JP2007026689A - Flat cell - Google Patents

Flat cell Download PDF

Info

Publication number
JP2007026689A
JP2007026689A JP2005202739A JP2005202739A JP2007026689A JP 2007026689 A JP2007026689 A JP 2007026689A JP 2005202739 A JP2005202739 A JP 2005202739A JP 2005202739 A JP2005202739 A JP 2005202739A JP 2007026689 A JP2007026689 A JP 2007026689A
Authority
JP
Japan
Prior art keywords
separator
gasket
positive electrode
sealing plate
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005202739A
Other languages
Japanese (ja)
Inventor
Koichi Chikayama
浩一 近山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005202739A priority Critical patent/JP2007026689A/en
Publication of JP2007026689A publication Critical patent/JP2007026689A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat cell causing no internal short-circuit due to swelling of a positive electrode in discharge without reducing positive electrode capacity by arranging a step part on a sealing board opposite face in a gasket bottom part and housing a separator in a space formed of the gasket step part and the sealing board while bringing the circumference part of the separator into contact with the sealing board opposite face of the gasket step part in a flat cell using a hat-shaped sealing board. <P>SOLUTION: A step part is arranged on the sealing board opposite face of the gasket bottom part, and a space formed on the gasket step part and the sealing board is used as a separator housing part. When the separator is housed in the separator housing part while the circumference part of the separator is brought into contact with the sealing board opposite face in the gasket step part, the positive electrode and the sealing board are separated from each other by the separator. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、正極ケース、封口板およびガスケットにより発電要素を密閉した偏平形電池の、特にそのガスケットの形状に関する。   The present invention relates to a flat battery in which a power generation element is sealed with a positive electrode case, a sealing plate and a gasket, and more particularly to the shape of the gasket.

近年、アルカリ金属またはその合金に非水電解液を組み合わせた発電要素を、偏平形の電池ケースに収容した偏平形非水電解液電池(以下、単に「偏平形電池」という。)は、優れた信頼性を有すると共に高いエネルギー密度を有することから、各種小型電子機器の駆動用電源、及びメモリーバックアップ用電源として、好適に用いられている。これまで、この種の電池は充電できない一次電池が主流であったが、近年、充電可能な二次電池も各種開発され、メモリーや時計機能等のバックアップ用電源としてその需要が増大している。最近では、携帯電話やデジタルスチールカメラ等の電子機器への需要拡大が著しいが、これら電子機器の小形・薄形化に伴い、機器内部に配される偏平形電池に対しても小形・薄形化が要請されている。   In recent years, a flat nonaqueous electrolyte battery (hereinafter simply referred to as a “flat battery”) in which a power generation element in which a nonaqueous electrolyte is combined with an alkali metal or an alloy thereof is housed in a flat battery case is excellent. Since it has reliability and high energy density, it is suitably used as a driving power source for various small electronic devices and a memory backup power source. Up to now, this type of battery has been mainly a primary battery that cannot be recharged. However, in recent years, various rechargeable secondary batteries have been developed, and the demand is increasing as a backup power source for memory and clock functions. Recently, the demand for electronic devices such as mobile phones and digital still cameras has been increasing rapidly. However, along with the downsizing and thinning of these electronic devices, the flat and small batteries placed inside the devices are also small and thin. Is required.

薄形化を可能にする構造として、特許文献1に示されるように、正極ケースの外面側に突出した平面状中央部と前記中央部とほぼ平行に伸びる平面状周縁部とからなる封口板(ハット状封口板)と正極ケースを用い、セパレータ周縁部をガスケットとハット状封口板の間に配し、ガスケットを介して発電要素を密封する偏平形電池が提案されている。しかしながら、図4に示されるこの構造の電池では、封口時、セパレータ44が引っ張られることにより、主にペレット状の正極16の角に接触する部分にテンションがかかってセパレータ44の切れや裂けが発生し、これにより内部短絡を起こすという課題があった。   As a structure enabling thinning, as shown in Patent Document 1, a sealing plate comprising a planar central portion protruding to the outer surface side of the positive electrode case and a planar peripheral portion extending substantially parallel to the central portion ( A flat battery has been proposed in which a hat-shaped sealing plate) and a positive electrode case are used, the peripheral edge of the separator is disposed between the gasket and the hat-shaped sealing plate, and the power generation element is sealed via the gasket. However, in the battery of this structure shown in FIG. 4, when the separator 44 is pulled at the time of sealing, tension is applied to a portion that mainly contacts the corner of the pellet-like positive electrode 16, and the separator 44 is cut or torn. However, this has caused a problem of causing an internal short circuit.

