JP2009168924A - Liquid-crystal display device - Google Patents
Liquid-crystal display device Download PDFInfo
- Publication number
- JP2009168924A JP2009168924A JP2008004478A JP2008004478A JP2009168924A JP 2009168924 A JP2009168924 A JP 2009168924A JP 2008004478 A JP2008004478 A JP 2008004478A JP 2008004478 A JP2008004478 A JP 2008004478A JP 2009168924 A JP2009168924 A JP 2009168924A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- pixel electrode
- display device
- substrate
- crystal display
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134336—Matrix
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/133707—Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1337—Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
- G02F1/13373—Disclination line; Reverse tilt
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/137—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
- G02F1/139—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
- G02F1/1393—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Geometry (AREA)
- Spectroscopy & Molecular Physics (AREA)
Abstract
Description
本発明は、入射した光の透過率を制御することにより画像を表示する液晶表示装置に関する。より詳しくは、投射型表示装置のライトバルブや、各種電子機器の表示部に用いて好適な垂直配向型の液晶表示装置に関する。 The present invention relates to a liquid crystal display device that displays an image by controlling the transmittance of incident light. More specifically, the present invention relates to a vertical alignment type liquid crystal display device suitable for use in a light valve of a projection display device or a display unit of various electronic devices.
従来より、高品位な画像を表示することができる液晶表示装置が求められており、表示品位や応答性に優れた垂直配向型の液晶表示装置の開発が進められている。 Conventionally, a liquid crystal display device capable of displaying a high-quality image has been demanded, and development of a vertical alignment type liquid crystal display device excellent in display quality and responsiveness has been advanced.
垂直配向型の液晶表示装置において、液晶層はクロスニコルに配置された2枚の偏光板の間に配置される。液晶層は、画素電極が形成された第1基板と、共通電極が形成された第2基板とによって挟まれており、液晶層に電界が印加されていない状態において、液晶分子はこれらの基板に対して略垂直に配向する。液晶層の厚さ方向の電界(縦電界)が印加されると、液晶層を構成する液晶分子は長軸が基板に倣うように傾く。また、液晶層に電界が印加された状態において、一方の偏光板の偏光軸の方向とディレクタとは、略45度の角度をなす。液晶層に電界が印加されていない状態では、入射側の偏光板に入射した光は液晶層によるリタデーションを殆ど生ずることなく出射側の偏光板に達し、出射側の偏光板に吸収される(黒表示状態)。従って、黒表示の状態として、液晶層を挟まない理想的なクロスニコルと殆ど同等の状態を得ることができる。一方、液晶層に電界が印加されている状態にあっては、入射側の偏光板を透過した直線偏光に対しディレクタは略45度の角度をなすので、液晶層は1/2波長板として作用し直線偏光の振動方向を90度回転させる。これにより、液晶層を通過した光は出射側の偏光板を透過する(白表示状態)。 In the vertical alignment type liquid crystal display device, the liquid crystal layer is disposed between two polarizing plates disposed in crossed Nicols. The liquid crystal layer is sandwiched between the first substrate on which the pixel electrode is formed and the second substrate on which the common electrode is formed, and in a state where no electric field is applied to the liquid crystal layer, the liquid crystal molecules are applied to these substrates. It is oriented substantially perpendicularly to it. When an electric field (longitudinal electric field) in the thickness direction of the liquid crystal layer is applied, the liquid crystal molecules constituting the liquid crystal layer are tilted so that the major axis follows the substrate. In addition, when an electric field is applied to the liquid crystal layer, the direction of the polarization axis of one polarizing plate and the director form an angle of about 45 degrees. In the state where no electric field is applied to the liquid crystal layer, the light incident on the incident side polarizing plate reaches the output side polarizing plate with almost no retardation by the liquid crystal layer, and is absorbed by the output side polarizing plate (black). Display state). Therefore, the black display state can be almost equivalent to an ideal crossed Nicol that does not sandwich the liquid crystal layer. On the other hand, when the electric field is applied to the liquid crystal layer, the director makes an angle of approximately 45 degrees with respect to the linearly polarized light transmitted through the polarizing plate on the incident side, so that the liquid crystal layer acts as a half-wave plate. Then, the vibration direction of the linearly polarized light is rotated by 90 degrees. Thereby, the light which has passed through the liquid crystal layer is transmitted through the polarizing plate on the emission side (white display state).
垂直配向型の液晶表示装置にあっては、液晶層に電界が印加された状態において液晶分子の傾く方向が一様でない場合には、表示される画像に輝度ムラが生じてしまう。このため、液晶層に電界が印加されていない状態で、液晶分子の長軸が一定の方向に且つ基板の法線方向に対して所定の角度傾くように、所謂プレチルトを与えた状態で液晶分子を略垂直に配向させる必要がある。一般に、プレチルトの方位角に示される方向(液晶分子の方位角に示される方向)は、偏光板等の光学系との組合せにより透過率が最大となる方向に設定される。 In the vertical alignment type liquid crystal display device, when the direction in which the liquid crystal molecules are tilted is not uniform in the state in which an electric field is applied to the liquid crystal layer, unevenness of brightness occurs in the displayed image. For this reason, in a state where no electric field is applied to the liquid crystal layer, the liquid crystal molecules are given a so-called pretilt so that the major axis of the liquid crystal molecules is inclined in a predetermined direction and a predetermined angle with respect to the normal direction of the substrate. Must be oriented substantially vertically. Generally, the direction indicated by the azimuth angle of the pretilt (the direction indicated by the azimuth angle of the liquid crystal molecules) is set to a direction in which the transmittance is maximized by a combination with an optical system such as a polarizing plate.
液晶分子にプレチルトを与える配向膜として、有機材料から成る膜にラビング処理を施した配向膜が周知である。また、光源から強い光が照射される投射型表示装置に用いられる液晶表示装置にあっては、耐光性に優れた無機材料から成る配向膜も用いられている。無機材料から成る配向膜は、酸化シリコン等の無機材料を基板に対して斜め方向から蒸着することにより形成することができる(例えば、特開2005−274641号公報(特許文献1)参照)。プレチルトの方向や基板の法線方向からの傾きの角度の制御は、前者の配向膜の場合には、ラビングの条件を制御することにより行われ、後者の配向膜の場合には、蒸着の条件を制御することで行われる。 An alignment film obtained by subjecting a film made of an organic material to a rubbing process is well known as an alignment film that gives a pretilt to liquid crystal molecules. Further, in a liquid crystal display device used in a projection display device irradiated with strong light from a light source, an alignment film made of an inorganic material having excellent light resistance is also used. The alignment film made of an inorganic material can be formed by vapor-depositing an inorganic material such as silicon oxide from an oblique direction with respect to the substrate (see, for example, JP-A-2005-274641 (Patent Document 1)). The pretilt direction and the tilt angle from the normal direction of the substrate are controlled by controlling the rubbing conditions in the case of the former alignment film, and the deposition conditions in the case of the latter alignment film. It is done by controlling.
垂直配向型の液晶表示装置にあっては、隣り合う画素電極に異なる値の電圧が印加されると、画素電極と隣接する画素電極との間に基板面に倣う方向の電界(横電界)が発生し、この横電界に起因して液晶分子の配列に乱れが生ずる。液晶分子の配列の乱れは、一般にディスクリネーションと呼ばれている。 In a vertical alignment type liquid crystal display device, when different voltages are applied to adjacent pixel electrodes, an electric field (lateral electric field) in a direction following the substrate surface is generated between the pixel electrode and the adjacent pixel electrode. And the disturbance of the alignment of liquid crystal molecules occurs due to the transverse electric field. Disorders of liquid crystal molecules are generally called disclination.
