JP2008156170A - Method for manufacturing high-strength macro-porous ceramics and its porous body - Google Patents
Method for manufacturing high-strength macro-porous ceramics and its porous body Download PDFInfo
- Publication number
- JP2008156170A JP2008156170A JP2006348246A JP2006348246A JP2008156170A JP 2008156170 A JP2008156170 A JP 2008156170A JP 2006348246 A JP2006348246 A JP 2006348246A JP 2006348246 A JP2006348246 A JP 2006348246A JP 2008156170 A JP2008156170 A JP 2008156170A
- Authority
- JP
- Japan
- Prior art keywords
- porous body
- coarse particles
- neck
- additive
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000919 ceramic Substances 0.000 title claims abstract description 72
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title abstract description 34
- 239000011362 coarse particle Substances 0.000 claims abstract description 81
- 239000010419 fine particle Substances 0.000 claims abstract description 60
- 239000002245 particle Substances 0.000 claims abstract description 58
- 238000005245 sintering Methods 0.000 claims abstract description 36
- 239000011148 porous material Substances 0.000 claims abstract description 31
- 229920000592 inorganic polymer Polymers 0.000 claims abstract description 26
- 239000002243 precursor Substances 0.000 claims abstract description 26
- 239000002994 raw material Substances 0.000 claims abstract description 25
- 238000010304 firing Methods 0.000 claims abstract description 23
- 239000000654 additive Substances 0.000 claims description 46
- 230000000996 additive effect Effects 0.000 claims description 40
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 34
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 239000007791 liquid phase Substances 0.000 claims description 22
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 10
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 9
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 9
- 150000004703 alkoxides Chemical class 0.000 claims description 7
- 239000003054 catalyst Substances 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 claims description 5
- 230000002301 combined effect Effects 0.000 claims description 5
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 claims description 5
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052863 mullite Inorganic materials 0.000 claims description 4
- 229920001709 polysilazane Polymers 0.000 claims description 4
- 229910000323 aluminium silicate Inorganic materials 0.000 claims description 3
- 229910052878 cordierite Inorganic materials 0.000 claims description 3
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 claims description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- 150000004697 chelate complex Chemical class 0.000 claims description 2
- 238000000465 moulding Methods 0.000 abstract description 14
- 230000008719 thickening Effects 0.000 abstract description 2
- 239000000843 powder Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 7
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 238000002490 spark plasma sintering Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000000280 densification Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001723 curing Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 239000006260 foam Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001513 hot isostatic pressing Methods 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012766 organic filler Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920003257 polycarbosilane Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910001593 boehmite Inorganic materials 0.000 description 2
- 238000009694 cold isostatic pressing Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000005416 organic matter Substances 0.000 description 2
- 238000006864 oxidative decomposition reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 1
- VXAUWWUXCIMFIM-UHFFFAOYSA-M aluminum;oxygen(2-);hydroxide Chemical compound [OH-].[O-2].[Al+3] VXAUWWUXCIMFIM-UHFFFAOYSA-M 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 238000011001 backwashing Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004814 ceramic processing Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000011146 organic particle Substances 0.000 description 1
- 229920003203 poly(dimethylsilylene-co-phenylmethyl- silylene) polymer Polymers 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005373 porous glass Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Catalysts (AREA)
- Filtering Materials (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
本発明は、高強度マクロポーラスセラミックス多孔体を製造する方法及びその多孔体に関するものであり、更に詳しくは、10μm以上の粒径を有する粗大粒子を主原料とし、それよりも小さな粒径を有する微粒子、あるいは無機高分子前駆体を添加物として粗大粒子間に分散させて、粗大粒子間に微小粒子を介在させ、拡散、液相形成、粘性流動による表面張力の効果により、微粒子を粗大粒子間の接触部のネック部に移動させ、ネック面積を増大させると同時に、高気孔率と高強度の両立を実現したマクロポーラスセラミックス多孔体、及びその製造方法に関するものである。 The present invention relates to a method for producing a high-strength macroporous ceramic porous body and the porous body. More specifically, coarse particles having a particle diameter of 10 μm or more are used as a main raw material, and the particle diameter is smaller than that. Fine particles or inorganic polymer precursors are dispersed as an additive between coarse particles, and fine particles are interposed between coarse particles. Due to the effects of surface tension due to diffusion, liquid phase formation, and viscous flow, fine particles are dispersed between coarse particles. The present invention relates to a macroporous ceramic porous body that achieves both high porosity and high strength, and a manufacturing method thereof, while increasing the neck area at the same time by moving to the neck portion of the contact portion.
多孔質セラミックスは、その高比表面積を生かし、例えば、触媒担体として、あるいは、そのシャープな細孔径分布により、排ガス浄化、上下水処理、高温ガス分離などのフィルター材として、賞用されている。これらのうち、フィルター材としての利用では、その分離効率の向上や目詰まり防止の逆洗を行う必要から、高圧での操作が期待されている。より高い圧で流体を透過させることができれば、短時間で大量の流体分離が可能となる。高圧での流体透過を可能とするフィルターを得るためには、高強度の多孔質材料が必要であることは自明である。 Porous ceramics make use of its high specific surface area and are awarded, for example, as a catalyst carrier or as a filter material for exhaust gas purification, water purification, high temperature gas separation, etc. due to its sharp pore size distribution. Among these, the use as a filter material is expected to be operated at high pressure because it is necessary to improve the separation efficiency and perform backwashing to prevent clogging. If the fluid can be permeated at a higher pressure, a large amount of fluid can be separated in a short time. It is obvious that a high-strength porous material is required to obtain a filter that allows fluid permeation at high pressure.
多孔質材料は、IUPAC(国際純正応用化学連合)により、その細孔径により、マクロポーラス体(50nm以上)、メソ/ミクロポーラス体(2−50nm/2nm以下)に分類されている。通常、セラミックス多孔質体では、マクロポーラス体は、セラミックス粉末から製造され、主に荷重がかかる部位の支持体やフィルターとして賞用されており、一方、メソ/ミクロポーラス体は、ゾルゲル法や無機高分子前駆体から製造され、分離膜として、賞用されている。 Porous materials are classified into macroporous bodies (50 nm or more) and meso / microporous bodies (2-50 nm / 2 nm or less) according to the pore diameter according to IUPAC (International Pure Applied Chemical Association). Usually, in a ceramic porous body, a macroporous body is manufactured from ceramic powder and is mainly used as a support or a filter in a part to which a load is applied. On the other hand, a meso / microporous body is a sol-gel method or an inorganic material. Manufactured from a polymer precursor and used as a separation membrane.
マクロポーラス多孔体の特性には、高気孔率、高強度、細孔径分布の三点が要求されるが、通常、マクロポーラス多孔体は、セラミックス粉末から製造されるため、焼結温度が上がると緻密化が進み、気孔率が激しく低下する。従って、高気孔率を維持するためには、低温で焼成する必要がある。一方、高強度を付与するためには、焼成時の物質移動現象による粒子と粒子の合体、即ち、強固なネック形成が必要である。そのため、ネック形成が進行し易い5μm以下の微粒子が、多孔体の製造に用いられている。 The characteristics of a macroporous porous body are required to have three points of high porosity, high strength, and pore size distribution. Usually, since a macroporous porous body is manufactured from ceramic powder, if the sintering temperature increases. Densification progresses and the porosity decreases drastically. Therefore, in order to maintain a high porosity, it is necessary to fire at a low temperature. On the other hand, in order to impart high strength, it is necessary to combine particles and particles, that is, to form a strong neck due to a mass transfer phenomenon during firing. Therefore, fine particles of 5 μm or less in which neck formation is likely to proceed are used for the production of porous bodies.