この課題を解決するものとして、図3に示されるように、平板状のセパレータ34を正極16と負極15の間に配し、ガスケット33を介したハット状封口板11と正極ケース12を用いて発電要素を密封する方法が挙げられる(例えば、特許文献2)。
米国特許第5486431号明細書 再公表00/0335033号公報
In order to solve this problem, as shown in FIG. 3, a flat separator 34 is arranged between the positive electrode 16 and the negative electrode 15, and the hat-shaped sealing plate 11 and the positive electrode case 12 through the gasket 33 are used. There is a method of sealing the power generation element (for example, Patent Document 2).
US Pat. No. 5,486,431 Re-publication 00/0335033

しかしながら、図3の電池構造では、正極16の側から見て封口板11の内面がセパレータ34で完全には覆われていないため、電池を放電すると正極16が膨張し、封口板11の内面と接触し、内部短絡を引き起こす可能性があった。そのため、放電で正極16が膨張しても内部短絡が起きない程度に正極16を小さく成型する必要があり、高容量化出来ないという課題があった。   However, in the battery structure of FIG. 3, the inner surface of the sealing plate 11 is not completely covered with the separator 34 when viewed from the positive electrode 16 side. Therefore, when the battery is discharged, the positive electrode 16 expands and the inner surface of the sealing plate 11 Contact could cause an internal short circuit. Therefore, it is necessary to mold the positive electrode 16 so small that an internal short circuit does not occur even if the positive electrode 16 expands due to discharge, and there is a problem that the capacity cannot be increased.

本発明は、このような課題を解決し、高容量でかつ内部短絡の防止性に優れた偏平形電池を提供することを目的とするものである。   An object of the present invention is to solve such problems and to provide a flat battery having a high capacity and excellent in prevention of internal short circuit.

上記目的を達成するために、本発明の偏平形電池は、正極と、負極と、電解液とと、セパレータを、ガスケットを介してハット状の封口板と正極ケースとにより密封する偏平形電池において、前記ガスケットの封口板対向部に段部を有し、前記段部と前記封口板とで形成されてなるセパレータ収納部に、前記セパレータの周縁部を収納するものである。本発明のガスケットを用いることによって、放電時に正極が膨張してもセパレータによって封口板と隔離されているため、正極と封口板は接触を起こさず、内部短絡を防止することができる。   To achieve the above object, the flat battery of the present invention is a flat battery in which a positive electrode, a negative electrode, an electrolyte, and a separator are sealed with a hat-shaped sealing plate and a positive electrode case via a gasket. The gasket has a stepped portion at the portion facing the sealing plate, and the peripheral portion of the separator is stored in a separator storage portion formed by the stepped portion and the sealing plate. By using the gasket of the present invention, even if the positive electrode expands during discharge, the separator is isolated from the sealing plate by the separator. Therefore, the positive electrode and the sealing plate do not contact each other, and an internal short circuit can be prevented.

本発明により、薄形であっても、高容量かつ、内部短絡を起こすことのない偏平形電池を提供することができる。   According to the present invention, it is possible to provide a flat battery that has a high capacity and does not cause an internal short circuit even if it is thin.

