JP2008157559A - High temperature furnace wall image pick-up device - Google Patents

High temperature furnace wall image pick-up device Download PDF

Info

Publication number
JP2008157559A
JP2008157559A JP2006347792A JP2006347792A JP2008157559A JP 2008157559 A JP2008157559 A JP 2008157559A JP 2006347792 A JP2006347792 A JP 2006347792A JP 2006347792 A JP2006347792 A JP 2006347792A JP 2008157559 A JP2008157559 A JP 2008157559A
Authority
JP
Japan
Prior art keywords
furnace wall
imaging
pulse laser
furnace
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006347792A
Other languages
Japanese (ja)
Other versions
JP5007115B2 (en
Inventor
Takao Kurata
孝男 倉田
Shinichi Ebina
信一 海老名
Kimihide Murakami
公英 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawajima Inspection and Instrumentation Co Ltd
Original Assignee
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Inspection and Instrumentation Co Ltd filed Critical Ishikawajima Inspection and Instrumentation Co Ltd
Priority to JP2006347792A priority Critical patent/JP5007115B2/en
Publication of JP2008157559A publication Critical patent/JP2008157559A/en
Application granted granted Critical
Publication of JP5007115B2 publication Critical patent/JP5007115B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high temperature furnace wall image pick-up device providing continuous observation of a furnace wall emitting radiation light due to a high temperature in the furnace, through an observation window from a furnace exterior, and providing discrimination of irregularity and cracks by acquiring a furnace wall image having contrast. <P>SOLUTION: The high temperature furnace wall image pick-up device 10 is installed on an outer side of the observation window 2 for remotely carrying out image pick-up the furnace wall 1 emitting radiation light due to a high temperature in the furnace. It is provided with a pulse laser device 12 irradiating an observation portion (a small enough part) of the furnace wall with a pulse laser 4 stronger than the radiation light 3 and having an angle of divergence the same as a minimum angle of visibility, an image pick-up device 14 remotely carrying out image pick-up of an irradiation portion of the pulse laser 14 by the minimum angle of visibility, and a high speed shutter 16 positioned between the image pick-up device and the furnace wall and opening in synchronization with the irradiation time of the pulse laser 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炉内が高温であり炉壁が輻射光で発光している炉壁を撮像する高温炉壁撮像装置に関する。   The present invention relates to a high-temperature furnace wall imaging apparatus that images a furnace wall in which the temperature in the furnace is high and the furnace wall emits radiation.

製鉄用高炉に高温の熱風を供給する熱風炉は、地上より約50mの高さと10m以上の内径を有しており、内壁温度は、運転時約1600℃、休風時約1400℃に達する。   A hot blast furnace for supplying hot blast to an iron blast furnace has a height of about 50 m above the ground and an inner diameter of 10 m or more, and the inner wall temperature reaches about 1600 ° C. during operation and about 1400 ° C. during rest.

このような熱風炉は、長期間(例えば約20年)連続的に使用され、かつ大型設備のため建設期間も長期間(例えば約3年)かかる。そのため、1基でも使用不可能となれば長期間の高炉減産操業を引き起こすおそれがある。このため、従来から長期使用の熱風炉については、炉内診断の一貫として、休風時に炉内耐火物の損傷状況観察が行われてきた。
しかし熱風炉の炉内観察は、高炉の休風時という限られた時間内に行われるため、炉内温度は高く、かつ高温炉内での撮影となるため環境は苛酷であった。
Such a hot stove is continuously used for a long period (for example, about 20 years) and takes a long period of time (for example, about 3 years) because of a large facility. Therefore, if even one unit cannot be used, there is a risk of causing a long-term blast furnace reduction operation. For this reason, for hot-blast furnaces that have been used for a long period of time, as a part of in-furnace diagnosis, damage status of refractories in the furnace has been observed during the rest period.
However, since the observation inside the hot blast furnace is performed within a limited time such as when the blast furnace is closed, the temperature inside the furnace is high and the environment is harsh because the image is taken in the high temperature furnace.

このような過酷な環境下において熱風炉のような高温炉壁を観察する手段として、特許文献1、2が既に提案されている。   Patent Documents 1 and 2 have already been proposed as means for observing a high-temperature furnace wall such as a hot stove in such a harsh environment.

特許文献1の「熱風炉炉内観察装置」は、製鉄用熱風炉の炉内耐火物の損傷状況を嫁働状態に近以した条件下で観察することを目的とし、図5に示すように、撮像管または撮像素子50の前に光電子倍増管51を設け、該光電子倍増管51の前にその分光感度に適した透過度をもつレンズを有した遠隔操作可能なズ−ム装置53を取付け、該撮像装置全体を波長2μ以上の赤外線を反射する窓ガラス55を有した冷却箱56に内蔵したものである。   The “hot blast furnace inside observation apparatus” of Patent Document 1 aims at observing the damage state of the refractory inside the furnace in the hot stove for iron making under the condition close to the marriage state, as shown in FIG. A photomultiplier tube 51 is provided in front of the image pickup tube or image pickup device 50, and a remotely operable zoom device 53 having a lens having a transmittance suitable for the spectral sensitivity is attached in front of the photomultiplier tube 51. The entire imaging apparatus is built in a cooling box 56 having a window glass 55 that reflects infrared rays having a wavelength of 2 μm or more.

特許文献2の「炉壁観察装置」は、カーボン付着物が入り込んでいない開口クラックのみを検出することを目的とし、図6に示すように、照明装置61を用いて炉壁面に対して光を照射し、反射光によって形成される炉壁を撮像装置62によって観察する。また、高温の炉壁が発する自発光は赤色側に偏したスペクトル分布を有しているので、炉壁面に照射する光を青色の光とし、撮像装置で撮像するに際して青色側のみを透過するフィルタを介することにより、自発光の影響を抑えて反射光の情報を優先して撮像するものである。   The “furnace wall observation device” of Patent Document 2 is intended to detect only open cracks in which carbon deposits do not enter, and as shown in FIG. Irradiate and observe the furnace wall formed by the reflected light with the imaging device 62. In addition, since the self-luminous light emitted from the high temperature furnace wall has a spectrum distribution biased to the red side, the light that irradiates the furnace wall surface is blue light, and a filter that transmits only the blue side when imaging with an imaging device Thus, the information of the reflected light is preferentially imaged while suppressing the influence of the self-light emission.

特開平5−34080号公報、「熱風炉炉内観察装置」Japanese Patent Application Laid-Open No. 5-34080, “Hot Furnace Furnace Observation Device” 特開2005−146164号公報、「炉壁観察装置」JP 2005-146164 A, “Furnace wall observation device”

上述した熱風炉のように、炉内が高温(例えば約1400℃)であり炉壁が輻射光で発光している場合、短時間であれば覗き孔を通して炉壁を目視観察することができる。しかし、特許文献1の装置では、炉内温度が均一であり炉壁の材料(例えば耐火レンガ)が同じ場合、どの位置からも同じ強さ、同じ波長の輻射光が発光しているため、炉壁に凹凸や亀裂があっても、まったくコントラストのない画像しか得られない問題点があった。   When the inside of the furnace is at a high temperature (for example, about 1400 ° C.) and the furnace wall emits light by radiant light as in the hot air furnace described above, the furnace wall can be visually observed through the peephole for a short time. However, in the apparatus of Patent Document 1, when the furnace temperature is uniform and the furnace wall material (for example, refractory bricks) is the same, radiation with the same intensity and the same wavelength is emitted from any position. Even if there are irregularities and cracks on the wall, there is a problem that only an image with no contrast can be obtained.