所謂ライン反転駆動と呼ばれる駆動方法では、奇数ラインと偶数ラインとで電圧の極性を反転させる。例えば、白表示状態において共通電極と画素電極との間に絶対値で5ボルトの電圧が印加されるとすれば、奇数ラインに属する画素電極と隣接する偶数ラインに属する画素電極との間において電位差の絶対値は最大10ボルトに達し、画素電極と画素電極との間に強い横電界が生ずる。このため、ライン反転駆動においては、画素電極の並びに沿ってディスクリネーションが生ずる。ディスクリネーションが生じた領域、特に、液晶分子の方位角が均一でない領域においては光の透過率が顕著に変化する。従って、輝度の均一性が害され、画質が悪化する。 In a so-called line inversion driving method, the polarity of the voltage is inverted between odd lines and even lines. For example, if a voltage of 5 volts in absolute value is applied between the common electrode and the pixel electrode in the white display state, a potential difference between the pixel electrode belonging to the odd line and the pixel electrode belonging to the adjacent even line is present. The absolute value of reaches a maximum of 10 volts, and a strong transverse electric field is generated between the pixel electrodes. For this reason, in line inversion driving, disclination occurs along the arrangement of pixel electrodes. In a region where disclination occurs, particularly in a region where the azimuth angles of liquid crystal molecules are not uniform, the light transmittance changes remarkably. Therefore, the uniformity of luminance is impaired and the image quality is deteriorated.
一方、所謂フレーム反転駆動と呼ばれる駆動方法では、フレーム毎に電圧の極性を反転させる。画素電極と隣接する画素電極との間の電位差の絶対値は、フレーム反転駆動ではライン反転駆動の半分となる。従って、フレーム反転駆動を採用することにより、ディスクリネーションの程度を軽減することができる。 On the other hand, in the so-called frame inversion drive method, the polarity of the voltage is inverted for each frame. The absolute value of the potential difference between the pixel electrode and the adjacent pixel electrode is half that of line inversion driving in frame inversion driving. Therefore, the degree of disclination can be reduced by employing frame inversion driving.
しかしながら、フレーム反転駆動を採用した場合であっても、輝度の高い領域と輝度の低い領域とが隣接する部分において、ある程度強い横電界が画素電極と隣接する画素電極の間に発生することを避けることはできない。例えば、液晶表示装置に黒地に白窓の画像を表示すると、白窓の境界部分にディスクリネーションが発生し、図9の(A)に示すようにライン状の暗部等が観察される場合がある。ディスクリネーションが生じた部分が遮光層等により遮光されていれば、ディスクリネーションによる影響は実質的には問題とならない。しかしながら、液晶表示装置の高精細化や開口率の向上を図る程遮光層等の幅は設計上狭くせざるを得ず、ディスクリネーションによる画質の悪化が問題となる。 However, even when frame inversion driving is employed, it is avoided that a strong lateral electric field is generated between the pixel electrode and the adjacent pixel electrode in a portion where the high luminance region and the low luminance region are adjacent to each other. It is not possible. For example, when a white window image is displayed on a black background on a liquid crystal display device, disclination occurs at the boundary portion of the white window, and a line-shaped dark portion or the like may be observed as shown in FIG. is there. If the part where the disclination occurs is shielded from light by a light shielding layer or the like, the influence of the disclination is not substantially a problem. However, the width of the light-shielding layer or the like has to be narrowed by design as the liquid crystal display device is improved in definition and the aperture ratio is improved, and deterioration of image quality due to disclination becomes a problem.
従って、本発明の目的は、ディスクリネーションによる画質の悪化を軽減することができる垂直配向型の液晶表示装置を提供することにある。 Accordingly, an object of the present invention is to provide a vertical alignment type liquid crystal display device capable of reducing deterioration in image quality due to disclination.
上記の目的を達成するための本発明の液晶表示装置は、第1基板、第1基板と対向して配置された第2基板、及び、第1基板と第2基板との間に配置された液晶層を備えた液晶表示装置であって、
第1基板の液晶層側にはマトリクス状に配列された画素電極が形成されており、
第2基板の液晶層側には共通電極が形成されており、
液晶層を構成する液晶分子は負の誘電率異方性を有しており、初期配向状態においては、液晶分子は全体として所定の方向にプレチルトを与えられた状態で実質的に垂直配向されており、
第2基板は共通電極欠如部を備えており、該共通電極欠如部は、画素電極における縁部のうち、画素電極の輪郭線に直交し且つ画素電極の内側に向かう方向とプレチルトの方位角に示される方向とが所定の角度を越える角度をなす部分に対応して形成されていることを特徴とする。
In order to achieve the above object, a liquid crystal display device of the present invention is arranged between a first substrate, a second substrate disposed opposite to the first substrate, and between the first substrate and the second substrate. A liquid crystal display device comprising a liquid crystal layer,
Pixel electrodes arranged in a matrix are formed on the liquid crystal layer side of the first substrate.
A common electrode is formed on the liquid crystal layer side of the second substrate,
The liquid crystal molecules constituting the liquid crystal layer have a negative dielectric anisotropy, and in the initial alignment state, the liquid crystal molecules are substantially vertically aligned with a pretilt in a predetermined direction as a whole. And
The second substrate includes a common electrode lacking portion, and the common electrode lacking portion has a pretilt azimuth angle that is perpendicular to the contour line of the pixel electrode and toward the inner side of the pixel electrode. It is characterized in that it is formed so as to correspond to a portion that makes an angle exceeding a predetermined angle with the indicated direction.
マトリクス状に配列された画素電極は、隣接する画素電極との間に間隔を空けて配列される。画素電極と共通電極との間の等電位面の分布と、間隔の部分と共通電極との間の等電位面の分布には差が生ずる。これにより、たとえ画素電極に同じ値の電圧が印加されたとしても、画素電極の縁部及びその近傍の電界は基本的には基板の法線方向に対して傾く方向に向かう。より具体的には、画素電極の縁部及びその近傍の電界は画素電極から遠ざかる方向に傾く。そして、負の誘電率異方性を有する液晶分子は電界に直交する方向に傾く力を受ける。従って、画素電極に電圧が印加されること自体によって、画素電極の縁部及びその近傍に位置する液晶分子には、画素電極の内側に向かって傾く方向の力(以下、「内向きの力」と称する)が加わる。そして、隣り合う画素電極に異なる値の電圧が印加されると、隣接する画素電極間の電位差に起因して画素電極と画素電極との間に横電界が発生し、その横電界によっても液晶分子には力(以下、「電位差による力」と称する)が加わる。発明者らは、「内向きの力」が液晶分子の方位角に示される方向を逆方向に向けようとする領域(以下、「逆方向領域」と称する場合がある)において、「電位差による力」が液晶分子の方位角に示される方向を逆方向に向ける方向に加わると、この領域においてディスクリネーションの発生がより顕著となることに注目した。本発明の液晶表示装置にあっては、画素電極における縁部のうち、画素電極の輪郭線に直交し且つ画素電極の内側に向かう方向とプレチルトの方位角に示される方向とが所定の角度を越える角度をなす部分に対応して第2基板に共通電極欠如部を形成することにより、逆方向領域において「内向きの力」を弱めるように電界が形成される。これにより、液晶分子の方位角を反転させようとする力が小さくなり、ディスクリネーションの程度を軽減することができる。 The pixel electrodes arranged in a matrix are arranged with an interval between adjacent pixel electrodes. There is a difference between the distribution of the equipotential surface between the pixel electrode and the common electrode and the distribution of the equipotential surface between the interval portion and the common electrode. Thereby, even if the voltage of the same value is applied to the pixel electrode, the electric field at the edge of the pixel electrode and in the vicinity thereof basically goes in a direction inclined with respect to the normal direction of the substrate. More specifically, the electric field at the edge of the pixel electrode and in the vicinity thereof is tilted away from the pixel electrode. The liquid crystal molecules having negative dielectric anisotropy are subjected to a force tilting in a direction perpendicular to the electric field. Accordingly, when a voltage is applied to the pixel electrode itself, the liquid crystal molecules located at the edge of the pixel electrode and in the vicinity thereof have a force in a direction inclined toward the inner side of the pixel electrode (hereinafter referred to as “inward force”). Will be added). When voltages having different values are applied to adjacent pixel electrodes, a horizontal electric field is generated between the pixel electrodes due to a potential difference between the adjacent pixel electrodes, and the liquid crystal molecules are also generated by the horizontal electric field. A force (hereinafter referred to as “force due to a potential difference”) is applied to. The inventors have determined that in a region where the “inward force” tends to turn the direction indicated by the azimuth angle of the liquid crystal molecules in the reverse direction (hereinafter, sometimes referred to as “reverse direction region”), It was noted that the occurrence of disclination becomes more prominent in this region when "" is added in the direction in which the direction indicated by the azimuth angle of the liquid crystal molecules is directed in the opposite direction. In the liquid crystal display device of the present invention, of the edges of the pixel electrode, the direction perpendicular to the contour line of the pixel electrode and toward the inside of the pixel electrode and the direction indicated by the azimuth angle of the pretilt form a predetermined angle. An electric field is formed so as to weaken the “inward force” in the reverse direction region by forming the common electrode lacking portion on the second substrate corresponding to the portion that makes an angle exceeding. Thereby, the force to reverse the azimuth angle of the liquid crystal molecules is reduced, and the degree of disclination can be reduced.
