JP2008156800A - Flame-resistant meta-type wholly aromatic polyamide fibers - Google Patents

Flame-resistant meta-type wholly aromatic polyamide fibers Download PDF

Info

Publication number
JP2008156800A
JP2008156800A JP2006349385A JP2006349385A JP2008156800A JP 2008156800 A JP2008156800 A JP 2008156800A JP 2006349385 A JP2006349385 A JP 2006349385A JP 2006349385 A JP2006349385 A JP 2006349385A JP 2008156800 A JP2008156800 A JP 2008156800A
Authority
JP
Japan
Prior art keywords
aromatic polyamide
wholly aromatic
flame
meta
type wholly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006349385A
Other languages
Japanese (ja)
Inventor
Yasushige Yakura
靖重 矢倉
Hiroshi Fujita
寛 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2006349385A priority Critical patent/JP2008156800A/en
Publication of JP2008156800A publication Critical patent/JP2008156800A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide meta-type wholly aromatic polyamide fibers improved in a hardening phenomenon caused by carbonization under exposure to flames. <P>SOLUTION: The meta-type wholly aromatic polyamide fiber is a fiber which includes an acid anhydride-based cross-linking agent in an amount of 0.01-10 pts.wt. based on the weight of the wholly aromatic polyamide, and has improved hardening phenomenon caused by carbonization under exposure to flame. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、熱収縮特性の改善されたメタ型全芳香族ポリアミド繊維に関するものである。さらに詳しくは、高温の炎や火の玉に接触した際の炭化による硬化現象を抑制することができる、酸無水物系架橋剤を配合した新規な耐炎性メタ型全芳香族ポリアミド繊維に関するものである。   The present invention relates to a meta-type wholly aromatic polyamide fiber having improved heat shrinkage characteristics. More specifically, the present invention relates to a novel flame-resistant meta-type wholly aromatic polyamide fiber containing an acid anhydride-based crosslinking agent that can suppress a curing phenomenon due to carbonization when contacting a high-temperature flame or fireball.

従来、芳香族ジアミンと芳香族ジカルボン酸ジハライドとから製造される全芳香族ポリアミドが耐熱性及び難燃性に優れていることは周知であり、また、これらの全芳香族ポリアミドは、アミド系極性溶媒に可溶であり、全芳香族ポリアミドを該溶媒に溶解した重合体溶液から乾式紡糸、湿式紡糸、半乾半湿式紡糸等の方法により繊維となし得ることもよく知られている。かかる全芳香族ポリアミドのうち、ポリメタフェニレンイソフタルアミドで代表されるメタ型全芳香族ポリアミド(一般に「メタアラミド」と称されることもある)の繊維は、耐熱・難燃性繊維として特に有用なものであり、これらの特性を発揮する分野、例えば、耐熱フィルター、電子部品等の産業用途や、耐熱性、防炎性、耐炎性等が重視される防護衣料等の防災安全用途に用いられている。なかでも、防護衣料は、溶鉱炉、電気炉、焼却炉等の高温炉前で着用する炉前防護衣料、消火作業に従事する人のための消防衣料、高温火花を浴びる溶接作業用の溶接防護衣料、引火性の強い薬品を取り扱う人のための難燃作業服等として幅広く使用されている。   Conventionally, it is well known that wholly aromatic polyamides produced from aromatic diamines and aromatic dicarboxylic acid dihalides are excellent in heat resistance and flame retardancy, and these wholly aromatic polyamides are amide polar It is also well known that it is soluble in a solvent and can be formed into a fiber from a polymer solution in which a wholly aromatic polyamide is dissolved in the solvent by a method such as dry spinning, wet spinning, semi-dry semi-wet spinning, or the like. Among such wholly aromatic polyamides, fibers of meta-type wholly aromatic polyamides typified by polymetaphenylene isophthalamide (sometimes generally referred to as “meta-aramid”) are particularly useful as heat-resistant and flame-retardant fibers. It is used in fields that exhibit these characteristics, for example, industrial applications such as heat-resistant filters and electronic parts, and disaster prevention and safety applications such as protective clothing that emphasizes heat resistance, flame resistance, flame resistance, etc. Yes. Among these, protective clothing includes pre-furnace protective clothing worn in front of high-temperature furnaces such as blast furnaces, electric furnaces, and incinerators, fire-proof clothing for people engaged in fire fighting work, and welding protective clothing for welding work exposed to high-temperature sparks. It is widely used as a flame-retardant work wear for people who handle highly flammable chemicals.

メタ型全芳香族ポリアミド繊維はその優れた耐熱性、難燃性、自已消化性に加えて一般の糸質が衣料用繊維、綿、羊毛等の天然繊維や、ナイロン、ポリエステル、アクリル等の合成繊維によく似ているため、加工性、着心地、洗濯性、衣裳性等の面で、従来防護衣料に使用されていたガラス繊維、石綿繊維、フェノール樹脂繊維、金属箔コーティング素材等よりも防護衣料素材として優れていることが認められている。   Meta-type wholly aromatic polyamide fibers have excellent heat resistance, flame retardancy, and self-digestibility, and general yarn quality is natural fibers such as clothing fibers, cotton and wool, and synthetic materials such as nylon, polyester, and acrylic. Because it is very similar to fiber, it is more protective than glass fiber, asbestos fiber, phenolic resin fiber, metal foil coating material, etc. used in conventional protective clothing in terms of processability, comfort, washability, and clothes. It is recognized as an excellent clothing material.