また、特許文献2の装置では、壁面に青色光を照射し、反射光を青色側のみを透過するフィルタを介して撮像するので、暗い炉内であればコントラストのある画像が得られるが、発光している炉内では、輻射光の明るさが勝り、コントラストのない画像しか得られなかった。
さらに、照明装置の照射範囲及び撮像装置の撮影範囲が広い(例えば立体角が30度前後)ため、観察窓を通して高温炉壁から入射する輻射熱が過大であり、観察時間が極端に制限される(例えば5分間以内)問題点があった。
Further, in the apparatus of Patent Document 2, since the wall surface is irradiated with blue light and the reflected light is imaged through a filter that transmits only the blue side, a contrast image can be obtained in a dark furnace. In the furnace, the brightness of the radiant light was excellent, and only images without contrast were obtained.
Furthermore, since the illumination range of the illumination device and the imaging range of the imaging device are wide (for example, the solid angle is around 30 degrees), the radiant heat incident from the high-temperature furnace wall through the observation window is excessive, and the observation time is extremely limited ( (For example, within 5 minutes).

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、炉内が高温であり炉壁が輻射光で発光している炉壁を、観察窓を通して炉外から連続観察が可能であり、かつコントラストのある炉壁画像を取得して炉壁の凹凸や亀裂を判別することができる高温炉壁撮像装置を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to enable continuous observation of the furnace wall from the outside of the furnace through the observation window, and to obtain a contrasting furnace wall image. An object of the present invention is to provide a high-temperature furnace wall imaging device capable of discriminating irregularities and cracks in the furnace wall.

本発明によれば、炉内が高温であり炉壁が輻射光で発光している炉壁を遠隔から撮像するために観察窓の外側に設置される高温炉壁撮像装置であって、
輻射光より強くかつ必要最小限の視野角と同等の広がり角を持つパルスレーザ光を炉壁の観察部分に向けて照射するパルスレーザ装置と、
前記パルスレーザ光の照射部分を遠隔から必要最小限の視野角で撮影する撮影装置と、
前記撮影装置と炉壁の間に位置し前記パルスレーザ光の照射時間に同期して開く高速シャッターとを備える、ことを特徴とする高温炉壁撮像装置が提供される。
According to the present invention, there is provided a high-temperature furnace wall imaging device installed outside the observation window in order to remotely image the furnace wall in which the temperature inside the furnace is high and the furnace wall emits radiation.
A pulse laser device that irradiates the observation part of the furnace wall with a pulsed laser beam that is stronger than the radiation light and has a spread angle equivalent to the minimum required viewing angle;
An imaging device that remotely images the irradiated portion of the pulsed laser light from the minimum necessary viewing angle;
A high-temperature furnace wall imaging device is provided, comprising a high-speed shutter positioned between the imaging device and the furnace wall and opened in synchronization with the irradiation time of the pulsed laser light.

本発明の好ましい実施形態によれば、前記パルスレーザ装置と撮影装置の光軸は互いに平行、或いは炉壁位置近傍において交差する。   According to a preferred embodiment of the present invention, the optical axes of the pulse laser device and the imaging device are parallel to each other or intersect in the vicinity of the furnace wall position.

また、前記観察窓の外側に設置され、前記パルスレーザ光のみが通過可能な大きさの照射孔と、前記照射部分のみを撮影可能な大きさの撮影孔とを有する熱遮蔽板と、
前記撮影孔と撮影装置の間を遮断しパルスレーザ光の波長のみを通す光学フィルタとを備える。
Also, a heat shield plate installed outside the observation window and having an irradiation hole with a size that allows only the pulsed laser light to pass through, and an imaging hole with a size that allows only the irradiation portion to be imaged,
An optical filter that blocks between the imaging hole and the imaging apparatus and allows only the wavelength of the pulsed laser beam to pass through.

また、前記照射孔と撮影孔を前記パルスレーザ光の照射時間に同期して開く耐熱シャッターをさらに備える、ことが好ましい。   Moreover, it is preferable to further include a heat-resistant shutter that opens the irradiation hole and the imaging hole in synchronization with the irradiation time of the pulse laser beam.

また、前記パルスレーザ装置によるパルスレーザ光の照射部分と撮影装置による撮影位置を炉壁の観察部分に沿って移動する撮像走査装置を備える。   In addition, an imaging scanning device is provided that moves an irradiation portion of the pulse laser beam by the pulse laser device and an imaging position by the imaging device along an observation portion of the furnace wall.

また、前記撮影装置による複数の撮影画像を記憶する記憶装置と、
複数の撮影画像を炉壁の観察部分に沿って貼り合わせる画像処理装置とを備える。
A storage device for storing a plurality of images taken by the imaging device;
And an image processing apparatus that bonds a plurality of photographed images along the observation portion of the furnace wall.

上述した本発明の構成によれば、炉壁の観察部分に向けて炉壁からの輻射光より強くかつ必要最小限の視野角と同等の広がり角を持つパルスレーザ光を照射し、その照射部分を遠隔から必要最小限の視野角で撮影装置で撮影するので、強いパルスレーザ光により炉壁の凹凸や亀裂による影を形成しコントラストのある炉壁画像を取得して炉壁の凹凸や亀裂を判別することができる。
また、必要最小限の視野角と同等の広がり角を持つパルスレーザ光を炉壁の観察部分に向けて照射するので、炉壁の照射部分から出射口に入射する輻射光も少なく、パルスレーザ装置を安全な温度範囲に容易に維持することができる。
また、照射部分を遠隔から必要最小限の視野角で撮影するので、炉壁の照射部分から撮影装置に入射する輻射光も少なく、撮影装置を安全な温度範囲に容易に維持することができる。
さらに、高速シャッターが撮影装置と炉壁の間に位置し、パルスレーザ光の照射時間に同期して開くので、炉壁の照射部分(十分小さい一部)から撮影装置へ入射する輻射光を高速シャッターが開く短時間に制限することができ、撮影装置を安全な温度範囲に容易に維持することができる。
According to the configuration of the present invention described above, a pulse laser beam that is stronger than the radiation from the furnace wall and has a spread angle equivalent to the minimum required viewing angle is irradiated toward the observation part of the furnace wall. Since the image is taken remotely from the camera with the minimum required viewing angle, the shadow of the furnace wall is formed by strong pulsed laser light, and a contrasting furnace wall image is obtained to obtain the unevenness and crack of the furnace wall. Can be determined.
In addition, since the pulsed laser beam with a spread angle equivalent to the minimum required viewing angle is irradiated toward the observation part of the furnace wall, there is little radiation light entering the exit from the irradiation part of the furnace wall, and the pulse laser device Can be easily maintained in a safe temperature range.
Further, since the irradiated portion is photographed from the remote at the minimum necessary viewing angle, there is little radiation light incident on the photographing device from the irradiated portion of the furnace wall, and the photographing device can be easily maintained in a safe temperature range.
In addition, a high-speed shutter is located between the imaging device and the furnace wall and opens in synchronization with the irradiation time of the pulse laser beam, so that radiation light incident on the imaging device from the irradiated part of the furnace wall (partially small part) can be accelerated. It is possible to limit to a short time when the shutter is opened, and it is possible to easily maintain the photographing apparatus in a safe temperature range.