以上のように、ネック形成が進みやすい5μm以下の微粒子を、焼結が著しく進まない低温で焼成することで、高強度で高気孔率の多孔体が得られる。その際、得られる細孔径は、粒子間に形成されている隙間が細孔となるため、原料の粒径に依存する。例えば、5μm以下の微粒子を原料粉末に用いると、その粒子間の隙間、即ち、細孔径は、凡そ1μm以下となる。 As described above, a high-strength and high-porosity porous body can be obtained by firing fine particles of 5 μm or less in which neck formation is likely to proceed at a low temperature at which sintering does not proceed significantly. At that time, the obtained pore diameter depends on the particle diameter of the raw material because the gap formed between the particles becomes the pore. For example, when fine particles of 5 μm or less are used as the raw material powder, the gap between the particles, that is, the pore diameter is about 1 μm or less.
従って、1μm以上の細孔を得るためには、粒径が5μm以上の微粒子を原料に使用しなければならない。しかしながら、一般的に、粒径5μm以上、特に、10μm以上の粒径の粗大粒子粉末を原料に使用した場合は、焼成時の物質移動は、易焼結性のアルミナであっても、著しく困難であるため、ネック形成が僅かである。 Therefore, in order to obtain pores of 1 μm or more, fine particles having a particle size of 5 μm or more must be used as a raw material. However, in general, when a coarse particle powder having a particle size of 5 μm or more, particularly 10 μm or more is used as a raw material, mass transfer during firing is extremely difficult even with easily sinterable alumina. Therefore, the neck formation is slight.
多孔体の強度を向上させるために、粒子間のネック部の接触面積を増大させるために、焼結温度を高くすることや、焼結時間を長くする手法は公知である。前述の10μm以上の粒径を有する粗大粒子であれば、高温であっても緻密化は進まないため、この手法は、有用であると推測される。 In order to increase the strength of the porous body, in order to increase the contact area of the neck portion between the particles, a technique for increasing the sintering temperature or extending the sintering time is known. If the above-mentioned coarse particles having a particle size of 10 μm or more, densification does not proceed even at a high temperature, so this method is presumed to be useful.
しかし、例えば、アルミナ多孔体であれば、市販の大気炉の最高温度は1800℃程度が限界であるため、十分なネック成長がなされず、高強度体は得られていない。加えて、これらの粗大粒子は、焼結性が非常に低いため、有機バインダーを酸化により取り除いた仮焼体も、ハンドリング性が非常に悪いという問題点があった。 However, for example, in the case of an alumina porous body, the maximum temperature of a commercial atmospheric furnace is limited to about 1800 ° C., so that sufficient neck growth is not performed and a high-strength body is not obtained. In addition, since these coarse particles have a very low sinterability, the calcined body from which the organic binder has been removed by oxidation also has a problem that the handleability is very poor.
一般に、1μm以上の細孔を有する多孔体を得るためには、粗大粒子を焼結する方法よりも、無機高分子、あるいは微粒子粉末を溶剤等に分散させたスラリーを発泡(バブルフォーム)させる手法、スラリーをウレタンスポンジ等に含浸させ、スポンジ部分を焼成時に酸化させ、取り除く手法、有機物と混合させ、同様に焼成時に有機物を酸化分解させ、取り除く手法、などの方法を用いることが一般的である。 In general, in order to obtain a porous body having pores of 1 μm or more, a method of foaming (bubble foam) a slurry in which an inorganic polymer or fine particle powder is dispersed in a solvent or the like rather than a method of sintering coarse particles. It is common to use a method such as impregnating a slurry with urethane sponge, etc., oxidizing and removing the sponge part during firing, mixing with organic matter, and similarly oxidizing and removing organic matter during firing. .
しかしながら、これらの方法では、気孔率が高いものの、閉気孔が形成され易く、その上、圧縮強度も5MPa以下と著しく低く、フィルターとしての実用化は困難であった。以上に述べたように、これまで、強度があり、かつ1μm以上の細孔を有するセラミックス多孔体は得られていなかったのが実情である。 However, with these methods, although the porosity is high, closed pores are easily formed, and furthermore, the compressive strength is extremely low at 5 MPa or less, making it difficult to put it to practical use as a filter. As described above, the actual situation is that a ceramic porous body having strength and having pores of 1 μm or more has not been obtained so far.
強度と気孔率を両立させるために、放電プラズマ焼結法(SPS)や熱間等方圧プレス(HIP)法などの手法も検討されている。このSPS法やHIP法による焼結では、既存製品の大部分が常圧焼結で製造されていることを考えると、製品に近い形での成形(ニアネットシェイプ成形)は当然困難であり、そのため、製品の形状や加工処理の手間が増えるという問題点があった。 In order to achieve both strength and porosity, methods such as spark plasma sintering (SPS) and hot isostatic pressing (HIP) have been studied. Sintering by this SPS method or HIP method, considering that most of the existing products are manufactured by atmospheric pressure sintering, molding in a form close to the product (near net shape molding) is naturally difficult, For this reason, there is a problem in that the shape of the product and the labor of processing are increased.
これらのセラミックス多孔体の製造あるいは高強度化に関する方法の先行技術としては、例えば、低融点金属や樹脂を用いてネック部位を太くする手法が提案されている(特許文献1)。また、放電プラズマ焼結法(SPS)を用いた手法でも高強度多孔体が得られることが知れられている(特許文献2−3)。更に、焼結時の物質移動の効果を利用した高強度化も検討されている(特許文献4)。 As a prior art of a method related to the production of these ceramic porous bodies or high strength, for example, a technique of thickening the neck portion using a low melting point metal or resin has been proposed (Patent Document 1). It is also known that a high-strength porous body can be obtained by a technique using a discharge plasma sintering method (SPS) (Patent Documents 2-3). Furthermore, high strength using the effect of mass transfer during sintering has been studied (Patent Document 4).
上述のように、従来法では、粗大粒子は、高温かつ長時間の焼成でも強度が上がらない点、バブルフォーム法や有機物充填剤の酸化による細孔付与では、閉気孔が形成され易く低強度である点、SPS法やHIP法では、常圧で製造される種々の形状の既存製品より、強度は向上するが、形状付与性に劣る点、樹脂や金属によるネックの強化では、セラミックスが有する耐熱性や耐食性に劣ってしまい、過酷な環境下で樹脂や金属の部分から劣化が始まり、強度が大きく低下する点、などの問題があった。 As described above, in the conventional method, the coarse particles do not increase in strength even when fired at high temperature for a long time, and in the bubble foam method or pore formation by oxidation of the organic filler, closed pores are easily formed with low strength. In some respects, the SPS method and the HIP method improve strength compared to existing products of various shapes manufactured at normal pressure, but are inferior in shape-providing properties. There are problems such as poor quality and corrosion resistance, deterioration starting from resin and metal parts under harsh environments, and a significant drop in strength.