しかし、従来のメタ型全芳香族ポリアミド繊維製の防護衣料は、高温の炎又は火の玉に接触した際に、素材の収縮、さらには穴あき現象を生じることがあり、その防護性能、特に防火性、に限界があるため、消火活動・人命救助活動の範囲にも限界が生じている。したがって、もしメタ型全芳香族ポリアミド繊維製の防護衣料素材の耐火性、耐炎性、耐熱性等が飛躍的に向上すれば、例えば消火活動において火災の進行状況にかかわらず火災現場内部へ突入して早期の消火・救出活動を可能とすることや、最盛期の火災であっても、火元に接近して直接注水して早期に消火することが可能となる。これにより、消火活動における水損が大幅に低減する、救助の迅速・早期化が実現する、消防隊員の安全性が向上する、等のメリットが期待されている。   However, conventional protective clothing made of meta-type wholly aromatic polyamide fibers may cause material shrinkage and perforation when it comes into contact with high-temperature flames or fireballs. Therefore, there are limits to the range of fire fighting and lifesaving activities. Therefore, if the fire resistance, flame resistance, heat resistance, etc. of the protective clothing material made of meta-type wholly aromatic polyamide fiber is dramatically improved, for example, fire extinguishing activities will enter the fire site regardless of the progress of the fire. This enables early fire extinguishing / rescue activity, and even in the heyday of fire, it is possible to extinguish fire quickly by injecting water close to the source of fire. As a result, there are expected merits such as drastically reducing water loss in fire fighting activities, realizing quick and early rescue, and improving safety of fire fighters.

このため、メタ型全芳香族ポリアミド繊維製の防護衣料素材としての防火性能を向上させるには、特に高温の炎又は火の玉に接触した際の素材の炭化による硬化現象を抑制することが望まれる。   For this reason, in order to improve the fireproof performance as a protective clothing material made of meta-type wholly aromatic polyamide fiber, it is desired to suppress a hardening phenomenon caused by carbonization of the material particularly when it comes into contact with a high-temperature flame or a fireball.

従来、全芳香族ポリアミド繊維の耐炎性を改善するため、ポリマーに有機リン化合物、含リンフェノール樹脂、ハロゲン化合物等を添加する方法が提案されており、ハロゲン原子含有の有機リン化合物を配合する方法が提案されている(下記特許文献1参照)。しかし、この方法では、寸法安定性の改善は可能であるが、火炎暴露時に発現する炭化による硬化現象の改善はなされず、防護衣料としての用途拡大に問題点を有する。   Conventionally, in order to improve the flame resistance of wholly aromatic polyamide fibers, a method of adding an organophosphorus compound, a phosphorus-containing phenol resin, a halogen compound, etc. to a polymer has been proposed, and a method of blending a halogen atom-containing organophosphorus compound Has been proposed (see Patent Document 1 below). However, although this method can improve the dimensional stability, it does not improve the hardening phenomenon due to carbonization that occurs during exposure to flame, and has a problem in expanding the use as protective clothing.

また、全芳香族ポリアミドとポリカーボネート、ポリエーテルスルホン、ポリスルホン、ポリアリレート、ポリスルフィドスルホン等の可溶性樹脂とのブレンドからなる、高温での寸法安定に優れた繊維及びその製造方法が提案されている(下記特許文献2参照)。しかし、この方法では、高温の炎又は火の玉に接触した際の素材の収縮つまり高温下での硬化現象については全く言及されておらず、現実に、該繊維の構成・製造方法では高温下での炭化による硬化性に優れたものにならないことは容易に想像できる。   Further, a fiber excellent in dimensional stability at high temperature and a method for producing the same made of a blend of a wholly aromatic polyamide and a soluble resin such as polycarbonate, polyethersulfone, polysulfone, polyarylate, and polysulfidesulfone have been proposed (see below). Patent Document 2). However, in this method, there is no mention of the shrinkage of the material when it comes into contact with a high-temperature flame or fireball, that is, the curing phenomenon at high temperature. It can be easily imagined that the curability is not excellent due to carbonization.

さらに別の手法として、火炎暴露時の耐火性を向上させることを目的として、芳香族ポリアミド繊維をIV,V 及びVI族のハライド及びオキシハライド含有する不活性雰囲気の中で高温熱処理することにより架橋構造を形成せしめる方法、(下記特許文献3参照)、ハロゲン置換されたホスファゼンを含有する不活性雰囲気の中で高温熱処理することにより架橋構造を形成せしめる方法(下記特許文献4参照)、高温空気雰囲気下で繊維を長時間処理することにより酸化架橋を形成せしめる方法(下記特許文献5,6参照)等が提案されているが、何れの場合も、高温かつ長時間の工程を要するため、実質的に生産性が良くないという問題がある。   As another method, for the purpose of improving the fire resistance when exposed to flame, crosslinking is performed by high-temperature heat treatment of aromatic polyamide fibers in an inert atmosphere containing IV, V and VI halides and oxyhalides. A method for forming a structure (see Patent Document 3 below), a method for forming a crosslinked structure by high-temperature heat treatment in an inert atmosphere containing a halogen-substituted phosphazene (see Patent Document 4 below), and a high-temperature air atmosphere A method of forming an oxidative crosslink by treating fibers for a long time (see Patent Documents 5 and 6 below) and the like has been proposed. There is a problem that productivity is not good.

