13 has a side thickness and a bottom thickness of 0.25 mm, and the innermost diameter of the gasket bottom portion without the rising portion of the gasket is 3.0 mm. The gasket has three rising portions with a thickness of 0.20 mm and a height of 0.50 mm. The length a of the chord of the innermost arc of the leading end of the gasket is 1.2 mm, and the leading end of the rising portion. The distance b between the end of the innermost arc of the rising portion adjacent to the end of the innermost arc is 1.2 mm and the length a of the string is 1.0 times the distance b. The peripheral portion of the separator 14 is accommodated in the separator accommodating portion formed by the rising portion of the gasket 13 and the sealing plate 11 so that the shape of the separator 14 is cup-shaped. A solution obtained by diluting butyl rubber with toluene was applied between the gasket 13 and the sealing plate 11 and the positive electrode case 12 and the gasket 13, and the toluene was evaporated to obtain a sealant made of a butyl rubber film.

正極16は、水酸化二オブを1000℃で焼成して得られた単斜晶の五酸化二オブ(BET比表面積1.5m2/g)を活物質に、導電剤としてカーボンブラック及び結着剤としてフッ素樹脂粉末を混合し、ペレット状に成型した後、250°C中で12時間乾燥させ、質量10mg、直径2.3mm、厚さ0.90mmとした。 The positive electrode 16 is composed of monoclinic niobium pentoxide (BET specific surface area 1.5 m 2 / g) obtained by firing niobium hydroxide at 1000 ° C. as an active material, carbon black and binder as a conductive agent. Fluororesin powder was mixed as an agent, molded into a pellet, and then dried at 250 ° C. for 12 hours to obtain a mass of 10 mg, a diameter of 2.3 mm, and a thickness of 0.90 mm.

一方、負極は封口板11の内側に存在するアルミニウム合金表面にリチウム金属15(
厚さ0.15mm)を圧着し、電池組み立て時に、電解液を注入することによりリチウム金属15とアルミニウムがショートした状態になり、電気化学的にリチウム金属15がアルミニウム金属中に吸蔵されることにより得られる。さらに電解液には、ポリプレンカーボネートと1,2−ジメトキシエタンとの等体積混合溶媒にビストリフルオロメタンスルホンイミドリチウム LiN(CF3SO22を1モル/リットルの割合で溶解したものを用い、セパレータ14、リチウム金属15、正極16および電解液の体積の総和が、封口板11、正極ケース12、ガスケット13により形成される電池内空間体積に対して95%になるようにした。
On the other hand, the negative electrode has lithium metal 15 (on the surface of the aluminum alloy existing inside the sealing plate 11).
When the battery is assembled, by injecting an electrolyte, the lithium metal 15 and aluminum are short-circuited, and the lithium metal 15 is electrochemically occluded in the aluminum metal. can get. Further, as the electrolytic solution, a solution obtained by dissolving bistrifluoromethanesulfonimide lithium LiN (CF 3 SO 2 ) 2 at a rate of 1 mol / liter in an equal volume mixed solvent of polypropylene carbonate and 1,2-dimethoxyethane is used. The total volume of the separator 14, the lithium metal 15, the positive electrode 16, and the electrolyte solution was set to 95% with respect to the space volume in the battery formed by the sealing plate 11, the positive electrode case 12, and the gasket 13.

(比較例1)
比較例1として、図3に示す偏平形電池を作製した。ガスケット33には、ポリプロピレンを使用し、ガスケットの立ち上がり部は厚み0.20mmで高さ0.50mmであり、ガスケットの立ち上がり部が図4に示すように円周上に連続に設けられ、立ち上がり部と封口板とで形成されてなるセパレータ収納部に、セパレータの周縁部を収納させることによりセパレータをカップ状に形成させている。他の構成は、実施例1と同様にセパレータ14、リチウム金属15、正極16および電解液の体積の総和が、封口板11、正極ケース12、ガスケット13により形成される電池内空間体積に対して95%になるようにした偏平形電池である。
(Comparative Example 1)
As Comparative Example 1, a flat battery shown in FIG. Polypropylene is used for the gasket 33, the rising part of the gasket is 0.20 mm in thickness and 0.50 mm in height, and the rising part of the gasket is continuously provided on the circumference as shown in FIG. The separator is formed in a cup shape by storing the peripheral edge of the separator in the separator storage portion formed by the sealing plate. In the other configuration, the total volume of the separator 14, the lithium metal 15, the positive electrode 16, and the electrolytic solution is the same as that of the first embodiment with respect to the internal volume of the battery formed by the sealing plate 11, the positive electrode case 12, and the gasket 13. This is a flat type battery that is 95%.

