JP2008158330A - Manufacturing method of liquid crystal display device using ferroelectric liquid crystal - Google Patents

Manufacturing method of liquid crystal display device using ferroelectric liquid crystal Download PDF

Info

Publication number
JP2008158330A
JP2008158330A JP2006348011A JP2006348011A JP2008158330A JP 2008158330 A JP2008158330 A JP 2008158330A JP 2006348011 A JP2006348011 A JP 2006348011A JP 2006348011 A JP2006348011 A JP 2006348011A JP 2008158330 A JP2008158330 A JP 2008158330A
Authority
JP
Japan
Prior art keywords
liquid crystal
alignment
phase
ferroelectric liquid
crystal display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006348011A
Other languages
Japanese (ja)
Other versions
JP4963952B2 (en
Inventor
Hidefumi Yamashita
英文 山下
Osamu Sato
治 佐藤
Yoshinori Seihikari
義則 正光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Display Co Ltd
Original Assignee
LG Display Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Display Co Ltd filed Critical LG Display Co Ltd
Priority to JP2006348011A priority Critical patent/JP4963952B2/en
Priority to KR1020070045370A priority patent/KR101385463B1/en
Publication of JP2008158330A publication Critical patent/JP2008158330A/en
Application granted granted Critical
Publication of JP4963952B2 publication Critical patent/JP4963952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/141Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent using ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a liquid crystal display element using a ferroelectric liquid crystal, wherein display unevenness due to distortion of a layer structure is eliminated and a wide process window is secured. <P>SOLUTION: In the manufacturing method of the liquid crystal display device using the ferroelectric liquid crystal having phase series of an isotropic phase, a chiral nematic phase or cholesteric phase and a smectic C phase, an alignment distortion region DA being an uneven display part generated from a spacer 20 as the starting point along a layer direction in a plane determined by a cone angle and an inclined angle of a layer of the ferroelectric liquid crystal is shifted so as to be superposed on a light shielding region BA by forming the spacer 20 in the light shielding region by a black matrix and controlling an alignment treatment direction of an alignment layer as a distortion region compensating alignment treatment direction CRD. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は液晶表示素子、特に高速応答性を実現する強誘電性液晶(Ferroelectric Liquid Crystal)を使用した液晶表示素子の製造方法に関する。   The present invention relates to a liquid crystal display device, and more particularly to a method of manufacturing a liquid crystal display device using a ferroelectric liquid crystal that realizes high-speed response.

強誘電性液晶のうち、等方相、カイラルネマティック相(コレステリック相)、スメクティックC相の相系列をもつ強誘電性液晶は、高温より降温した場合に、図12のような相転移をし、スメクティックC相では基板への液晶分子自身の投影成分が配向処理方向にほぼ同一となる。また基板面での層の角度は、スメクティックC相になった時のコーン角と層の傾斜角および配向処理方向の角度によって決まる。そのため図12に示すように、配向処理方向に対して対称な二つの安定したドメインが存在してしまう。   Among ferroelectric liquid crystals, a ferroelectric liquid crystal having an isotropic phase, a chiral nematic phase (cholesteric phase), and a smectic C phase phase sequence undergoes a phase transition as shown in FIG. In the smectic C phase, the projection components of the liquid crystal molecules themselves onto the substrate are almost the same in the alignment processing direction. In addition, the angle of the layer on the substrate surface is determined by the cone angle when the smectic C phase is obtained, the tilt angle of the layer, and the angle in the orientation processing direction. Therefore, as shown in FIG. 12, there are two stable domains symmetrical with respect to the alignment processing direction.

そこで従来、二つの安定したドメインが存在する初期状態をモノドメイン化するために、カイラルネマティック層(コレステリック層)からスメクティックC相になる時の冷却速度のコントロールやDC(直流電圧)印加などを行うようにしたものがある(例えば特許文献1、特許文献2参照)。また、セル内に隔壁を設け配向を制御する方法もある(例えば特許文献3参照)。   Therefore, conventionally, in order to convert the initial state in which two stable domains exist into a monodomain, the cooling rate when the chiral nematic layer (cholesteric layer) changes to the smectic C phase, DC (direct current voltage) application, and the like are performed. Some have been made (see, for example, Patent Document 1 and Patent Document 2). In addition, there is a method in which a partition is provided in a cell to control the orientation (for example, see Patent Document 3).