正極と、負極と、電解液と、セパレータとを、ガスケットを介してハット状の封口板と正極ケースとにより密封する偏平形電池であって、前記ガスケットの封口板対向部に段部を有し、前記段部と前記封口板とで形成されてなるセパレータ収納部に、前記セパレータの周縁部が収納されているという構造にすることで、封口時、セパレータが過度に引っ張られることによるセパレータの切れや裂けを防止することができる。さらに前記ガスケット段部の封口板対向面側の端部に凸部を設けた構造にすることで、セパレータの周縁部をガスケット段部の封口板対向面側の端部に設けた凸部と封口板により挟持させ、より安定に固定できる。なお、段部の封口板対向面側の端部に設けられた凸部は連続的に形成されていても、非連続的に形成されていても本発明の効果を奏することができる。   A flat battery in which a positive electrode, a negative electrode, an electrolyte, and a separator are sealed with a hat-shaped sealing plate and a positive electrode case via a gasket, and a step portion is provided at a portion facing the sealing plate of the gasket. The separator housing portion formed by the stepped portion and the sealing plate has a structure in which the peripheral edge portion of the separator is accommodated, so that the separator is cut due to excessive pulling during the sealing. And tearing can be prevented. Further, by providing a structure in which a convex portion is provided at the end portion of the gasket step portion on the side facing the sealing plate, the peripheral portion of the separator is provided with a convex portion and a sealing portion provided at the end portion of the gasket step portion on the side facing the sealing plate It can be clamped by a plate and fixed more stably. In addition, even if the convex part provided in the edge part by the side of the sealing board opposing surface of a step part is formed continuously, the effect of this invention can be show | played.

以下、本発明の好ましい実施形態について、非水電解液二次電池を例として、図面を参照しながら説明する。なお本発明は、二次電池に限定されるものではない。   Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings, taking a non-aqueous electrolyte secondary battery as an example. The present invention is not limited to the secondary battery.

本発明の偏平形電池は、一方の電極端子を兼ねる正極ケース12、他方の電極端子を兼ね、リチウムを吸蔵・放出することができるアルミニウム合金とステンレス鋼とのクラッド材を用いてハット状に一体成型された封口板11、および正極ケース12と封口板11とを絶縁するガスケット13により発電要素を密封してなる。   The flat battery of the present invention is integrally formed in a hat shape using a clad material of an aluminum alloy and stainless steel that can serve as one electrode terminal, and can serve as the other electrode terminal, and can absorb and release lithium. The power generation element is sealed by the molded sealing plate 11 and the gasket 13 that insulates the positive electrode case 12 and the sealing plate 11.

ガスケット13の底部の封口板対向部には段部が設けられており、この段部と封口板11とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が段部の封口板対向面に接した状態で収納されていることに特徴を有する。すなわち、本実施の形態においては、ガスケット13の形状に最大の特徴を有する。本発明におけるガスケット13を前記のような構造にすることにより、封口時、セパレータ14が、過度に引っ張られることによるセパレータ14の切れや裂けを防止することができる。   A stepped portion is provided at the sealing plate facing portion at the bottom of the gasket 13, and a separator housing portion formed by this stepped portion and the sealing plate 11 is provided on the sealing plate facing surface where the peripheral portion of the separator 14 is a stepped portion. It is characterized by being housed in a state of being in contact with. In other words, in the present embodiment, the shape of the gasket 13 has the greatest feature. By making the gasket 13 in the present invention have the above-described structure, it is possible to prevent the separator 14 from being cut or torn due to excessive pulling of the separator 14 during sealing.

さらに、正極16の側から見て、封口板11のアルミニウム面がセパレータ14で覆われているため、アルニウム面が露出しない状態が作り出せる。このため、電池の放電に伴う正極16の膨張が起こる場合においても、正極16と、アルミニウム面が接触することがない。これにより、正極16の周縁部をガスケットの内周側面の近くまで大きくすることができ、正極16の大きさを図3に示す偏平形電池と比べて大きくすることができるため、高容量の電池を得ることができる。特に小径サイズのものではハット状封口板11のつば部が径方向に対して相対的に大きくなり、逆に正極16を収納する部分は相対的に小さくなるため、小径サイズになればなるほど、本発明の偏平形電池では、高容量化をはかることができる。   Furthermore, since the aluminum surface of the sealing plate 11 is covered with the separator 14 when viewed from the positive electrode 16 side, a state where the aluminum surface is not exposed can be created. For this reason, even when the positive electrode 16 expands due to battery discharge, the positive electrode 16 and the aluminum surface do not come into contact with each other. Accordingly, the peripheral edge of the positive electrode 16 can be enlarged to the vicinity of the inner peripheral side surface of the gasket, and the size of the positive electrode 16 can be increased as compared with the flat battery shown in FIG. Can be obtained. In particular, in the case of a small-diameter size, the collar portion of the hat-shaped sealing plate 11 is relatively large in the radial direction, and conversely, the portion that accommodates the positive electrode 16 is relatively small. In the flat battery of the invention, the capacity can be increased.