本発明の液晶表示装置にあっては、共通電極欠如部の平面形状は、逆方向領域において「内向きの力」を弱めるように電界が形成される限りは、任意である。共通電極欠如部は、少なくともその一部分が画素電極と対向して形成されていてもよいし、その全てが画素電極と対向して形成されていてもよい。共通電極欠如部を画素電極の輪郭線に対応して延びるスリット状とすると、逆方向領域において「内向きの力」を弱めるような電界を効果的に形成することができるので好ましい。 In the liquid crystal display device of the present invention, the planar shape of the common electrode lacking portion is arbitrary as long as an electric field is formed so as to weaken the “inward force” in the reverse direction region. At least a portion of the common electrode lacking portion may be formed to face the pixel electrode, or all of the common electrode lacking portion may be formed to face the pixel electrode. It is preferable that the common electrode lacking portion is formed into a slit extending corresponding to the contour line of the pixel electrode because an electric field that weakens the “inward force” can be effectively formed in the reverse direction region.
以上に説明した各種の好ましい構成、形態を含む本発明の液晶表示装置にあっては、画素電極の平面形状は、液晶表示装置の設計に応じて適宜設定することができる。画素電極の平面形状として、三角形形状、矩形形状、又は、六角形形状を例示することができる。画素電極を多角形形状とした場合には、角の部分には丸みを帯びさせる処理が施されていてもよい。液晶表示装置の製造等の観点からは、画素電極を矩形形状とすることが便宜である。共通電極欠如部は、画素電極における縁部のうち、画素電極の輪郭線に直交し且つ画素電極の内側に向かう方向とプレチルトの方位角に示される方向とが90度を越える角度をなす部分に対応して形成されている構成とすることができる。この場合において、画素電極は矩形形状であり、画素電極の各縁部はプレチルトの方位角に示される方向と交わる方向に延びており、共通電極欠如部は画素電極の2つの縁部に対応して略L字状に形成されている構成とすることができる。 In the liquid crystal display device of the present invention including the various preferable configurations and forms described above, the planar shape of the pixel electrode can be appropriately set according to the design of the liquid crystal display device. As the planar shape of the pixel electrode, a triangular shape, a rectangular shape, or a hexagonal shape can be exemplified. When the pixel electrode has a polygonal shape, the corner portion may be rounded. From the viewpoint of manufacturing a liquid crystal display device or the like, it is convenient to make the pixel electrode rectangular. The common electrode lacking portion is a portion of the edge portion of the pixel electrode where the direction perpendicular to the contour line of the pixel electrode and inward of the pixel electrode and the direction indicated by the pretilt azimuth angle exceeds 90 degrees. It can be set as the structure formed correspondingly. In this case, the pixel electrode has a rectangular shape, each edge of the pixel electrode extends in a direction intersecting the direction indicated by the azimuth angle of the pretilt, and the common electrode lacking part corresponds to the two edges of the pixel electrode. It can be set as the structure currently formed in the substantially L shape.
本発明の液晶表示装置は、モノクロ液晶表示装置であってもよいし、カラー液晶表示装置であってもよい。さらには、透過型の液晶表示装置であってもよいし、反射型の液晶表示装置であってもよい。液晶表示装置を構成する各種の部材や材料は、周知の部材や材料から構成することができる。尚、画素電極に接続されるスイッチング素子として、単結晶シリコン半導体基板に形成されたMOS型FETや薄膜トランジスタ(TFT)といった3端子素子や、MIM素子、バリスタ素子、ダイオード等の2端子素子を例示することができる。画素電極や共通電極は広く周知の方法により形成することができるし、共通電極欠如部も広く周知の方法により形成することができる。 The liquid crystal display device of the present invention may be a monochrome liquid crystal display device or a color liquid crystal display device. Furthermore, a transmissive liquid crystal display device or a reflective liquid crystal display device may be used. Various members and materials constituting the liquid crystal display device can be formed of known members and materials. Examples of switching elements connected to the pixel electrodes include three-terminal elements such as MOS type FETs and thin film transistors (TFTs) formed on a single crystal silicon semiconductor substrate, and two-terminal elements such as MIM elements, varistor elements, and diodes. be able to. The pixel electrode and the common electrode can be formed by a widely known method, and the common electrode lacking portion can also be formed by a widely known method.
液晶表示装置の画素(ピクセル)の値として、VGA(640,480)、S−VGA(800,600)、XGA(1024,768)、APRC(1152,900)、S−XGA(1280,1024)、U−XGA(1600,1200)、HD−TV(1920,1080)、Q−XGA(2048,1536)の他、(1920,1035)、(720,480)、(1280,960)等、画像表示用解像度の幾つかを例示することができるが、これらの値に限定するものではない。モノクロ液晶表示装置の場合には、基本的には画素数と同じ数の画素電極がマトリクス状に形成される。カラー液晶表示装置の場合には、基本的には画素数の3倍の数の画素電極がマトリクス状に形成される。画素電極は、例えばストライプ状に配列されていてもよいし、デルタ状に配列されていてもよい。画素電極の配列は、液晶表示装置の設計に応じて適宜設定すればよい。 As values of pixels of the liquid crystal display device, VGA (640, 480), S-VGA (800, 600), XGA (1024, 768), APRC (1152, 900), S-XGA (1280, 1024) , U-XGA (1600, 1200), HD-TV (1920, 1080), Q-XGA (2048, 1536), (1920, 1035), (720, 480), (1280, 960), etc. Some of the display resolutions can be exemplified, but are not limited to these values. In the case of a monochrome liquid crystal display device, basically, the same number of pixel electrodes as the number of pixels are formed in a matrix. In the case of a color liquid crystal display device, basically, three times as many pixel electrodes as the number of pixels are formed in a matrix. For example, the pixel electrodes may be arranged in a stripe shape or in a delta shape. The arrangement of the pixel electrodes may be appropriately set according to the design of the liquid crystal display device.
本発明の液晶表示装置にあっては、画素電極における縁部のうち、画素電極の輪郭線に直交し且つ画素電極の内側に向かう方向とプレチルトの方位角に示される方向とが所定の角度を越える角度をなす部分に対応して第2基板に共通電極欠如部を形成することにより、逆方向領域において内向きの力を弱めるように電界が形成される。これにより、液晶分子の方位角を反転させようとする程度が軽減されるので、ディスクリネーションの程度を軽減することができる。 In the liquid crystal display device of the present invention, of the edges of the pixel electrode, the direction perpendicular to the contour line of the pixel electrode and toward the inside of the pixel electrode and the direction indicated by the azimuth angle of the pretilt form a predetermined angle. An electric field is formed so as to weaken the inward force in the reverse direction region by forming the common electrode lacking portion on the second substrate corresponding to the portion that makes an angle exceeding. As a result, the degree of inversion of the azimuth angle of the liquid crystal molecules is reduced, so that the degree of disclination can be reduced.
以下、図面を参照して、実施例に基づき本発明を説明する。 Hereinafter, the present invention will be described based on examples with reference to the drawings.
図1は、実施例の液晶表示装置1の概念的な一部端面図である。図2の(A)は、第1基板10に形成された画素電極11の配置を説明するための模式的な平面図である。図2の(B)は、第2基板20に形成された共通電極21等の配置を説明するための模式的な平面図である。先ず、図1、図2の(A)及び(B)等を参照して、実施例の液晶表示装置1の構成と基本的な動作を説明する。 FIG. 1 is a conceptual partial end view of a liquid crystal display device 1 of an embodiment. FIG. 2A is a schematic plan view for explaining the arrangement of the pixel electrodes 11 formed on the first substrate 10. FIG. 2B is a schematic plan view for explaining the arrangement of the common electrodes 21 and the like formed on the second substrate 20. First, the configuration and basic operation of the liquid crystal display device 1 according to the embodiment will be described with reference to FIGS. 1 and 2A and 2B.