特開2001−264822号公報JP 2001-264822 A 特開2004−93964号公報JP 2004-93964 A 特開平7−318912号公報JP 7-318912 A

しかしながら、カイラルネマティック相(コレステリック相)からスメクティックC相に転移する温度近傍における冷却速度、その後の温度変化に伴うコーン角の変化や基板の表面状態などにより、基板平面内での配向方向に対する層の傾斜方向に沿って、平均した液晶の配列方向が正常領域とは異なる領域が、スペーサを起点として発生することがある。そのような領域が表示エリア内に発生すると、黒状態での輝度が上がり、コントラストが低下する。また、そのような領域がパネル面内に不均一に発生してしまった場合には、画質不良となってしまう。   However, the cooling rate in the vicinity of the temperature at which the chiral nematic phase (cholesteric phase) transitions to the smectic C phase, the cone angle change due to the subsequent temperature change, the surface condition of the substrate, etc., cause the orientation of the layer in the orientation direction in the substrate plane A region where the average liquid crystal alignment direction is different from the normal region along the tilt direction may occur starting from the spacer. When such a region occurs in the display area, the brightness in the black state increases and the contrast decreases. In addition, when such a region is unevenly generated in the panel surface, the image quality is poor.

この発明は、高速応答性を実現する強誘電性液晶を使用した液晶表示素子において、スペーサの配列と液晶配向方向の制御により、層構造の歪みによる表示ムラの発生をなくし、広いプロセスウィンドウを確保する強誘電性液晶を使用した液晶表示素子の製造方法を提供することを目的とする。   The present invention eliminates the occurrence of display unevenness due to the distortion of the layer structure and secures a wide process window in the liquid crystal display element using ferroelectric liquid crystal that realizes high-speed response by controlling the alignment of the spacers and the liquid crystal alignment direction. An object of the present invention is to provide a method of manufacturing a liquid crystal display element using a ferroelectric liquid crystal.

この発明は、等方相、カイラルネマティック相又はコレステリック相、スメクティックC相の相系列をもつ強誘電性液晶を使用した液晶表示素子の製造方法であって、一対の基板の一方の基板の、前記一対の基板のいずれか一方の基板に形成されたブラックマトリックスによる遮光領域にスペーサを形成する工程と、前記一方の基板のスペーサを形成した側及び前記一対の基板の他方の基板の少なくとも一方に配向膜を形成する工程と、前記配向膜に配向処理を施し、完成された液晶表示素子において、配向処理方向に対して特定の傾きを持ってスペーサの位置を起点として線状に現れる配向歪み領域が前記遮光領域に重なるように遮光領域に対して傾きを持った歪み領域補償配向処理方向で前記配向処理を行う工程と、前記スペーサ及び配向膜が内側になるように前記一対の基板を貼り合わせ、間に前記強誘電性液晶を充填させて封止する工程と、を備えたことを特徴とする強誘電性液晶を使用した液晶表示素子の製造方法にある。   The present invention relates to a method for manufacturing a liquid crystal display element using a ferroelectric liquid crystal having a phase sequence of isotropic phase, chiral nematic phase or cholesteric phase, and smectic C phase. A step of forming a spacer in a light blocking region by a black matrix formed on one of the pair of substrates, and orientation on at least one of the one substrate and the other substrate of the pair of substrates A step of forming a film, and an alignment treatment on the alignment film. In a completed liquid crystal display element, there is an alignment strain region that appears linearly starting from the position of the spacer with a specific inclination with respect to the alignment processing direction. Performing the alignment process in a strained region compensation alignment process direction having an inclination with respect to the light shielding region so as to overlap the light shielding region; A liquid crystal display element using ferroelectric liquid crystal, comprising: a step of bonding the pair of substrates so that the film is on the inside, and filling and sealing the ferroelectric liquid crystal therebetween It is in the manufacturing method.

この発明では、強誘電性液晶のコーン角および層の傾斜角により決まる平面内の層方向に沿って、スペーサを起点として発生する不均一な表示部すなわち配向歪み領域を、スペーサの配置と配向膜の配向処理方向を制御することにより遮光領域にシフトさせることにより、コントラストの向上および高画質化を実現することができる。   In the present invention, a non-uniform display portion, that is, an alignment strain region generated from the spacer as a starting point along the layer direction in the plane determined by the cone angle of the ferroelectric liquid crystal and the tilt angle of the layer, the spacer arrangement and the alignment film By controlling the direction of the alignment treatment to shift to the light-shielding region, it is possible to improve contrast and improve image quality.