(比較例2)
比較例2として、図5に示す偏平形電池を作製した。ガスケット53には、ポリプロピレンを使用し、ガスケットの立ち上がり部は図6に示すように設けられていない。セパレータはカップ状に形成されているものの、セパレータの周縁部は収納固定されていない。他の構成は、実施例1と同様にセパレータ14、リチウム金属15、正極16および電解液の体積の総和が、封口板11、正極ケース12、ガスケット13により形成される電池内空間体積に対して95%になるようにした偏平形電池である。
(Comparative Example 2)
As Comparative Example 2, a flat battery shown in FIG. Polypropylene is used for the gasket 53, and the rising portion of the gasket is not provided as shown in FIG. Although the separator is formed in a cup shape, the peripheral edge of the separator is not housed and fixed. In the other configuration, the total volume of the separator 14, the lithium metal 15, the positive electrode 16, and the electrolytic solution is the same as that of the first embodiment with respect to the internal volume of the battery formed by the sealing plate 11, the positive electrode case 12, and the gasket 13. This is a flat type battery that is 95%.

実施例1および比較例1〜比較例2の電池を各100個ずつ作製し、温度20℃で、印加電圧2.0V、充電保護抵抗10kΩ、充電時間50時間の定電圧充電と、温度20℃で、100kΩの定抵抗を接続させ、電池電圧が1.0Vに達するまで行う放電とを繰り返す充放電サイクルを10サイクル行ない、10サイクル後の内部短絡を起こした電池の割合の確認を行った。その結果を表1に示す。   100 batteries of Example 1 and Comparative Examples 1 and 2 were prepared, respectively, and at a temperature of 20 ° C., an applied voltage of 2.0 V, a charge protection resistance of 10 kΩ, a constant voltage charge of a charging time of 50 hours, and a temperature of 20 ° C. Then, a constant resistance of 100 kΩ was connected, and 10 charging / discharging cycles were repeatedly repeated until the battery voltage reached 1.0 V, and the proportion of batteries that caused an internal short circuit after 10 cycles was confirmed. The results are shown in Table 1.

Figure 2008159411
実施例1、および比較例1の電池では、ガスケットの立ち上がり部と封口板とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が収納させることにより、セパレータをカップ状により安定に固定することが出来る。このため、正極側から見て、封口板11のアルミニウム面がセパレータ14で覆われているため、アルニウム面が露出しない状態が作り出せ、電池の充放電に伴う正極の膨張が起こる場合においても、正極と、アルミニウム面が接触することがない。一方、比較例2の電池ではセパレータをカップ状に安定に固定することが困難となるため、正極側から見て、封口板のアルミニウム面が部分的
にセパレータで覆われず、アルニウム面が部分的に露出した状態となる。このため、電池の放電に伴う正極16の膨張が起こる場合、正極16とアルミニウム面が接触し、内部短絡を引き起こしたものと考えられる。
Figure 2008159411
In the batteries of Example 1 and Comparative Example 1, the separator is stably fixed in a cup shape by allowing the peripheral portion of the separator 14 to be accommodated in the separator accommodating portion formed by the rising portion of the gasket and the sealing plate. I can do it. For this reason, since the aluminum surface of the sealing plate 11 is covered with the separator 14 when viewed from the positive electrode side, the state in which the aluminum surface is not exposed can be created, and the positive electrode is expanded even when the positive electrode expands due to charging / discharging of the battery. And the aluminum surface does not contact. On the other hand, in the battery of Comparative Example 2, it is difficult to stably fix the separator in a cup shape. Therefore, when viewed from the positive electrode side, the aluminum surface of the sealing plate is not partially covered with the separator, and the aluminum surface is partially Will be exposed. For this reason, when expansion of the positive electrode 16 accompanying discharge of the battery occurs, it is considered that the positive electrode 16 and the aluminum surface contacted each other, thereby causing an internal short circuit.

