JP2008157146A - 多気筒回転式圧縮機および冷凍サイクル装置。 - Google Patents

多気筒回転式圧縮機および冷凍サイクル装置。 Download PDF

Info

Publication number
JP2008157146A
JP2008157146A JP2006348250A JP2006348250A JP2008157146A JP 2008157146 A JP2008157146 A JP 2008157146A JP 2006348250 A JP2006348250 A JP 2006348250A JP 2006348250 A JP2006348250 A JP 2006348250A JP 2008157146 A JP2008157146 A JP 2008157146A
Authority
JP
Japan
Prior art keywords
eccentric
roller
shaft portion
cylinder
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006348250A
Other languages
English (en)
Inventor
Isao Kawabe
功 川邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2006348250A priority Critical patent/JP2008157146A/ja
Publication of JP2008157146A publication Critical patent/JP2008157146A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】本発明は、偏心部を極力小径化して回転軸にかかる荷重と摩擦力を低減するとともに、偏心部相互間距離を短縮化して圧縮機構部の小型化と圧縮性能および信頼性の向上化が図れる多気筒回転式圧縮機および冷凍サイクル装置を提供する。
【解決手段】多気筒回転式圧縮機Aは、主軸部4Aと副軸受4Bおよびローラ13a,13bが係合する複数の偏心部4c,4dを備えた回転軸4と、各ローラが周壁に接触しながら偏心移動するシリンダ室14a,14bを備えた複数のシリンダ8A,8Bを有する複数組の圧縮機構部2A,2Bを具備し、主軸部半径をRm、副軸部半径をRs、偏心部半径をRc、偏心部偏心量をeとしたとき、 Rc<Rm+e、Rc>Rs+e を満足するとともに、主軸部側偏心部に係合するローラを軸方向に分割し、この分割ローラ高さをha、シリンダ厚さをH、隣接する偏心部端面間の距離をLとしたとき、 H>L、ha<L を満足するように設定した。
【選択図】 図1