以下、この発明の強誘電性液晶を使用した液晶表示素子の製造方法を図面に従って説明する。最初にこの発明の原理について説明する。図1に強誘電性液晶のスメクティックC相におけるコーンの模式図を示す。θ1はコーン角、θ2はコーンの液晶表示素子のガラス基板面と平行な面に対する層の傾斜角であり、これらは強誘電性液晶材料により決まる特性である。θ3はコーンが傾斜角θ2だけ傾いたことによるガラス基板面と平行な該面内でのコーン角である見かけ上のコーン角である。   A method for manufacturing a liquid crystal display element using the ferroelectric liquid crystal of the present invention will be described below with reference to the drawings. First, the principle of the present invention will be described. FIG. 1 shows a schematic diagram of a cone in a smectic C phase of a ferroelectric liquid crystal. θ1 is the cone angle, and θ2 is the inclination angle of the layer with respect to the plane parallel to the glass substrate surface of the liquid crystal display element of the cone. These are characteristics determined by the ferroelectric liquid crystal material. θ3 is an apparent cone angle which is a cone angle in the plane parallel to the glass substrate surface due to the tilt of the cone by the tilt angle θ2.

図2に図1のコーンをガラス基板面と平行な面に投影した時の模式図を示す。RDは配向処理方向、LCADは液晶配向方向を示す。カイラルネマティック相(コレステリック相)からスメクティック相に相転移し常温まで放置した時の基板への液晶分子自身の投影成分が、配向処理方向RDとはややずれた位置となっている。このように等方相、カイラルネマティック相(コレステリック相)、スメクティックC相の相系列をもつ強誘電性液晶は、基板平面内で配向処理方向に対して傾斜角を持った層構造を作る。   FIG. 2 is a schematic diagram when the cone of FIG. 1 is projected onto a plane parallel to the glass substrate surface. RD indicates the alignment treatment direction, and LCAD indicates the liquid crystal alignment direction. The projected component of the liquid crystal molecules themselves onto the substrate when the phase transition from the chiral nematic phase (cholesteric phase) to the smectic phase is allowed to stand at room temperature is slightly shifted from the alignment processing direction RD. As described above, the ferroelectric liquid crystal having the phase sequence of isotropic phase, chiral nematic phase (cholesteric phase), and smectic C phase forms a layer structure having an inclination angle with respect to the alignment processing direction in the substrate plane.

そのためカイラルネマティック相(コレステリック相)からスメクティックC相への転移温度近傍での冷却の温度勾配や、その後の温度変化によって層に沿った歪みを発生することがある。図3には、ブラックマトリックスにより光が遮蔽される縦方向領域と横方向領域からなる直角をなす格子形状を有する遮光領域BA、配向処理方向RD、スペーサ20、配向歪み領域DAの関係を示す。図3に示すように、特に液晶が間に充填される一対の基板間に設けられる例えば柱状スペーサ等のスペーサ20が使用された場合には、そのスペーサ20を起点として液晶の配向方向が歪んだ配向歪み領域DAが発生する。この配向歪み領域DAでは、平均した液晶の配向方向が通常領域と異なるため、黒輝度が上がりコントラストが下がったり、発生の均一度によっては表示不良となることがある。   For this reason, a strain along the layer may be generated due to a cooling temperature gradient in the vicinity of the transition temperature from the chiral nematic phase (cholesteric phase) to the smectic C phase and the subsequent temperature change. FIG. 3 shows the relationship between the light shielding area BA having a right-angled lattice shape composed of a vertical area and a horizontal area where light is blocked by the black matrix, the alignment treatment direction RD, the spacer 20, and the alignment distortion area DA. As shown in FIG. 3, in particular, when a spacer 20 such as a columnar spacer provided between a pair of substrates filled with liquid crystal is used, the alignment direction of the liquid crystal is distorted from the spacer 20 as a starting point. An orientation strain area DA is generated. In this orientation strain area DA, the average orientation direction of the liquid crystal is different from that of the normal area, so that the black luminance is increased and the contrast is lowered.

そこでこの発明では、図4に示すように、スペーサ20をブラックマトリックスにより光が遮蔽される遮光領域BAの縦方向領域と横方向領域の交点の位置に配置し、上述の基板平面内での配向処理方向からの層の傾斜角を考慮した上で、層の方向すなわち配向歪み領域DAの方向が遮光領域BAと平行に重なるように歪み領域補償配向処理方向CRDとして配向処理方向を決めて、配向膜の配向処理を行う。なお、スペーサ20は少なくとも遮光領域BA内に形成されればよい。   Therefore, in the present invention, as shown in FIG. 4, the spacer 20 is arranged at the intersection of the vertical area and the horizontal area of the light shielding area BA where the light is shielded by the black matrix, and the alignment in the above-described substrate plane is performed. In consideration of the inclination angle of the layer from the processing direction, the alignment processing direction is determined as the strain region compensation alignment processing direction CRD so that the direction of the layer, that is, the direction of the alignment strain region DA overlaps with the light shielding region BA. A film orientation process is performed. The spacer 20 may be formed at least in the light shielding area BA.