次に、温度20℃で印加電圧2.0V、充電保護抵抗10kΩ、充電時間50時間の定電圧充電で電池を満充電させた後、温度20℃で100kΩの定抵抗を接続させ、電池電圧が1.0Vに達するまで行う放電を行ない初期容量の確認を各20個について行うとともに、上記条件で満充電にさせた電池を60℃の環境下で200日間保存させ、その後、温度20℃で、100kΩの定抵抗を接続させ、電池電圧が1.0Vに達するまで行う放電を行ない残存容量の確認を各20個について行った。表2にそれぞれの電池の初期容量の平均値と60℃の環境下で200日保存させた電池の残存容量の平均値を示す。   Next, after the battery was fully charged by a constant voltage charge at a temperature of 20 ° C., an applied voltage of 2.0 V, a charge protection resistance of 10 kΩ, and a charge time of 50 hours, a constant resistance of 100 kΩ was connected at a temperature of 20 ° C. The discharge was performed until reaching 1.0 V, and the initial capacity was confirmed for each of 20 pieces, and the battery fully charged under the above conditions was stored in an environment of 60 ° C. for 200 days, and then at a temperature of 20 ° C. A constant resistance of 100 kΩ was connected, discharging was performed until the battery voltage reached 1.0 V, and the remaining capacity was confirmed for each of 20 pieces. Table 2 shows the average value of the initial capacity of each battery and the average value of the remaining capacity of the batteries stored for 200 days in an environment of 60 ° C.

Figure 2008159411
初期容量に関しては、実施例1、比較例1〜比較例2において顕著な差が見られない。これは初期においては正極ペレットに対する電解液量が十分に確保されているためであると考えられる。一方、60℃、200日保存後の残存容量については、比較例1では初期容量に対する残存容量比率がおよそ60%であるのに対して、実施例1、比較例2の初期容量に対する残存容量比率はおよそ85%程度であり、比較例1と比べて約25%の向上が見られる。
Figure 2008159411
Regarding the initial capacity, there is no significant difference between Example 1 and Comparative Examples 1 and 2. This is considered to be because the amount of the electrolytic solution with respect to the positive electrode pellet is sufficiently secured in the initial stage. On the other hand, with respect to the remaining capacity after storage at 60 ° C. for 200 days, the ratio of the remaining capacity to the initial capacity in Comparative Example 1 is approximately 60%, whereas the ratio of the remaining capacity to the initial capacity in Example 1 and Comparative Example 2 is approximately 60%. Is about 85%, which is an improvement of about 25% compared to Comparative Example 1.

実施例1の電池はガスケットの立ち上がり部が円周上に非連続に設けられていることで電池内容積の増大が図られ、比較例2の電池では立ち上がり部が設けられていないことで電池内容積が増大している。増大した空隙を電解液で満たしているため、比較例1の電池と比べて、正極ペレットに対する電解液量を多くすることが出来る。このため、高温保存における電解液の枯渇を招き難い。これにより、高温保存性能が向上したものと考えられる。   In the battery of Example 1, the rising portion of the gasket is discontinuously provided on the circumference, so that the internal volume of the battery is increased. In the battery of Comparative Example 2, the rising portion is not provided. The product is increasing. Since the increased voids are filled with the electrolytic solution, the amount of the electrolytic solution with respect to the positive electrode pellet can be increased as compared with the battery of Comparative Example 1. For this reason, it is difficult to cause depletion of the electrolyte during high-temperature storage. Thereby, it is considered that the high-temperature storage performance is improved.