Description

本発明は、圧縮機構部を改良した多気筒回転式圧縮機と、この多気筒回転式圧縮機を備えて冷凍サイクルを構成する冷凍サイクル装置に関する。
冷凍サイクル装置には、たとえば2シリンダタイプの圧縮機である多気筒回転式圧縮機が多用されている。この種の圧縮機において、摩擦ロスを低減し、効率を向上するためには、回転軸の摺動部分で最も径の大きい偏心部(「クランク部」とも呼ばれる)の直径を極力、小径化することが望ましい。それとともに、シリンダの高さ(厚み)を、より小さく縮小化し、回転軸偏心部の偏心量を大きくとって回転軸の摺動損失の低減を得るとよい。
上記回転軸は、主軸受に枢支される主軸部と、副軸受に枢支される副軸部および、これら主軸部と副軸部との間に設けられローラが嵌合する偏心部とから構成される。通常、上記主軸部と副軸部は、互いに等しい半径Rmに設定されていて、偏心部の半径をRcとし、偏心部の主軸部と副軸部の軸芯に対する偏心量をeとしたとき、
Rc < Rm + e
と設定することにより、偏心部とシリンダ室の直径が縮小化して、上述の有利な条件が得られる。
しかしながら、この設定で偏心部にローラを嵌合すべく、主軸部端面からローラを挿入していくと、ローラの挿入側端面が主軸部に最も近くに設けられる偏心部の端面に当接した状態で、ローラの反挿入側端面が主軸部から抜け出ない。たとえローラを主軸部全周面に亘り径方向に移動したとしても、ローラは偏心部に嵌合することができず、組み付けが不可能である。
また、副軸部端面からローラを挿入しても、副軸部半径と主軸部半径が同じRmであるので、ローラを副軸部側の偏心部に組み付けることができない。当然ながら、このローラを副軸部側偏心部を介して主軸部側偏心部に組み付けることは不可能である。
ただし、主軸部の軸方向長さと比較して副軸部の軸方向長さが短いので、副軸部の剛性に影響のない程度に直径を小さく設定する。そして、副軸部端面からローラを挿入して副軸部側の偏心部を通過させ、主軸部側の偏心部に組み付けることが考えられる。
具体的には、偏心部の半径をRc、副軸部の半径をRs、偏心部の偏心量をeとしたとき、
Rc > Rs + e
と設定することで、副軸部端面からローラを挿入して副軸部側の偏心部を通過させることができ、計算上は主軸部側の偏心部にローラを組み付けることが可能となる。
ここで問題は、回転軸における副軸部側偏心部と主軸部側偏心部との端面相互間の距離Lと、シリンダの厚さ(=ローラの軸方向長さ)Hとの比較である。たとえば、副軸部側偏心部と主軸部側偏心部との端面相互間の距離Lを、シリンダの厚さHよりも小さく設定すると、上記条件からローラを副軸部側偏心部に挿通できたとしても、この挿入側端面が主軸部側偏心部端面に当接したとき、反挿入側端面が副軸部側偏心部と対向する位置にある。すなわち、ローラ全体が副軸部側偏心部から抜け出ない状態で主軸部側偏心部端面に当接し、主軸部側の偏心部への嵌合が不可能である。
そこで、[特許文献1]には、副軸部の直径を主軸部の直径よりも小さくし、偏心部における反偏心軸側の外周面を主軸部外周面よりもへこませ、二つの偏心部を連接する連接部に主軸部の外径よりも小径の部分を設けるとともに、その小径部分の軸方向長さを主軸部に嵌合されるローラの高さ以上にする技術が開示されている。
特開2003−328972号公報
上記[特許文献1]のように構成すれば、ローラを副軸部端面から挿入して副軸部側の偏心部を通過させ、一旦、副軸部と主軸部との相互間(連接部)に位置できる。そして、ローラを主軸部側の偏心部に組み付けることが可能となる。そのあと、副軸部側の偏心部に別のローラを組み付ければ、容易に組み付け作業が完了する。
しかしながら、[特許文献1]の技術では、主軸部側の偏心部と副軸部側の偏心部との間に、主軸部直径よりも小径で、かつ軸方向長さが主軸部側の偏心部に嵌合されるローラの高さ以上の連接部を設ける必要がある。
このことにより、偏心部相互間距離が大となり、圧縮機構部の大型化に繋がる。そして、各偏心部とローラを収容するシリンダ内の圧力や、慣性力によって回転軸に働く倒れモーメントが増大し、バランス上および信頼性上においても多気筒回転式圧縮機としてのメリットが発揮し難くなるという不具合がある。
本発明は上記事情にもとづきなされたものであり、その目的とするところは、複数組の圧縮機構部を備えることを前提とし、偏心部を極力小径化して回転軸の摺動損失を低減するとともに、偏心部相互間距離を短縮化して圧縮機構部の小型化と圧縮性能および信頼性の向上化が図れる多気筒回転式圧縮機および、この多気筒回転式圧縮機を備えて冷凍効率と信頼性の向上化を得る冷凍サイクル装置を提供しようとするものである。
上記目的を満足するため本発明の多気筒回転式圧縮機は、主軸受に枢支される主軸部と副軸受に枢支される副軸部および、これら主軸部と副軸部との間に偏心して設けられ、それぞれにローラが係合する複数の偏心部とを備えた回転軸と、この回転軸の各偏心部に係合する上記ローラを収容し、回転軸の回転にともなって各ローラが周壁に接触しながら偏心移動するシリンダ室を備えた複数のシリンダとを有する複数組の圧縮機構部を具備し、回転軸における主軸部の半径をRm、副軸部の半径をRs、偏心部の半径をRc、偏心部の偏心量をeとしたとき、
Rc < Rm + e ……(1)
Rc > Rs + e ……(2)
の(1)、(2)式を満足するとともに、主軸部に最も近い偏心部に係合するローラを軸方向に分割し、この分割ローラの高さをha、シリンダの厚さをH、隣接する偏心部端面間の距離をLとしたとき、