また、図2に示される偏平形電池では、ガスケット23の底部の封口板対向部に段部が設けられており、この段部と封口板11とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が段部の封口板対向面に接した状態でセパレータ収納部に収納されているとともに、さらに段部の封口板対向面に設けた凸部と封口板11とでセパレータ14が挟持されている。   Further, in the flat battery shown in FIG. 2, a step portion is provided at the sealing plate facing portion at the bottom of the gasket 23, and the separator 14 is formed in the separator storage portion formed by this step portion and the sealing plate 11. Is stored in the separator storage portion in a state in which the peripheral edge portion is in contact with the sealing plate facing surface of the step portion, and the separator 14 is sandwiched between the convex portion provided on the sealing plate facing surface of the step portion and the sealing plate 11. ing.

これにより、封口時、セパレータ14が、過度に引っ張られることによる、セパレータ14の切れや裂けを防止することができ、さらに、正極16の側から見て、封口板11のアルミニウム面がセパレータ14で覆われているため、アルニウム面が露出しない状態が作り出せる。このため、電池の放電に伴う正極の膨張が起こる場合においても、正極16と、アルミニウム面が接触することがない。また、セパレータ14の周縁部は、ガスケット段部の封口板対向面に設けた凸部と封口板11により挟持されているため、より安定に固定できる。   Thereby, at the time of sealing, the separator 14 can be prevented from being cut or torn due to being pulled excessively. Further, when viewed from the positive electrode 16 side, the aluminum surface of the sealing plate 11 is the separator 14. Since it is covered, it is possible to create a state where the aluminum surface is not exposed. For this reason, even when the positive electrode expands due to battery discharge, the positive electrode 16 and the aluminum surface do not come into contact with each other. Moreover, since the peripheral part of the separator 14 is pinched | interposed by the convex part provided in the sealing board opposing surface of the gasket step part, and the sealing board 11, it can fix more stably.

以下、本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described.

(実施例1)
図1は本発明の偏平形電池の断面図である。
Example 1
FIG. 1 is a cross-sectional view of a flat battery of the present invention.

実施例1として、図1に示す直径4.8mm、厚さ0.8mmの偏平形電池を以下の条件で作製した。封口板11は、負極端子を兼ねており、耐食性に優れたステンレス鋼(厚さ0.12mm)とリチウムを吸蔵・放出することができるアルミニウム合金(厚さ0.13mm)とのクラッド材からなる。正極ケース12は、正極端子を兼ねており、耐食性に優れたステンレス鋼(厚さ0.10mm)からなる。正極16とリチウム金属15との間に配されるセパレータ14には、厚み0.10mmのポリフェニレンサルファイドを使用した。ガスケット13は、封口板11と正極ケース12とを絶縁するとともに、物理的に発電要素を電池容器内に封止しており、ポリフェニレンサルファイドを使用し、ガスケット13の底部の最内径は、2.4mmであった。このガスケット13の底部の封口板対向面には段差0.08mmの段部が設けられており、この段部と封口板11とで形成されてなるセパレータ収納部に、セパレータ14の周縁部がガスケット段部の封口板対向面に接した状態で収納されている。このガスケット13と封口板11及び正極ケース12とガスケット13との間にブチルゴムをトルエンで希釈した溶液を塗布し、トルエンを蒸発させることによりブチルゴム膜からなるシーラントとした。   As Example 1, a flat battery having a diameter of 4.8 mm and a thickness of 0.8 mm shown in FIG. 1 was produced under the following conditions. The sealing plate 11 also serves as a negative electrode terminal, and is made of a clad material of stainless steel (thickness 0.12 mm) excellent in corrosion resistance and an aluminum alloy (thickness 0.13 mm) capable of inserting and extracting lithium. . The positive electrode case 12 also serves as a positive electrode terminal and is made of stainless steel (thickness: 0.10 mm) having excellent corrosion resistance. As the separator 14 disposed between the positive electrode 16 and the lithium metal 15, polyphenylene sulfide having a thickness of 0.10 mm was used. The gasket 13 insulates the sealing plate 11 and the positive electrode case 12 and physically seals the power generation element in the battery container. Polyphenylene sulfide is used, and the innermost diameter at the bottom of the gasket 13 is 2. It was 4 mm. A step portion having a step of 0.08 mm is provided on the sealing plate facing surface of the bottom portion of the gasket 13, and the peripheral portion of the separator 14 is formed in the separator housing portion formed by the step portion and the sealing plate 11. It is stored in contact with the sealing plate facing surface of the stepped portion. A solution obtained by diluting butyl rubber with toluene was applied between the gasket 13 and the sealing plate 11 and the positive electrode case 12 and the gasket 13, and the toluene was evaporated to obtain a sealant made of a butyl rubber film.