以上、高強度セラミックス多孔体の製造に関する先行技術としては、下記に説明する数報が報告されている。即ち、上記先行文献に示されているように、低融点金属や樹脂を分散させる手法が検討されているが、この手法では、粒子のネック部位を太くできても、セラミックスが本来有する耐熱性や耐薬性が大きく低下し、高温、腐食環境下などの過酷な環境下での使用ができないという問題があった。また、放電プラズマ焼結法により、70−90%の相対密度を有するアルミナ多孔体の高強度化を図ることが検討されている。 As described above, several reports described below have been reported as prior art relating to the production of a high-strength ceramic porous body. That is, as shown in the above-mentioned prior literature, a technique for dispersing a low melting point metal or a resin has been studied. In this technique, even though the neck portion of the particle can be thickened, There has been a problem that the chemical resistance is greatly reduced, and it cannot be used in severe environments such as high temperatures and corrosive environments. Further, it has been studied to increase the strength of an alumina porous body having a relative density of 70 to 90% by a discharge plasma sintering method.
また、アルミナ多孔体中にカーボンナノ繊維を導入し、放電プラズマ焼結後に、炭素繊維を酸化分解させることにより、高強度化及び高比表面積化を図ることが検討されている。また、50−90%の相対密度を有するアルミナ多孔体を、水酸化アルミウニウム、ジルコニア、アルミナ粉末より得ている。ジルコニアを添加することで水酸化アルミニウムの相転移を抑制し、高温でαアルミナを得るため、より物質移動が促進され、強固なネックが形成された高強度体を得ている。 In addition, it has been studied to increase the strength and the specific surface area by introducing carbon nanofibers into an alumina porous body and subjecting the carbon fibers to oxidative decomposition after spark plasma sintering. Also, an alumina porous body having a relative density of 50-90% is obtained from aluminum hydroxide, zirconia, and alumina powder. By adding zirconia, the phase transition of aluminum hydroxide is suppressed and α-alumina is obtained at a high temperature, so that mass transfer is further promoted and a high-strength body in which a strong neck is formed is obtained.
また、他の文献では、ネック部を観察し易くするために、シリカ球状粒子を用いて多孔質体モデルを作製して、モデル体の機械的特性と密度、ネックに関しての相関関係を検討している(非特許文献1)。その筆者らは、強度、弾性率を向上させるためには、密度の増大、言い換えれば、粒子間のネック接触面積の増大が必須である点を強く示唆している。高温処理した多孔体の密度は大きく増大しており、同時に機械的特性も向上している。 In other literature, in order to make it easy to observe the neck part, a porous body model is prepared using silica spherical particles, and the correlation between the mechanical properties and density of the model body and the neck is examined. (Non-Patent Document 1). The authors strongly suggest that in order to improve the strength and elastic modulus, it is essential to increase the density, in other words, increase the neck contact area between the particles. The density of the high-temperature-treated porous body is greatly increased, and at the same time the mechanical properties are improved.
また、他の文献では、20−40%の気孔率を有するアルミナ多孔体の焼結温度、焼結時間を製造因子として、機械的特性を検討しており、焼結温度が高く、かつ焼結時間が長いほどネックの成長が盛んに観察され、機械的特性も向上する点を報告している(非特許文献2)。 In other literature, mechanical properties are examined using a sintering temperature and a sintering time of an alumina porous body having a porosity of 20-40% as manufacturing factors, the sintering temperature is high, and sintering is performed. It has been reported that the longer the time, the more actively the growth of the neck is observed and the mechanical properties are improved (Non-patent Document 2).
更に、他の文献では、ベーマイトゾルとアルミナ粉末を用いて多孔質アルミナセラミックスを製造しており、ベーマイトからアルミナへ相転移することによる微細な粒子部をマトリックスとして、粗大なアルミナ粒子が分散した多孔質体を製造している(非特許文献3)。 Furthermore, in other documents, porous alumina ceramics are manufactured using boehmite sol and alumina powder, and porous particles in which coarse alumina particles are dispersed using a fine particle portion formed by phase transition from boehmite to alumina as a matrix. A mass is manufactured (Non-patent Document 3).
このような状況の中で、本発明者らは、上記従来技術に鑑みて、大型で高価な装置を用いることなく、常圧焼結で、粗大粒子を用いて、高気孔率と高強度を両立できるマクロポーラス多孔質体の製造方法を開発することを目標として鋭意研究を積み重ねた結果、多孔体を構成する粒子ネック部を従来法よりも太くさせることが高強度化につながることを見出した。 In such a situation, in view of the above-mentioned prior art, the present inventors have achieved high porosity and high strength by using coarse particles in atmospheric pressure sintering without using a large and expensive apparatus. As a result of intensive research aimed at developing a compatible macroporous porous body manufacturing method, it was found that making the particle neck part of the porous body thicker than the conventional method leads to higher strength. .
そして、ネック部を太くさせるためには、ネック部を形成する粒子近傍あるいは表面に、それよりも粒径の小さい微粒子を付着させることで、焼結時の拡散によりネック部に微粒子が移動してネック部が太くなること、あるいは液相を形成する微粒子を存在させることで粘性が低下した液相がネック部に移動してネック部が太くなること、あるいは粘性流動を引き起こす微粒子を存在させることで粘性が低下した微粒子がネック部に移動してネック部が太くなること、あるいはそれらの複合効果によりネック部が太くなること、を見出した。 In order to make the neck portion thicker, fine particles having a smaller particle diameter are attached to the vicinity or the surface of the particles forming the neck portion, so that the fine particles move to the neck portion by diffusion during sintering. The neck portion becomes thicker, or the liquid phase whose viscosity has decreased due to the presence of fine particles that form a liquid phase moves to the neck portion and becomes thicker, or the presence of fine particles that cause viscous flow. It has been found that fine particles having a reduced viscosity move to the neck portion and the neck portion becomes thick, or that the neck portion becomes thick due to their combined effect.
そして、更に、これらの添加微粒子は、焼結時の拡散、あるいは液相や低粘性粒子が表面張力により、成形体作製時に低粘性あるいは液体の無機高分子前駆体が表面張力によりネック部に移動することで、ネックが太くなり、強度向上が見込めるが、ネック部は、僅かに太くなるだけであるので、気孔率が高いままで、細孔径分布も大きく変わらずに、高強度化が達成されることを見出し、本発明を完成するに至った。 In addition, these additive fine particles move to the neck due to diffusion during sintering, or liquid phase and low viscosity particles due to surface tension, and low viscosity or liquid inorganic polymer precursor due to surface tension during molding. By doing so, the neck becomes thicker and strength improvement can be expected, but the neck part only gets slightly thicker, so the porosity is still high and the pore size distribution does not change greatly, and high strength is achieved. As a result, the present invention has been completed.