H > L ……(3)
ha < L ……(4)
の(3)、(4)式を満足するように設定した。
上記目的を満足するため本発明の冷凍サイクル装置は、上述の多気筒回転式圧縮機とともに、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成する。
本発明の多気筒回転式圧縮機によれば、偏心部を極力小径化して回転軸にかかる荷重と摩擦力を低減し、回転軸の偏心部相互間距離を短縮化して、圧縮性能の向上化と高信頼性が図れる等の効果を奏する。
さらに、本発明の冷凍サイクル装置によれば、上記多気筒回転式圧縮機を備えて、冷凍サイクル効率の向上と、高信頼性を得られる効果を奏する。
以下、本発明の実施の形態を、図面にもとづいて説明する。
図1は、多気筒回転式圧縮機Aの断面構造と、この多気筒回転式圧縮機Aを備えた冷凍サイクル装置の概略の構成図である。(なお、図面上の煩雑さを避けるために、説明をしても符号の付していない構成部品については、図示していない、もしくは図示しているが図面上に符号を付していない。以下、同じ)
はじめに、冷凍サイクル装置の構成から説明すると、多気筒回転式圧縮機Aと、凝縮器Bと、膨張装置Cと、蒸発器Dおよび気液分離器Eを備えていて、これら構成部品は順次、冷媒管Pを介して連通される。後述するように多気筒回転式圧縮機Aで圧縮された冷媒ガスは冷媒管Pに吐出され、以上の構成部品の順に循環して冷凍サイクル作用をなし、再び多気筒回転式圧縮機Aに吸込まれるようになっている。
上記多気筒回転式圧縮機Aにおいて、図中1は、上端が開口する有底筒状のメインケース1aと、このメインケース1aの上端開口部を閉塞するカップ状のアッパケース1bからなる密閉ケースである。この密閉ケース1内の下部には圧縮機構部2が設けられ、上部には電動機部3が設けられる。これら圧縮機構部2と電動機部3は、回転軸4を介して連結される。
上記電動機部3は、たとえばブラシレスDC同期モータ(ACモータもしくは商用モータでもよい)が用いられていて、密閉ケース1内面に圧入固定されるステータ5と、このステータ5の内側に所定の間隙を存して配置され、上記回転軸4に嵌着されるロータ6とから構成される。
上記圧縮機構部2は、複数の圧縮機構部から構成されていて、ここでは第1の圧縮機構部2Aと、第2の圧縮機構部2Bとからなる。上記第1の圧縮機構部2Aは上部側に形成され、第1のシリンダ8Aを備えている。第2の圧縮機構部2Bは第1のシリンダ8Aとは中間仕切り板7を介して下部に形成され、第2のシリンダ8Bを備えている。
第1のシリンダ8Aは、密閉ケース1内周面に圧入されたうえに、密閉ケース1外部からの溶接加工によって位置決め固定されるフレーム10に、取付けボルトを介して取付けられる。フレーム10は軸芯側に開口部が設けられ、ここに主軸受11が所定の間隙をもって嵌め込まれる。
上記主軸受11は第1のシリンダ8Aの上面部に重ね合わされ、バルブカバーとともに取付けボルトを介して第1のシリンダ8Aに取付け固定される。また、第2のシリンダ8Bの下面部には副軸受12が重ね合わされ、バルブカバーおよび中間仕切り板7とともに取付けボルトを介して第1のシリンダ8Aに取付け固定される。
上記回転軸4の第1、第2の圧縮機構部2A,2Bを構成する部位において、最下端部が副軸受12に回転自在に枢支され、所定距離を存した上部が主軸受11に回転自在に枢支される。回転軸4の主軸受11に枢支される部位を主軸部4Aと呼び、回転軸4の副軸受12に枢支される部位を副軸部4Bと呼ぶ。これら主軸部4Aと副軸部4Bの寸法設定については後述する。
さらに、回転軸4の主軸部4Aと副軸部4Bとの間の部位は、各シリンダ8A,8B内部を貫通するとともに、略180°の位相差をもって形成される2つの偏心部4c,4dが一体に設けられる。各偏心部4c,4dは互いに同一直径をなし、各シリンダ8A,8B内径部に位置するよう組立てられる。これら偏心部4c,4d相互間には上記中間仕切り板7に対向する連設部4eが形成される。
上記各偏心部4c、4dには、互いに同一直径をなす第1のローラ13aと、第2のローラ13bが嵌合される。各ローラ13a,13bの軸方向長さは、上記第1のシリンダ8Aと第2のシリンダ8Bの厚さ(軸方向長さ)と略同一に揃えられる。なお、これら偏心部4c,4dと連設部4eに対する第1、第2のローラ13a,13bの寸法設定およびローラ13a,13bの構造についても後述する。
上記第1のシリンダ8Aと第2のシリンダ8Bにおける内径部は、上記主軸受11と中間仕切り板7および副軸受12で上下面が区画され、各ローラ13a,13bが偏心回転自在に収容される第1のシリンダ室14aと第2のシリンダ室14bとなっている。第1、第2のローラ13a,13bは互いに180°の位相差があるが、第1、第2のシリンダ室14a,14bにおいて偏心回転できる。
第1、第2のシリンダ8A,8Bには、ブレード室が設けられている。ブレード室は各シリンダ室14a,14bに対して開放され、他の部分は密封構造となっている。各ブレード室にはブレード16およびばね部材が収容されている。各ブレード16は、シリンダ室14a,14b側である先端部が平面視で略半円状に形成される。
上記ばね部材は圧縮ばねであって、ブレード16の後端とブレード室端面との間に介在され、ブレード16に弾性力(背圧)を付与して先端を各シリンダ室14a,14bへ突出させ、各ローラ13a,13b周面に軸方向に沿って線接触するよう弾性的に接触させている。