図5〜図9にはこの発明の一実施の形態による強誘電性液晶を使用した液晶表示素子の製造方法を断面図で示し、以下これに従って製造方法につてを説明する。最初に、一方が表示制御部品としてデータラインやゲートライン等の信号配線、データラインとゲートラインとの交差部のTFTやピクセル電極等(共に図示省略)を形成したTFT−アレイ基板、他方が表示制御部品としてカラーフィルタ、共通電極、ブラックマトリックス等(共に図示省略)を形成したカラーフィルタ基板からなる一対のそれぞれガラス基板からなる第1基板と第2基板を準備する。なお、第1基板及び第2基板に形成されている表示制御部品は上記のものに限定されるものではい。   5 to 9 are sectional views showing a method for manufacturing a liquid crystal display element using a ferroelectric liquid crystal according to an embodiment of the present invention, and the manufacturing method will be described below according to this. First, one side is a TFT-array substrate on which signal lines such as data lines and gate lines are formed as display control parts, TFTs and pixel electrodes (not shown) at the intersections of the data lines and gate lines are formed, and the other is displayed A first substrate and a second substrate each made of a pair of glass substrates each including a color filter substrate on which a color filter, a common electrode, a black matrix and the like (both not shown) are formed as control components are prepared. The display control components formed on the first substrate and the second substrate are not limited to those described above.

そして図5に示すように、例えば第1基板1aの、カラーフィルタ基板側に形成されたブラックマトリックスによる遮光領域(図4参照)にスペーサ20をそれぞれ形成する。スペーサ20の数に限定はない。また、スペーサ20の形状も柱状やブロック形状等、特に限定されない。   Then, as shown in FIG. 5, for example, spacers 20 are respectively formed in the light shielding region (see FIG. 4) of the first substrate 1a by a black matrix formed on the color filter substrate side. There is no limitation on the number of spacers 20. Also, the shape of the spacer 20 is not particularly limited, such as a column shape or a block shape.

次に図6の(a)、(b)に示すように、第1基板1aのスペーサ20を形成した面及び上述の第2基板1bの主面に配向膜2を形成する。なお、配向膜2はこれらの一方に形成するだけでもよい。   Next, as shown in FIGS. 6A and 6B, an alignment film 2 is formed on the surface of the first substrate 1a where the spacers 20 are formed and the main surface of the second substrate 1b. The alignment film 2 may be formed only on one of these.

次に図7に示すように、形成した配向膜2にそれぞれ、ラビングによる配向処理を施す。この時の配向処理は、図4に示すように、完成された液晶表示素子において配向処理方向に対して特定の傾きを持ってスペーサ20の位置を起点として線状に現れる配向歪み領域DAが遮光領域BAに重なるように遮光領域BAに対して傾きを持った歪み領域補償配向処理方向CRDで行う。なお、配向処理はラビングに限らず、UV光やイオンビームの照射による配向処理の場合においても、同様に上述の歪み領域補償配向処理方向CRDで配向処理を行うことで同様な効果が得られる。   Next, as shown in FIG. 7, each alignment film 2 formed is subjected to an alignment process by rubbing. As shown in FIG. 4, the alignment processing at this time is performed by shielding the alignment strain region DA that appears linearly from the position of the spacer 20 with a specific inclination with respect to the alignment processing direction in the completed liquid crystal display element. This is performed in a strain region compensation alignment processing direction CRD having an inclination with respect to the light shielding region BA so as to overlap the region BA. The alignment process is not limited to rubbing, and the same effect can be obtained by performing the alignment process in the strain region compensated alignment process direction CRD in the case of the alignment process by irradiation with UV light or an ion beam.

次に図8に示すように、第1基板1aの周縁部にシーラント3の材料として例えばUV硬化材を塗布する。なお第2基板1b側にシーラント3の材料となるUV硬化材を塗布してもよい。   Next, as shown in FIG. 8, for example, a UV curable material is applied as a material of the sealant 3 to the peripheral edge of the first substrate 1a. In addition, you may apply | coat the UV hardening material used as the material of the sealant 3 to the 2nd board | substrate 1b side.

その後、図9に示すように、スペーサ20及び配向膜2が内側になるように第1基板1aと第2基板1bを貼り合わせ、間に強誘電性液晶4を充填し、UV光を照射してUV硬化材を硬化させて封止する。   After that, as shown in FIG. 9, the first substrate 1a and the second substrate 1b are bonded so that the spacer 20 and the alignment film 2 are inside, and the ferroelectric liquid crystal 4 is filled therebetween, and UV light is irradiated. Then, the UV curable material is cured and sealed.