正極16は、水酸化ニオブを1000℃で焼成して得られた単斜晶の五酸化ニオブ(BET比表面積1.5m2/g)を活物質に、導電剤としてカーボンブラック及び結着剤としてフッ素樹脂粉末を混合し、ペレット状に成型した後、250°C中で12時間乾燥させ、直径2.2mm、厚さ0.25mmとした。 The positive electrode 16 is composed of monoclinic niobium pentoxide (BET specific surface area 1.5 m 2 / g) obtained by firing niobium hydroxide at 1000 ° C. as an active material, carbon black as a conductive agent and binder as a conductive agent. After the fluororesin powder was mixed and molded into a pellet, it was dried at 250 ° C. for 12 hours to obtain a diameter of 2.2 mm and a thickness of 0.25 mm.

一方、負極は封口板11の内側に存在するアルミニウム合金表面にリチウム金属15(厚さ0.10mm)を圧着し、電池組み立て時に、電解液を注入することによりリチウム金属15とアルミニウムがショートした状態になり、電気化学的にリチウム金属15がアルミニウム金属中に吸蔵されることにより得られる。さらに電解液には、ポリプレンカーボネートと1,2−ジメトキシエタンとの等体積混合溶媒にビストリフルオロメタンスルホンイミドリチウム LiN(CF3SO22を1モル/リットルの割合で溶解したものを用いた。 On the other hand, in the negative electrode, lithium metal 15 (thickness: 0.10 mm) is pressure-bonded to the surface of the aluminum alloy existing inside the sealing plate 11, and the lithium metal 15 and aluminum are short-circuited by injecting an electrolyte during battery assembly. Thus, the lithium metal 15 is electrochemically occluded in the aluminum metal. Furthermore, as the electrolyte, a solution in which bistrifluoromethanesulfonimidolithium LiN (CF 3 SO 2 ) 2 is dissolved in an equal volume mixed solvent of polypropylene carbonate and 1,2-dimethoxyethane at a rate of 1 mol / liter is used. It was.

(実施例2)
図2は本実施例における偏平形電池の断面図である。
(Example 2)
FIG. 2 is a cross-sectional view of the flat battery in this example.

ガスケット23には、ポリフェニレンサルファイドを使用し、ガスケット23の底部の最内径は、2.4mmであった。このガスケット23の底部の封口板対向面には段差0.08mmの段部が設けられており、このガスケット段部と封口板11とで形成されてなるセパレータ収納部に、セパレータ14の周縁部が段部の封口板対向面に接した状態で収納されているとともに、段部の封口板対向面に設けた0.10mmの凸部と封口板11とでセパレータ14が挟持されている。他の構成は、実施例1と同様の構成を有する偏平形電池である。   For the gasket 23, polyphenylene sulfide was used, and the innermost inner diameter of the bottom portion of the gasket 23 was 2.4 mm. A stepped portion with a step of 0.08 mm is provided on the sealing plate facing surface at the bottom of the gasket 23, and the peripheral portion of the separator 14 is formed in the separator storage portion formed by the gasket stepped portion and the sealing plate 11. The separator 14 is sandwiched between the sealing plate 11 and the 0.10 mm convex portion provided on the sealing plate facing surface of the step portion while being stored in contact with the sealing plate facing surface of the step portion. The other configuration is a flat battery having the same configuration as that of the first embodiment.

(比較例1)
図4は本比較例における偏平形電池の断面図である。
(Comparative Example 1)
FIG. 4 is a cross-sectional view of the flat battery in this comparative example.