また、パルスレーザ光のみが通過可能な大きさ(例えば直径1mm程度)の照射孔と、照射部分のみを撮影可能な大きさの撮影孔(例えば直径10〜20mm程度)とを有する熱遮蔽板を備えることにより、炉壁からの輻射光の入射を照射孔と撮影孔のみに抑制することができる。
さらに、撮影孔と撮影装置の間を遮断しパルスレーザ光の波長のみを通す光学フィルタを備えることにより、相対的に大きい撮影孔からの輻射光の入射をパルスレーザ光の波長のみ制限することができる。
従って、この構成により、炉内が高温であり炉壁が輻射光で発光している炉壁を観察窓を通して炉外から連続観察が可能となる。
Further, a heat shield plate having an irradiation hole having a size (for example, about 1 mm in diameter) through which only the pulse laser beam can pass and an imaging hole (for example, having a diameter of about 10 to 20 mm) in which only the irradiated portion can be imaged. By providing, the incidence of radiant light from the furnace wall can be suppressed only to the irradiation hole and the imaging hole.
Furthermore, by providing an optical filter that cuts off between the imaging hole and the imaging device and allows only the wavelength of the pulsed laser light to pass, it is possible to limit the incidence of radiation light from the relatively large imaging hole only to the wavelength of the pulsed laser light. it can.
Therefore, with this configuration, it is possible to continuously observe from the outside of the furnace wall through the observation window the furnace wall in which the temperature inside the furnace is high and the furnace wall emits radiation.

さらに照射孔と撮影孔をパルスレーザ光の照射時間に同期して開く耐熱シャッターを備えることにより、パルスレーザ装置の出射口と撮影装置の高速シャッターに入射する輻射光を低減し、これらの過熱を防止することができる。   Furthermore, by providing a heat-resistant shutter that opens the irradiation hole and the imaging hole in synchronization with the irradiation time of the pulse laser beam, radiation light incident on the exit port of the pulse laser device and the high-speed shutter of the imaging device is reduced, and these overheatings are reduced. Can be prevented.

また、パルスレーザ装置によるパルスレーザ光の照射部分と撮影装置による撮影位置を炉壁の観察部分に沿って移動する撮像走査装置を備えることにより、輻射光の入射量増大を防止しながら、広範囲の観察部分を撮影することができる。   In addition, by providing an imaging scanning device that moves the irradiation part of the pulse laser beam by the pulse laser device and the imaging position by the imaging device along the observation part of the furnace wall, it prevents a wide range of incident radiation while preventing a wide range of radiation. The observation part can be photographed.

さらに、複数の撮影画像を記憶する記憶装置と、複数の撮影画像を貼り合わせる画像処理装置とを備えることにより、広範囲の観察部分を連続した画像として表示し、炉壁の凹凸や亀裂の判別を容易にすることができる。   Furthermore, by providing a storage device that stores a plurality of captured images and an image processing device that combines the plurality of captured images, a wide range of observation parts are displayed as continuous images, and the unevenness and cracks of the furnace wall can be discriminated. Can be easily.

以下、本発明の好ましい実施形態を図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図1は、本発明の高温炉壁撮像装置の全体構成図である。この図に示すように、本発明の高温炉壁撮像装置10は、炉内が高温であり炉壁が輻射光で発光している炉壁1を撮像するために観察窓2の外側に設置される。   FIG. 1 is an overall configuration diagram of a high-temperature furnace wall imaging apparatus according to the present invention. As shown in this figure, the high-temperature furnace wall imaging device 10 of the present invention is installed outside the observation window 2 in order to image the furnace wall 1 in which the inside of the furnace is hot and the furnace wall emits radiation light. The

輻射光で発光している炉壁1は、後述する実施例では、高炉用熱風炉の炉壁であり、休風時において約1400℃の高温に加熱されている。この場合、炉壁1からの輻射光3は、赤外域の波長2〜3μmに発光ピークを有する光である。また、波長の長い可視光も含まれており、可視光域では赤色で発光した状態である。
なお、本発明は高炉用熱風炉の炉壁に限定されず、約1000℃以上の高温に加熱されている炉壁を有する炉、例えばコークス炉、転炉等にも適用することができる。
The furnace wall 1 that emits light by radiation is a furnace wall of a hot blast furnace for a blast furnace in an embodiment to be described later, and is heated to a high temperature of about 1400 ° C. when the wind is off. In this case, the radiation light 3 from the furnace wall 1 is light having a light emission peak at a wavelength of 2 to 3 μm in the infrared region. Further, visible light having a long wavelength is also included, and the light is emitted in red in the visible light region.
In addition, this invention is not limited to the furnace wall of the hot blast furnace for blast furnaces, It can apply also to the furnace which has the furnace wall heated to about 1000 degreeC or more high temperature, for example, a coke oven, a converter, etc.

図1において。本発明の高温炉壁撮像装置10は、パルスレーザ装置12、撮影装置14、高速シャッター16及び撮像制御装置18を備える。   In FIG. The high-temperature furnace wall imaging device 10 of the present invention includes a pulse laser device 12, an imaging device 14, a high-speed shutter 16, and an imaging control device 18.

パルスレーザ装置12は、発光している炉壁1の輻射光3より強くかつ必要最小限の視野角と同等の広がり角を持つパルスレーザ光4を炉壁1の観察部分に向けて照射する。この広がり角は、離れた位置(例えば8m程度)の炉壁位置において照射部分が十分小さい(炉壁位置において直径50cm程度)になるように、十分小さく設定する。
パルスレーザ装置12は、この例では、パルスレーザ発振器12a、電源装置12b、照射光学系12cからなる。パルスレーザ発振器12aは、例えばNd:YAGレーザであり、1.06μm、又は0.53μm(第2高調波)を用いる。なお、本発明は、Nd:YAGレーザに限定されず、輻射光3のピーク波長2〜3μmから十分離れた波長、好ましくは可視光域(0.38〜0.77μm)であるのがよい。
The pulse laser device 12 irradiates the observation portion of the furnace wall 1 with pulsed laser light 4 that is stronger than the radiation light 3 emitted from the furnace wall 1 and has a spread angle equivalent to the minimum viewing angle. This divergence angle is set to be sufficiently small so that the irradiated portion is sufficiently small (about 50 cm in diameter at the furnace wall position) at the furnace wall position at a distant position (for example, about 8 m).
In this example, the pulse laser device 12 includes a pulse laser oscillator 12a, a power supply device 12b, and an irradiation optical system 12c. The pulse laser oscillator 12a is, for example, an Nd: YAG laser, and uses 1.06 μm or 0.53 μm (second harmonic). In addition, this invention is not limited to a Nd: YAG laser, It is good that it is a wavelength sufficiently distant from the peak wavelength 2-3 micrometers of the radiant light 3, Preferably it is a visible region (0.38-0.77 micrometer).

また、この例では、パルスレーザ発振器12aと照射光学系12cとの間を光ファイバ12dで接続し、パルスレーザ発振器12aから照射光学系12cへパルスレーザ光4を導き、かつパルスレーザ発振器12aに対し照射光学系12cを可動にしている。
なお、本発明はこの構成に限定されず、光ファイバ12dを省略してパルスレーザ発振器12aと照射光学系12cを直接接続してもよい。
In this example, the pulse laser oscillator 12a and the irradiation optical system 12c are connected by an optical fiber 12d, the pulse laser light 4 is guided from the pulse laser oscillator 12a to the irradiation optical system 12c, and the pulse laser oscillator 12a The irradiation optical system 12c is movable.
The present invention is not limited to this configuration, and the optical fiber 12d may be omitted and the pulse laser oscillator 12a and the irradiation optical system 12c may be directly connected.