また、芳香族ポリアミド繊維を無機リン酸溶液に浸漬含浸せしめ架橋構造を形成せしめる方法(下記特許文献7参照)も提案されているが、上述の提案も含めて何れのケースも火炎暴露時の寸法安定性改善については言及されているものの、火炎暴露時に炭化を生じるとの記載があり、炭化による硬化現象は改善されていない。   In addition, a method of immersing and impregnating an aromatic polyamide fiber in an inorganic phosphoric acid solution to form a crosslinked structure (see Patent Document 7 below) has also been proposed. Although mention is made of stability improvement, there is a description that carbonization occurs when exposed to flame, and the hardening phenomenon due to carbonization is not improved.

さらに、近年、硫黄により架橋構造を有する芳香族ポリアミド繊維を形成せしめる方法(下記特許文献8参照)、ポリベンズイミダゾール及び芳香族ポリアミド繊維に6価タングステンを含浸せしめ架橋構造を形成せしめる方法(下記特許文献9参照)が提案されているが、前者は機械強度の向上について言及されており、後者は耐火性の向上を言及しているものの重量減少改善のみを唱えており、炭化性改善に関しては一切言及されていない。   Furthermore, in recent years, a method of forming an aromatic polyamide fiber having a crosslinked structure with sulfur (see Patent Document 8 below), a method of impregnating polybenzimidazole and aromatic polyamide fiber with hexavalent tungsten to form a crosslinked structure (Patent Document below) (Ref. 9) has been proposed, but the former refers to the improvement of mechanical strength, the latter refers to the improvement of fire resistance, but only advocates an improvement in weight reduction. Not mentioned.

特開昭53−122817号公報JP-A-53-122817 特開平5−321026号公報JP-A-5-321026 特公昭47−5436号公報Japanese Patent Publication No. 47-5436 特開昭49−132398号公報Japanese Patent Laid-Open No. 49-132398 特公昭46−419号公報Japanese Patent Publication No.46-419 特開昭49−35614号公報JP 49-35614 A 特開昭50−114473号公報JP 50-114473 A 特表2000−512694号公報JP 2000-512694 A 特表平8−503504号公報Japanese National Patent Publication No. 8-503504

本発明は、上記のごとき従来技術の問題を解消するためになされたもので、その主たる目的は、火炎暴露下での炭化による硬化現象を改善した新規な耐炎性メタ型全芳香族ポリアミド繊維を提供することにある。   The present invention has been made to solve the problems of the prior art as described above, and its main purpose is to provide a novel flame-resistant meta-type wholly aromatic polyamide fiber that has improved the hardening phenomenon caused by carbonization under exposure to flame. It is to provide.

本発明によれば、上記の課題を解決するメタ型全芳香族ポリアミド繊維として、メタ型全芳香族ポリアミド重量を基準にして0.01〜10重量%の酸無水物系架橋剤を含有するメタ型全芳香族ポリアミド繊維であって、火炎暴露下での炭化による硬化現象が大幅に改善された繊維が提供される。   According to the present invention, as a meta-type wholly aromatic polyamide fiber that solves the above problems, a meta containing 0.01 to 10% by weight of an acid anhydride-based crosslinking agent based on the weight of the meta-type wholly aromatic polyamide. A fully aromatic polyamide fiber of the type that provides a significantly improved cure phenomenon due to carbonization under flame exposure.

すなわち、本発明は、メタ型全芳香族ポリアミド繊維において、該繊維を構成する全芳香族ポリアミド重量100重量当り、芳香族ポリカルボン酸無水物からなる架橋剤0.01〜10重量部を含有することを特徴とする耐炎性メタ型全芳香族ポリアミド繊維に係るものである。   That is, the present invention contains 0.01 to 10 parts by weight of a cross-linking agent composed of an aromatic polycarboxylic acid anhydride per 100 parts by weight of the wholly aromatic polyamide constituting the meta-type wholly aromatic polyamide fiber. The present invention relates to a flame-resistant meta-type wholly aromatic polyamide fiber.

本発明の耐炎性メタ型全芳香族ポリアミド繊維の好ましい態様は、上記の酸無水物系架橋剤が芳香族ポリカルボン酸無水物がピロメリット酸無水物であることを特徴とするものである。
そして、本発明の好適な耐炎性メタ型全芳香族ポリアミド繊維は、その引張強度が2.9cN/dtex以上であることを特徴とするものである。
A preferred embodiment of the flame-resistant meta-type wholly aromatic polyamide fiber of the present invention is characterized in that the acid anhydride crosslinking agent is an aromatic polycarboxylic acid anhydride is pyromellitic acid anhydride.
The preferred flame resistant meta type wholly aromatic polyamide fiber of the present invention is characterized in that its tensile strength is 2.9 cN / dtex or more.