なお本実施例では、セパレータ材料としてポリプロピレンを用いたが、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、パーフルオロアルコギン、ガラス繊維等を用いてもよい。また、ガスケット材料として、ポリプロピレン以外にポリフェニレンサルファイド、ポリエーテルエーテルケトン、パーフルオロアルコギンなどについても適用可能である。   In this embodiment, polypropylene is used as the separator material, but polyphenylene sulfide, polyether ether ketone, perfluoroalcogin, glass fiber, or the like may be used. Further, as a gasket material, polyphenylene sulfide, polyether ether ketone, perfluoroalcogin and the like can be applied in addition to polypropylene.

さらに本実施例では封口板としてSUS304、正極ケースとしてSUS444を用いたがSUS316、SUS430等のステンレス鋼を用いても同様の効果が得られる。   Further, in this embodiment, SUS304 is used as the sealing plate and SUS444 is used as the positive electrode case, but the same effect can be obtained by using stainless steel such as SUS316 and SUS430.

また本発明は、正極活物質や電解液の種類に限定されるものではない。   Moreover, this invention is not limited to the kind of positive electrode active material or electrolyte solution.

次にガスケットの立ち上がり部の先端部最内径の円弧の弦の長さと立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離を変えたガスケットを用いて詳細な検討を行った。   Next, the length of the chord of the arc of the innermost arc of the leading end of the gasket and the distance between the end of the arc of the innermost arc of the leading end of the rising portion and the end of the arc of the innermost arc of the leading end of the rising portion were changed. Detailed examination was performed using a gasket.

(実施例2)
ガスケット13に、ガスケットの立ち上がり部の先端部最内径の円弧の弦の長さが0.197mm、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離が1.97mmで弦の長さaは距離bの0.1倍としたものを用いた以外は実施例1の電池と同様の実施例2の電池を作製した。
(Example 2)
The length of the arc of the innermost arc of the leading end of the gasket at the rising end of the gasket is 0.197 mm, and the innermost arc of the leading end of the rising portion adjacent to the end of the innermost arc of the rising end of the rising A battery of Example 2 similar to the battery of Example 1 was prepared, except that the end distance was 1.97 mm and the string length a was 0.1 times the distance b.

(実施例3)
ガスケット13に、ガスケットの立ち上がり部の先端部最内径の円弧の弦の長さが0.785mm、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離が1.57mmで弦の長さaは距離bの0.5倍としたものを用いた以外は実施例1の電池と同様の実施例3の電池を作製した。
(Example 3)
The length of the chord of the arc at the tip innermost diameter of the leading end of the gasket is 0.785 mm on the gasket 13, A battery of Example 3 similar to the battery of Example 1 was prepared, except that the end distance was 1.57 mm and the string length a was 0.5 times the distance b.

(実施例4)
ガスケット13に、ガスケットの立ち上がり部の先端部最内径の円弧の弦の長さが1.57mm、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離が0.785mmで弦の長さaは距離bの2.0倍としたものを用いた以外は実施例1の電池と同様の実施例4の電池を作製した。
Example 4
The length of the arc of the innermost arc of the leading end of the gasket at the rising end of the gasket is 1.57 mm, and the arc of the innermost arc of the leading end of the rising portion adjacent to the end of the innermost arc of the rising end A battery of Example 4 similar to the battery of Example 1 was produced, except that the end distance was 0.785 mm and the string length a was 2.0 times the distance b.

(実施例5)
ガスケット13に、ガスケットの立ち上がり部の先端部最内径の円弧の弦の長さが1.594mm、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部の距離は0.759mmで弦の長さaは距離bの2.1倍としたものを用いた以外は実施例1の電池と同様の実施例5の電池を作製した。
(Example 5)
The length of the arc of the innermost arc of the leading end of the gasket at the rising portion of the gasket is 1.594 mm, and the innermost arc of the leading end of the rising portion adjacent to the end of the innermost arc of the rising end of the rising portion A battery of Example 5 similar to the battery of Example 1 was produced, except that the end distance was 0.759 mm and the string length a was 2.1 times the distance b.