照射光学系12cは、この例では、共焦点レンズであり、パルスレーザ発振器12aで発振した極細(例えば直径1mm程度)のパルスレーザ光4を、離れた位置(例えば8m程度)の炉壁位置において直径50cm程度の十分小さい一部を照明するように設定する。
なお、レーザ光の直進性から、広がり角が十分小さい場合には、照射光学系12cを省略してもよい。
In this example, the irradiation optical system 12c is a confocal lens, and the ultrafine (for example, about 1 mm in diameter) pulsed laser light 4 oscillated by the pulsed laser oscillator 12a is separated from the furnace wall at a remote position (for example, about 8 m). It is set to illuminate a sufficiently small part with a diameter of about 50 cm.
Note that the irradiation optical system 12c may be omitted when the spread angle is sufficiently small due to the straightness of the laser light.

撮影装置14は、パルスレーザ光4の照射部分を遠隔から必要最小限の視野角で撮影する。視野角は、パルスレーザ光4の照射部分を含み、それ以外の部分をできるだけ含まない大きさに設定する。
撮影装置14は、この例において、CCDカメラ14aと望遠レンズ14bからなり、離れた位置(例えば8m程度)の炉壁位置において直径50cm程度の十分小さい一部を望遠レンズ14bを通してCCDカメラ14aで撮影するようになっている。
The imaging device 14 images the irradiated portion of the pulsed laser light 4 remotely from the minimum necessary viewing angle. The viewing angle is set to a size that includes the irradiated portion of the pulsed laser light 4 and does not include other portions as much as possible.
In this example, the photographing device 14 includes a CCD camera 14a and a telephoto lens 14b, and a sufficiently small part having a diameter of about 50 cm is photographed by the CCD camera 14a through the telephoto lens 14b at a furnace wall position at a distant position (for example, about 8 m). It is supposed to be.

パルスレーザ装置12と撮影装置14の光軸は、平行である方が調整しやすいが、炉壁位置近傍において交差するように、傾いていた方が影が大きくなり、コントラストが良くなることもある。
この構成により、パルスレーザ装置12で照射した照射部分を、撮影装置14で確実に撮影することができ、かつ同一画像に含まれる照射以外の炉壁部分の比率を小さく抑えることができる。
The optical axes of the pulse laser device 12 and the imaging device 14 are easier to adjust if they are parallel, but if they are tilted so that they intersect in the vicinity of the furnace wall position, the shadow becomes larger and the contrast may be improved. .
With this configuration, the irradiated portion irradiated with the pulse laser device 12 can be reliably imaged with the imaging device 14, and the ratio of the furnace wall portion other than the irradiation included in the same image can be kept small.

高速シャッター16は、撮影装置14と炉壁の間に位置し、パルスレーザ光4の照射時間に同期して開く。
高速シャッター16は、この例では、CCDカメラ14aと望遠レンズ14bの間に位置する電子シャッターである。高速シャッター16のシャッター速度は、例えば開時間が0.1〜1msec(1/1000〜1/10000秒)であり、パルスレーザ光4の照射時間に同期して開くようになっている。電子シャッターの開時間は、レーザのパルス幅と同じであるときが最も背景光を除去できる。
なお、高速シャッター16は、CCDカメラ14aと一体でもよく、CCDカメラ14aに内蔵してもよい。また、高速シャッター16は、画像をデジタル的に切り取るデジタルシャッターでもよい。
The high-speed shutter 16 is located between the imaging device 14 and the furnace wall and opens in synchronization with the irradiation time of the pulsed laser light 4.
In this example, the high-speed shutter 16 is an electronic shutter positioned between the CCD camera 14a and the telephoto lens 14b. The shutter speed of the high-speed shutter 16 is, for example, an opening time of 0.1 to 1 msec (1/1000 to 1/10000 seconds), and is opened in synchronization with the irradiation time of the pulse laser beam 4. The background light can be removed most when the opening time of the electronic shutter is the same as the pulse width of the laser.
The high-speed shutter 16 may be integrated with the CCD camera 14a or may be built in the CCD camera 14a. The high-speed shutter 16 may be a digital shutter that digitally cuts out an image.

撮像制御装置18は、この例では、シンクロコントローラ18aとコンピュータ18b(PC)からなる。
シンクロコントローラ18aは、コンピュータ18bからの指令に対応して、パルスレーザ装置12と高速シャッター16を制御し、パルスレーザ光4の照射と高速シャッター16の作動を同期させる。
コンピュータ18bは、シンクロコントローラ18aに指令信号を出力するとともに、CCDカメラ14aから撮影画像を受信する。
コンピュータ18bは、記憶装置と画像処理装置とを備える。記憶装置は、撮影装置による複数の撮影画像を記憶する。また、画像処理装置は、複数の撮影画像を炉壁の観察部分に沿って貼り合わせる機能を有する。
In this example, the imaging control device 18 includes a sync controller 18a and a computer 18b (PC).
The sync controller 18a controls the pulse laser device 12 and the high-speed shutter 16 in response to a command from the computer 18b, and synchronizes the irradiation of the pulse laser beam 4 and the operation of the high-speed shutter 16.
The computer 18b outputs a command signal to the sync controller 18a and receives a captured image from the CCD camera 14a.
The computer 18b includes a storage device and an image processing device. The storage device stores a plurality of images captured by the imaging device. The image processing apparatus has a function of bonding a plurality of captured images along the observation portion of the furnace wall.

図1において、本発明の高温炉壁撮像装置10は、さらに、光学フィルタ20、21を有する。光学フィルタ20、21は、例えば干渉フィルタであり、パルスレーザ光の波長のみを通し、それ以外の波長をカットする。
この例において、光学フィルタ20は、照射光学系12cと炉壁1との間に位置し、炉壁1からの輻射光3の大部分(パルスレーザ光の波長以外)をカットする。
また、光学フィルタ21は、望遠レンズ14bと炉壁1との間に位置し、同様に炉壁1からの輻射光3の大部分(パルスレーザ光の波長以外)をカットする。
In FIG. 1, the high-temperature furnace wall imaging device 10 of the present invention further includes optical filters 20 and 21. The optical filters 20 and 21 are, for example, interference filters, which pass only the wavelength of the pulsed laser light and cut other wavelengths.
In this example, the optical filter 20 is located between the irradiation optical system 12c and the furnace wall 1, and cuts most of the radiation light 3 from the furnace wall 1 (other than the wavelength of the pulsed laser light).
The optical filter 21 is located between the telephoto lens 14b and the furnace wall 1, and similarly cuts most of the radiation light 3 from the furnace wall 1 (other than the wavelength of the pulsed laser light).

本発明の高温炉壁撮像装置10は、さらに、熱遮蔽板22、耐熱シャッター24を備える。
熱遮蔽板22は、断熱性能の高い断熱板であり、観察窓2の外側に設置される。またこの熱遮蔽板22は、パルスレーザ光4のみが通過可能な大きさの照射孔22aと、炉壁1の照射部分のみを撮影可能な大きさの撮影孔22bとを有する。照射孔22aの大きさは例えば直径1〜3mm程度である。また、撮影孔22bの大きさは例えば直径10〜30mm程度である。
The high-temperature furnace wall imaging device 10 of the present invention further includes a heat shielding plate 22 and a heat-resistant shutter 24.
The heat shielding plate 22 is a heat insulating plate having high heat insulating performance, and is installed outside the observation window 2. The heat shielding plate 22 has an irradiation hole 22a having a size that allows only the pulsed laser light 4 to pass therethrough and an imaging hole 22b having a size that allows only the irradiated portion of the furnace wall 1 to be imaged. The size of the irradiation hole 22a is, for example, about 1 to 3 mm in diameter. Further, the size of the imaging hole 22b is, for example, about 10 to 30 mm in diameter.