また、図8、図9に示す工程として以下に示す別の方法もある。図8に示すように、第1基板1aの周縁部にシーラント3の材料として例えば熱硬化材を塗布する。なお第2基板1b側にシーラント3の材料となる熱硬化材を塗布してもよい。   Further, there is another method shown below as the steps shown in FIGS. As shown in FIG. 8, a thermosetting material, for example, is applied as a material for the sealant 3 to the peripheral edge of the first substrate 1a. In addition, you may apply | coat the thermosetting material used as the material of the sealant 3 to the 2nd board | substrate 1b side.

その後、図9に示すように、スペーサ20及び配向膜2が内側になるように第1基板1aと第2基板1bを貼り合わせ、シーラントを熱硬化させた後に強誘電性液晶4を充填し、強誘電性液晶4を充填した注入口(図示省略)にUV硬化型の封止材を塗布し、UV光を照射してUV硬化型の封止材を硬化させて封止する。   After that, as shown in FIG. 9, the first substrate 1a and the second substrate 1b are bonded so that the spacer 20 and the alignment film 2 are inside, the sealant is thermally cured, and then the ferroelectric liquid crystal 4 is filled. A UV curable encapsulant is applied to an injection port (not shown) filled with the ferroelectric liquid crystal 4, and the UV curable encapsulant is cured by irradiation with UV light to be sealed.

また、以上のことを考慮して、以下のような実験を行った。一対の基板の一方に感光性樹脂よりなる柱状スペーサを形成する。そして両方の基板についてそれぞれ、主面にポリイミド膜からなる配向膜を形成、カラーフィルタ基板側に形成されているブラックマトリックスによる遮光領域に平行な方向にラビングにより配向処理を行った。次にいずれか一方の基板の周縁部にシーラントとして熱硬化材を塗布し、その後、配向方向がアンチパラレル(方向が逆で平行)になるように2枚の基板を貼り合せ、シーラントを熱硬化させた後、2枚の基板間に常温でのコーン角が約55°の強誘電性液晶を充填し、UV硬化させ封止しセルを作製した。   In consideration of the above, the following experiment was conducted. A columnar spacer made of a photosensitive resin is formed on one of the pair of substrates. Then, an alignment film made of a polyimide film was formed on the main surface of each of the substrates, and an alignment process was performed by rubbing in a direction parallel to the light shielding region by the black matrix formed on the color filter substrate side. Next, a thermosetting material is applied as a sealant to the peripheral edge of one of the substrates, and then the two substrates are bonded so that the orientation direction is antiparallel (the direction is reverse and parallel), and the sealant is thermoset. Then, a ferroelectric liquid crystal having a cone angle of about 55 ° at room temperature was filled between the two substrates, and UV cured and sealed to produce a cell.

作製したセルを約70℃まで過熱後、約2.5℃/minの冷却速度で55℃まで冷却後、自然冷却にて室温まで戻した。冷却途中、カイラルネマティック相とスメクティックC相の相転移温度の±5℃の範囲で直流電流(DC)を印加した。その時のパネルの一部に図10のような柱状のスペーサ20を起点とする配向歪み領域DAが発生し、基板平面内での配向処理方向RDから約70°ずれており、コーン角55°、層の傾斜角を14°とした値とほぼ同じ値を示した。また液晶の平均的な配向方向を測定した結果、図10の領域Aではラビングの方向から3.3°、領域Bでは2.3°、領域Cでは4.3°ずれており、領域B、Cでの液晶の配向方向は柱状のスペーサ20の側面での液晶配向方向が影響していると考えられる。   The produced cell was heated to about 70 ° C., cooled to 55 ° C. at a cooling rate of about 2.5 ° C./min, and then returned to room temperature by natural cooling. During cooling, a direct current (DC) was applied in the range of ± 5 ° C. of the phase transition temperature between the chiral nematic phase and the smectic C phase. An alignment strain area DA starting from the columnar spacer 20 as shown in FIG. 10 is generated in a part of the panel at that time, which is deviated by about 70 ° from the alignment processing direction RD in the substrate plane, with a cone angle of 55 °, The value was almost the same as the value obtained when the inclination angle of the layer was 14 °. As a result of measuring the average alignment direction of the liquid crystal, the region A in FIG. 10 is shifted from the rubbing direction by 3.3 °, the region B is 2.3 °, and the region C is shifted by 4.3 °. It is considered that the alignment direction of the liquid crystal at C is influenced by the alignment direction of the liquid crystal on the side surface of the columnar spacer 20.