したがって、上記回転軸4が回転し、偏心部4c,4dが偏心回転してローラ13a,13bがシリンダ室14a,14bの内周壁に沿って偏心移動したとき、ブレード16はブレード室に沿って往復運動し、ローラ13a,13bの回転角度にかかわらず軸方向に沿って線接触し、シリンダ室14a,14bを二室に仕切ることとなる。
上記ブレード16は、先端がシリンダ室14a,14b内へ最も突出する部位にあるとき、後端がブレード室内に位置する長さ寸法に形成される。逆に、ローラ13a,13b周壁がシリンダ室14a,14b周壁およびブレード16の先端と密接状態にあり、ブレード16が最も後退したとき、ブレード16後端とブレード室端面との間の距離は、上記ばね部材の最大圧縮長さよりもわずかに大に形成されている。
上記主軸受11と副軸受12には、吐出弁機構が設けられていて、それぞれが各シリンダ室14a,14bに連通するとともに、バルブカバーで覆われる。後述するように、各シリンダ室14a,14bで圧縮された冷媒ガスが所定圧に上昇した状態で吐出弁機構は開放され、シリンダ室14a,14bからバルブカバー内へ吐出するようになっている。
上記バルブカバーにおいて冷媒ガスは消音と整流作用を受け、ここから密閉ケース1内に直接的に導かれ、もしくはガス案内路を介して密閉ケース1内に導かれる。上記ロータ6とステータ5との間およびステータ5と密閉ケース1内周壁との間隙や、ロータ6に軸方向に貫通して設けられる貫通孔に、第1の圧縮機構部2Aと第2の圧縮機構部2Bで圧縮された冷媒ガスが流通するようになっている。
上記第1のシリンダ8Aと第2のシリンダ8Bには、吸込み冷媒管Pa,Pbが接続される。各吸込み冷媒管Pa、Paは、密閉ケース1を貫通して第1のシリンダ8Aと第2のシリンダ8Bにおける上記ブレード16で仕切られるシリンダ室14a,14bの一方側に連通されている。なお、上記ブレード16で仕切られるシリンダ室14a,14bの他方側に上記吐出弁機構が設けられる。
各吸込み冷媒管Pa,Pbは、密閉ケース1外部において上記気液分離器Eに連通される。上記吸込み冷媒管Pa,Pbが2本用いられるのは、上記多気筒回転式圧縮機Aが2シリンダタイプであることによる。したがって、冷凍サイクルを構成する気液分離器Eと多気筒回転式圧縮機Aとの間のみ2本の冷媒管Pa,Pbで連通されることになる。
一方、密閉ケース1の内底部には潤滑油を集溜する油溜り部18が設けられていて、上記圧縮機構部2を構成する第2の圧縮機構部2Bの全部と、第1の圧縮機構部2Aのほとんど大部分が油溜り部18の潤滑油中に浸漬されている。
上記回転軸4の最下端面は副軸受12から露出していて、ここに給油ポンプが設けられる。上記給油ポンプには給油通路が連通していて、回転軸4の回転にともなって給油ポンプが油溜り部18の潤滑油を吸い上げ給油通路に導くようになっている。上記給油通路は第1、第2の圧縮機構部2A,2Bを構成する各摺接部へ分岐して設けられる。
上記摺接部として、たとえば回転軸4と主軸受11との間、回転軸4と副軸受12との間、回転軸偏心部4c,4dと各ローラ13a,13bとの間、各ローラ13a,13bと第1、第2のシリンダ室14a,14b周壁との間などがあり、いずれも少なくとも一方が移動しながら他方に接触する。
このようにして構成される多気筒回転式圧縮機Aであり、電動機部3に通電すると回転軸4が回転駆動され、第1のシリンダ室14a内において第1のローラ13aが偏心移動し、第2のシリンダ室14b内において第2のローラ13bが偏心移動する。各シリンダ室14a,14bにおいてブレード16で仕切られ、かつ第1、第2の吸込み冷媒管Pa,Pbが接続される一方室に、気液分離器Eで分離された冷媒ガスが各吸込み冷媒管Pa,Pbを介して吸込まれる。
回転軸4に設けられる偏心部4c,4dが180°の位相差が存在するように形成されているところから、冷媒ガスの各吸込み冷媒管Pa,Pbから各シリンダ室14a,14b内に吸込まれるタイミングも当然、180°の位相差が存在する。第1、第2のローラ13a,13bが偏心移動して吐出弁機構側の室の容積が減少し、その分圧力が上昇する。
吐出弁機構側の室の容積がほとんどゼロになったとき、この室で圧縮された冷媒ガスは所定の圧力まで上昇する。同時に吐出弁機構が開放され、圧縮されて高温高圧化した冷媒ガスはバルブカバー内に吐出される。圧縮された冷媒ガスが吐出弁機構へ吐出されるタイミングも180°の位相差が存在する。
圧縮された冷媒ガスは各バルブカバーから直接的、もしくは間接的に密閉ケース1内の圧縮機構部2と電動機部3との間の空間部へ導出される。そして、回転軸4と電動機部3を構成するロータ6との間、ロータ6とステータ5との間、ステータ5と密閉ケース1内周壁との間に形成される間隙を流通し、電動機部3の上部側密閉ケース1内に充満する。
その一方で、回転軸4の回転にともなって給油ポンプは油溜り部18の潤滑油を吸上げ、給油通路を介して回転軸4と主軸受11との間などの各摺接部へ給油する。各摺接部においては、油溜り部18から充分な量の潤滑油が導かれ、潤滑性を保持する。各摺接部に給油されたあとの潤滑油は、再び油溜り部18に戻される。
多気筒回転式圧縮機Aから冷媒管Pへ導出された冷媒ガスは凝縮器Bに導かれて凝縮液化し、膨張装置Cに導かれて断熱膨張し、蒸発器Dに導かれて蒸発し、周囲から蒸発潜熱を奪って冷凍作用をなす。蒸発した冷媒は気液分離器Eに導かれて気液分離され、ガス分のみが多気筒回転式圧縮機Aの圧縮機構部2に吸込まれて再度圧縮される。