上述した光学フィルタ20は、照射孔22aの大きさが小さく、この孔から入射する輻射光3の影響が少ない場合には省略してもよい。
また、上述した光学フィルタ21は、熱遮蔽板22の撮影孔22bよりは大きき、かつ撮影孔22bと撮影装置14の間を遮断する位置に位置するのがよい。
The optical filter 20 described above may be omitted when the size of the irradiation hole 22a is small and the influence of the radiation light 3 entering from the hole is small.
Further, the above-described optical filter 21 is preferably larger than the photographing hole 22b of the heat shielding plate 22 and located at a position where the gap between the photographing hole 22b and the photographing device 14 is blocked.

耐熱シャッター24は、この例では、モータ24aで高速回転する耐熱円板25であり、耐熱円板25には照射孔22aと撮影孔22bとそれぞれ対応する位置に設けられた照射孔25aと撮影孔25bを有する。
また、モータ24aの回転速度は、シンクロコントローラ18aにより、パルスレーザ光4の照射と照射孔25aと撮影孔25bの開口(照射孔22aと撮影孔22bとの整合位置)とが同期するように制御される。
この構成により、照射孔25aと撮影孔25bがそれぞれ照射孔22aと撮影孔22bと一致して開口する瞬間以外は、耐熱シャッター24で照射孔22aと撮影孔22bからの輻射光3の入射を防止することができる。
In this example, the heat-resistant shutter 24 is a heat-resistant disk 25 that is rotated at a high speed by a motor 24a. The heat-resistant disk 25 has an irradiation hole 25a and a photographing hole provided at positions corresponding to the irradiation hole 22a and the photographing hole 22b, respectively. 25b.
The rotation speed of the motor 24a is controlled by the sync controller 18a so that the irradiation of the pulse laser beam 4 and the opening of the irradiation hole 25a and the imaging hole 25b (alignment position of the irradiation hole 22a and the imaging hole 22b) are synchronized. Is done.
With this configuration, the heat-resistant shutter 24 prevents the radiation light 3 from being incident from the irradiation hole 22a and the imaging hole 22b except at the moment when the irradiation hole 25a and the imaging hole 25b are opened in alignment with the irradiation hole 22a and the imaging hole 22b, respectively. can do.

本発明の高温炉壁撮像装置10は、さらに、撮像走査装置26を備える。
撮像走査装置26は、この例では、支持台26aと揺動アクチュエータ26bからなる。
支持台26aには、上述したパルスレーザ装置12、撮影装置14、高速シャッター16、光学フィルタ20、21、熱遮蔽板22、及び耐熱シャッター24が固定されている。
また、支持台26aは、球面軸受26cで図示しない固定台に支持されており、揺動アクチュエータ26bで支持台26a全体を水平垂直方向に移動または回転できるようになっている。
この構成により、パルスレーザ装置12によるパルスレーザ光4の照射部分と撮影装置14による撮影位置を炉壁1の観察部分に沿って移動することができる。
The high temperature furnace wall imaging device 10 of the present invention further includes an imaging scanning device 26.
In this example, the imaging scanning device 26 includes a support base 26a and a swing actuator 26b.
The above-described pulse laser device 12, imaging device 14, high-speed shutter 16, optical filters 20, 21, heat shield plate 22, and heat-resistant shutter 24 are fixed to the support base 26a.
The support base 26a is supported by a fixed base (not shown) by a spherical bearing 26c, and the entire support base 26a can be moved or rotated in the horizontal and vertical directions by a swing actuator 26b.
With this configuration, the irradiation part of the pulse laser beam 4 by the pulse laser device 12 and the imaging position by the imaging device 14 can be moved along the observation part of the furnace wall 1.

図2は、本発明における炉壁の輻射光とパルスレーザ光との関係図である。この図において、横軸は波長、縦軸は光の強度、図中の3,4は、炉壁1からの輻射光3とパルスレーザ光4である。
この図に示すように、炉壁1からの輻射光3は、赤外域の波長2〜3μmに発光ピークを有する光である。また、波長の長い可視光も含まれており、可視光域では赤色で発光した状態である。
また、パルスレーザ光4は、輻射光3のピーク波長2〜3μmから十分離れた好ましくは可視光域(0.38〜0.77μm)の波長である。さらに、本発明において、パルスレーザ光4は、発光している炉壁1の輻射光3より強い強度に設定されている。
なお、この図からわかるように、輻射光3の波長は可視光から赤外域に及ぶブロードな光であり、ピーク波長2〜3μm付近に比較すると可視光域での輻射光3の強度は小さくなっている。
従って、2〜3μmから十分離れた波長、好ましくは可視光域において、例えばNd:YAGレーザを用いて、輻射光3より強いパルスレーザ光4を照射することができる。
FIG. 2 is a relationship diagram between the radiant light of the furnace wall and the pulsed laser light in the present invention. In this figure, the horizontal axis represents wavelength, the vertical axis represents light intensity, and 3 and 4 in the figure represent radiation light 3 and pulsed laser light 4 from the furnace wall 1.
As shown in this figure, the radiation light 3 from the furnace wall 1 is light having a light emission peak at a wavelength of 2 to 3 μm in the infrared region. Further, visible light having a long wavelength is also included, and the light is emitted in red in the visible light region.
Further, the pulse laser beam 4 has a wavelength in the visible light region (0.38 to 0.77 μm) that is sufficiently far from the peak wavelength of 2 to 3 μm of the radiation light 3. Furthermore, in the present invention, the pulsed laser light 4 is set to have a stronger intensity than the radiation light 3 emitted from the furnace wall 1.
As can be seen from this figure, the wavelength of the radiant light 3 is broad light extending from the visible light to the infrared region, and the intensity of the radiant light 3 in the visible light region is smaller than that near the peak wavelength of 2 to 3 μm. ing.
Therefore, it is possible to irradiate the pulse laser beam 4 stronger than the radiation light 3 using, for example, an Nd: YAG laser in a wavelength sufficiently separated from 2 to 3 μm, preferably in the visible light region.

また、本発明では、パルスレーザ光4の波長のみを通し、それ以外の波長をカットする光学フィルタ21を備えるので、撮影装置14の望遠レンズ14b及びCCDカメラ14aに入射する輻射光3の大部分(パルスレーザ光の波長以外)を常にカットして撮影装置14への入熱を大幅に低減することができる。   In the present invention, since the optical filter 21 that passes only the wavelength of the pulsed laser light 4 and cuts other wavelengths is provided, most of the radiation light 3 incident on the telephoto lens 14b of the photographing apparatus 14 and the CCD camera 14a. The heat input to the imaging device 14 can be significantly reduced by always cutting (other than the wavelength of the pulse laser beam).

図3は、本発明におけるパルスレーザ光の照射と高速シャッターの作動との関係図である。この図において、横軸は時間、縦軸は、レーザのON/OFFとシャッターの開/閉を示している。
上述したように、高速シャッター16は、パルスレーザ光4の照射時間(ON)に同期して開くので、CCDカメラ14aに入射する輻射光3をこの開時間内に低減することができる。
FIG. 3 is a relationship diagram between the irradiation of the pulsed laser beam and the operation of the high-speed shutter in the present invention. In this figure, the horizontal axis represents time, and the vertical axis represents laser ON / OFF and shutter opening / closing.
As described above, the high-speed shutter 16 is opened in synchronization with the irradiation time (ON) of the pulsed laser light 4, so that the radiation light 3 incident on the CCD camera 14a can be reduced within this opening time.