実施例の液晶表示装置1は、例えば640×480個の画素電極11を備えた、モノクロ表示の透過型液晶表示装置である。図1に示すように、液晶表示装置1は、ガラス基板等から成る第1基板10、第1基板10と対向して配置された、ガラス基板等から成る第2基板20、及び、第1基板10と第2基板20との間に配置された液晶層30を備えている。 The liquid crystal display device 1 of the embodiment is a transmissive liquid crystal display device for monochrome display including, for example, 640 × 480 pixel electrodes 11. As shown in FIG. 1, the liquid crystal display device 1 includes a first substrate 10 made of a glass substrate or the like, a second substrate 20 made of a glass substrate or the like disposed opposite to the first substrate 10, and a first substrate. 10 and a second substrate 20 are provided with a liquid crystal layer 30.
図1及び図2の(A)に示すように、第1基板10の液晶層30側には、例えば略1μmの間隔12を隔ててマトリクス状に配列された、ITO(酸化インジウム−錫)等から成る画素電極11が形成されている。図2の(A)においては、図面を簡素化するために、4×3個の画素電極11を図示した。各画素電極11の大きさは略30μm×30μmである。そして、例えば酸化シリコンから成る第1配向膜13が、画素電極11等を覆うように全面に形成されている。第1配向膜13及び後述する第2配向膜23については、後ほど詳しく説明する。尚、実施例においては、第1基板10には、各画素電極11に接続されたTFT等のスイッチング素子、データ線や走査線等の各種配線、各種の層間絶縁膜、遮光層等が形成されているが、図面においてはこれらの図示を省略した。第2基板20においても同様に、共通電極21、共通電極欠如部22、第2配向膜23以外の構成要素の図示を省略した。 As shown in FIG. 1 and FIG. 2A, on the liquid crystal layer 30 side of the first substrate 10, for example, ITO (indium oxide-tin) arranged in a matrix with an interval 12 of about 1 μm. A pixel electrode 11 made of is formed. In FIG. 2A, 4 × 3 pixel electrodes 11 are shown in order to simplify the drawing. The size of each pixel electrode 11 is approximately 30 μm × 30 μm. Then, a first alignment film 13 made of, for example, silicon oxide is formed on the entire surface so as to cover the pixel electrode 11 and the like. The first alignment film 13 and the second alignment film 23 described later will be described in detail later. In the embodiment, the first substrate 10 is formed with switching elements such as TFTs connected to the pixel electrodes 11, various wirings such as data lines and scanning lines, various interlayer insulating films, light shielding layers, and the like. However, these are not shown in the drawing. Similarly, in the second substrate 20, illustration of components other than the common electrode 21, the common electrode lacking portion 22, and the second alignment film 23 is omitted.
図1及び図2の(B)に示すように、第2基板20の液晶層30側にはITO等から成る共通電極21が形成されている。また、第2基板20は共通電極欠如部22を備えている。図2の(B)においては、図2の(A)と同様に図面を簡素化するために、4×3個の共通電極欠如部22を図示した。共通電極欠如部22については後述する。そして、例えば酸化シリコンから成る第2配向膜23が、共通電極21等を覆うように全面に形成されている。 As shown in FIG. 1 and FIG. 2B, a common electrode 21 made of ITO or the like is formed on the liquid crystal layer 30 side of the second substrate 20. The second substrate 20 includes a common electrode lacking portion 22. In FIG. 2B, 4 × 3 common electrode lacking portions 22 are shown in order to simplify the drawing as in FIG. The common electrode lacking portion 22 will be described later. A second alignment film 23 made of, for example, silicon oxide is formed on the entire surface so as to cover the common electrode 21 and the like.
第1基板10と第2基板20との間に配置された液晶層30を構成する液晶分子31は負の誘電率異方性を有しており、初期配向状態においては、液晶分子は全体として所定の方向にプレチルトを与えられた状態で実質的に垂直配向されている。第1基板10と第2基板20との間には、液晶層30の厚さを規定するための図示せぬスペーサが配置されている。実施例においては、液晶層30の厚さを設計上2.5μmに設定した。尚、プレチルトの詳細については後述する。 The liquid crystal molecules 31 constituting the liquid crystal layer 30 disposed between the first substrate 10 and the second substrate 20 have a negative dielectric anisotropy, and in the initial alignment state, the liquid crystal molecules as a whole It is substantially vertically aligned with a pretilt applied in a predetermined direction. A spacer (not shown) for defining the thickness of the liquid crystal layer 30 is disposed between the first substrate 10 and the second substrate 20. In the example, the thickness of the liquid crystal layer 30 was set to 2.5 μm by design. Details of the pretilt will be described later.
図3の(A)は、初期配向状態(換言すれば、液晶層30に電界が印加されていないときの状態)における液晶分子31の状態を説明するための模式的な断面図である。図3の(B)は、画素電極11の配置と、第1配向膜13及び第2配向膜23の配向方向と、初期配向状態における液晶分子31との関係を説明するための模式的な平面図である。尚、図面を簡素化するために、図3の(A)においては第1基板10と第2基板20の表示を省略し、図3の(B)においては3×3個の画素電極11を図示した。後述する図5の(A)及び(B)、並びに、図7の(A)及び(B)においても同様である。 FIG. 3A is a schematic cross-sectional view for explaining the state of the liquid crystal molecules 31 in the initial alignment state (in other words, the state when no electric field is applied to the liquid crystal layer 30). FIG. 3B is a schematic plan view for explaining the relationship between the arrangement of the pixel electrodes 11, the alignment directions of the first alignment film 13 and the second alignment film 23, and the liquid crystal molecules 31 in the initial alignment state. FIG. In order to simplify the drawing, the display of the first substrate 10 and the second substrate 20 is omitted in FIG. 3A, and 3 × 3 pixel electrodes 11 are formed in FIG. Illustrated. The same applies to (A) and (B) of FIG. 5 and (A) and (B) of FIG.
図3の(B)に示すように、画素電極11は、X方向に倣う縁部11a及び縁部11c、並びに、Y方向に倣う縁部11b及び縁部11dを備えている。第1配向膜13と第2配向膜23は、それぞれの配向規制方向が互いにアンチパラレルとなるように形成されている。以下、X−Y平面において+X方向に延びる方向を0度、+Y方向に延びる方向を90度として方位角を考える。第1配向膜13は方位角が225度の方向に酸化シリコン等が斜め蒸着されて形成されており、第2配向膜23は方位角が45度の方向に酸化シリコン等が斜め蒸着されて形成されている。第1配向膜13の配向方向(蒸着方向)を符号13Aを付した矢印で示した。同様に、第2配向膜23の配向方向(蒸着方向)を符号23Aを付した矢印で示した。液晶層30を構成する液晶分子31は、第1配向膜13と第2配向膜23とによって配向規制され、電界が印加されていない初期配向状態においては、液晶分子は全体として所定の方向(後述するように方位角で45度の方向)にプレチルトを与えられた状態で実質的に垂直配向される。 As shown in FIG. 3B, the pixel electrode 11 includes an edge portion 11a and an edge portion 11c that follow the X direction, and an edge portion 11b and an edge portion 11d that follow the Y direction. The first alignment film 13 and the second alignment film 23 are formed so that their alignment regulating directions are antiparallel to each other. Hereinafter, an azimuth angle is considered with the direction extending in the + X direction being 0 degrees and the direction extending in the + Y direction being 90 degrees on the XY plane. The first alignment film 13 is formed by obliquely depositing silicon oxide or the like in a direction having an azimuth angle of 225 degrees, and the second alignment film 23 is formed by obliquely depositing silicon oxide or the like in a direction having an azimuth angle of 45 degrees. Has been. The orientation direction (deposition direction) of the first alignment film 13 is indicated by an arrow with a reference numeral 13A. Similarly, the orientation direction (evaporation direction) of the second alignment film 23 is indicated by an arrow denoted by reference numeral 23A. The liquid crystal molecules 31 constituting the liquid crystal layer 30 are aligned by the first alignment film 13 and the second alignment film 23, and in an initial alignment state where no electric field is applied, the liquid crystal molecules as a whole have a predetermined direction (described later). Thus, the film is substantially vertically aligned in a state where a pretilt is given in a direction of 45 degrees in azimuth.