本発明は、以上の手法を用いることで、バブルフォームや有機物粒子の酸化分解といった従来の方法を用いずに、10μm以上の粒径を有する難焼結性の粗大粒子を原料とした場合であっても、ネック部の強化が可能であり、かつネック部が拡散、粘性流動、液相等により強固に結合されている、高強度体で、1μm以上のマクロ孔を有するセラミックス多孔体を得ることを可能とする、新しいマクロポーラスセラミックス多孔体の製造方法、及びそのマクロポーラスセラミックス多孔体を提供することを目的とするものである。 The present invention is a case where the above-described method is used as a raw material of hardly sinterable coarse particles having a particle size of 10 μm or more without using conventional methods such as bubble foam and oxidative decomposition of organic particles. However, it is possible to obtain a ceramic porous body having a high-strength body having macropores of 1 μm or more, in which the neck part can be strengthened and the neck part is firmly bonded by diffusion, viscous flow, liquid phase, or the like. It is an object of the present invention to provide a novel method for producing a macroporous ceramic porous body, and the macroporous ceramic porous body.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)常圧焼結により多孔質セラミックスを製造する際に、当該多孔質セラミックスのネック部を太くして強度を向上させたマクロポーラスセラミックス多孔体を製造する方法であって、焼結が困難な10μm以上の粒径を有する粗大粒子を主原料に用い、それよりも粒径の小さな微粒子、あるいは無機高分子前駆体を添加物として粗大粒子間に分散させて焼成することにより、ネック部を太くして強度を向上させた、気孔率が少なくとも20%で、細孔径が少なくとも1μmである多孔質のセラミックス多孔体を製造することを特徴とするマクロポーラスセラミックス多孔体の製造方法。
(2)上記多孔質のセラミックス多孔体の焼成工程において、1)添加物を焼結時の拡散により粗大粒子間のネック部に集合させる、2)添加物を粗大粒子との液相形成により、当該液相の粘性を低下させて粗大粒子間のネック部に集合させる、3)添加物を焼成中の粘性流動により当該添加物の粘性を低下させて粗大粒子間のネック部に集合させる、あるいは、4)これらの複合効果により添加物をネック部に集合させる、前記(1)に記載の多孔体の製造方法。
(3)主原料の粗大粒子に添加する微粒子が、アルミナ、シリカ、炭化ケイ素、窒化ケイ素のいずれかである、前記(1)に記載の多孔体の製造方法。
(4)0.3−5μmの粒径を有する微粒子を70vol%以下の割合で添加物として粗大粒子間に分散させて焼成する、前記(1)に記載の多孔体の製造方法。
(5)添加物として粗大粒子間に分散させる無機高分子前駆体が、アルミナゾル、シリカゾル、あるいはそれらのキレート錯体、水酸化アルミニウム、シリカ、及びアルミナ源となるアルコキシド、あるいは硝酸塩あるいは塩化物、アルミノシリケートゾル、ポリカルボシラン、ポリシラザンのいずれかである、前記(1)に記載の多孔体の製造方法。
(6)無機高分子前駆体を70vol%以下の割合で添加物として粗大粒子間に分散させて焼成する、前記(1)に記載の多孔体の製造方法。
(7)主原料の粗大粒子と、当該粗大粒子に添加物として添加された、それよりも粒径の小さな微粒子、あるいは無機高分子前駆体との焼結体からなるマクロポーラスセラミックス多孔体であって、上記微粒子あるいは無機高分子前駆体が上記粗大粒子間のネック部に集合して、強固のネック部が形成された構造を有し、気孔率が少なくとも20%で、細孔径が少なくとも1μmである多孔質のセラミックス多孔体からなることを特徴とするマクロポーラスセラミックス多孔体。
(8)粒子径Rの粗大粒子のみを焼成した際の多孔体のネック長さをrとしたとき、ネック長さ/粒径(r/R)の割合に対し、上記添加物を添加してネック部が太くなったときの、ネック長さ/粒径(r’/R)の割合が、r’/R>1.05(r/R)である、前記(7)に記載のマクロポーラスセラミックス多孔体。
(9)主原料の粗大粒子が、アルミナ、炭化ケイ素、窒化ケイ素、コーディエライト、ムライト、シリカのいずれかである、前記(7)に記載のマクロポーラスセラミックス多孔体。
(10)前記(8)又は(9)に記載のマクロポーラスセラミックス多孔体からなることを特徴とする分離フィルター。
(11)前記(8)又は(9)に記載のマクロポーラスセラミックス多孔体からなることを特徴とする触媒担体。
The present invention for solving the above-described problems comprises the following technical means.
(1) When producing porous ceramics by atmospheric pressure sintering, this is a method for producing a macroporous ceramic porous body in which the neck portion of the porous ceramics is thickened to improve the strength and is difficult to sinter. By using coarse particles having a particle size of 10 μm or more as the main raw material, fine particles having a smaller particle size, or inorganic polymer precursor as an additive dispersed between the coarse particles and firing, the neck portion is A method for producing a macroporous ceramic porous body, comprising a porous ceramic porous body having a porosity of at least 20% and a pore diameter of at least 1 μm, which is thickened to improve strength.
(2) In the firing step of the porous ceramic porous body, 1) the additive is aggregated at the neck portion between the coarse particles by diffusion during sintering, and 2) the additive is formed into a liquid phase with the coarse particles, Reduce the viscosity of the liquid phase to gather at the neck between coarse particles 3) Reduce the viscosity of the additive by viscous flow during firing to gather at the neck between coarse particles, or 4) The method for producing a porous body according to the above (1), wherein the additive is gathered at the neck portion by these combined effects.
(3) The method for producing a porous body according to (1), wherein the fine particles added to the coarse particles of the main raw material are any one of alumina, silica, silicon carbide, and silicon nitride.
(4) The method for producing a porous body according to the above (1), wherein fine particles having a particle size of 0.3-5 μm are dispersed between coarse particles as an additive at a ratio of 70 vol% or less and fired.
(5) An inorganic polymer precursor dispersed between coarse particles as an additive is alumina sol, silica sol, or a chelate complex thereof, aluminum hydroxide, silica, and an alkoxide serving as an alumina source, or nitrate or chloride, aluminosilicate The method for producing a porous body according to (1), which is any one of sol, polycarbosilane, and polysilazane.
(6) The method for producing a porous body according to (1), wherein the inorganic polymer precursor is dispersed between coarse particles as an additive at a ratio of 70 vol% or less and fired.
(7) A macroporous ceramic porous body composed of a sintered body of coarse particles of a main raw material and fine particles having a smaller particle diameter added to the coarse particles or an inorganic polymer precursor. The fine particles or the inorganic polymer precursors gather at the neck portions between the coarse particles to form a strong neck portion, and have a porosity of at least 20% and a pore diameter of at least 1 μm. A macroporous ceramic porous body comprising a porous ceramic porous body.
(8) When the neck length of the porous body when only coarse particles having a particle diameter R are fired is r, the above additives are added to the ratio of neck length / particle diameter (r / R). The macroporous material according to (7), wherein the ratio of neck length / particle diameter (r ′ / R) when the neck portion becomes thick is r ′ / R> 1.05 (r / R). Ceramic porous body.
(9) The macroporous ceramic porous body according to (7), wherein the coarse particles of the main raw material are any of alumina, silicon carbide, silicon nitride, cordierite, mullite, and silica.