上述した本発明の構成によれば、炉壁1から観察窓2を通して本発明の高温炉壁撮像装置10に達する輻射光3の大部分は、熱遮蔽板22で熱遮蔽される。従って、熱遮蔽板22の外側(炉外側)を冷気等で冷却することにより、本発明の高温炉壁撮像装置10を正常作動に支障のない温度(例えば30℃以下)に保持することができる。
また、熱遮蔽板22の照射孔22aと撮影孔22bを通して入射する輻射光3は、耐熱シャッター24が開口するとき(撮像時)以外の大部分の時間は、耐熱円板25で熱遮蔽される。従って、時間的にも撮像時を除き輻射光3を遮断してパルスレーザ装置12及び撮影装置14に直接達する輻射光3を大幅に低減することができる。
さらに、パルスレーザ光の波長のみを通しそれ以外の波長をカットする光学フィルタ20、21により、限られた波長以外の大部分の波長を常時カットするので、パルスレーザ装置12及び撮影装置14に直接達する輻射光3のエネルギをさらに大幅に低減することができる。
According to the configuration of the present invention described above, most of the radiant light 3 reaching the high temperature furnace wall imaging device 10 of the present invention from the furnace wall 1 through the observation window 2 is thermally shielded by the heat shielding plate 22. Therefore, by cooling the outside of the heat shielding plate 22 (outside of the furnace) with cold air or the like, the high temperature furnace wall imaging device 10 of the present invention can be maintained at a temperature that does not hinder normal operation (for example, 30 ° C. or less). .
Further, the radiation light 3 incident through the irradiation hole 22a and the imaging hole 22b of the heat shielding plate 22 is thermally shielded by the heat resistant disk 25 during most of the time except when the heat resistant shutter 24 is opened (during imaging). . Accordingly, the radiation light 3 that directly reaches the pulse laser device 12 and the imaging device 14 by blocking the radiation light 3 except during imaging can be significantly reduced.
In addition, since most of the wavelengths other than the limited wavelength are always cut by the optical filters 20 and 21 that pass only the wavelength of the pulse laser beam and cut other wavelengths, the pulse filters are directly applied to the pulse laser device 12 and the imaging device 14. The energy of the radiant light 3 reaching can be further greatly reduced.

また、必要最小限の視野角と同等の広がり角を持つパルスレーザ光4を炉壁1の観察部分(十分小さい一部)に向けて照射するので、炉壁1の照射部分から出射口に入射する輻射光も少なく、パルスレーザ装置をより安全な温度範囲に容易に維持することができる。
また、照射部分を遠隔から必要最小限の視野角で撮影するので、炉壁1の照射部分から撮影装置に入射する輻射光も少なく、撮影装置を安全な温度範囲に容易に維持することができる。
さらに、高速シャッター16が撮影装置16と炉壁1の間に位置し、パルスレーザ光4の照射時間に同期して開くので、炉壁1の照射部分(十分小さい一部)から撮影装置へ入射する輻射光3を高速シャッター16が開く短時間に制限することができ、撮影装置をより安全な温度範囲に容易に維持することができる。
Further, since the pulsed laser beam 4 having a divergence angle equivalent to the minimum viewing angle is irradiated toward the observation part (a sufficiently small part) of the furnace wall 1, it enters the exit from the irradiation part of the furnace wall 1. Therefore, the pulsed laser device can be easily maintained in a safer temperature range.
Further, since the irradiated portion is photographed from the remote at the minimum required viewing angle, there is little radiation light incident on the photographing device from the irradiated portion of the furnace wall 1, and the photographing device can be easily maintained in a safe temperature range. .
Furthermore, since the high-speed shutter 16 is positioned between the imaging device 16 and the furnace wall 1 and opens in synchronization with the irradiation time of the pulse laser beam 4, the irradiation portion (a sufficiently small part) of the furnace wall 1 enters the imaging device. The radiant light 3 can be limited to a short time when the high-speed shutter 16 is opened, and the photographing apparatus can be easily maintained in a safer temperature range.

上述したように本発明の構成によれば、炉壁1の観察部分の十分小さい一部に向けて炉壁1からの輻射光3より強くかつ必要最小限の視野角と同等の広がり角を持つパルスレーザ光4を照射し、その照射部分を遠隔から必要最小限の視野角で撮影するので、強いパルスレーザ光4により炉壁1の凹凸や亀裂による影を形成しコントラストのある炉壁画像を取得して炉壁の凹凸や亀裂を判別することができる。
従って、この構成により、炉内が高温であり炉壁が輻射光で発光している炉壁を観察窓を通して炉外から連続観察が可能となる。
As described above, according to the configuration of the present invention, the divergence angle is stronger than the radiation light 3 from the furnace wall 1 toward the sufficiently small part of the observation part of the furnace wall 1 and has a spread angle equivalent to the minimum necessary viewing angle. The pulsed laser beam 4 is irradiated, and the irradiated part is remotely photographed at the minimum necessary viewing angle. Therefore, the strong pulsed laser beam 4 forms shadows due to unevenness and cracks in the furnace wall 1 and provides a contrasting furnace wall image. It is possible to determine the unevenness and cracks in the furnace wall.
Therefore, with this configuration, it is possible to continuously observe from the outside of the furnace wall through the observation window the furnace wall in which the temperature inside the furnace is high and the furnace wall emits radiation.

また、パルスレーザ装置12によるパルスレーザ光4の照射部分と撮影装置14による撮影位置を炉壁1の観察部分に沿って移動する撮像走査装置26を備えることにより、輻射光の入射量増大を防止しながら、広範囲の観察部分を撮影することができる。   In addition, by providing an imaging scanning device 26 that moves the irradiated portion of the pulse laser beam 4 by the pulse laser device 12 and the imaging position of the imaging device 14 along the observation portion of the furnace wall 1, an increase in the amount of incident radiation is prevented. However, a wide range of observation parts can be photographed.

さらに、複数の撮影画像を記憶する記憶装置と、複数の撮影画像を貼り合わせる画像処理装置とを備えることにより、広範囲の観察部分を連続した画像として表示し、炉壁の凹凸や亀裂の判別を容易にすることができる。   Furthermore, by providing a storage device that stores a plurality of captured images and an image processing device that combines the plurality of captured images, a wide range of observation parts are displayed as continuous images, and the unevenness and cracks of the furnace wall can be discriminated. Can be easily.

従って、従来は炉内が高温であり炉壁が輻射光で発光している炉壁を、長時間安全に観察できる手段がなかったが、本発明によりこれが可能となり、炉を少なくとも炉内温度が1400℃付近まで下がる休風時において、コントラストのある炉壁画像を基に炉壁の凹凸や亀裂を正確に判別して、炉を限界まで安全に使用できるようになる。   Therefore, conventionally, there has been no means for safely observing the furnace wall in which the temperature inside the furnace is high and the furnace wall emits radiation, but this is possible by the present invention. When the wind is down to around 1400 ° C., the furnace wall irregularities and cracks can be accurately identified based on the contrasted furnace wall image, and the furnace can be used safely to the limit.