さらに、波長546nmを使用する測定機でコントラストを測定したところ、領域Aだけのコントラストは661となるが、領域B、Cを含む範囲でコントラストを測定すると261となった。この原因は、領域B、Cでの平均した液晶の配向方向が領域Aとずれているために、黒輝度が沈まなくなっている(輝度が設計値まで下がらない)ことと、B領域での液晶の配向性が他と比べて悪いためだと考えられる。   Further, when the contrast was measured with a measuring machine using a wavelength of 546 nm, the contrast of only the region A was 661, but when the contrast was measured in the range including the regions B and C, it was 261. This is because the average orientation of the liquid crystal in the regions B and C is shifted from the region A, so that the black luminance does not sink (the luminance does not decrease to the design value) and the liquid crystal in the B region. This is thought to be because the orientation of is poor compared to others.

そこでこの発明による強誘電性液晶を使用した液晶表示素子の製造方法では、基板に形成された配向膜の配向処理の際に配向処理方向を、従来のブラックマトリックスにより光が遮蔽される遮光領域と平行な配向処理方向から回転させて、スペーサを起点として発生する配向歪み領域が遮光領域と重なるようにした。   Therefore, in the method for manufacturing a liquid crystal display device using the ferroelectric liquid crystal according to the present invention, the alignment process direction in the alignment process of the alignment film formed on the substrate is changed to a light shielding region where light is shielded by a conventional black matrix. By rotating from the parallel alignment treatment direction, the alignment strain region generated from the spacer as the starting point overlaps the light shielding region.

上記のことから、図10に示す従来の遮光領域に平行なラビング方向(配向処理方向)から、歪み領域補償配向処理方向CRDとして図11に示すように20°回転した方向にラビングしたところ、図11に示すようなスペーサを起点として発生する配向歪み領域が遮光領域と重なる配向状態を得ることができた。   From the above, the rubbing direction (orientation treatment direction) parallel to the conventional light shielding region shown in FIG. 10 was rubbed in the direction rotated by 20 ° as shown in FIG. 11 as the strain region compensation orientation treatment direction CRD. An alignment state in which the alignment strain region generated from the spacer as shown in FIG. 11 overlaps the light shielding region was obtained.

以上のように、強誘電性液晶のコーン角および層の傾斜角により決まる平面内の層方向に沿って、スペーサを起点として発生する不均一な表示部である配向歪み領域を、スペーサの配置と液晶の配向方向を制御することにより遮光領域にシフトさせることにより、コントラストの向上および高画質化を実現し、さらに広いプロセスウィンドウを確保することができた。   As described above, the alignment strain region, which is a non-uniform display portion generated from the spacer, is formed along the layer direction in the plane determined by the cone angle of the ferroelectric liquid crystal and the tilt angle of the layer, and the arrangement of the spacers. By controlling the alignment direction of the liquid crystal to shift to the light-shielding region, it was possible to improve contrast and improve image quality, and to secure a wider process window.

強誘電性液晶のスメクティックC相におけるコーンの模式図である。It is a schematic diagram of the cone in the smectic C phase of a ferroelectric liquid crystal. 図1のコーンをガラス基板面と平行な面に投影した時の模式図である。It is a schematic diagram when the cone of FIG. 1 is projected on a surface parallel to the glass substrate surface. 従来の液晶表示素子の製造方法における遮光領域、配向処理方向、スペーサ、配向歪み領域の関係を示す図である。It is a figure which shows the relationship between the light shielding area | region, the alignment process direction, a spacer, and an orientation distortion area | region in the manufacturing method of the conventional liquid crystal display element. この発明による液晶表示素子の製造方法における遮光領域、歪み領域補償配向処理方向、スペーサ、配向歪み領域の関係を示す図である。It is a figure which shows the relationship between the light-shielding area | region, the distortion area compensation alignment process direction, a spacer, and an orientation distortion area | region in the manufacturing method of the liquid crystal display element by this invention. この発明の一実施の形態による強誘電性液晶を使用した液晶表示素子の製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method of the liquid crystal display element using the ferroelectric liquid crystal by one Embodiment of this invention. 図5に続く製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method following FIG. 図6に続く製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method following FIG. 図7に続く製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method following FIG. 図8に続く製造方法を説明するための断面図である。It is sectional drawing for demonstrating the manufacturing method following FIG. この発明に基づき行われた実験の結果を説明するための模式図である。It is a schematic diagram for demonstrating the result of the experiment conducted based on this invention. この発明に基づき行われた実験の結果を説明するための模式図である。It is a schematic diagram for demonstrating the result of the experiment conducted based on this invention. 等方相、カイラルネマティック相又はコレステリック相、スメクティックC相の相系列をもつ強誘電性液晶について説明するための図である。It is a figure for demonstrating the ferroelectric liquid crystal which has a phase sequence of an isotropic phase, a chiral nematic phase, a cholesteric phase, and a smectic C phase.