(10) A separation filter comprising the macroporous ceramic porous material according to (8) or (9).
(11) A catalyst carrier comprising the macroporous ceramic porous material according to (8) or (9).
次に、本発明について更に詳細に説明する。
本発明は、常圧焼結により多孔質セラミックスを製造する際に、当該多孔質セラミックスのネック部を太くし、高強度化を達成したマクロポーラスセラミックス多孔体を製造する方法であって、焼結が困難な10μm以上の粒径を有する粗大粒子を原料に用い、それよりも粒径の小さな微粒子、あるいは無機高分子前駆体を添加物として粗大粒子間に分散させて焼成することにより、ネック部を太くして、強度を向上させた、気孔率が20%以上で、細孔径が1μm以上である、高強度化を達成したマクロポーラスセラミックス多孔体を製造すること、を特徴とするものである。
Next, the present invention will be described in more detail.
The present invention relates to a method for producing a macroporous ceramic porous body in which the neck portion of the porous ceramic is thickened to achieve high strength when the porous ceramic is produced by atmospheric pressure sintering. By using coarse particles having a particle diameter of 10 μm or more that are difficult to process as raw materials, fine particles having a smaller particle diameter, or inorganic polymer precursor as an additive dispersed between the coarse particles and firing, the neck portion To produce a macroporous ceramic porous body that has improved strength, has a porosity of 20% or more, and has a pore diameter of 1 μm or more and achieves high strength. .
本発明では、上記多孔質セラミックスの多孔体の焼成工程において、添加物を焼結時の拡散により粗大粒子間のネック部に集合させること、あるいは、添加物を粗大粒子との液相形成により、当該液相の粘性を低下させて粗大粒子間のネック部に集合させること、あるいは、添加物を焼成中の粘性流動により当該添加物の粘性を低下させて粗大粒子間のネック部に集合させること、あるいは、これらの複合効果により添加物をネック部に集合させること、を特徴としている。 In the present invention, in the firing step of the porous ceramic porous body, the additive is aggregated at the neck portion between the coarse particles by diffusion during sintering, or the additive is formed into a liquid phase with the coarse particles, Decrease the viscosity of the liquid phase and collect it at the neck between coarse particles, or reduce the viscosity of the additive by viscous flow during firing and collect it at the neck between coarse particles Alternatively, the additive is gathered at the neck portion by these combined effects.
本発明は、多孔体を構成する粗大粒子間のネック部において、添加物の拡散、液相焼結や粘性流動時の表面張力を利用して、当該ネック部に添加物を移動させ、ネック接触面積を増大させ、それにより、高強度を達成したマクロポーラスセラミックスを製造するものである。そして、本発明では、添加物が0.3−5μmの粒径を有する微粒子、あるいは無機高分子前駆体で、70vol%以下の割合で添加物として粗大粒子間に分散していること、を好ましい実施の態様としている。 In the neck portion between coarse particles constituting the porous body, the additive is moved to the neck portion by using the diffusion of the additive, the surface tension during liquid phase sintering or viscous flow, and the neck contact. The macroporous ceramics that increase the area and thereby achieve high strength are produced. In the present invention, it is preferable that the additive is a fine particle having a particle size of 0.3-5 μm or an inorganic polymer precursor, and is dispersed between coarse particles as an additive at a ratio of 70 vol% or less. This is an embodiment.
また、本発明は、主原料の粗大粒子と、当該粗大粒子に添加物として添加された、それよりも粒径の小さな微粒子、あるいは無機高分子前駆体との焼結体からなるマクロポーラスセラミックス多孔体であって、上記微粒子あるいは無機高分子前駆体が局所的に上記粗大粒子間のネック部に集合して、強固のネック部が形成された構造を有し、気孔率が20%以上で、細孔径が1μm以上である多孔質のセラミックス多孔体からなることを特徴とするものである。 The present invention also provides a macroporous ceramic porous material comprising a sintered body of coarse particles of a main raw material and fine particles having a smaller particle diameter or inorganic polymer precursor added to the coarse particles as an additive. Having a structure in which the fine particles or the inorganic polymer precursor are locally gathered at the neck portions between the coarse particles to form a strong neck portion, and the porosity is 20% or more, It consists of a porous ceramic porous body having a pore diameter of 1 μm or more.
本発明では、主原料の粗大粒子と、それよりも粒径の小さな微粒子、あるいは無機高分子前駆体の焼成体からなるマクロポーラスセラミックス多孔体であって、粗大粒子(粒子径;R)のみを焼成した際の多孔体のネック長さ(r)において、ネック長さ/粒径(r/R)の割合が、上記添加物を添加してネック部が太くなったときの、ネック長さ/粒径(r’/R)の割合と比較した場合に、r’/R>1.05(r/R)であること、を好ましい実施の態様としている。 In the present invention, a macroporous ceramic porous body composed of coarse particles of a main raw material and fine particles having a smaller particle diameter or a sintered body of an inorganic polymer precursor, and only coarse particles (particle diameter; R) are used. In the neck length (r) of the porous body when fired, the ratio of neck length / particle size (r / R) is such that the neck length / When compared with the ratio of the particle size (r ′ / R), r ′ / R> 1.05 (r / R) is a preferred embodiment.
また、本発明は、このプロセスを利用して製造される、上記微細構造を有するマクロポーラスセラミックス多孔体を使用してなることを特徴とする分離フィルター、あるいは触媒担体、である。本発明において、主原料の粗大粒子の材質としては、例えば、アルミナ、炭化ケイ素、窒化ケイ素、コーディエライト、ムライト、シリカをはじめとする構造用セラミックスが例示される。本発明では、これらのセラミックスと1種類以上の添加物を原料成分として使用する。 In addition, the present invention is a separation filter or a catalyst carrier characterized by using a macroporous ceramic porous body having the above-mentioned fine structure, which is produced using this process. In the present invention, examples of the material of the coarse particles of the main raw material include structural ceramics such as alumina, silicon carbide, silicon nitride, cordierite, mullite, and silica. In the present invention, these ceramics and one or more additives are used as raw material components.
粗大粒子に添加する微粒子の添加物としては、例えば、アルミナ、シリカ、炭化ケイ素、窒化ケイ素が例示され、また、無機高分子前駆体の添加物としては、例えば、アルミナゾル、シリカゾル、あるいはそれらのキレート錯体、水酸化アルミニウム、シリカ、及びアルミナ源となるアルコキシド、あるいは硝酸塩あるいは塩化物、アルミノシリケートゾル、ポリカルボシラン、ポリシラザンなどが例示される。これらの原料は、単一あるいは複数種類で使用することができる。 Examples of the fine particle additive to be added to the coarse particles include alumina, silica, silicon carbide, and silicon nitride, and examples of the inorganic polymer precursor additive include alumina sol, silica sol, or a chelate thereof. Examples include complexes, aluminum hydroxide, silica, and alkoxides serving as alumina sources, or nitrates or chlorides, aluminosilicate sols, polycarbosilanes, polysilazanes, and the like. These raw materials can be used singly or in a plurality of types.