上述した本発明の装置により、休風時において炉内温度が約1400℃付近まで下がった状態の高炉用熱風炉の炉壁の一部を、観察窓2の外側から撮影し、画像処理装置により、複数(この場合5×7−1の34枚)の撮影画像を炉壁の観察部分に沿って貼り合わせた撮影画像を作成した。撮影画像は省略する。
従来は、どの位置からも同じ強さ、同じ波長の輻射光が発光しているため、炉壁に凹凸や亀裂があっても、まったくコントラストのない画像しか得られなかった。
これに対して、本発明の撮影画像では、亀裂はないが、耐火レンガが密に積み上げられている状態が正確に判別できることが確認された。
従って、このコントラストのある炉壁画像を取得して炉壁の凹凸や亀裂を判別することができ、炉を限界まで安全に使用できる。
Using the apparatus of the present invention described above, a part of the furnace wall of the hot blast furnace for the blast furnace in which the temperature in the furnace is lowered to about 1400 ° C. when the wind is not taken is photographed from the outside of the observation window 2 and is imaged by the image processing apparatus. A plurality of (34 in this case, 5 × 7-1) photographed images were created by pasting them along the observation part of the furnace wall. The captured image is omitted.
Conventionally, radiation having the same intensity and the same wavelength is emitted from any position, so only an image having no contrast can be obtained even if the furnace wall has irregularities or cracks.
On the other hand, in the photographed image of the present invention, it was confirmed that although there were no cracks, it was possible to accurately determine the state in which the refractory bricks were densely stacked.
Therefore, this contrasting furnace wall image can be acquired to determine the unevenness and cracks in the furnace wall, and the furnace can be used safely to the limit.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明の高温炉壁撮像装置の全体構成図である。It is a whole block diagram of the high temperature furnace wall imaging device of this invention. 本発明における炉壁の輻射光とパルスレーザ光との関係図である。It is a related figure of the radiation light of the furnace wall in this invention, and a pulse laser beam. 本発明におけるパルスレーザ光の照射と高速シャッターの作動との関係図である。FIG. 6 is a relationship diagram between pulse laser light irradiation and operation of a high-speed shutter in the present invention. 特許文献1の「熱風炉炉内観察装置」の模式図である。FIG. 2 is a schematic diagram of a “hot-blast furnace observation apparatus” in Patent Document 1. 特許文献2の「炉壁観察装置」の模式図である。10 is a schematic diagram of a “furnace wall observation device” in Patent Document 2. FIG.

符号の説明Explanation of symbols

1 炉壁、2 観察窓、3 輻射光、4 パルスレーザ光、
10 高温炉壁撮像装置、12 パルスレーザ装置、
12a パルスレーザ発振器、12b 電源装置、
12c 照射光学系、12d 光ファイバ、
14 撮影装置、14a CCDカメラ、14b 望遠レンズ、
16 高速シャッター(電子シャッター)、18 撮像制御装置、
18a シンクロコントローラ、18b コンピュータ(PC)、
20、21 光学フィルタ、22 熱遮蔽板、
22a 照射孔、22b 撮影孔、
24 耐熱シャッター、24a モータ、
25 耐熱円板、25a 照射孔、25b 撮影孔、
26 撮像走査装置、26a 支持台、
26b 揺動アクチュエータ、26c 球面軸受
1 furnace wall, 2 observation window, 3 radiation light, 4 pulse laser light,
10 high temperature furnace wall imaging device, 12 pulse laser device,
12a pulse laser oscillator, 12b power supply device,
12c irradiation optical system, 12d optical fiber,
14 imaging device, 14a CCD camera, 14b telephoto lens,
16 high-speed shutter (electronic shutter), 18 imaging control device,
18a Sync controller, 18b Computer (PC),
20, 21 optical filter, 22 heat shielding plate,
22a Irradiation hole, 22b Shooting hole,
24 heat-resistant shutter, 24a motor,
25 heat resistant disk, 25a irradiation hole, 25b photographing hole,
26 imaging scanning device, 26a support base,
26b Swing actuator, 26c Spherical bearing

Claims (6)

炉内が高温であり炉壁が輻射光で発光している炉壁を遠隔から撮像するために観察窓の外側に設置される高温炉壁撮像装置であって、
輻射光より強くかつ必要最小限の視野角と同等の広がり角を持つパルスレーザ光を炉壁の観察部分に向けて照射するパルスレーザ装置と、
前記パルスレーザ光の照射部分を遠隔から必要最小限の視野角で撮影する撮影装置と、
前記撮影装置と炉壁の間に位置し前記パルスレーザ光の照射時間に同期して開く高速シャッターとを備える、ことを特徴とする高温炉壁撮像装置。
A high-temperature furnace wall imaging device installed outside the observation window in order to remotely image the furnace wall in which the temperature inside the furnace is high and the furnace wall emits radiation light,
A pulse laser device that irradiates the observation part of the furnace wall with a pulsed laser beam that is stronger than the radiation light and has a spread angle equivalent to the minimum required viewing angle;
An imaging device that remotely images the irradiated portion of the pulsed laser light from the minimum necessary viewing angle;
A high-temperature furnace wall imaging apparatus, comprising: a high-speed shutter positioned between the imaging apparatus and the furnace wall and opened in synchronization with an irradiation time of the pulse laser beam.
前記パルスレーザ装置と撮影装置の光軸は互いに平行、或いは炉壁位置近傍において交差する、ことを特徴とする請求項1に記載の高温炉壁撮像装置。   2. The high-temperature furnace wall imaging apparatus according to claim 1, wherein the optical axes of the pulse laser apparatus and the imaging apparatus are parallel to each other or intersect in the vicinity of the furnace wall position. 前記観察窓の外側に設置され、前記パルスレーザ光のみが通過可能な大きさの照射孔と、前記照射部分のみを撮影可能な大きさの撮影孔とを有する熱遮蔽板と、
前記撮影孔と撮影装置の間を遮断しパルスレーザ光の波長のみを通す光学フィルタとを備える、ことを特徴とする請求項1に記載の高温炉壁撮像装置。
A heat shielding plate installed outside the observation window and having an irradiation hole of a size that allows only the pulsed laser light to pass through, and an imaging hole of a size that can image only the irradiated portion;
The high-temperature furnace wall imaging apparatus according to claim 1, further comprising an optical filter that blocks between the imaging hole and the imaging apparatus and allows only a wavelength of pulsed laser light to pass.
前記照射孔と撮影孔を前記パルスレーザ光の照射時間に同期して開く耐熱シャッターをさらに備える、ことを特徴とする請求項2に記載の高温炉壁撮像装置。   The high-temperature furnace wall imaging apparatus according to claim 2, further comprising a heat-resistant shutter that opens the irradiation hole and the imaging hole in synchronization with an irradiation time of the pulse laser light. 前記パルスレーザ装置によるパルスレーザ光の照射部分と撮影装置による撮影位置を炉壁の観察部分に沿って移動する撮像走査装置を備える、ことを特徴とする請求項1に記載の高温炉壁撮像装置。   2. The high-temperature furnace wall imaging apparatus according to claim 1, further comprising: an imaging scanning device that moves an irradiation portion of the pulse laser beam by the pulse laser device and an imaging position of the imaging device along an observation portion of the furnace wall. . 前記撮影装置による複数の撮影画像を記憶する記憶装置と、
複数の撮影画像を炉壁の観察部分に沿って貼り合わせる画像処理装置とを備える、ことを特徴とする請求項1又は5に記載の高温炉壁撮像装置。
A storage device for storing a plurality of photographed images by the photographing device;
The high-temperature furnace wall imaging apparatus according to claim 1, further comprising an image processing apparatus that bonds a plurality of photographed images along an observation portion of the furnace wall.
JP2006347792A 2006-12-25 2006-12-25 High temperature furnace wall imaging device Active JP5007115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347792A JP5007115B2 (en) 2006-12-25 2006-12-25 High temperature furnace wall imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347792A JP5007115B2 (en) 2006-12-25 2006-12-25 High temperature furnace wall imaging device

Publications (2)