つぎに、回転軸4を構成する主軸部4Aと副軸部4Bおよび2つの偏心部4c,4dと、これら偏心部4c,4d相互間に形成される連設部4eと、上記偏心部4c,4dに嵌合される第1、第2のローラ13a,13bの寸法構造について詳述する。
上述したように多気筒回転式圧縮機Aとして、摩擦ロスを低減し効率を向上するために、回転軸4の摺動部分で最も径の大きい偏心部4c、4dの直径を極力小径化することが望ましい。それにともない、第1、第2のシリンダ8A,8Bの高さ(厚み)を、より小さく縮小化し、偏心量を大きくとり、回転軸4の摺動損失の低減を得るとよい。
図2と図3から、第1の実施の形態に係る圧縮機構部2の構成を説明する。図2は回転軸4の正面図、図3は回転軸4の偏心部4c,4dに嵌合する第1、第2のローラ13a,13bの断面図である。
上記回転軸4における主軸部4Aの半径をRm、副軸部4Bの半径をRs、偏心部4c,4dの半径をRc、偏心部4c,4dの偏心量をeとしたとき、
Rc < Rm + e ……(1)
Rc > Rs + e ……(2)
の(1)、(2)式を満足する寸法設定をなす。
さらに、上記主軸部4Aに最も近い偏心部4cに嵌合する第1のローラ13aは軸方向に2分割されていて、分割ローラr1、r2となす。副軸部4B側の偏心部4dに嵌合する第2のローラ13bについては分割の必要がない。
さらにそのうえ、隣接する偏心部4c,4d端面間の距離をLとし、シリンダ室14aを備えた第1のシリンダ8Aの高さをH、分割ローラr1,r2それぞれの高さをhaとしたとき、
H > L ……(3)
ha < L ……(4)
の(3)、(4)式を満足するように設定する。
すなわち、(1)式と(2)式を満足するだけの設定で、主軸部4Aに最も近い偏心部4cに第1のローラ13aを組み付けるには、本来、(3)式とは逆の設定(H<L)にして副軸部4B端面からローラ13aを挿入する必要がある。この場合は回転軸4の軸方向長さが長くなって種々の不具合を生じてしまう。
ところが、上述したように第1のローラ13aを軸方向に2分割して、分割ローラr1、r2となすうえに、従来とは逆の(3)式であるH>Lの設定と、(4)式を満足する設定をなす。
そして、第1のローラ13aを構成する分割ローラr1,r2を副軸部4B端面から挿入し、連設部4eを介して主軸部4A側の偏心部4cに組み付け、第1のローラ13aを構成することができる。
第1のローラ13aを主軸部4A側の偏心部4cに嵌合したあと、分割しない第2のローラ13bを副軸部4B側の偏心部4dに嵌合すれば、回転軸4の2つの偏心部4c,4dにそれぞれローラ13a,13bが組み付けられて完成する。
したがって、各偏心部4c,4d相互間の距離が短縮して回転軸4の軸方向長さを短縮でき、かつ偏心部4c,4dとシリンダ室8A,8Bの直径が縮小化して、各シリンダ室8A,8B内の圧力や慣性力による回転軸4の倒れモーメントの減少化を得られ、バランス的に優れたものとなり、圧縮機としての圧縮性能の向上と信頼性の向上を得られる。
つぎに、図2と図4から第2の実施の形態に係る圧縮機構部2の構成を説明する。図2に示すように、回転軸4については何ら変りがなく、そのままのものを用いる。図4は回転軸4の偏心部4c,4dに嵌合する第1、第2のローラ13a,13bの断面図である。
第1の実施の形態で説明したように、主軸部4Aに最も近い偏心部4cに嵌合する第1のローラ13aは軸方向に分割するばかりでなく、後述するように、径方向に分割してもよい。
すなわち、上記回転軸4における主軸部4Aの半径をRm、副軸部4Bの半径をRs、偏心部4c,4dの半径をRc、偏心部4c,4dの偏心量をeとしたとき、
Rc < Rm + e ……(1)
Rc > Rs + e ……(2)
の(1)、(2)式を満足する寸法設定をなすことは、ここでも同様である。
上記主軸部4Aに最も近い偏心部4cに嵌合する第1のローラ13aは、径方向に2分割されていて、内側ローラu1と、外側ローラu2となす。また、副軸部4B側の偏心部4dに嵌合する第2のローラ13bについては分割の必要がない。
さらに、隣接する偏心部4c,4d端面間の距離をLとし、シリンダ室14aを備えた第1のシリンダ8Aの高さをH、分割した第1のローラ13aを構成する内側ローラu1の高さをhb、内側ローラu1の外半径をRri、第1のシリンダ8Aの厚さをH、隣接する偏心部4c,4d端面間の距離をLとしたとき、
H > L ……(3)
hb < L ……(4)
Rri > Rm + e ……(5)
の(3)、(4)、(5)式を満足するように設定する。
すなわち、(1)式と(2)式を満足するだけの設定で、主軸部4Aに最も近い偏心部4cに第1のローラ13aを組み付けるには、本来、(3)式とは逆の設定(H<L)にして副軸部4B端面からローラ13aを挿入する必要がある。この場合は回転軸4の軸方向長さが長くなって種々の不具合を生じてしまう。
ところが、上述したように第1のローラ13aを径方向に2分割して、内側ローラu1と、外側ローラu2となすうえに、従来とは逆の(3)式であるH>Lを設定し、かつ(4)式および(5)式を満足する設定をなす。
そして、第1のローラ13aを構成する内側ローラu1を副軸部4B端面から挿入し、連設部4eを介して主軸部4A側の偏心部4cに組み付け、外側ローラu2を主軸部4A端面から挿入し、既に偏心部4cに嵌合する内側ローラu1の外周面に組み付けて、第1のローラ13aを構成することができる。