本発明の耐炎性全芳香族ポリアミド繊維は、芳香族ポリカルボン酸無水物からなる架橋剤が特定量配合されていることで高温での熱収縮性が極めて小さくなり、高温の炎や火の玉に接触しても穴あき等の問題が発生し難い、耐炎性に優れた各種繊維製品を提供することができる。このため、特に防護衣料用途への素材展開において極めて有用である。   The flame-resistant wholly aromatic polyamide fiber of the present invention contains a specific amount of a cross-linking agent composed of an aromatic polycarboxylic acid anhydride, so that the heat shrinkability at a high temperature becomes extremely small, and contacts a high-temperature flame or fireball. However, it is possible to provide various fiber products that are less likely to cause problems such as perforation and have excellent flame resistance. For this reason, it is extremely useful particularly in the development of materials for use in protective clothing.

本発明におけるメタ型全芳香族ポリアミドは、メタ型芳香族ジアミンとメタ型芳香族ジカルボン酸ハライドとを原料として、例えば溶液重合や界面重合させることにより製造されるポリアミドであるが、本発明の目的を阻害しない範囲内で、例えばパラ型等の他の共重合成分を共重合したものであってもよい。   The meta-type wholly aromatic polyamide in the present invention is a polyamide produced by, for example, solution polymerization or interfacial polymerization using a meta-type aromatic diamine and a meta-type aromatic dicarboxylic acid halide as raw materials. For example, other copolymer components such as the para type may be copolymerized within a range that does not inhibit the above.

上記メタ型芳香族ジアミンとしては、メタフェニレンジアミン、3,4’‐ジアミノジフェニルエーテル、3,4’‐ジアミノジフエニルスルホン等及びこれらの芳香環にハロゲン、炭素数1〜3のアルキル基等の置換基を有する誘導体、例えば2,4‐トルイレンジアミン、2,6‐トルイレンジアミン、2,4‐ジアミノクロルベンゼン、2,6‐ジアミノクロルベンゼン等を使用することができる。これらのメタ型芳香族ジアミンのなかでも、メタフェニレンジアミン又はメタフェニレンジアミンを70モル%以上含有する上記の混合ジアミンが好ましい。   Examples of the meta-type aromatic diamine include metaphenylene diamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone and the like, and substitution of halogens and alkyl groups having 1 to 3 carbon atoms on these aromatic rings. Derivatives having a group such as 2,4-toluylenediamine, 2,6-toluylenediamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene and the like can be used. Among these meta-type aromatic diamines, metaphenylene diamine or the above mixed diamine containing 70 mol% or more of metaphenylene diamine is preferable.

また、上記メタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド及びこれらの芳香環にハロゲン、炭素数1〜3のアルコキシ基等の置換基を有する誘導体、例えば3‐クロルイソフタル酸クロライド、3‐メトキシイソフタル酸クロライドを使用することができる。なかでも、イソフタル酸クロライド又はイソフタル酸クロライドを70モル%以上含有する上記の混合カルボン酸ハライドが好ましい。   Examples of the meta-type aromatic dicarboxylic acid halide include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives having substituents such as halogen and an alkoxy group having 1 to 3 carbon atoms on the aromatic ring, such as 3-Chloroisophthalic acid chloride, 3-methoxyisophthalic acid chloride can be used. Especially, said mixed carboxylic acid halide containing 70 mol% or more of isophthalic acid chloride or isophthalic acid chloride is preferable.