また、液相を形成する添加物の例としては、例えば、炭化ケイ素が例示される。該炭化ケイ素については、炭化ケイ素粒子の表面はシリカで覆われており、これにアルミナを添加すると、アルミナーシリカでムライト質の液相が形成される。この場合は、アルミナやアルミナゾルを添加することで液相が形成され、あるいは、その際に、同時にイットリアを加えて、アルミナーイットリアーシリカで液相が形成される。以上のように、粗大粒子のネックを太くすることを可能とするものであれば、本発明の趣旨を逸脱しない限りにおいて、よく知られている公知の液相形成手法を適宜利用することができる。 Moreover, as an example of the additive which forms a liquid phase, a silicon carbide is illustrated, for example. Regarding the silicon carbide, the surface of the silicon carbide particles is covered with silica, and when alumina is added thereto, a mullite liquid phase is formed with the alumina-silica. In this case, a liquid phase is formed by adding alumina or alumina sol. Alternatively, yttria is simultaneously added to form a liquid phase with alumina-yttria silica. As described above, as long as the neck of coarse particles can be increased, well-known well-known liquid phase forming methods can be appropriately used without departing from the gist of the present invention. .
粘性流動を引き起こす添加物の例としては、シリカ、シリカゾルが例示される。シリカの粘性を下げるために、更なる添加物を加えることも適宜可能である。多孔質セラミックスを構成する粗大粒子は、500μm以下が望ましく、好適には100μm以下が望ましく、更に高強度体を得るためには、10μm程度までの粗大粒子が特に望ましい。これらの原料の粗大粒子へ添加する微粒子の粒径としては、粒径9μm以下が望ましいが、小さな粒径を有する方がネック部に集合し易いため、7μm以下がより望ましく、好適には粒径0.3−5μm程度の微粒子が特に望ましい。 Examples of additives that cause viscous flow include silica and silica sol. In order to lower the viscosity of the silica, it is possible to add further additives as appropriate. Coarse particles constituting the porous ceramic are desirably 500 μm or less, preferably 100 μm or less, and more desirably coarse particles having a size of about 10 μm to obtain a high-strength body. The particle size of the fine particles added to the coarse particles of these raw materials is preferably 9 μm or less. However, it is more desirable that the particle size is 7 μm or less because the smaller particle size is more likely to gather at the neck. Fine particles with a size of about 0.3-5 μm are particularly desirable.
無機高分子前駆体の添加物の例としては、アルミナゾル、シリカゾル、ジルコニアゾルなど市販のゾル、及び無機接着剤あるいはアルミニウムイソプロポキサイド、テトラエトキシシランなどアルコキシド、あるいはポリカルボシラン、ポリメチルシラン、ポリシラザン、ポリシラスチレン、ポリシラン、ポリチタノカルボシランなどの市販の無機高分子を利用又は併用することが可能である。 Examples of inorganic polymer precursor additives include commercially available sols such as alumina sol, silica sol, and zirconia sol, and inorganic adhesives, aluminum isopropoxide, alkoxides such as tetraethoxysilane, polycarbosilane, polymethylsilane, and polysilazane. It is possible to use or use commercially available inorganic polymers such as polysilastyrene, polysilane, and polytitanocarbosilane.
アルコキシドを利用する際には、触媒を添加すること、あるいはβ−ジケトン類などの錯体を形成させ、反応速度を制御することも適宜可能である。これらのアルコキシドの加水分解によって得られる、シリカ、アルミナ等の各種ゾル粉末を利用、又は併用することも適宜可能である。 When using an alkoxide, it is also possible to control the reaction rate by adding a catalyst or forming a complex such as a β-diketone. Various sol powders such as silica and alumina obtained by hydrolysis of these alkoxides can be used or used together as appropriate.
これらの添加物は、原料の粗大粒子粉末/添加物の混合時に、体積比にして、30/70以下が望ましく、好適には50/50以下が望ましい。アルコキシドや市販ゾル、無機高分子前駆体を用いる際には、水分や溶剤分を除いた成分で、上記混合の体積比を適用する。 These additives are desirably 30/70 or less, and preferably 50/50 or less in volume ratio when the raw coarse particle powder / additive is mixed. When using an alkoxide, a commercially available sol, or an inorganic polymer precursor, the volume ratio of the above mixture is applied with components excluding moisture and solvent.
成形体の焼成は、無機高分子前駆体を添加した場合は、加水分解、重縮合、不融化、軟化、あるいは硬化がなされる温度範囲での仮焼、その後、500−1100℃程度での粘性流動や、更に、高温での液相形成が進行する温度範囲である2200℃程度までの焼成が適用できる。焼成雰囲気は、非酸化物の焼成には、酸化を防ぐために、窒素、アルゴン等の不活性雰囲気下が好適である。 When the inorganic polymer precursor is added, the molded body is calcined in a temperature range in which hydrolysis, polycondensation, infusibilization, softening, or curing is performed, and then a viscosity at about 500 to 1100 ° C. Firing and firing up to about 2200 ° C., which is a temperature range in which liquid phase formation at a high temperature proceeds, can be applied. The firing atmosphere is preferably an inert atmosphere such as nitrogen or argon for firing non-oxides in order to prevent oxidation.
所望の形状を得るためには、よく知られた従来の成形方法を用いることが可能であり、例えば、押し出し成形、射出成形、プレス成形、冷間静水圧プレス(CIP法)、鋳込み成形、ドクターブレード成形、タップ成形等の技法を適宜選択して使用することができる。また、これらを併用することも可能であり、本発明の多孔体の高強度化の趣旨から逸脱しない限り、成形方法は特に限定されず、適宜の成形方法を用いて多孔体を製造することができる。 In order to obtain a desired shape, a well-known conventional molding method can be used. For example, extrusion molding, injection molding, press molding, cold isostatic pressing (CIP method), casting molding, doctor Techniques such as blade molding and tap molding can be appropriately selected and used. Further, these can be used in combination, and the molding method is not particularly limited as long as it does not depart from the purpose of increasing the strength of the porous body of the present invention, and the porous body can be produced using an appropriate molding method. it can.
本発明の多孔体を細孔径の傾斜化のための被膜として、あるいは基材として用いることも可能である。傾斜化の場合、スプレーコーティング、ディップコーティング、スピンコーティング、蒸着コーティング、刷毛塗り等を用いて、あるいはこれらを併用して傾斜化させることができるが、傾斜化の方法及び手段は、特に制限されるものではない。 It is also possible to use the porous body of the present invention as a coating for tilting the pore diameter or as a substrate. In the case of grading, the grading can be performed using spray coating, dip coating, spin coating, vapor deposition coating, brush coating, or a combination thereof, but the method and means of grading are particularly limited. It is not a thing.
二峰性、あるいは複数種類の細孔径を有する多孔質体を得るために、各種有機物充填剤をスラリー作製時に混合することができる。この有機物充填剤は、酸化雰囲気中で処理することにより取り除くことで、その部分が細孔として多孔体に付与される。 In order to obtain a porous body having bimodality or plural kinds of pore sizes, various organic fillers can be mixed at the time of slurry preparation. The organic filler is removed by treatment in an oxidizing atmosphere, so that the portion is imparted to the porous body as pores.