図4の(A)及び(B)は、プレチルトが与えられた液晶分子31の仰角、及び、方位角を説明するための模式図である。液晶層30に電界が印加されていない状態にあっては、図4の(A)に示すように、液晶分子31は、X−Y平面に対して液晶分子31は仰角θp(通常、83度以上90度未満の範囲内に設定される)をなして略垂直に配向する。また、図4の(B)に示すように、液晶分子31の方位角θdは45度をなす。液晶層30に縦方向(液晶層30の厚み方向)の電界が印加されると、図4の(A)及び(B)に破線で示すように、基本的には液晶分子31は方位角θdを保った状態でその長軸がX−Y平面に倣うように傾く。 4A and 4B are schematic diagrams for explaining the elevation angle and the azimuth angle of the liquid crystal molecules 31 to which the pretilt is given. In a state where no electric field is applied to the liquid crystal layer 30, as shown in FIG. 4A, the liquid crystal molecules 31 are at an elevation angle θ p (usually 83 p with respect to the XY plane). In a range of more than 90 degrees and less than 90 degrees). Further, as shown in FIG. 4B, the azimuth angle θ d of the liquid crystal molecules 31 is 45 degrees. When an electric field in the vertical direction (thickness direction of the liquid crystal layer 30) is applied to the liquid crystal layer 30, the liquid crystal molecules 31 basically have an azimuth angle θ as shown by broken lines in FIGS. While maintaining d , the long axis is inclined so as to follow the XY plane.
図1において、第1基板10の液晶層30側と反対側に、例えば偏光軸がX方向に倣うように図示せぬ第1の偏光板が配置され、第2基板20の液晶層30側と反対側に、偏光軸がY方向に倣うように図示せぬ第2の偏光板が配置され、第1の偏光板側に光源が配置されているとする。尚、第1の偏光板の偏光軸がY方向に倣い、第2の偏光板の偏光軸がX方向に倣う構成であってもよい。液晶層30に電界が印加されていない状態にあっては、液晶分子31は略垂直方向に配向しているため、光源側の第1の偏光板に入射した光は液晶層30によるリタデーションを殆ど生ずることなく第2の偏光板に達し吸収される。従って、原理的には、液晶層30を挟まない理想的なクロスニコルと殆ど同等の黒表示状態を得ることができる。一方、液晶層30に電界が印加されている状態にあっては、液晶分子31はその長軸がX−Y平面に倣うように傾く。また、入射側の第1の偏光板を透過した直線偏光に対し、液晶分子の方位角は略45度の角度をなす。従って、液晶層30は1/2波長板として作用し、直線偏光の振動方向を90度回転させる。これにより、液晶層30を通過した光は第2の偏光板を透過し、白表示状態となる。 In FIG. 1, for example, a first polarizing plate (not shown) is disposed on the opposite side of the first substrate 10 to the liquid crystal layer 30 side so that the polarization axis follows the X direction. It is assumed that a second polarizing plate (not shown) is arranged on the opposite side so that the polarization axis follows the Y direction, and a light source is arranged on the first polarizing plate side. Note that the polarization axis of the first polarizing plate may follow the Y direction, and the polarization axis of the second polarizing plate may follow the X direction. When no electric field is applied to the liquid crystal layer 30, the liquid crystal molecules 31 are aligned in a substantially vertical direction, so that light incident on the first polarizing plate on the light source side hardly undergoes retardation by the liquid crystal layer 30. Without reaching, it reaches the second polarizing plate and is absorbed. Therefore, in principle, it is possible to obtain a black display state almost equivalent to an ideal crossed Nicol that does not sandwich the liquid crystal layer 30. On the other hand, in a state where an electric field is applied to the liquid crystal layer 30, the liquid crystal molecules 31 are tilted so that the major axis follows the XY plane. In addition, the azimuth angle of the liquid crystal molecules is approximately 45 degrees with respect to the linearly polarized light transmitted through the first polarizing plate on the incident side. Accordingly, the liquid crystal layer 30 acts as a half-wave plate and rotates the vibration direction of linearly polarized light by 90 degrees. As a result, the light that has passed through the liquid crystal layer 30 passes through the second polarizing plate and enters a white display state.
次に、上記の液晶表示装置1の製造方法を説明する。先ず、第1基板10上に、走査線、遮光層、半導体層から成るトランジスタ、層間絶縁層等を、周知の方法により適宜形成する。 Next, a manufacturing method of the liquid crystal display device 1 will be described. First, a scanning line, a light shielding layer, a transistor composed of a semiconductor layer, an interlayer insulating layer, and the like are appropriately formed on the first substrate 10 by a known method.
次いで、周知の方法により例えばITO膜の成膜及びパターニングを行い、マトリクス状に配列された画素電極11を形成する。その後、例えば酸化シリコンを斜め方向から蒸着し、第1配向膜13を形成する。以上で第1基板10に関する一連の工程が完了する。 Next, for example, an ITO film is formed and patterned by a known method to form pixel electrodes 11 arranged in a matrix. Thereafter, for example, silicon oxide is deposited from an oblique direction to form the first alignment film 13. Thus, a series of steps relating to the first substrate 10 is completed.
また、第2基板20上に、必要に応じてブラックマトリックス、層間絶縁層等を周知の方法により適宜形成する。その後、周知の方法により例えばITO膜の成膜及びパターニングを行い、共通電極21と共通電極欠如部22を形成する。その後、例えば酸化シリコンを斜め方向から蒸着し、第2配向膜23を形成する。以上で第2基板20に関する一連の工程が完了する。 Further, a black matrix, an interlayer insulating layer, and the like are appropriately formed on the second substrate 20 as necessary by a known method. Thereafter, for example, an ITO film is formed and patterned by a known method to form the common electrode 21 and the common electrode lacking portion 22. Thereafter, for example, silicon oxide is deposited from an oblique direction to form the second alignment film 23. Thus, a series of steps relating to the second substrate 20 is completed.
そして、第1基板10と上記工程を経た第2基板20とを対向させ、その間に液晶材料を封入した後、周囲を封止し、液晶表示装置1を完成することができる。その後、必要に応じて第1基板10側に第1の偏光板、第2基板20側に第2の偏光板を取り付け、外部の回路との結線やバックライトの取付等を行えばよい。 And after making the 1st board | substrate 10 and the 2nd board | substrate 20 which passed the said process oppose and encapsulating liquid crystal material in the meantime, the circumference | surroundings are sealed and the liquid crystal display device 1 can be completed. Thereafter, the first polarizing plate may be attached to the first substrate 10 side and the second polarizing plate may be attached to the second substrate 20 side as necessary, and connection with an external circuit, attachment of a backlight, or the like may be performed.
次いで、図5の(A)及び(B)を参照して、共通電極欠如部22が形成されていない比較例の液晶表示装置2の動作について説明する。比較例の液晶表示装置2は、実施例の液晶表示装置1に対し、共通電極欠如部22が形成されていない点のみが相違する。図5の(A)は、比較例の液晶表示装置2において、共通電極21に一定電圧(例えば0ボルト)が印加され、各画素電極11に同一の電圧(例えば5ボルト)が印加されたときの、液晶分子31の状態を説明するための模式的な断面図である。図5の(B)は、画素電極11の配置と、第1配向膜13及び第2配向膜23の配向方向と、液晶分子31との関係を説明するための模式的な平面図である。 Next, the operation of the liquid crystal display device 2 of the comparative example in which the common electrode lacking portion 22 is not formed will be described with reference to FIGS. The liquid crystal display device 2 of the comparative example is different from the liquid crystal display device 1 of the embodiment only in that the common electrode lacking portion 22 is not formed. FIG. 5A shows a case where a constant voltage (for example, 0 volt) is applied to the common electrode 21 and the same voltage (for example, 5 volt) is applied to each pixel electrode 11 in the liquid crystal display device 2 of the comparative example. 2 is a schematic cross-sectional view for explaining the state of liquid crystal molecules 31. FIG. FIG. 5B is a schematic plan view for explaining the relationship between the arrangement of the pixel electrodes 11, the alignment directions of the first alignment film 13 and the second alignment film 23, and the liquid crystal molecules 31.