上記のジアミン及びジカルボン酸ハライドに加えて、必要に応じて使用し得る共重合成分としては、芳香族ジアミンとして、パラフェニレンジアミン、2,5−ジアミノクロルベンゼン、2,5‐ジアミノブロムベンゼン、アミノアニシジン等のベンゼン誘導体、1,5‐ナフチレンジアミン、4,4’‐ジアミノジフェニルエーテル、4,4’‐ジアミノジフェニルケトン、4,4’‐ジアミノジフェニルアミン、4,4’‐ジアミノジフェニルメタン等が挙げられ、一方、芳香族ジカルボン酸ハライドとして、テレフタル酸クロライド、1,4‐ナフタレンジカルボン酸クロライド、2,6‐ナフタレンジカルボン酸クロライド、4,4’‐ビフェニルジカルボン酸クロライド、4,4’‐ジフェニルエーテルジカルボン酸クロライド等が挙げられる。これらの共重合成分の共重合比は、あまりに多くなり過ぎるとメタ型全芳香族ポリアミドの特性が低下しやすいので、ポリアミドの全酸成分を基準として20モル%以下が好ましい。特に、好適なメタ型全芳香族ポリアミドは、全繰返し単位の80モル%以上がメタフェニレンイソフタルアミド単位からなるポリアミドであり、なかでもポリメタフェニレンイソフタルアミドが好ましい。
かかるメタ型全芳香族ポリアミドの重合度は、30℃の濃硫酸を溶媒として測定した固有粘度(IV)が1.3〜3.0の範囲が適当である。
In addition to the above diamines and dicarboxylic acid halides, copolymer components that can be used as needed include, as aromatic diamines, paraphenylenediamine, 2,5-diaminochlorobenzene, 2,5-diaminobromobenzene, amino Benzene derivatives such as anisidine, 1,5-naphthylenediamine, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ketone, 4,4'-diaminodiphenylamine, 4,4'-diaminodiphenylmethane, etc. On the other hand, as aromatic dicarboxylic acid halides, terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4'-biphenyldicarboxylic acid chloride, 4,4'-diphenyl ether dicarboxylic acid And acid chloride That. The copolymerization ratio of these copolymerization components is preferably 20 mol% or less based on the total acid component of the polyamide, since the properties of the meta-type wholly aromatic polyamide are liable to deteriorate if it is too large. In particular, a suitable meta-type wholly aromatic polyamide is a polyamide in which 80 mol% or more of all repeating units are composed of metaphenylene isophthalamide units, and among them, polymetaphenylene isophthalamide is preferable.
The degree of polymerization of the meta-type wholly aromatic polyamide is suitably in the range of 1.3 to 3.0 as the intrinsic viscosity (IV) measured using concentrated sulfuric acid at 30 ° C. as a solvent.

本発明の耐炎性メタ型全芳香族ポリアミド繊維では、該繊維を構成する全芳香族ポリアミド重量100重量部を基準として芳香族ポリカルボン酸の無水物からなる架橋剤を0.01〜10重量部、好ましくは0.05〜5重量部、含有する。該架橋剤の含有量が上記範囲より少ないと、本発明で目的とする、高温の炎や火の玉に接触した際の炭化による硬化現象の抑制効果がほとんどなく、また、上記範囲を超えると、繊維の機械的物性が低下するだけでなく、炭化による硬化現象の抑制効果も低下する。   In the flame-resistant meta-type wholly aromatic polyamide fiber of the present invention, 0.01 to 10 parts by weight of a crosslinking agent comprising an aromatic polycarboxylic acid anhydride based on 100 parts by weight of wholly aromatic polyamide constituting the fiber. , Preferably 0.05 to 5 parts by weight. If the content of the cross-linking agent is less than the above range, there is almost no effect of suppressing the curing phenomenon caused by carbonization when contacting the high-temperature flame or fireball, which is the object of the present invention. In addition to the decrease in mechanical properties, the effect of suppressing the curing phenomenon due to carbonization also decreases.

本発明で用いられる架橋剤としては、熱処理を含む製糸段階で上記ポリマーの少なくとも一部を架橋させる機能を有する芳香族ポリカルボン酸の無水物であればその種類を問わないが、そのなかでも、ピロメリット酸無水物(1,2,4,5‐ベンゼンテトラカルボン酸二無水物)が特に好ましい。   The cross-linking agent used in the present invention is not particularly limited as long as it is an aromatic polycarboxylic acid anhydride having a function of cross-linking at least a part of the polymer in the yarn production stage including heat treatment. Pyromellitic anhydride (1,2,4,5-benzenetetracarboxylic dianhydride) is particularly preferred.

かかる本発明の耐炎性メタ型全芳香族ポリアミド繊維は、引張強度が2.9cN/dtex以上、特に3.0〜5.0cN/dtexであることが、その耐炎性を生かした防護衣料等、種々の用途で使用する上でが好ましい。   Such a flame resistant meta-type wholly aromatic polyamide fiber of the present invention has a tensile strength of 2.9 cN / dtex or more, particularly 3.0 to 5.0 cN / dtex, and protective clothing that makes use of the flame resistance, etc. It is preferable for use in various applications.

かかる本発明のメタ型全芳香族ポリアミド繊維は、火炎暴露時の優れた炭化硬化現象抑制効果を有するが、その抑制メカニズムは、繊維の製糸・加工時もしくは火炎暴露時の熱で生じるメタ型全芳香族ポリアミドのポリマー分子間の架橋構造により、従来の全芳香族ポリアミドで発現しやすいとされる炭化現象を抑制することができるためと考えられる。   Such a meta-type wholly aromatic polyamide fiber of the present invention has an excellent effect of suppressing the carbonization and hardening phenomenon when exposed to flame, and the suppression mechanism is that the meta-type all-aromatic polyamide fiber is generated by heat during fiber spinning / processing or exposure to flame. This is considered to be because the carbonization phenomenon that is likely to occur in conventional wholly aromatic polyamides can be suppressed by the crosslinked structure between the polymer molecules of the aromatic polyamide.