符号の説明Explanation of symbols

1a,1b 基板、2 配向膜、3 シーラント、4 強誘電性液晶、20 スペーサ、A,B,C 領域、BA 遮光領域、CRD 歪み領域補償配向処理方向、DA 配向歪み領域、LCAD 液晶配向方向、RD 配向処理方向、θ1 コーン角、θ2 傾斜角、θ3 見かけ上のコーン角。   1a, 1b substrate, 2 alignment film, 3 sealant, 4 ferroelectric liquid crystal, 20 spacer, A, B, C region, BA light shielding region, CRD strain region compensation alignment processing direction, DA alignment strain region, LCAD liquid crystal alignment direction, RD Orientation treatment direction, θ1 cone angle, θ2 tilt angle, θ3 Apparent cone angle.

Claims (5)

等方相、カイラルネマティック相又はコレステリック相、スメクティックC相の相系列をもつ強誘電性液晶を使用した液晶表示素子の製造方法であって、
一対の基板の一方の基板の、前記一対の基板のいずれか一方の基板に形成されたブラックマトリックスによる遮光領域にスペーサを形成する工程と、
前記一方の基板のスペーサを形成した側及び前記一対の基板の他方の基板の少なくとも一方に配向膜を形成する工程と、
前記配向膜に配向処理を施し、完成された液晶表示素子において、配向処理方向に対して特定の傾きを持ってスペーサの位置を起点として線状に現れる配向歪み領域が前記遮光領域に重なるように遮光領域に対して傾きを持った歪み領域補償配向処理方向で前記配向処理を行う工程と、
前記スペーサ及び配向膜が内側になるように前記一対の基板を貼り合わせ、間に前記強誘電性液晶を充填させて封止する工程と、
を備えたことを特徴とする強誘電性液晶を使用した液晶表示素子の製造方法。
A method for producing a liquid crystal display element using a ferroelectric liquid crystal having a phase sequence of isotropic phase, chiral nematic phase or cholesteric phase, smectic C phase,
Forming a spacer in a light-shielding region of a black matrix formed on one of the pair of substrates of one of the pair of substrates;
Forming an alignment film on at least one of the side of the one substrate on which the spacer is formed and the other of the pair of substrates;
An alignment process is performed on the alignment film, and in a completed liquid crystal display element, an alignment strain region that appears linearly with a specific inclination with respect to the alignment processing direction as a starting point overlaps the light shielding region. Performing the alignment process in a strain area compensated alignment process direction having an inclination with respect to the light shielding area;
Bonding the pair of substrates so that the spacer and the alignment film are on the inside, filling the ferroelectric liquid crystal between them and sealing;
A method for producing a liquid crystal display element using a ferroelectric liquid crystal, comprising:
一対の基板の一方に配向膜を形成し、前記歪み領域補償配向処理方向で配向処理を施したことを特徴とする請求項1に記載の強誘電性液晶を使用した液晶表示素子の製造方法。   2. The method of manufacturing a liquid crystal display element using a ferroelectric liquid crystal according to claim 1, wherein an alignment film is formed on one of the pair of substrates, and alignment processing is performed in the strain region compensation alignment processing direction. 一対の基板のそれぞれに配向膜を形成し、それぞれに前記歪み領域補償配向処理方向で配向処理を施したことを特徴とする請求項1に記載の強誘電性液晶を使用した液晶表示素子の製造方法。   2. A liquid crystal display device using a ferroelectric liquid crystal according to claim 1, wherein an alignment film is formed on each of the pair of substrates, and each is subjected to an alignment process in the strain region compensation alignment process direction. Method. 歪み領域補償配向処理方向の遮光領域に対する傾きが強誘電性液晶のスメクティックC相のコーン角と層の傾斜角に基づくことを特徴とする請求項1から3までのいずれか1項に記載の強誘電性液晶を使用した液晶表示素子の製造方法。   4. The strong according to claim 1, wherein an inclination of the strain region compensation alignment processing direction with respect to the light shielding region is based on a cone angle of a smectic C phase of the ferroelectric liquid crystal and an inclination angle of the layer. A method of manufacturing a liquid crystal display element using a dielectric liquid crystal. ブラックマトリックス及び遮光領域が直角をなす格子形状を有することを特徴とする請求項1から4までのいずれか1項に記載の強誘電性液晶を使用した液晶表示素子の製造方法。   The method for manufacturing a liquid crystal display element using a ferroelectric liquid crystal according to any one of claims 1 to 4, wherein the black matrix and the light shielding region have a lattice shape forming a right angle.
JP2006348011A 2006-12-25 2006-12-25 Method for manufacturing liquid crystal display element using ferroelectric liquid crystal Active JP4963952B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006348011A JP4963952B2 (en) 2006-12-25 2006-12-25 Method for manufacturing liquid crystal display element using ferroelectric liquid crystal
KR1020070045370A KR101385463B1 (en) 2006-12-25 2007-05-10 Method for manufacturing liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348011A JP4963952B2 (en) 2006-12-25 2006-12-25 Method for manufacturing liquid crystal display element using ferroelectric liquid crystal