マトリクス状に配列された画素電極11は、隣接する画素電極11との間に間隔12を空けて配列されている。画素電極11と共通電極21との間の等電位面の分布と、間隔12と共通電極21との間の等電位面の分布には差が生じ、結果として、画素電極11と共通電極21との間に形成される電界は、画素電極11の縁部11a,11b,11c,11d及びこれらの近傍では湾曲する。図5の(A)にあっては、画素電極11の中央部の電界を模式的に符号41で示し、縁部11b及びその近傍の電界を模式的に符号41bで示し、縁部11d及びその近傍の電界の様子を模式的に符号41dで示した。尚、縁部11aと縁部11cに関する電界の図示は省略した。 The pixel electrodes 11 arranged in a matrix are arranged with an interval 12 between adjacent pixel electrodes 11. There is a difference between the distribution of the equipotential surface between the pixel electrode 11 and the common electrode 21 and the distribution of the equipotential surface between the interval 12 and the common electrode 21. As a result, the pixel electrode 11 and the common electrode 21 The electric field formed between them is curved at the edges 11a, 11b, 11c, 11d of the pixel electrode 11 and in the vicinity thereof. In FIG. 5A, the electric field at the center of the pixel electrode 11 is schematically indicated by reference numeral 41, the electric field at the edge 11b and its vicinity is indicated by reference numeral 41b, and the edge 11d and The state of the electric field in the vicinity is schematically indicated by reference numeral 41d. In addition, illustration of the electric field regarding the edge part 11a and the edge part 11c was abbreviate | omitted.
以上説明したように、画素電極11の縁部11a,11b,11c,11d及びその近傍の電界は、第1基板10の法線方向(=画素電極11の法線方向)に対して傾く方向に、より具体的には、図5の(A)に示す電界41bや41dのように、画素電極11から遠ざかる方向に傾く。ここで、液晶層30を構成する液晶分子31は負の誘電率異方性を有する。このため、画素電極11の縁部11a,11b,11c,11d及びこれらの近傍に位置する液晶分子31は、画素電極の内側に向かって傾く方向に力を受ける。このように、画素電極11に電圧が印加されること自体によって、画素電極11の縁部及びその近傍に位置する液晶分子31には、画素電極11の内側に向かって傾く方向の力(以下、「内向きの力」と称する)が加わる。 As described above, the electric fields near the edges 11a, 11b, 11c, and 11d of the pixel electrode 11 and the vicinity thereof are inclined in the direction inclined with respect to the normal direction of the first substrate 10 (= the normal direction of the pixel electrode 11). More specifically, it tilts away from the pixel electrode 11 like an electric field 41b or 41d shown in FIG. Here, the liquid crystal molecules 31 constituting the liquid crystal layer 30 have negative dielectric anisotropy. For this reason, the edges 11a, 11b, 11c, 11d of the pixel electrode 11 and the liquid crystal molecules 31 located in the vicinity thereof receive a force in a direction in which they are inclined toward the inside of the pixel electrode. In this way, by applying a voltage to the pixel electrode 11 itself, the liquid crystal molecules 31 located at the edge of the pixel electrode 11 and in the vicinity thereof have a force (hereinafter referred to as “inclination”) toward the inner side of the pixel electrode 11. (Referred to as “inward force”).
図6の(A)は画素電極11の縁部及びその近傍における「内向きの力」の方向を模式的に示した図である。画素電極11の縁部11a,11bの「内向きの力」が、液晶分子31の方位角θdに倣う方向(換言すれば、X−Y平面上で略45度の方位角の方向)の成分を含むのに対し、画素電極11の縁部11c,11dの「内向きの力」は、液晶分子31の方位角θdを反転させる方向(換言すれば、X−Y平面上で略225度の方位角の方向)の成分を含む。従って、図5の(B)に示すように、画素電極11の縁部11c,11d及びこれらの近傍においては、「内向きの力」により液晶分子31の方位角が反転される方向に力が加わる。従って、縁部11a,11bよりもディスクリネーションが目立ちやすい傾向にある。 FIG. 6A is a diagram schematically showing the direction of “inward force” at the edge of the pixel electrode 11 and in the vicinity thereof. Edge 11a of the pixel electrode 11, "inward force" and 11b are, (in other words, X-Y-direction of the azimuth angle of substantially 45 degrees in the plane) direction to follow the azimuth theta d of the liquid crystal molecules 31 while containing component, the edge portion 11c of the pixel electrode 11, "inward force" is the 11d, in other words a direction (for inverting the azimuth angle theta d of the liquid crystal molecules 31, substantially on the X-Y plane 225 Azimuth angle direction) component. Accordingly, as shown in FIG. 5B, at the edges 11c and 11d of the pixel electrode 11 and in the vicinity thereof, a force is applied in the direction in which the azimuth angle of the liquid crystal molecules 31 is reversed by the “inward force”. Join. Accordingly, disclination tends to be more conspicuous than the edges 11a and 11b.
そこで、実施例の液晶表示装置1にあっては、第2基板20は共通電極欠如部22を備えており、該共通電極欠如部22は、画素電極11における縁部のうち、画素電極11の輪郭線に直交し且つ画素電極11の内側に向かう方向とプレチルトの方位角θdに示される方向とが所定の角度を越える角度をなす部分に対応して形成されている構成とした。図6の(B)は第2基板20に形成された共通電極欠如部22と、画素電極11の縁部との関係を説明するための模式的な平面図である。 Therefore, in the liquid crystal display device 1 according to the embodiment, the second substrate 20 includes the common electrode lacking portion 22, and the common electrode lacking portion 22 is the edge of the pixel electrode 11 in the pixel electrode 11. and a structure in which the direction indicated orthogonal and azimuth theta d direction and pretilt toward the inside of the pixel electrode 11 in the contour line is formed corresponding to a portion at an angle exceeding a predetermined angle. FIG. 6B is a schematic plan view for explaining the relationship between the common electrode missing portion 22 formed on the second substrate 20 and the edge of the pixel electrode 11.
図6の(B)に示すように、共通電極欠如部22は、少なくともその一部が画素電極11と対向して形成されている。共通電極欠如部22は、画素電極11の輪郭線に対応して延びるスリット状である。 As shown in FIG. 6B, at least a part of the common electrode lacking portion 22 is formed to face the pixel electrode 11. The common electrode lacking portion 22 has a slit shape extending corresponding to the contour line of the pixel electrode 11.
共通電極欠如部22は、画素電極11における縁部のうち、画素電極11の輪郭線に直交し且つ画素電極11の内側に向かう方向とプレチルトの方位角θdに示される方向とが90度を越える角度をなす部分に対応して形成されている。より具体的には、画素電極11は矩形形状であり、画素電極11の各縁部はプレチルトの方位角θdに示される方向と交わる方向に延びていると共に、共通電極欠如部22は画素電極11の2つの縁部11c,11dに対応して略L字状に形成されている。 Common electrode Lack unit 22, among the edges of the pixel electrode 11, and the direction indicated by the azimuth angle theta d direction and pretilt inwardly directed orthogonally and pixel electrodes 11 in the contour of the pixel electrode 11 is 90 degrees It is formed so as to correspond to the part that makes an angle exceeding. More specifically, the pixel electrode 11 has a rectangular shape, and each edge portion of the pixel electrode 11 extends in a direction intersecting the direction indicated by the azimuth angle θ d of the pretilt, and the common electrode lacking portion 22 is formed of the pixel electrode. 11 are formed in a substantially L shape corresponding to the two edges 11c and 11d.