上記のごとき本発明のメタ型全芳香族ポリアミド繊維を製造するには、例えば、ピロメリット酸無水物等の芳香族ポリカルボン酸無水物からなる架橋剤を上記所定量だけ添加したメタ型全芳香族ポリアミドの溶液を調製し、この溶液を紡糸用ドープにして紡糸した後、必要に応じて水洗後、延伸・熱処理することによって製造することができる。この際、熱処理における最高温度を250〜400℃とすると、繊維を構成するメタ型全芳香族ポリアミド内部で有効な架橋が生じるので好ましい。
熱処理は緊張下の熱処理でもよいが、10〜30%程度弛緩させつつ熱処理するのが好ましい。
In order to produce the meta-type wholly aromatic polyamide fiber of the present invention as described above, for example, meta-type wholly fragrance in which a predetermined amount of a crosslinking agent made of an aromatic polycarboxylic acid anhydride such as pyromellitic acid anhydride is added. It can be produced by preparing a solution of a group polyamide, spinning the solution as a dope for spinning, then washing with water if necessary, and drawing and heat treatment. At this time, it is preferable that the maximum temperature in the heat treatment is 250 to 400 ° C., because effective crosslinking occurs inside the meta-type wholly aromatic polyamide constituting the fiber.
The heat treatment may be a heat treatment under tension, but is preferably performed while relaxing about 10 to 30%.

以下、実施例及び比較例を挙げて本発明をさらに具体的に説明する。ただし、本発明はこれらによって何ら限定されるものではない。なお、実施例及び比較例における各物性値は下記の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. However, the present invention is not limited by these. In addition, each physical-property value in an Example and a comparative example was measured with the following method.

<固有粘度(IV)>
ポリマーを97%濃硫酸に溶解し、オストワルド粘度計を用い30℃で測定した。
<繊度>
JIS−L−1015に準じ、測定した。
<強度、伸度>
JIS−L−1015に準じ、試料長20mm、初荷重0.44mN/dtex、伸張速度20mm/分で測定した。
<火炎暴露時硬化度評価>
繊維サンプルから目付け100g/mのニードルフェルトを作成し、該サンプルを縦5cm×横5cmの金属枠で端面を把持した。そして、上述の如く調製したサンプルを、火炎温度500℃のガスバーナーにて5秒間火炎暴露させた。火炎暴露後のサンプルを縦4cm×横1cmにカットし、縦方向の中央部を支点としてサンプル縦端面に2.0gの加重を加えた時のサンプル垂下り長さ(mm)によって硬化度を評価した。ここでは垂下り長さが14mmを超えるものを柔軟性良好(○)、10〜14mmのものをやや不良(△)、10mm未満のものを不良とランク分けした。
<Intrinsic viscosity (IV)>
The polymer was dissolved in 97% concentrated sulfuric acid and measured at 30 ° C. using an Ostwald viscometer.
<Fineness>
It measured according to JIS-L-1015.
<Strength and elongation>
According to JIS-L-1015, the sample length was 20 mm, the initial load was 0.44 mN / dtex, and the extension rate was 20 mm / min.
<Evaluation of degree of cure when exposed to flame>
A needle felt having a basis weight of 100 g / m 2 was prepared from the fiber sample, and the end surface of the sample was gripped by a metal frame of 5 cm long × 5 cm wide. The sample prepared as described above was exposed to a flame for 5 seconds with a gas burner having a flame temperature of 500 ° C. The sample after the flame exposure was cut into 4cm length x 1cm width, and the degree of cure was evaluated by the sample hanging length (mm) when a weight of 2.0g was applied to the sample vertical end surface with the vertical center as a fulcrum. did. Here, those with a hanging length exceeding 14 mm were ranked as good in flexibility (◯), those with 10 to 14 mm were slightly defective (Δ), and those with less than 10 mm were ranked as defective.

[実施例1]
ピロメリット酸無水物0.19重量部をN‐メチル‐2‐ピロリドン(以下、NMPと略称)7.6重量部に添加し、撹拝して溶液Aを得た。また、特公昭47−10863号公報記載の方法に準じた界面重合法により製造したIV=1.9のポリメタフェニレンイソフタルアミド19.4重量部をNMP72.8重量部に溶解させ、透明なポリマー溶液Bを得た。
このようにして得られた溶液Aとポリマー溶液Bとを混合撹拌して、ポリメタフェニレンイソフタルアミド19.4重量部、ピロメリツト酸無水物0.19重量部及びNMP80.4重量部からなるポリマー溶液Cを得た。
[Example 1]
0.19 parts by weight of pyromellitic anhydride was added to 7.6 parts by weight of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) and stirred to obtain Solution A. Further, 19.4 parts by weight of polymetaphenylene isophthalamide having IV = 1.9 produced by an interfacial polymerization method according to the method described in Japanese Patent Publication No. 47-10863 is dissolved in 72.8 parts by weight of NMP to obtain a transparent polymer. Solution B was obtained.
The solution A and the polymer solution B thus obtained were mixed and stirred to form a polymer solution comprising 19.4 parts by weight of polymetaphenylene isophthalamide, 0.19 parts by weight of pyromellitic acid anhydride and 80.4 parts by weight of NMP. C was obtained.