Publication Number Publication Date
JP2008157559A true JP2008157559A (en) 2008-07-10
JP5007115B2 JP5007115B2 (en) 2012-08-22

Family

ID=39658658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347792A Active JP5007115B2 (en) 2006-12-25 2006-12-25 High temperature furnace wall imaging device

Country Status (1)

Country Link
JP (1) JP5007115B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053177A1 (en) * 2008-11-10 2010-05-14 株式会社Ihi検査計測 Furnace interior monitoring device
CN102331194A (en) * 2011-07-27 2012-01-25 太仓市华瑞真空炉业有限公司 High-temperature vacuum furnace
JP2012144659A (en) * 2011-01-13 2012-08-02 Jfe Steel Corp Coke oven carbonation chamber inner wall surface-observing device
JP2012145283A (en) * 2011-01-13 2012-08-02 Takaoka Electric Mfg Co Ltd Heating device
JP2013057429A (en) * 2011-09-07 2013-03-28 Jfe Steel Corp Observation device and observation method for thermal spraying repair area
KR101309649B1 (en) 2011-12-22 2013-09-17 재단법인 포항산업과학연구원 Apparatus for measuring amount of wear and tear for refractory in tapping hole sleeve of converter and method for the same
JP2014510825A (en) * 2011-04-11 2014-05-01 キム、ウン−ウク Level measuring device for coke oven carbonization chamber
KR101881359B1 (en) * 2017-03-21 2018-07-24 이호영 Coke ovens and coke oven door frame diagnosis appratus and diagnosis system
CN108444739A (en) * 2018-02-08 2018-08-24 中山领创网络科技有限公司 A kind of image recognition kitchen range operation flame detecting device
KR20200036446A (en) * 2018-09-28 2020-04-07 주식회사 포스코 Apparatus for measuring surface and annealing furnace having the same and method for measuring surface
CN114858088A (en) * 2022-04-06 2022-08-05 北京神网创新科技有限公司 Industrial kiln detection method and device
CN117376678A (en) * 2023-12-08 2024-01-09 合肥金星智控科技股份有限公司 Kiln endoscopic imaging system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534080A (en) * 1991-08-01 1993-02-09 Nippon Steel Corp Device for observing inside of hot air furnace
JPH0599640A (en) * 1991-10-11 1993-04-23 Nippon Steel Corp Method for diagnosing refractory for making steel
JPH11326206A (en) * 1998-05-08 1999-11-26 Nippon Steel Corp Optical measuring instrument for molten metal in furnace
JP2003268377A (en) * 2002-01-09 2003-09-25 Nippon Steel Corp Apparatus for observing furnace wall
JP2005146164A (en) * 2003-11-18 2005-06-09 Nippon Steel Corp Apparatus for observing furnace wall

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0534080A (en) * 1991-08-01 1993-02-09 Nippon Steel Corp Device for observing inside of hot air furnace
JPH0599640A (en) * 1991-10-11 1993-04-23 Nippon Steel Corp Method for diagnosing refractory for making steel
JPH11326206A (en) * 1998-05-08 1999-11-26 Nippon Steel Corp Optical measuring instrument for molten metal in furnace
JP2003268377A (en) * 2002-01-09 2003-09-25 Nippon Steel Corp Apparatus for observing furnace wall
JP2005146164A (en) * 2003-11-18 2005-06-09 Nippon Steel Corp Apparatus for observing furnace wall

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101296397B1 (en) 2008-11-10 2013-08-14 신닛테츠스미킨 카부시키카이샤 Furnace interior monitoring device
JP2010133950A (en) * 2008-11-10 2010-06-17 Ihi Inspection & Instrumentation Co Ltd Device and method for monitoring interior of furnace
JP4516627B2 (en) * 2008-11-10 2010-08-04 株式会社Ihi検査計測 In-furnace observation apparatus and in-furnace observation method
CN102246022A (en) * 2008-11-10 2011-11-16 株式会社Ihi检查计测 Furnace interior monitoring device
WO2010053177A1 (en) * 2008-11-10 2010-05-14 株式会社Ihi検査計測 Furnace interior monitoring device
JP2012144659A (en) * 2011-01-13 2012-08-02 Jfe Steel Corp Coke oven carbonation chamber inner wall surface-observing device
JP2012145283A (en) * 2011-01-13 2012-08-02 Takaoka Electric Mfg Co Ltd Heating device
JP2014510825A (en) * 2011-04-11 2014-05-01 キム、ウン−ウク Level measuring device for coke oven carbonization chamber
CN102331194A (en) * 2011-07-27 2012-01-25 太仓市华瑞真空炉业有限公司 High-temperature vacuum furnace
JP2013057429A (en) * 2011-09-07 2013-03-28 Jfe Steel Corp Observation device and observation method for thermal spraying repair area
KR101309649B1 (en) 2011-12-22 2013-09-17 재단법인 포항산업과학연구원 Apparatus for measuring amount of wear and tear for refractory in tapping hole sleeve of converter and method for the same
KR101881359B1 (en) * 2017-03-21 2018-07-24 이호영 Coke ovens and coke oven door frame diagnosis appratus and diagnosis system
CN108444739A (en) * 2018-02-08 2018-08-24 中山领创网络科技有限公司 A kind of image recognition kitchen range operation flame detecting device
KR20200036446A (en) * 2018-09-28 2020-04-07 주식회사 포스코 Apparatus for measuring surface and annealing furnace having the same and method for measuring surface
KR102164115B1 (en) * 2018-09-28 2020-10-12 주식회사 포스코 Apparatus for measuring surface and annealing furnace having the same and method for measuring surface
CN114858088A (en) * 2022-04-06 2022-08-05 北京神网创新科技有限公司 Industrial kiln detection method and device
CN117376678A (en) * 2023-12-08 2024-01-09 合肥金星智控科技股份有限公司 Kiln endoscopic imaging system

Also Published As

Publication number Publication date
JP5007115B2 (en) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5007115B2 (en) High temperature furnace wall imaging device
US6859285B1 (en) Optical observation device and method for observing articles at elevated temperatures
KR101296397B1 (en) Furnace interior monitoring device
JP2008032396A (en) Method of observing inner wall surface in high temperature furnace
WO2003066775A1 (en) Furnace wall observation device and furnace wall shape measuring device
JP2007158106A (en) Observation apparatus
RU2090814C1 (en) Method of restoration of damaged refractory lining of furnace and device for realization of this method (versions)
JP5452473B2 (en) In-furnace observation method and apparatus
JP4362352B2 (en) Furnace wall observation device
KR960008026B1 (en) Apparatus for observing the interior of a hot furnace
JP2019038245A (en) Device for producing three-dimensional article
JP2016168596A (en) Welding mode discriminator, welding mode discrimination method and laser welding apparatus
JP5383034B2 (en) X-ray inspection apparatus having temperature control function of inspection object
JP5452189B2 (en) In-furnace observation apparatus and method
JP4133106B2 (en) Furnace wall shape measuring device
JP2006126062A (en) Temperature measurement method and apparatus for molten metal
JP2769555B2 (en) Hot furnace observation device
Chivel et al. Temperature monitoring in selective laser sintering/melting
JPH0534080A (en) Device for observing inside of hot air furnace
JP2003286486A (en) Thermal spray apparatus for repairing coke oven
JP2000292076A (en) Observing unit for high temperature object
JP4864496B2 (en) Endoscope device with infrared cut filter
JP6418591B2 (en) Method and apparatus for imaging particles in flame
JPH0821689A (en) Observing apparatus for periphery of spray-coating repair part of furnace wall
BE735355A (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5007115

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250