第1のローラ13aを主軸部4A側の偏心部4cに嵌合したあと、分割しない第2のローラ13bを副軸部4B側の偏心部4dに嵌合すれば、回転軸4の2つの偏心部4c,4dにそれぞれローラ13a,13bが組み付けられて完成する。
したがって、各偏心部4c,4d相互間の距離が短縮して回転軸4の軸方向長さを短縮でき、かつ偏心部4c,4dとシリンダ室8A,8Bの直径が縮小化して、各シリンダ室8A,8B内の圧力や慣性力による回転軸4の倒れモーメントの減少化を得られ、バランス的に優れたものとなり、圧縮機としての圧縮性能の向上と信頼性の向上を得られる。
つぎに、図2と図5から第3の実施の形態に係る圧縮機構部2の構成を説明する。図2に示すように、回転軸4については何ら変りがなく、そのままのものを用いる。図5は回転軸4の偏心部4c,4dに嵌合する第1、第2のローラ13a,13bの断面図である。
上記回転軸4における主軸部4Aの半径をRm、副軸部4Bの半径をRs、偏心部4c,4dの半径をRc、偏心部4c,4dの偏心量をeとしたとき、
Rc < Rm + e ……(1)
Rc > Rs+ e ……(2)
の(1)、(2)式を満足する寸法設定をなすことは、ここでも同様である。
そして、上記主軸部4Aに最も近い偏心部4cに嵌合する第1のローラ13aは、径方向に2分割されていて、内側ローラu1と、外側ローラu2となすとともに、特に内側ローラu1については軸方向に2分割された分割ローラw1、w2から構成される。また、副軸部4B側の偏心部4dに嵌合する第2のローラ13bについては分割の必要がない。
さらに、隣接する偏心部4c,4d端面間の距離をLとし、シリンダ室14aを備えた第1のシリンダ8Aの高さをH、分割した内側ローラu1を構成する分割ローラw1の高さをhc、分割ローラw1の外半径をRri、第1のシリンダ8Aの厚さをH、隣接する偏心部4c,4d端面間の距離をLとしたとき、
H > L ……(3)
hc < L ……(4)
Rri > Rm + e ……(5)
の(3)、(4)、(5)式を満足するように設定する。なお、内側ローラu1を構成する分割ローラw1,w2の合計高さは第1のシリンダ8Aの厚さHと略等しい、もしくは小に設定すると良い。
すなわち、(1)式と(2)式を満足するだけの設定で、主軸部4Aに最も近い偏心部4cに第1のローラ13aを組み付けるには、本来、(3)式とは逆の設定(H<L)にして副軸部4B端面からローラ13aを挿入する必要がある。この場合は回転軸4の軸方向長さが長くなって種々の不具合を生じてしまう。
ところが、上述したように第1のローラ13aを径方向に2分割して、内側ローラu1と、外側ローラu2となすとともに、内側ローラu1を軸方向に2分割して分割ローラw1,w2としたうえに、従来と逆の(3)式のH>Lを設定し、(4)式および(5)式を満足する設定をなす。
そして、第1のローラ13aを構成する内側ローラu1の分割ローラw1,w2を副軸部4B端面から挿入し、連設部4eを介して主軸部4A側の偏心部4cに組み付けたあと、外側ローラu2を主軸部4A端面から挿入し、既に偏心部4cに嵌合する内側ローラu1の外周面に組み付けて、第1のローラ13aを構成することができる。
第1のローラ13aを主軸部4A側の偏心部4cに嵌合したあと、分割しない第2のローラ13bを副軸部4B側の偏心部4dに嵌合すれば、回転軸4の2つの偏心部4c,4dにそれぞれローラ13a,13bが組み付けられて完成する。
したがって、各偏心部4c,4d相互間の距離が短縮して回転軸4の軸方向長さを短縮でき、かつ偏心部4c,4dとシリンダ室8A,8Bの直径が縮小化して、各シリンダ室8A,8B内の圧力や慣性力による回転軸4の倒れモーメントの減少化を得られ、バランス的に優れたものとなり、圧縮機としての圧縮性能の向上と信頼性の向上を得られる。
なお、上記第1の実施形態および第3の実施形態においては、第1のローラ13aおよび内側ローラu1を、軸方向に等分に2分割した例で説明したが、3分割以上に分割しても良く、また、互いに高さを異ならせても良い。そして、互いに高さを異ならせた場合には、一番高さの高いローラの高さを隣接する偏心部端面間の距離よりも小さくすれば良い。
また、本発明は上述した実施の形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。そして、上述した実施の形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。
本発明における実施の形態に係る、多気筒回転式圧縮機の縦断面図と、空気調和機の冷凍サイクル構成図。 同実施の形態に係る、回転軸の一部正面図。 本発明における第1の実施の形態に係る、回転軸とローラの寸法設定を説明する図。 本発明における第2の実施の形態に係る、回転軸とローラの寸法設定を説明する図。 本発明における第3の実施の形態に係る、回転軸とローラの寸法設定を説明する図。
符号の説明
11…主軸受、4A…主軸部、4B…副軸部、13a…第1のローラ、13b…第2のローラ、4c,4d…偏心部、4…回転軸、14a…第1のシリンダ室、14b…第2のシリンダ室、8A…第1のシリンダ、8B…第2のシリンダ、2A…第1の圧縮機構部、2B…第2の圧縮機構部、r1,r2…分割ローラ、u1…内側ローラ、u2…外側ローラ、A…多気筒回転式圧縮機、B…凝縮器、C…膨張装置、D…蒸発器。