このポリマー溶液Cを85℃に加温して紡糸用ドープ(紡糸原液)とし、孔径0.07mm、孔数100の紡糸口金から85℃の凝固浴中に吐出して紡糸した。この凝固浴の組成は、塩化カルシウムを40重量%、NMPを5重量%含み、残り55重量%が水であった。紡出糸条をこの凝固浴中に、浸漬長(有効凝固浴長)100cmにて糸速7.0m/分で通過させた後、いったん空気中に引き出した。   This polymer solution C was heated to 85 ° C. to prepare a dope for spinning (spinning raw solution), and spun by discharging it from a spinneret having a hole diameter of 0.07 mm and a hole number of 100 into a coagulation bath at 85 ° C. The composition of the coagulation bath was 40% by weight of calcium chloride, 5% by weight of NMP, and the remaining 55% by weight was water. The spun yarn was passed through this coagulation bath at an immersion length (effective coagulation bath length) of 100 cm at a yarn speed of 7.0 m / min, and then pulled out into the air.

この凝固糸条を第1、第2水性洗浄浴を通して水洗し、この際の洗浄浴総浸漬時間は50秒とした。なお、第1水性洗浄浴としては温度30℃のNMP水溶液(濃度20重量%)、第2水性洗浄浴としては温度30℃のNMP水溶液(濃度10重量%)を用いた。次に、この洗浄糸条を75℃の水中にて4.0倍に延伸し、60℃の温水中に48秒浸漬した。次いで、表面温度130℃のローラーに巻回して乾燥処理した後、表面温度360℃の熱板にて0.80倍に弛緩熱処理して、ポリメタフェニレンイソフタルアミド繊維を得た。   The coagulated yarn was washed with water through the first and second aqueous washing baths, and the total immersion time in the washing bath was 50 seconds. An NMP aqueous solution (concentration 20% by weight) having a temperature of 30 ° C. was used as the first aqueous cleaning bath, and an NMP aqueous solution (concentration 10% by weight) having a temperature of 30 ° C. was used as the second aqueous cleaning bath. Next, this washed yarn was stretched 4.0 times in 75 ° C. water and immersed in warm water of 60 ° C. for 48 seconds. Next, the film was wound around a roller having a surface temperature of 130 ° C. and dried, and then subjected to a relaxation heat treatment of 0.80 times on a hot plate having a surface temperature of 360 ° C. to obtain polymetaphenylene isophthalamide fibers.

得られた繊維の物性は、繊度2.20dtex、強度3.12cN/dtex、伸度61%であった。
この繊維の物性及び該繊維をニードルフェルトにして火炎暴露時硬化度の評価を実施した結果を表1に示す。
The physical properties of the obtained fiber were a fineness of 2.20 dtex, a strength of 3.12 cN / dtex, and an elongation of 61%.
Table 1 shows the physical properties of the fibers and the results of evaluation of the degree of curing when exposed to flame using the fibers as needle felt.

[実施例2〜4]
実施例1において、ピロメリット酸無水物の含有量を表1記載のとおり変更する以外は実施例1と同様の条件で紡糸、延伸、弛緩熱処理した。得られた繊維の評価結果を表1に示す。
[Examples 2 to 4]
In Example 1, spinning, stretching, and relaxation heat treatment were performed under the same conditions as in Example 1 except that the pyromellitic anhydride content was changed as shown in Table 1. The evaluation results of the obtained fiber are shown in Table 1.

[比較例1]
実施例1において、ピロメリット酸無水物を含有しない紡糸原液を用いる以外は実施例1と同様の条作で紡糸、延伸、弛緩熱処理した。得られた繊維の評価結果を表1に示す。
[Comparative Example 1]
In Example 1, spinning, stretching, and relaxation heat treatment were performed in the same manner as in Example 1 except that a spinning stock solution containing no pyromellitic anhydride was used. The evaluation results of the obtained fiber are shown in Table 1.

[比較例2]
実施例1において、ピロメリット酸無水物の含有量を表1記載のとおり変更する以外は実施例1と同様の条件で紡糸、延伸、弛緩熱処理した。得られた繊維の評価結果を表1に示す。
[Comparative Example 2]
In Example 1, spinning, stretching, and relaxation heat treatment were performed under the same conditions as in Example 1 except that the pyromellitic anhydride content was changed as shown in Table 1. The evaluation results of the obtained fiber are shown in Table 1.

Figure 2008156800
Figure 2008156800

本発明による耐炎性メタ型令芳香族ポリアミド繊維は、高温での熱収縮特性が小さく極めて良好なため、高温の炎や火の玉に接触しても穴あき等の問題が発生し難い繊維製品を提供することができ、特に防護衣料用途の素材として極めて有用である。   The flame-resistant meta-type aromatic polyamide fiber according to the present invention has a very good heat shrinkage property at high temperatures, and provides a fiber product that is less prone to problems such as perforation even when it comes into contact with a high-temperature flame or fireball. It is particularly useful as a material for protective clothing applications.