実施例2〜実施例5の電池を各100個ずつ作製し、温度20℃で、印加電圧2.0V、充電保護抵抗10kΩ、充電時間50時間の定電圧充電と、温度20℃で、100kΩの定抵抗を接続させ、電池電圧が1.0Vに達するまで行う放電とを繰り返す充放電サイクルを10サイクル行ない、10サイクル後の内部短絡を起こした電池の確認を行った。表3に充放電サイクルを10サイクル行った後に内部短絡を起こした電池の割合を示す。   100 batteries of each of Example 2 to Example 5 were manufactured, applied at a temperature of 20 ° C., an applied voltage of 2.0 V, a charge protection resistance of 10 kΩ, a constant voltage charge of a charging time of 50 hours, and a temperature of 20 ° C. of 100 kΩ. 10 cycles of charging / discharging cycles in which a constant resistance was connected and discharging was performed until the battery voltage reached 1.0 V were performed, and the battery that caused an internal short circuit after 10 cycles was confirmed. Table 3 shows the percentage of batteries that caused an internal short circuit after 10 charge / discharge cycles.

Figure 2008159411
実施例2〜実施例5の電池では、ガスケットの立ち上がり部と封口板とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が収納させることにより、セパレータをカップ状により安定に固定することが出来る。このため、正極側から見て、封口板11のアルミニウム面がセパレータ14で覆われているため、アルニウム面が露出しない状態が作り出せ、電池の充放電に伴う正極の膨張が起こる場合においても、正極と、アルミニウム面が接触することがない。
Figure 2008159411
In the batteries of Examples 2 to 5, the separator is stably fixed in a cup shape by allowing the peripheral part of the separator 14 to be accommodated in the separator accommodating part formed by the rising part of the gasket and the sealing plate. I can do it. For this reason, since the aluminum surface of the sealing plate 11 is covered with the separator 14 when viewed from the positive electrode side, the state in which the aluminum surface is not exposed can be created, and the positive electrode is expanded even when the positive electrode expands due to charging / discharging of the battery. And the aluminum surface does not contact.

次に、温度20℃で印加電圧2.0V、充電保護抵抗10kΩ、充電時間50時間の定電圧充電で電池を満充電させた後、温度20℃で、100kΩの定抵抗を接続させ、電池
電圧が1.0Vに達するまで行う放電を行ない初期容量の確認を各20個について行うとともに、上記条件で満充電にさせた電池を60℃の環境下で200日間保存させ、その後、温度20℃で、100kΩの定抵抗を接続させ、電池電圧が1.0Vに達するまで行う放電を行ない残存容量の確認を各20個について行った。表2にそれぞれの電池の初期容量の平均値と60℃の環境下で200日保存させた電池の残存容量の平均値を示す。
Next, after the battery was fully charged by constant voltage charging at an applied voltage of 2.0 V at a temperature of 20 ° C., a charging protection resistance of 10 kΩ and a charging time of 50 hours, a constant resistance of 100 kΩ was connected at a temperature of 20 ° C. The battery is discharged until the voltage reaches 1.0 V and the initial capacity is confirmed for each of the 20 batteries, and the battery fully charged under the above conditions is stored for 200 days in an environment of 60 ° C., and then at a temperature of 20 ° C. Then, a constant resistance of 100 kΩ was connected, discharging was performed until the battery voltage reached 1.0 V, and the remaining capacity was confirmed for each of the 20 pieces. Table 2 shows the average value of the initial capacity of each battery and the average value of the remaining capacity of the batteries stored for 200 days in an environment of 60 ° C.