図7の(A)及び(B)を参照して、共通電極欠如部22が形成されている実施例の液晶表示装置1の動作について説明する。図5の(A)と同様に、図7の(A)は、図5の(A)と同様に、共通電極21に一定電圧(例えば0ボルト)が印加され、各画素電極11に同一の電圧(例えば5ボルト)が印加されたときの、液晶分子31の傾きを説明するための模式的な断面図である。図7の(B)は、図5の(B)と同様に、画素電極11の配置と、第1配向膜13及び第2配向膜23の配向方向と、液晶分子31の傾きとの関係を説明するための模式的な平面図である。 With reference to FIGS. 7A and 7B, the operation of the liquid crystal display device 1 of the embodiment in which the common electrode lacking portion 22 is formed will be described. Similar to FIG. 5A, in FIG. 7A, as in FIG. 5A, a constant voltage (for example, 0 volts) is applied to the common electrode 21, and each pixel electrode 11 is identical. FIG. 5 is a schematic cross-sectional view for explaining the inclination of liquid crystal molecules 31 when a voltage (for example, 5 volts) is applied. 7B shows the relationship between the arrangement of the pixel electrodes 11, the alignment directions of the first alignment film 13 and the second alignment film 23, and the tilt of the liquid crystal molecules 31, as in FIG. It is a typical top view for demonstrating.
画素電極11の縁部11c,11dに対応して共通電極欠如部22が形成されているので、画素電極11と共通電極21との間に形成される電界は、特に画素電極11の縁部11c,11d及びこれらの近傍において大きく変化する。即ち、共通電極21が形成されている部分と共通電極欠如部22が形成されている部分とで等電位面の分布に差が生じ、結果として、画素電極11と共通電極21との間に形成される電界は、画素電極11の縁部11c,11d及びこれらの近傍では、画素電極11の内側に向かう方向に湾曲する。図7の(A)にあっては、画素電極11の中央部の電界を模式的に符号42で示し、縁部11b及びその近傍の電界を模式的に符号42bで示し、縁部11d及びその近傍の電界の様子を模式的に符号42dで示した。尚、縁部11aと縁部11cに関する電界の図示は省略した。 Since the common electrode lacking portion 22 is formed corresponding to the edges 11 c and 11 d of the pixel electrode 11, the electric field formed between the pixel electrode 11 and the common electrode 21 is particularly the edge 11 c of the pixel electrode 11. , 11d and in the vicinity thereof. That is, there is a difference in equipotential surface distribution between the portion where the common electrode 21 is formed and the portion where the common electrode lacking portion 22 is formed, and as a result, the pixel electrode 11 and the common electrode 21 are formed. The applied electric field is curved in the direction toward the inside of the pixel electrode 11 at the edges 11 c and 11 d of the pixel electrode 11 and in the vicinity thereof. In FIG. 7A, the electric field at the center of the pixel electrode 11 is schematically indicated by reference numeral 42, the electric field at the edge 11b and its vicinity is schematically indicated by reference numeral 42b, and the edge 11d and its edge The state of the electric field in the vicinity is schematically indicated by reference numeral 42d. In addition, illustration of the electric field regarding the edge part 11a and the edge part 11c was abbreviate | omitted.
実施例の液晶表示装置1にあっては、画素電極11の縁部11c,11d及びこれらの近傍の電界は、共通電極欠如部22を設けることにより、画素電極11の内側に向かう方向に湾曲するように変化する。従って、画素電極11の縁部11c,11d及びこれらの近傍において「内向きの力」は弱くなる(尚、場合によっては、力の向きも反転する)。これにより、縁部11a,11b及びこれらの近傍におけるディスクリネーションの程度が軽減される。 In the liquid crystal display device 1 of the embodiment, the edges 11c and 11d of the pixel electrode 11 and the electric field in the vicinity thereof are curved in the direction toward the inside of the pixel electrode 11 by providing the common electrode lacking portion 22. To change. Accordingly, the “inward force” becomes weak at the edges 11c and 11d of the pixel electrode 11 and in the vicinity thereof (in some cases, the direction of the force is also reversed). This reduces the degree of disclination at the edges 11a and 11b and in the vicinity thereof.
尚、図6の(B)及び図7の(A)においては、共通電極欠如部22の一部分が画素電極11と対向するとして説明したが、これに限るものではない。液晶表示装置の設計にもよるが、例えば図8に示すように、共通電極欠如部22の全てが画素電極11と対向する構成とすることもできる。 6B and 7A, it has been described that a part of the common electrode lacking portion 22 faces the pixel electrode 11, but the present invention is not limited to this. Although depending on the design of the liquid crystal display device, for example, as illustrated in FIG. 8, the common electrode lacking portion 22 may be configured to face the pixel electrode 11.
図9の(A)及び(B)を参照して、ディスクリネーションの軽減効果について説明する。図9の(A)は、液晶表示装置において黒地に白窓を表示したときの、白窓の境界部分に発生したディスクリネーションによるライン状の暗部を示したものである。液晶表示装置はフレーム反転駆動され、画素電極11と共通電極21の間の電位差は、黒地部分で0ボルト、白窓部分で5ボルトである。 With reference to FIGS. 9A and 9B, the disclination reducing effect will be described. FIG. 9A shows a line-shaped dark portion due to disclination generated at a boundary portion of a white window when a white window is displayed on a black background in the liquid crystal display device. The liquid crystal display device is driven by frame inversion, and the potential difference between the pixel electrode 11 and the common electrode 21 is 0 volt at the black background portion and 5 volt at the white window portion.
図9の(B)は、ライン状の暗部の評価方法を説明するための模式図である。白窓の境界部の画素の中心を横切るA−A線上における輝度を求め、画素の中心の輝度を基準値として正規化した。縦軸を正規化した輝度とし、横軸をA−A線上の位置として輝度変化をグラフ化し、輝度が0.5まで低下した位置P1を求め、位置P1から画素の端までの距離L2を求めた。そして、画素の幅L1(約30μm)に対する距離L2の割合、即ち、L2/L1の値の大小をもって、ライン状の暗部の程度を評価した。共通電極欠如部22が形成されていない構成の液晶表示装置にあっては、L2/L1の値は約0.21であった。 FIG. 9B is a schematic diagram for explaining a method for evaluating a line-shaped dark portion. The luminance on the AA line crossing the center of the pixel at the boundary of the white window was obtained and normalized with the luminance at the center of the pixel as a reference value. The vertical axis is normalized luminance, the horizontal axis is the position on the AA line, and the change in luminance is graphed. A position P 1 where the luminance is reduced to 0.5 is obtained, and the distance L from the position P 1 to the end of the pixel is obtained. 2 was sought. The degree of the line-shaped dark portion was evaluated based on the ratio of the distance L 2 to the pixel width L 1 (about 30 μm), that is, the magnitude of the value of L 2 / L 1 . In the liquid crystal display device in which the common electrode lacking portion 22 is not formed, the value of L 2 / L 1 was about 0.21.
図10の(A)及び(B)は、ディスクリネーションの軽減効果を確認する際に用いた液晶表示装置における、画素電極11と共通電極欠如部22との関係を説明するための模式的な平面図である。図10の(A)及び(B)に示すように共通電極欠如部22が形成された液晶表示装置を準備し、上記の評価方法に基づきライン状の暗部の程度を評価した。尚、図10の(A)及び(B)における共通電極欠如部22の幅W1,W2を共に1μmとした。 10A and 10B are schematic diagrams for explaining the relationship between the pixel electrode 11 and the common electrode lacking portion 22 in the liquid crystal display device used when confirming the effect of reducing disclination. It is a top view. A liquid crystal display device in which the common electrode lacking portion 22 was formed as shown in FIGS. 10A and 10B was prepared, and the degree of the line-shaped dark portion was evaluated based on the above evaluation method. Note that the widths W 1 and W 2 of the common electrode lacking portion 22 in FIGS. 10A and 10B are both 1 μm.