ガスケット33には、ポリフェニレンサルファイドを使用し、ガスケット33の底部の最内径は、2.4mmであった。このガスケット33の底部の封口板対向面には段部が設けられておらず、セパレータ44の周縁部は、ガスケット33と封口板11の間に挟まれている。他の構成は、実施例1と同様の構成を有する偏平形電池である。   For the gasket 33, polyphenylene sulfide was used, and the innermost inner diameter of the bottom of the gasket 33 was 2.4 mm. No step portion is provided on the sealing plate facing surface of the bottom of the gasket 33, and the peripheral edge of the separator 44 is sandwiched between the gasket 33 and the sealing plate 11. The other configuration is a flat battery having the same configuration as that of the first embodiment.

(比較例2)
図3は比較例における偏平形電池の断面図である。
(Comparative Example 2)
FIG. 3 is a cross-sectional view of a flat battery in a comparative example.

ガスケット33には、ポリフェニレンサルファイドを使用し、ガスケット33の底部の最内径は、2.4mmであった。このガスケット33の底部の封口板対向面には段部が設けられておらず、セパレータ34は、平板状で正極16とリチウム金属15(厚さ0.10mm)の間に挟まれている。正極16は直径2.2mm、厚さ0.25mmのものを用いた。他の構成は実施例1と同様の構成を有する偏平形電池である。   For the gasket 33, polyphenylene sulfide was used, and the innermost inner diameter of the bottom of the gasket 33 was 2.4 mm. No step portion is provided on the sealing plate facing surface at the bottom of the gasket 33, and the separator 34 is flat and sandwiched between the positive electrode 16 and the lithium metal 15 (thickness 0.10 mm). A positive electrode 16 having a diameter of 2.2 mm and a thickness of 0.25 mm was used. The other structure is a flat battery having the same structure as that of the first embodiment.

(比較例3)
正極16には直径2.0mm、厚さ0.25mmのものを使用し、他の構成は比較例2と同様の構成を有する偏平形電池本を作製した。
(Comparative Example 3)
A positive battery 16 having a diameter of 2.0 mm and a thickness of 0.25 mm was used, and a flat battery book having the same structure as that of Comparative Example 2 was prepared.

(比較例4)
正極16には直径1.8mm、厚さ0.25mmのものを使用し、他の構成は比較例2と同様の構成を有する偏平形電池を作製した。
(Comparative Example 4)
A positive electrode 16 having a diameter of 1.8 mm and a thickness of 0.25 mm was used, and a flat battery having the same configuration as that of Comparative Example 2 was prepared.

実施例1、実施例2および比較例1〜比較例4の電池を各100個ずつ作成し、組立直後に内部短絡を起こした電池の確認を行った。表1に内部短絡を起こした電池の割合を示す。   100 batteries each of Example 1, Example 2 and Comparative Examples 1 to 4 were prepared, and the batteries that caused an internal short circuit were checked immediately after assembly. Table 1 shows the percentage of batteries that caused an internal short circuit.

Figure 2007026689
Figure 2007026689

実施例1、実施例2及び比較例2〜比較例4の電池では、封口時セパレータが引っ張られることによるセパレータの裂けが発生しないため、内部短絡を起こしていない。一方、比較例1の電池は、封口時にセパレータが引っ張られることによるセパレータの裂けが発生し、この裂け目を通して正極16とリチウム金属15が接触するため、内部短絡を起こしている。   In the batteries of Example 1, Example 2 and Comparative Examples 2 to 4, the separator was not torn due to the separator being pulled at the time of sealing, so no internal short circuit occurred. On the other hand, in the battery of Comparative Example 1, the separator was torn due to the separator being pulled at the time of sealing, and the positive electrode 16 and the lithium metal 15 were in contact through the tear, thus causing an internal short circuit.