Figure 2008159411
初期容量に関しては、実施例2〜実施例5において顕著な差が見られない、これは初期においては正極ペレットに対する電解液量が十分に確保されているためであると考えられる、一方、60℃、200日後の残存容量については、実施例2では初期容量に対する残存容量比率がおよそ87%、実施例3ではおよそ86%、実施例4ではおよそ83%であるのに対して、実施例5はおよそ75%程度であり、実施例2〜比較例4と比べて約10%の低下が見られる。実施例5の電池はガスケットの立ち上がり部が円周上に非連続に設けられていることで電池内容積の増大が図られているものの、実施例2〜実施例4の電池と比べて増大量が小さいため、比較的高温保存における電解液の枯渇を招き易い。これらの結果よりガスケットの立ち上がり部の先端部最内径の円弧の弦の長さが、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の端部の距離の0.1倍以上、2.0倍以下であることが好ましい。
Figure 2008159411
Regarding the initial capacity, there is no significant difference in Examples 2 to 5, which is considered to be because the amount of the electrolytic solution with respect to the positive electrode pellet is sufficiently secured in the initial stage, while 60 ° C. As for the remaining capacity after 200 days, in Example 2, the ratio of the remaining capacity to the initial capacity is approximately 87%, in Example 3, it is approximately 86%, and in Example 4, it is approximately 83%. It is about 75%, and a decrease of about 10% is seen as compared with Example 2 to Comparative Example 4. In the battery of Example 5, although the rise of the gasket is discontinuously provided on the circumference to increase the battery internal volume, it is increased in comparison with the batteries of Examples 2 to 4. Therefore, the electrolyte solution tends to be depleted during storage at a relatively high temperature. From these results, the length of the arc chord of the innermost arc of the rising end of the gasket is the distance between the end of the innermost arc of the rising end and the innermost end of the rising end adjacent to the end of the innermost arc of the rising end. It is preferably 0.1 times or more and 2.0 times or less.

なお本実施例では、セパレータ材料としてポリプロピレンを用いたが、ポリフェニレンサルファイド、ポリエーテルエーテルケトン、パーフルオロアルコギン、ガラス繊維等を用いてもよい。また、ガスケット材料として、ポリプロピレン以外にポリフェニレンサルファイド、ポリエーテルエーテルケトン、パーフルオロアルコギンなどについても適用可能である。   In this embodiment, polypropylene is used as the separator material, but polyphenylene sulfide, polyether ether ketone, perfluoroalcogin, glass fiber, or the like may be used. Further, as a gasket material, polyphenylene sulfide, polyether ether ketone, perfluoroalcogin and the like can be applied in addition to polypropylene.

また本発明は、正極活物質や電解液の種類に限定されるものではない。   Moreover, this invention is not limited to the kind of positive electrode active material or electrolyte solution.

本発明は円周上のガスケットの立ち上がり部を非連続にすることで内容積の増大を図り、増大した空隙を電解液で満たすことで、長期保存による電解液の枯渇による著しい容量劣化を防ぐとともに、セパレータをカップ状に安定に固定させることで内部短絡を防止した、高温保存性および内部短絡の防止性に優れた偏平形電池を提供することができる。   The present invention aims to increase the internal volume by making the rising part of the gasket on the circumference discontinuous, and to fill the increased gap with the electrolyte, thereby preventing significant capacity deterioration due to depletion of the electrolyte due to long-term storage. Further, it is possible to provide a flat battery excellent in high temperature storage stability and prevention of internal short circuit, in which an internal short circuit is prevented by stably fixing the separator in a cup shape.

本発明の偏平形電池の断面図Sectional view of the flat battery of the present invention (a)本発明のガスケットの平面図、(b)同断面図(A) Plan view of the gasket of the present invention, (b) Sectional view 従来の偏平形電池の断面図Cross-sectional view of a conventional flat battery (a)従来のガスケットの平面図、(b)同断面図(A) Plan view of conventional gasket, (b) Cross section 立ち上がり部のないガスケットを用いた偏平形電池の断面図Cross-sectional view of a flat battery using a gasket with no rising part (a)立ち上がり部のないガスケットの平面図、(b)同断面図(A) Plan view of gasket without rising part, (b) Cross section

符号の説明Explanation of symbols

11 封口板
12 正極ケース
13、33、53 ガスケット
14 セパレータ
15 リチウム金属
16 正極
11 Sealing plate 12 Positive electrode case 13, 33, 53 Gasket 14 Separator 15 Lithium metal 16 Positive electrode

Claims (2)