Claims (4)

  1. 主軸受に枢支される主軸部と副軸受に枢支される副軸部および、これら主軸部と副軸部との間に偏心して設けられ、それぞれにローラが係合する複数の偏心部とを備えた回転軸と、
    この回転軸の各偏心部に係合する上記ローラを収容し、回転軸の回転にともなって各ローラが周壁に接触しながら偏心移動するシリンダ室を備えた複数のシリンダと、を有する複数組の圧縮機構部を具備する多気筒回転式圧縮機において、
    上記回転軸における上記主軸部の半径をRm、上記副軸部の半径をRs、上記偏心部の半径をRc、上記偏心部の偏心量をeとしたとき、
    Rc < Rm + e ……(1)
    Rc > Rs + e ……(2)
    の(1)、(2)式を満足するとともに、上記主軸部に最も近い偏心部に係合するローラを軸方向に分割し、この分割ローラの高さをha、上記シリンダの厚さをH、隣接する偏心部端面間の距離をLとしたとき、
    H > L ……(3)
    ha < L ……(4)
    の(3)、(4)式を満足するように設定したことを特徴とする多気筒回転式圧縮機。
  2. 主軸受に枢支される主軸部と副軸受に枢支される副軸部および、これら主軸部と副軸部との間に偏心して設けられ、それぞれにローラが係合する複数の偏心部とを備えた回転軸と、
    この回転軸の各偏心部に係合する上記ローラを収容し、回転軸の回転にともなって各ローラが周壁に接触しながら偏心移動するシリンダ室を備えた複数のシリンダと、を有する複数組の圧縮機構部を具備する多気筒回転式圧縮機において、
    上記回転軸における上記主軸部の半径をRm、上記副軸部の半径をRs、上記偏心部の半径をRc、上記偏心部の偏心量をeとしたとき、
    Rc < Rm + e ……(1)
    Rc > Rs + e ……(2)
    の(1)、(2)式を満足するとともに、上記主軸部に最も近い偏心部に係合するローラを径方向に内側ローラと外側ローラとに分割し、この分割した内側ローラの高さをhb、内側ローラの外半径をRri、上記シリンダの厚さをH、隣接する偏心部端面間の距離をLとしたとき、
    H > L ……(3)
    hb < L ……(4)
    Rri > Rm + e ……(5)
    の(3)、(4)、(5)式を満足するように設定したことを特徴とする多気筒回転式圧縮機。
  3. 主軸受に枢支される主軸部と副軸受に枢支される副軸部および、これら主軸部と副軸部との間に偏心して設けられ、それぞれにローラが係合する複数の偏心部とを備えた回転軸と、
    この回転軸の各偏心部に係合する上記ローラを収容し、回転軸の回転にともなって各ローラが周壁に接触しながら偏心移動するシリンダ室を備えた複数のシリンダと、を有する複数組の圧縮機構部を具備する多気筒回転式圧縮機において、
    上記回転軸における上記主軸部の半径をRm、上記副軸部の半径をRs、上記偏心部の半径をRc、上記偏心部の偏心量をeとしたとき、
    Rc < Rm + e ……(1)
    Rc > Rs + e ……(2)
    の(1)、(2)式を満足するとともに、上記主軸部に最も近い偏心部に係合するローラを径方向に内側ローラと外側ローラとに分割し、この分割した内側ローラをさらに軸方向に分割して複数の分割ローラとし、この分割ローラの高さをhc、内側ローラの外半径をRri、上記シリンダの厚さをH、隣接する偏心部端面間の距離をLとしたとき、
    H > L ……(3)
    hc < L ……(4)
    Rri > Rm + e ……(5)
    の(3)、(4)、(5)式を満足するように設定したことを特徴とする多気筒回転式圧縮機。
  4. 上記請求項1もしくは請求項3に記載の多気筒回転式圧縮機と、凝縮器と、膨張装置と、蒸発器を備えて冷凍サイクルを構成することを特徴とする冷凍サイクル装置。
JP2006348250A 2006-12-25 2006-12-25 多気筒回転式圧縮機および冷凍サイクル装置。 Pending JP2008157146A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006348250A JP2008157146A (ja) 2006-12-25 2006-12-25 多気筒回転式圧縮機および冷凍サイクル装置。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006348250A JP2008157146A (ja) 2006-12-25 2006-12-25 多気筒回転式圧縮機および冷凍サイクル装置。