本発明では、大型で高価な装置を用いることなく、液相形成、粘性流動により多孔体を構成する粗大粒子間のネック部に添加物を移動させることで、接触面積を増大させ、あるいは無機高分子前駆体の軟化、硬化を利用して、表面張力によりネック部に移動させることで、接触面積を増大させることが実現される。 In the present invention, without using a large and expensive apparatus, the contact area is increased by moving the additive to the neck portion between the coarse particles constituting the porous body by liquid phase formation and viscous flow, or the inorganic high By making use of the softening and curing of the molecular precursor and moving to the neck portion by surface tension, it is possible to increase the contact area.
本発明は、セラミックスの焼結、あるいは無機高分子前駆体の不融化、軟化、硬化、加水分解、重縮合をはじめとする、よく知られたセラミックスのプロセッシング過程を経て、粒子の接触面積の増大を図るものである。本発明では、ネック形成が困難である10μm以上の粗大粒子を用いて、例えば、圧縮強度を120MPaに向上させた高強度の多孔質体を常圧焼結により得ること、かつ20%以上の高い気孔率を維持した、細孔径が1μm以上の多孔質セラミックスを製造すること、及び当該多孔質セラミックスを用いたセラミックス部材を提供することが可能である。 The present invention increases the contact area of particles through well-known ceramic processing processes such as ceramic sintering or infusibilization, softening, curing, hydrolysis, polycondensation of inorganic polymer precursors. Is intended. In the present invention, by using coarse particles of 10 μm or more that are difficult to form a neck, for example, a high-strength porous body having a compressive strength improved to 120 MPa is obtained by atmospheric pressure sintering, and a high value of 20% or more is obtained. It is possible to produce a porous ceramic having a porosity of 1 μm or more and maintaining a porosity, and to provide a ceramic member using the porous ceramic.
本発明により、次のような効果が奏される。
(1)本発明により、10μm以上の粒径を有する粗大粒子を主原料に用いて、多孔体の強度を粗大粒子単独の場合と比べて10倍以上に向上させた、例えば、収縮率が4%未満のニアネットシェイプ成形に優れるマクロポーラスセラミックス多孔体、及びその製造方法を提供することができる。
(2)ネック形成が困難な10μm以上の粒径の粗大粒子に、好適には、例えば、0.3−5μmの粒径の微粒子、あるいは液相を形成する微粒子、あるいは粘性流動を引き起こす微粒子、あるいは無機高分子前駆体、を添加することにより、焼結時の拡散あるいは表面張力により、これを粗大粒子のネック部に集合させることで、常圧焼結にて、多孔体の高強度化と高気孔率を達成することができる。
(3)本発明では、添加物を焼結時の拡散により粗大粒子間のネック部に集合させること、添加物と粗大粒子による液相を形成させ、その液相の粘性を低下させることにより粗大粒子間のネック部に集合させること、添加物の焼成中に粘性流動を引き起こし、添加物の粘性を低下させることにより粗大粒子間のネック部に集合させること、あるいは、これらの複合効果により添加物をネック部に集合させること、が可能である。
(4)上記多孔質セラミックスを利用した分離フィルターや触媒担体などの応用製品を提供することができる。
(5)上記多孔質セラミックスを利用した曝気装置をはじめとする水処理設備や吸音設備などの応用製品を提供することができる。
The present invention has the following effects.
(1) According to the present invention, coarse particles having a particle size of 10 μm or more are used as the main raw material, and the strength of the porous body is improved 10 times or more compared to the case of the coarse particles alone. It is possible to provide a macroporous ceramic porous body excellent in near net shape molding of less than% and a method for producing the same.
(2) For coarse particles having a particle diameter of 10 μm or more that are difficult to form a neck, preferably, for example, fine particles having a particle diameter of 0.3-5 μm, fine particles that form a liquid phase, or fine particles that cause viscous flow, Alternatively, by adding an inorganic polymer precursor, it is possible to increase the strength of the porous body by atmospheric pressure sintering by collecting it at the neck of coarse particles by diffusion or surface tension during sintering. High porosity can be achieved.
(3) In the present invention, the additive is aggregated at the neck portion between the coarse particles by diffusion during sintering, a liquid phase is formed by the additive and coarse particles, and the viscosity of the liquid phase is reduced to reduce the viscosity. Aggregate at the neck between particles, cause viscous flow during firing of the additive, aggregate at the neck between coarse particles by lowering the viscosity of the additive, or additive due to these combined effects Can be assembled at the neck.
(4) Application products such as separation filters and catalyst carriers using the porous ceramics can be provided.
(5) Application products such as water treatment equipment and sound absorption equipment including the aeration apparatus using the porous ceramics can be provided.
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。 EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.
(1)多孔体の作製
多孔体を構成する粗大粒子として、アルミナ粗粒子(昭和電工株式会社製;粒径10μm)を用いた。これに、微粒子として、アルミナ微粒子(粒度分布10−100nm)を粗粒子/微粒子=40/1の重量比として混合し、スラリーを得、多孔体の作製を試みた。尚、比較例として、上記方法において、アルミナ微粒子を添加しない他は、同様にして、微粒子未添加多孔体の作製も試みた。
(1) Production of porous body As coarse particles constituting the porous body, alumina coarse particles (manufactured by Showa Denko KK; particle size: 10 μm) were used. To this, alumina fine particles (particle size distribution: 10 to 100 nm) were mixed as fine particles in a weight ratio of coarse particles / fine particles = 40/1 to obtain a slurry, and an attempt was made to produce a porous body. As a comparative example, an attempt was made to produce a porous body without addition of fine particles in the same manner except that no alumina fine particles were added in the above method.
スラリーを脱水乾燥した後に、成形体を作製した。尚、このスラリーを各種基材に塗布させることにより、被膜を得ることも適宜可能である。成形体の焼成は、大気炉を用いて、1400−1700℃で行った。 After the slurry was dehydrated and dried, a molded body was produced. In addition, a coating film can be appropriately obtained by applying this slurry to various base materials. The compact was fired at 1400-1700 ° C. using an atmospheric furnace.
(2)結果
焼成前後の寸法変化を、焼結温度と線収縮率の関係として、図1に示す。原料として、粗大粒子を用いているため、収縮率は1700℃の高温で焼成した後も、4%未満と極めて小さな値であった。このことは、上記多孔体は、ニアネットシェイプ成形に適していることを示唆するものである。
(2) Results FIG. 1 shows the dimensional change before and after firing as the relationship between the sintering temperature and the linear shrinkage rate. Since coarse particles were used as the raw material, the shrinkage rate was an extremely small value of less than 4% even after firing at a high temperature of 1700 ° C. This suggests that the porous body is suitable for near net shape molding.
次に、図2に、焼結温度に対する相対密度を示す。試料の相対密度は、水中浸漬、真空脱気を経て、アルキメデス法により算出した。得られた多孔体の気孔率は35−45%程度であったが、微粒子を添加した多孔体は、微粒子未添加の多孔体と比べ、5−10%程度密度が上昇し、これと同等に気孔率は5−10%程度低下した。 Next, FIG. 2 shows the relative density with respect to the sintering temperature. The relative density of the sample was calculated by the Archimedes method after immersion in water and vacuum deaeration. The porosity of the obtained porous body was about 35-45%, but the density of the porous body to which fine particles were added increased by about 5-10% compared to the porous body to which fine particles were not added. The porosity decreased by about 5-10%.