Publications (2)

Publication Number Publication Date
JP2008158330A true JP2008158330A (en) 2008-07-10
JP4963952B2 JP4963952B2 (en) 2012-06-27

Family

ID=39659286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348011A Active JP4963952B2 (en) 2006-12-25 2006-12-25 Method for manufacturing liquid crystal display element using ferroelectric liquid crystal

Country Status (2)

Country Link
JP (1) JP4963952B2 (en)
KR (1) KR101385463B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188784A (en) * 2018-10-29 2019-01-11 合肥鑫晟光电科技有限公司 Display base plate and preparation method thereof, display device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5992203B2 (en) * 2012-05-18 2016-09-14 スタンレー電気株式会社 Liquid crystal element, liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152654A (en) * 1994-11-29 1996-06-11 Sony Corp Liquid crystal device
JPH09185051A (en) * 1995-12-29 1997-07-15 Canon Inc Liquid crystal element
JPH11174467A (en) * 1997-10-06 1999-07-02 Sharp Corp Liquid crystal display element and its production

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100378355B1 (en) * 2000-05-27 2003-03-29 삼성전자주식회사 Liquid crystal display
KR100695304B1 (en) * 2000-11-14 2007-03-14 삼성전자주식회사 ferroelectric liquid crystal display and manufacturing method thereof
KR100796789B1 (en) * 2000-11-15 2008-01-22 삼성전자주식회사 Ferroelectric liquid crystal display and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08152654A (en) * 1994-11-29 1996-06-11 Sony Corp Liquid crystal device
JPH09185051A (en) * 1995-12-29 1997-07-15 Canon Inc Liquid crystal element
JPH11174467A (en) * 1997-10-06 1999-07-02 Sharp Corp Liquid crystal display element and its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188784A (en) * 2018-10-29 2019-01-11 合肥鑫晟光电科技有限公司 Display base plate and preparation method thereof, display device
CN109188784B (en) * 2018-10-29 2022-02-22 合肥鑫晟光电科技有限公司 Display substrate, manufacturing method thereof and display device
US11567370B2 (en) 2018-10-29 2023-01-31 Hefei Xinsheng Optoelectronics Technology Co., Ltd Display substrate and manufacturing method thereof, and display device

Also Published As

Publication number Publication date
KR20080059491A (en) 2008-06-30
KR101385463B1 (en) 2014-04-15
JP4963952B2 (en) 2012-06-27

Similar Documents

Publication Publication Date Title
US9726944B2 (en) Liquid crystal display device
JP6102543B2 (en) Liquid crystal device driving method, liquid crystal device, and electronic apparatus
JP4265652B2 (en) Liquid crystal display element and manufacturing method thereof
TWI584032B (en) Liquid crystal display device
ITUD980090A1 (en) METHOD OF PRODUCING TWO DOMAINS INSIDE A LAYER OF LIQUID CRYSTAL, A DISPLAY DEVICE A
JP4460488B2 (en) Liquid crystal display device and manufacturing method thereof
JP2001242466A (en) Multi-domain liquid crystal display device
JPH06160878A (en) Liquid crystal display device
US20070247561A1 (en) Multi-domain liquid crystal display device and method for manufacturing the same
US20100259469A1 (en) Liquid crystal display panel and liquid crystal display device
JP2007248699A (en) Electrooptic device and electronic equipment
JP2008158186A (en) Method of manufacturing liquid crystal display device
JP6610171B2 (en) Liquid crystal device and electronic device
JP6579161B2 (en) Liquid crystal device driving method, liquid crystal device, and electronic apparatus
JP4963952B2 (en) Method for manufacturing liquid crystal display element using ferroelectric liquid crystal
JP2009186822A (en) Liquid crystal display panel and manufacturing method of liquid crystal display panel
JP2009168924A (en) Liquid-crystal display device
JP2009282366A (en) Liquid crystal display panel and method of manufacturing the same
JP2006146145A (en) Liquid crystal display with opposing electrode having aperture and method of fabricating same
JP6299900B2 (en) Liquid crystal device driving method, liquid crystal device, and electronic apparatus
JPH11264968A (en) Liquid crystal display
JPH08328007A (en) Production of liquid crystal display device
JP2008089685A (en) Liquid crystal display device and electronic apparatus
US20060274003A1 (en) Liquid crystal display device
JP2017181816A (en) Display device, liquid crystal display device, and manufacturing method for display device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120327

R150 Certificate of patent or registration of utility model

Ref document number: 4963952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250