次に、組立直後に内部短絡を起こさなかった電池を用い、温度20℃で、300kΩの定抵抗放電を1.0Vに達するまで行い、放電容量の測定を行うとともに、放電中に内部短絡を起す電池の確認を行った。表2に放電中に内部短絡を起した電池数の割合と、放電中に内部短絡を起こさなかった電池の放電容量の平均値を示す。   Next, using a battery that did not cause an internal short circuit immediately after assembly, a constant resistance discharge of 300 kΩ was performed at a temperature of 20 ° C. until it reached 1.0 V, the discharge capacity was measured, and an internal short circuit occurred during the discharge. The battery was checked. Table 2 shows the ratio of the number of batteries that caused an internal short circuit during discharge and the average value of the discharge capacity of the batteries that did not cause an internal short circuit during discharge.

Figure 2007026689
Figure 2007026689

実施例1、実施例2および比較例1の電池では、正極16の側から見て、封口板11のアルミニウム面がセパレータ14で覆われているため、アルニウム面が露出しない状態が作り出せる。このため、電池の放電に伴う正極16の膨張が起こる場合においても、正極16と、アルミニウム面が接触することがなく、内部短絡を起こさない。一方、比較例2、比較例3の電池では、電池の放電に伴う正極16の膨張により、正極16と、アルミニウム面が接触を起し、内部短絡する。この傾向は、正極16の外径に依存し、径が大きくなるほど、内部短絡を起こしやすい。比較例4の電池は放電中に内部短絡を起こしていないが、これは正極16の外径を小さくしているため、正極16が横方向に膨張してもアルミニウム面に接触しないと考えられる。   In the batteries of Example 1, Example 2, and Comparative Example 1, since the aluminum surface of the sealing plate 11 is covered with the separator 14 when viewed from the positive electrode 16 side, a state in which the aluminum surface is not exposed can be created. For this reason, even when the positive electrode 16 expands due to the battery discharge, the positive electrode 16 and the aluminum surface do not come into contact with each other, and an internal short circuit does not occur. On the other hand, in the batteries of Comparative Example 2 and Comparative Example 3, the positive electrode 16 and the aluminum surface come into contact with each other due to expansion of the positive electrode 16 accompanying the discharge of the battery, causing an internal short circuit. This tendency depends on the outer diameter of the positive electrode 16, and an internal short circuit is more likely to occur as the diameter increases. The battery of Comparative Example 4 did not cause an internal short circuit during discharge, but this is because the outer diameter of the positive electrode 16 is reduced, and it is considered that the positive electrode 16 does not contact the aluminum surface even if it expands in the lateral direction.

上記のように、比較例2、比較例3の電池では、正極16が横方向に膨張しても、内部短絡を起さないように、正極16の外径を比較例4に示す程度に小さくする必要があり、このため、容量が減少する。一方、本発明の偏平形電池では、電池の放電に伴う正極16の膨張による、内部短絡がないため、正極16の外径を大きくすることができる。   As described above, in the batteries of Comparative Examples 2 and 3, the outer diameter of the positive electrode 16 is as small as shown in Comparative Example 4 so as not to cause an internal short circuit even when the positive electrode 16 expands in the lateral direction. Therefore, the capacity is reduced. On the other hand, in the flat battery of the present invention, since there is no internal short circuit due to the expansion of the positive electrode 16 accompanying the discharge of the battery, the outer diameter of the positive electrode 16 can be increased.

なお本実施例では、セパレータ材料としてポリフェニレンサルファイドを用いたが、ポリプロピレン、ポリエーテルエーテルケトン、パーフルオロアルコギン、ガラス繊維等を用いてもよい。また、ガスケット材料として、ポリフェニレンサルファイド以外にポリプロピレン、ポリエーテルエーテルケトン、パーフルオロアルコギンなどについても適用可能である。   In this embodiment, polyphenylene sulfide is used as the separator material, but polypropylene, polyether ether ketone, perfluoroalcogin, glass fiber, or the like may be used. Further, as a gasket material, in addition to polyphenylene sulfide, polypropylene, polyether ether ketone, perfluoroalcogin and the like can be applied.

本発明は、ハット状の封口板を用いる偏平形電池において、ガスケットの底部の封口板対向面に段部を有し、このガスケット段部と封口板からなる空間をセパレータ収納部とし、セパレータの周縁部がガスケット段部の封口板対向面に接した状態でセパレータ収納部に収納されていることで、小形・薄形であっても容量の著しい低下を招かない、高容量で内部短絡の防止性に優れた偏平形電池を提供することができる。   The present invention relates to a flat battery using a hat-shaped sealing plate, having a step portion on the surface facing the sealing plate at the bottom of the gasket, and a space formed by the gasket step portion and the sealing plate as a separator housing portion, Because the part is stored in the separator storage part in contact with the sealing plate facing surface of the gasket step part, even if it is small and thin, the capacity is not significantly reduced, and high capacity prevents internal short circuits. Can be provided.