正極、負極、電解液、セパレータを、ガスケットを介し負極端子を兼ねる封口板と正極端子を兼ねる正極ケースとにより密封する偏平形電池であって、前記ガスケットの立ち上がり部が円周上に非連続に設けられ、前記立ち上がり部と前記封口板とで形成されてなるセパレータ収納部に前記セパレータの周縁部を収納させ、前記セパレータをカップ状に固定させることを特徴とする偏平形電池。   A flat battery in which a positive electrode, a negative electrode, an electrolyte, and a separator are sealed by a sealing plate that also serves as a negative electrode terminal and a positive electrode case that also serves as a positive electrode terminal via a gasket, and the rising portion of the gasket is discontinuous on the circumference. A flat battery, wherein the separator is formed by the rising portion and the sealing plate, and the peripheral portion of the separator is housed in the separator housing portion and the separator is fixed in a cup shape. 前記立ち上がり部が少なくとも2箇所設けられ、前記立ち上がり部の先端部最内径の円弧の弦の長さが、立ち上がり部の先端部最内径の円弧の端部と近接する立ち上がり部の先端部最内径の円弧の端部との距離の0.1倍以上2.0倍以下である請求項1記載の偏平形電池。   At least two rising portions are provided, and the length of the chord of the arc of the innermost inner diameter of the upper end of the rising portion is the innermost diameter of the distal end of the rising portion adjacent to the end of the arc of the innermost inner diameter of the upper end of the rising portion. The flat battery according to claim 1, wherein the distance is 0.1 to 2.0 times the distance from the end of the arc.
JP2006347137A 2006-12-25 2006-12-25 Flat battery Pending JP2008159411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347137A JP2008159411A (en) 2006-12-25 2006-12-25 Flat battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347137A JP2008159411A (en) 2006-12-25 2006-12-25 Flat battery

Publications (1)

Publication Number Publication Date
JP2008159411A true JP2008159411A (en) 2008-07-10

Family

ID=39660087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347137A Pending JP2008159411A (en) 2006-12-25 2006-12-25 Flat battery

Country Status (1)

Country Link
JP (1) JP2008159411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195053A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2017004946A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and manufacturing method of the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143671A (en) * 1999-11-16 2001-05-25 Sony Corp Gasket and flat battery using it
JP2007273110A (en) * 2006-03-30 2007-10-18 Hitachi Maxell Ltd Flat battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001143671A (en) * 1999-11-16 2001-05-25 Sony Corp Gasket and flat battery using it
JP2007273110A (en) * 2006-03-30 2007-10-18 Hitachi Maxell Ltd Flat battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014195053A (en) * 2013-02-28 2014-10-09 Seiko Instruments Inc Electrochemical cell and method of manufacturing the same
JP2017004946A (en) * 2015-06-11 2017-01-05 三洋化成工業株式会社 Lithium ion battery and manufacturing method of the same

Similar Documents

Publication Publication Date Title
CN107251304B (en) Nonaqueous electrolyte secondary battery
TWI673900B (en) Nonaqueous electrolyte secondary battery
JP6425225B2 (en) Non-aqueous electrolyte secondary battery
CN112703630B (en) Cylindrical battery cell with overmolded glass feedthrough
TWI673901B (en) Nonaqueous electrolyte secondary battery
JP2006080066A (en) Lithium-ion secondary battery
JP5279388B2 (en) Center pin for secondary battery and secondary battery
US8277978B2 (en) Cylinder type zinc-air cell and method for producing the same
JP6754623B2 (en) Non-aqueous electrolyte secondary battery
JP4361445B2 (en) Lithium secondary battery
JP2008159411A (en) Flat battery
JP6587929B2 (en) Nonaqueous electrolyte secondary battery
JP2008041490A (en) Alkaline battery
JP2009272207A (en) Sealed battery
JP2010186667A (en) Coin cell
JP6648202B2 (en) Non-aqueous electrolyte secondary battery
WO2022181207A1 (en) Non-aqueous electrolyte secondary battery
JP2003249201A (en) Flat-type nonaqueous electrolyte secondary battery
TW202226666A (en) Gasket for electrochemical cell, and electrochemical cell
JP2005302394A (en) Flat nonaqueous electrolyte battery
JP2006059632A (en) Flat-shaped organic electrolyte battery
CN114388946A (en) Electrochemical cell
JP2006092761A (en) Nonaqueous electrolyte secondary battery
JP2007026689A (en) Flat cell
JP2004311167A (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130219