Publications (1)

Publication Number Publication Date
JP2008157146A true JP2008157146A (ja) 2008-07-10

Family

ID=39658337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006348250A Pending JP2008157146A (ja) 2006-12-25 2006-12-25 多気筒回転式圧縮機および冷凍サイクル装置。

Country Status (1)

Country Link
JP (1) JP2008157146A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711699A (zh) * 2012-10-01 2014-04-09 三菱电机株式会社 旋转压缩机
CN103727037A (zh) * 2012-10-16 2014-04-16 三菱电机株式会社 回转压缩机
JP2014098382A (ja) * 2012-10-16 2014-05-29 Mitsubishi Electric Corp ロータリ圧縮機
CN104421156A (zh) * 2013-08-26 2015-03-18 珠海格力电器股份有限公司 压缩机
CN108916049A (zh) * 2018-08-21 2018-11-30 珠海凌达压缩机有限公司 一种泵体结构及压缩机

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103711699A (zh) * 2012-10-01 2014-04-09 三菱电机株式会社 旋转压缩机
JP2014070619A (ja) * 2012-10-01 2014-04-21 Mitsubishi Electric Corp 回転圧縮機
KR101539853B1 (ko) * 2012-10-01 2015-07-27 미쓰비시덴키 가부시키가이샤 회전 압축기
CZ306348B6 (cs) * 2012-10-01 2016-12-14 Mitsubishi Electric Corporation Rotační kompresor
CN103727037A (zh) * 2012-10-16 2014-04-16 三菱电机株式会社 回转压缩机
JP2014098382A (ja) * 2012-10-16 2014-05-29 Mitsubishi Electric Corp ロータリ圧縮機
KR101523435B1 (ko) * 2012-10-16 2015-05-27 미쓰비시덴키 가부시키가이샤 로터리 압축기
CN103727037B (zh) * 2012-10-16 2016-08-10 三菱电机株式会社 回转压缩机
CZ306576B6 (cs) * 2012-10-16 2017-03-15 Mitsubishi Electric Corporation Rotační kompresor
CN104421156A (zh) * 2013-08-26 2015-03-18 珠海格力电器股份有限公司 压缩机
CN108916049A (zh) * 2018-08-21 2018-11-30 珠海凌达压缩机有限公司 一种泵体结构及压缩机
CN108916049B (zh) * 2018-08-21 2024-01-19 珠海凌达压缩机有限公司 一种泵体结构及压缩机

Similar Documents

Publication Publication Date Title
JP5117503B2 (ja) 多気筒回転式圧縮機及び冷凍サイクル装置
JP4875484B2 (ja) 多段圧縮機
JP4864572B2 (ja) 回転式圧縮機及びこれを用いた冷凍サイクル装置
CN101688536B (zh) 旋转式压缩机及制冷循环装置
JP6156697B2 (ja) 2つのシリンダを持ったロータリ圧縮機
JP4594302B2 (ja) 多気筒形回転式圧縮機
JP5984486B2 (ja) ロータリ圧縮機
KR101637446B1 (ko) 로터리 압축기
CN102678554A (zh) 旋转压缩机
JP6454879B2 (ja) 2つのシリンダを持ったロータリ圧縮機
JP2008157146A (ja) 多気筒回転式圧縮機および冷凍サイクル装置。
JP2008180178A (ja) 回転式圧縮機および冷凍サイクル装置
JP2010163927A (ja) 多気筒回転式圧縮機および冷凍サイクル装置
JPWO2009031626A1 (ja) 2気筒回転式圧縮機及び冷凍サイクル装置
JP6324091B2 (ja) 密閉型圧縮機
JP6057535B2 (ja) 冷媒圧縮機
JP5951039B2 (ja) ロータリ圧縮機
JP2010223088A (ja) 回転式圧縮機と空気調和機
JP2009074445A (ja) 2気筒回転式圧縮機および冷凍サイクル装置
JP2012031770A (ja) ロータリー式圧縮機
JP2010265830A (ja) 密閉型圧縮機と冷凍サイクル装置
JP2013204488A (ja) スクロール式流体機械
WO2016151769A1 (ja) 回転式密閉型圧縮機
JP2006275033A (ja) 2気筒回転圧縮機
JP2011111993A (ja) 密閉型回転圧縮機

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20080528

Free format text: JAPANESE INTERMEDIATE CODE: A712