本発明の実施例1における偏平形電池の断面図Sectional drawing of the flat battery in Example 1 of this invention 本発明の実施例2における偏平形電池の断面図Sectional drawing of the flat battery in Example 2 of this invention 本発明の比較例2〜比較例4における偏平形電池の断面図Sectional drawing of the flat battery in the comparative example 2-comparative example 4 of this invention 本発明の比較例1における偏平形電池の断面図Sectional drawing of the flat battery in the comparative example 1 of this invention

符号の説明Explanation of symbols

11 封口板
12 正極ケース
13、23、33 ガスケット
14、34、44 セパレータ
15 リチウム金属
16 正極
11 Sealing plate 12 Positive electrode case 13, 23, 33 Gasket 14, 34, 44 Separator 15 Lithium metal 16 Positive electrode

Claims (2)

正極と、負極と、電解液と、セパレータとを、ガスケットを介してハット状の封口板と正極ケースとにより密封する偏平形電池であって、前記ガスケットの封口板対向部に段部を有し、前記段部と前記封口板とで形成されてなるセパレータ収納部に、前記セパレータの周縁部が収納されていることを特徴とする偏平形電池。 A flat battery in which a positive electrode, a negative electrode, an electrolyte, and a separator are sealed with a hat-shaped sealing plate and a positive electrode case via a gasket, and a step portion is provided at a portion facing the sealing plate of the gasket. A flat battery in which a peripheral portion of the separator is housed in a separator housing portion formed by the step portion and the sealing plate. 前記段部の封口板対向面側の端部に凸部を設けたことを特徴とする請求項1記載の偏平形電池。 2. The flat battery according to claim 1, wherein a convex portion is provided at an end portion of the step portion on the side facing the sealing plate.
JP2005202739A 2005-07-12 2005-07-12 Flat cell Pending JP2007026689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005202739A JP2007026689A (en) 2005-07-12 2005-07-12 Flat cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005202739A JP2007026689A (en) 2005-07-12 2005-07-12 Flat cell

Publications (1)

Publication Number Publication Date
JP2007026689A true JP2007026689A (en) 2007-02-01

Family

ID=37787231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005202739A Pending JP2007026689A (en) 2005-07-12 2005-07-12 Flat cell

Country Status (1)

Country Link
JP (1) JP2007026689A (en)

Similar Documents

Publication Publication Date Title
JP4293226B2 (en) Battery
US7378183B2 (en) Sealed cell using film outer casing body
JP2006093134A (en) Lithium ion secondary battery
JPWO2016143543A1 (en) Nonaqueous electrolyte secondary battery
JP4121993B2 (en) Safety device built-in battery
JP2004079330A (en) Sealed battery with cleavage groove
JP2006278184A (en) Square battery and its manufacturing method
JP2005142115A (en) Secondary battery
JP2006080066A (en) Lithium-ion secondary battery
US8277978B2 (en) Cylinder type zinc-air cell and method for producing the same
JP4361445B2 (en) Lithium secondary battery
JP6124399B2 (en) Nonaqueous electrolyte secondary battery
JP4446735B2 (en) Nonaqueous electrolyte secondary battery
JP2000353502A (en) Nonaqueous electrolyte secondary battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
JP2008117620A (en) Battery
JP2007026689A (en) Flat cell
JPH06231743A (en) Non-aqueous electrolyte battery
TW202226666A (en) Gasket for electrochemical cell, and electrochemical cell
JP2010186667A (en) Coin cell
JP2008159411A (en) Flat battery
CN101385188B (en) Cylinder type zin-air cell and method for priducing the same
JP2005123017A (en) Gasket for electrochemical cell, and electrochemical cell
JP2002134072A (en) Flattened non-aqueous electrolytic secondary battery
JP2003249201A (en) Flat-type nonaqueous electrolyte secondary battery