図10の(A)においては、共通電極欠如部22は、画素電極の縁部11c,11dにおいて約0.5μmの幅で対向するように形成した。この構成の液晶表示装置にあっては、L2/L1の値は約0.18であった。また、図10の(B)においては、画素電極11と隣接する画素電極11との間隔12の中心から共通電極欠如部22の中心までの距離D1,D2を約3μmとして形成した。この構成の液晶表示装置にあっては、L2/L1の値は約0.17であり、いずれもライン状の暗部の程度が軽減されていることが確認された。 In FIG. 10A, the common electrode lacking portion 22 is formed so as to oppose the edge portions 11c and 11d of the pixel electrode with a width of about 0.5 μm. In the liquid crystal display device having this configuration, the value of L 2 / L 1 was about 0.18. In FIG. 10B, distances D 1 and D 2 from the center of the interval 12 between the pixel electrode 11 and the adjacent pixel electrode 11 to the center of the common electrode lacking portion 22 are set to about 3 μm. In the liquid crystal display device having this configuration, the value of L 2 / L 1 was about 0.17, and it was confirmed that the degree of the line-shaped dark portion was all reduced.
以上、本発明を好ましい実施例に基づき説明したが、本発明はこれらの実施例に限定されるものではない。実施例にて説明した液晶表示装置の構成、構造は例示であり、適宜変更することができる。 As mentioned above, although this invention was demonstrated based on the preferable Example, this invention is not limited to these Examples. The configurations and structures of the liquid crystal display devices described in the embodiments are examples and can be changed as appropriate.
例えば、1つの画素電極が占める領域において、ある領域の部分と他の領域の部分とで液晶分子の初期配向状態を異にする構成の液晶表示装置にあっては、各領域部分におけるプレチルトの向きに基づいて共通電極欠如部を設ける場所を決定すればよい。 For example, in a region occupied by one pixel electrode, in a liquid crystal display device having a configuration in which the initial alignment state of liquid crystal molecules is different between a portion of one region and a portion of another region, the direction of the pretilt in each region portion The location where the common electrode lacking portion is provided may be determined based on the above.
10・・・第1基板、11・・・画素電極、11a,11b,11c,11d・・・画素電極の縁部、12・・・間隔、13・・・第1配向膜、20・・・基板、21・・・共通電極、22・・・共通電極欠如部、23・・・第2配向膜、30・・・液晶層、31・・・液晶分子、41,41b,41d、42,42b,42d・・・電界 DESCRIPTION OF SYMBOLS 10 ... 1st board | substrate, 11 ... Pixel electrode, 11a, 11b, 11c, 11d ... Edge of pixel electrode, 12 ... Space | interval, 13 ... 1st alignment film, 20 ... Substrate, 21 ... common electrode, 22 ... common electrode lacking portion, 23 ... second alignment film, 30 ... liquid crystal layer, 31 ... liquid crystal molecule, 41, 41b, 41d, 42, 42b 42d ... Electric field
Claims (5)
第1基板の液晶層側にはマトリクス状に配列された画素電極が形成されており、
第2基板の液晶層側には共通電極が形成されており、
液晶層を構成する液晶分子は負の誘電率異方性を有しており、初期配向状態においては、液晶分子は全体として所定の方向にプレチルトを与えられた状態で実質的に垂直配向されており、
第2基板は共通電極欠如部を備えており、該共通電極欠如部は、画素電極における縁部のうち、画素電極の輪郭線に直交し且つ画素電極の内側に向かう方向とプレチルトの方位角に示される方向とが所定の角度を越える角度をなす部分に対応して形成されていることを特徴とする液晶表示装置。 A liquid crystal display device comprising a first substrate, a second substrate disposed opposite to the first substrate, and a liquid crystal layer disposed between the first substrate and the second substrate,
Pixel electrodes arranged in a matrix are formed on the liquid crystal layer side of the first substrate.
A common electrode is formed on the liquid crystal layer side of the second substrate,
The liquid crystal molecules constituting the liquid crystal layer have a negative dielectric anisotropy, and in the initial alignment state, the liquid crystal molecules are substantially vertically aligned with a pretilt applied in a predetermined direction as a whole. And
The second substrate includes a common electrode lacking portion, and the common electrode lacking portion has a pretilt azimuth angle in a direction perpendicular to the contour line of the pixel electrode and toward the inside of the pixel electrode. A liquid crystal display device, characterized in that the liquid crystal display device is formed so as to correspond to a portion where the direction shown is an angle exceeding a predetermined angle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008004478A JP2009168924A (en) | 2008-01-11 | 2008-01-11 | Liquid-crystal display device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008004478A JP2009168924A (en) | 2008-01-11 | 2008-01-11 | Liquid-crystal display device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009168924A true JP2009168924A (en) | 2009-07-30 |
Family
ID=40970193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008004478A Pending JP2009168924A (en) | 2008-01-11 | 2008-01-11 | Liquid-crystal display device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009168924A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2431797A1 (en) * | 2010-09-17 | 2012-03-21 | Optrex Corporation | Liquid crystal display element |
CN102116972B (en) * | 2009-12-30 | 2012-05-09 | 上海天马微电子有限公司 | Liquid crystal display device and method for driving liquid crystal display device |
JP2012108335A (en) * | 2010-11-18 | 2012-06-07 | Stanley Electric Co Ltd | Liquid crystal display element |
US8675161B2 (en) | 2010-10-08 | 2014-03-18 | Seiko Epson Corporation | Liquid crystal display device, method of manufacturing the liquid crystal display device and electronic apparatus |
JP2015025869A (en) * | 2013-07-24 | 2015-02-05 | スタンレー電気株式会社 | Liquid crystal display device |
-
2008
- 2008-01-11 JP JP2008004478A patent/JP2009168924A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102116972B (en) * | 2009-12-30 | 2012-05-09 | 上海天马微电子有限公司 | Liquid crystal display device and method for driving liquid crystal display device |
EP2431797A1 (en) * | 2010-09-17 | 2012-03-21 | Optrex Corporation | Liquid crystal display element |
JP2012063711A (en) * | 2010-09-17 | 2012-03-29 | Optrex Corp | Liquid crystal display device |
CN102411235A (en) * | 2010-09-17 | 2012-04-11 | 奥博特瑞克斯株式会社 | Liquid crystal display element |
US8593607B2 (en) | 2010-09-17 | 2013-11-26 | Optrex Corporation | Liquid crystal display element |
CN102411235B (en) * | 2010-09-17 | 2016-09-28 | 奥博特瑞克斯株式会社 | Liquid crystal display cells |
US8675161B2 (en) | 2010-10-08 | 2014-03-18 | Seiko Epson Corporation | Liquid crystal display device, method of manufacturing the liquid crystal display device and electronic apparatus |
JP2012108335A (en) * | 2010-11-18 | 2012-06-07 | Stanley Electric Co Ltd | Liquid crystal display element |
JP2015025869A (en) * | 2013-07-24 | 2015-02-05 | スタンレー電気株式会社 | Liquid crystal display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI304492B (en) | ||
JP5121529B2 (en) | Liquid crystal display device and electronic device | |
KR100643039B1 (en) | In-Plane Switching Mode Liquid Crystal Display Device | |
US20070200990A1 (en) | Liquid crystal display device | |
US20150049128A1 (en) | Liquid crystal drive method and liquid crystal display device | |
US20160170273A1 (en) | Liquid crystal display | |
US20150070336A1 (en) | Liquid crystal display panel, method for driving the same and display device | |
JP2008026756A (en) | Liquid crystal display | |
WO2015062310A1 (en) | Liquid crystal display panel, display device and drive method therefor | |
JP2008287074A (en) | Vertical alignment type liquid crystal display | |
US9709858B2 (en) | Liquid crystal display | |
US20100045915A1 (en) | Liquid crystal display | |
US7599036B2 (en) | In-plane switching active matrix liquid crystal display apparatus | |
US9841636B2 (en) | Liquid crystal display device | |
JP2009168924A (en) | Liquid-crystal display device | |
JP2007192917A (en) | Liquid crystal display device | |
WO2014161232A1 (en) | Liquid crystal panel, manufacturing method thereof, and display device | |
JP2009288373A (en) | Liquid crystal device and electronic apparatus | |
US9904115B2 (en) | Liquid crystal panels | |
JP4720139B2 (en) | LCD panel | |
US10001680B2 (en) | Liquid crystal display device | |
US20150085218A1 (en) | Liquid crystal display panel | |
US20130021564A1 (en) | Liquid crystal display device | |
JP2007011270A (en) | Liquid crystal display device | |
JP2009134228A (en) | Liquid crystal display |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20100805 |