Claims (3)

メタ型全芳香族ポリアミド繊維において、該繊維を構成する全芳香族ポリアミド重量100重量部当り、芳香族ポリカルボン酸無水物からなる架橋剤0.01〜10重量部を含有することを特徴とする耐炎性メタ型全芳香族ポリアミド繊維。   The meta-type wholly aromatic polyamide fiber is characterized by containing 0.01 to 10 parts by weight of a crosslinking agent made of an aromatic polycarboxylic acid anhydride per 100 parts by weight of wholly aromatic polyamide constituting the fiber. Flame resistant meta-type wholly aromatic polyamide fiber. 芳香族ポリカルボン酸無水物が、ピロメリット酸無水物であることを特徴とする請求項1記載の耐炎性メタ型全芳香族ポリアミド繊維。   The flame-resistant meta-type wholly aromatic polyamide fiber according to claim 1, wherein the aromatic polycarboxylic acid anhydride is pyromellitic acid anhydride. 繊維の引張強度が2.9cN/dtex以上であることを特徴とする請求項1又は請求項2記載の耐炎性メタ型全芳香族ポリアミド繊維。   3. The flame resistant meta-type wholly aromatic polyamide fiber according to claim 1, wherein the fiber has a tensile strength of 2.9 cN / dtex or more.
JP2006349385A 2006-12-26 2006-12-26 Flame-resistant meta-type wholly aromatic polyamide fibers Pending JP2008156800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006349385A JP2008156800A (en) 2006-12-26 2006-12-26 Flame-resistant meta-type wholly aromatic polyamide fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006349385A JP2008156800A (en) 2006-12-26 2006-12-26 Flame-resistant meta-type wholly aromatic polyamide fibers

Publications (1)

Publication Number Publication Date
JP2008156800A true JP2008156800A (en) 2008-07-10

Family

ID=39658026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006349385A Pending JP2008156800A (en) 2006-12-26 2006-12-26 Flame-resistant meta-type wholly aromatic polyamide fibers

Country Status (1)

Country Link
JP (1) JP2008156800A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287243B1 (en) * 2009-09-30 2013-07-17 코오롱인더스트리 주식회사 Aramid Fiber and Method for Manufacturing The Same
WO2016170081A1 (en) * 2015-04-24 2016-10-27 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Method for producing molded bodies and the use thereof for producing molded carbon bodies
JP2021179029A (en) * 2020-05-12 2021-11-18 帝人株式会社 Wholly aromatic polyamide fiber, and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101287243B1 (en) * 2009-09-30 2013-07-17 코오롱인더스트리 주식회사 Aramid Fiber and Method for Manufacturing The Same
WO2016170081A1 (en) * 2015-04-24 2016-10-27 Deutsche Institute Für Textil- Und Faserforschung Denkendorf Method for producing molded bodies and the use thereof for producing molded carbon bodies
JP2021179029A (en) * 2020-05-12 2021-11-18 帝人株式会社 Wholly aromatic polyamide fiber, and method for producing the same
JP7465716B2 (en) 2020-05-12 2024-04-11 帝人株式会社 Wholly aromatic polyamide fiber and method for producing same

Similar Documents

Publication Publication Date Title
JP5265868B2 (en) Ultrafine meta-type wholly aromatic polyamide fiber and its manufacturing method
JP2010229582A (en) Method for producing para-type wholly aromatic copolyamide fiber
JP2008156800A (en) Flame-resistant meta-type wholly aromatic polyamide fibers
JP2010180493A (en) Method for producing aromatic copolyamide fiber
JP2007254915A (en) Meta-type aromatic polyamide fiber having excellent flame retardancy
JP7028682B2 (en) Original meta-type all-aromatic polyamide fiber and its manufacturing method, and flame-retardant spun yarn and flame-retardant cut-off spun yarn made of the fiber.
EP3585927B1 (en) Textile fabric and workwear manufactured thereof
JP5503055B2 (en) Para-type wholly aromatic copolyamide drawn fiber and method for producing the same
JP2011252238A (en) Porous para-type wholly aromatic polyamide fiber
JP7465716B2 (en) Wholly aromatic polyamide fiber and method for producing same
JP2018154943A (en) Meta-type wholly aromatic polyamide fiber having excellent flame retardancy and method for producing the same
JPS61113826A (en) Production of incombustible fiber material
JP2013112919A (en) Para-type wholly aromatic polyamide fiber
JP2007039818A (en) Low-shrinkable meta type wholly aromatic polyamide fiber and method for producing the same
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
JP2006016721A (en) Low shrinkage m-aramid fiber and method for producing the same
JP7315378B2 (en) Meta-type wholly aromatic polyamide fiber and method for producing the same
JP2007247086A (en) Meta type aramid fiber having low shrinkage
JP2013112920A (en) Para-type wholly aromatic polyamide fiber
JP2011226029A (en) Spun yarn comprising meta-type wholly aromatic polyamide fiber
JP2020045590A (en) Flame-retardant fabric containing meta-type wholly aromatic polyamide fiber
JP2007154355A (en) Meta-aromatic polyamide fiber and method for producing the same
JP2010150681A (en) Low-shrinkage meta-type wholly aromatic polyamide fiber and method for producing the same
JP2010229590A (en) Flame-retardant fully aromatic polyamide fiber
JP2020020057A (en) Flame-retardant fabric comprising spun-dyed meta-type wholly aromatic polyamide fiber, and laminated protective clothing made of the fabric