次に、図3に、微粒子を添加した多孔体の脱水後のSEM観察結果を示す。添加した微粒子が、表面張力により、粗大粒子の接触部(丸印)に集合している様子が伺える。 Next, FIG. 3 shows the SEM observation result after dehydration of the porous body to which fine particles are added. It can be seen that the added fine particles are gathered at the contact portions (circles) of the coarse particles due to the surface tension.
次に、図4に、1600℃(a,c,e,g)及び1700℃(b,d,f,h)で焼成した多孔体のSEM観察結果を示す。a−bは微粒子未添加多孔体であり、c−dはその拡大画像である。e−fは微粒子を添加した多孔体であり、g−hはその拡大画像である。図3において、観察されていた微粒子は、1600−1700℃で焼成することにより、いずれも消失している。これは、表面拡散によりネック部に微粒子が集合したことによるものと考えられる。 Next, FIG. 4 shows SEM observation results of the porous body fired at 1600 ° C. (a, c, e, g) and 1700 ° C. (b, d, f, h). ab is a porous body to which fine particles have not been added, and cd is an enlarged image thereof. ef is a porous body to which fine particles are added, and gh is an enlarged image thereof. In FIG. 3, all the observed fine particles disappear by firing at 1600-1700 ° C. This is presumably due to the aggregation of fine particles at the neck due to surface diffusion.
実際、dとhを比較すると、微粒子未添加(d)のネック部より、微粒子を添加した多孔体(h)の方が、明らかに強固なネック部(矢印部)が確認されている。加えて、bとfを比較すると、fには部分的に密度が高いと推察される部分(丸印)が観察された。これは、微粒子を添加することにより、部分的に緻密化が促進されたことによるものと考えられる In fact, when d and h are compared, it is confirmed that the porous body (h) to which fine particles are added is clearly stronger than the neck portion to which fine particles are not added (d). In addition, when b and f were compared, a portion (circle) that was presumed to be partially dense was observed in f. This is thought to be due to partial densification being promoted by adding fine particles.
次に、図5に、SEM観察から算出した、1600−1700℃で焼成した多孔体の原料の粒径(R=10μm)と焼成後のネック径(r)の比を示す。微粒子を添加した多孔体の方が、未添加の多孔体よりも、1割以上ネック径が太くなっていることが伺える。 Next, FIG. 5 shows the ratio between the particle diameter (R = 10 μm) of the porous material fired at 1600-1700 ° C. calculated from SEM observation and the neck diameter (r) after firing. It can be seen that the neck diameter is larger by 10% or more in the porous body to which fine particles are added than in the non-added porous body.
次に、図6に、1600−1700℃で焼成した多孔体の圧縮強度を示す。圧縮強度は、JIS R1608に従って、試料の高さが径の2.5倍になるように円柱状に加工し、試料が破断する際の最大荷重を用いて算出した。1700℃で焼成した多孔体において、微粒子未添加では、圧縮強度が12MPaであるのに対して、微粒子を添加した多孔体は、10倍である120MPaを示した。 Next, FIG. 6 shows the compressive strength of the porous body fired at 1600-1700 ° C. The compressive strength was calculated according to JIS R1608 using the maximum load when the sample was processed into a cylindrical shape such that the height of the sample was 2.5 times the diameter, and the sample broke. In the porous body fired at 1700 ° C., the compressive strength was 12 MPa when no fine particles were added, whereas the porous body added with fine particles showed 120 MPa, which is 10 times.
これは、図4、及び図5に示すように、微粒子を添加することにより、強固なネック部が存在すること、局所的に密度の高い部分が存在すること、が高強度化につながったものと考えられる。また、高温で処理するほど高い強度が得られたが、これは、高温焼成により拡散が促進され、図5に示すように、ネック部が太くなったことが原因であると考えられる。 As shown in FIGS. 4 and 5, by adding fine particles, the presence of a strong neck portion and the presence of a locally high density portion led to an increase in strength. it is conceivable that. Further, the higher the strength, the higher the strength, which is considered to be due to the fact that the diffusion was promoted by the high-temperature baking and the neck portion became thicker as shown in FIG.
以上詳述したように、本発明は、高強度マクロポーラス多孔質セラミックスの製造方法及びその多孔体に係るものであり、本発明により、多孔体の強度が10倍以上向上した、ニアネットシェイプ成形に優れる、気孔率が20%以上で、細孔径が1μm以上の高強度と高気孔率を両立させた多孔質セラミックスを提供することができる。本発明により、上記多孔質セラミックスを利用した分離フィルターや触媒担体を提供することができる。本発明の多孔体は、例えば、工業廃水などの初期段階の浄化、水処理プラントや淡水化プラント、又は高温ガス分離の支持体など、苛酷な環境下で使用される分離フィルター等として有用である。 As described above in detail, the present invention relates to a method for producing high-strength macroporous porous ceramics and the porous body thereof, and near-net shape molding in which the strength of the porous body is improved by 10 times or more according to the present invention. It is possible to provide a porous ceramic that has both a high strength with a porosity of 20% or more and a pore diameter of 1 μm or more and a high porosity. According to the present invention, it is possible to provide a separation filter and a catalyst carrier using the porous ceramic. The porous body of the present invention is useful, for example, as a separation filter used in harsh environments such as purification of industrial wastewater at an early stage, a water treatment plant, a desalination plant, or a support for high-temperature gas separation. .
Claims (11)
A catalyst carrier comprising the macroporous ceramic porous body according to claim 8 or 9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006348246A JP5082067B2 (en) | 2006-12-25 | 2006-12-25 | Method for producing high-strength macroporous porous ceramic and porous body thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006348246A JP5082067B2 (en) | 2006-12-25 | 2006-12-25 | Method for producing high-strength macroporous porous ceramic and porous body thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008156170A true JP2008156170A (en) | 2008-07-10 |
JP5082067B2 JP5082067B2 (en) | 2012-11-28 |
Family
ID=39657523
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006348246A Expired - Fee Related JP5082067B2 (en) | 2006-12-25 | 2006-12-25 | Method for producing high-strength macroporous porous ceramic and porous body thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5082067B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011230981A (en) * | 2010-04-30 | 2011-11-17 | Noritake Co Ltd | Injection molding material for manufacturing porous ceramic, and method of manufacturing the porous ceramic using the same |
JP2014101253A (en) * | 2012-11-20 | 2014-06-05 | Tokyo Yogyo Co Ltd | Method for producing silicon carbide sintered compact, and silicon carbide sintered compact |
WO2015128983A1 (en) * | 2014-02-27 | 2015-09-03 | 株式会社エスエヌジー | Method for producing particulate inorganic porous material |
JP2017135250A (en) * | 2016-01-27 | 2017-08-03 | 日本特殊陶業株式会社 | Aluminum nitride substrate, part for semiconductor manufacturing, cvd heater, and method for manufacturing aluminum nitride substrate |
CN113427002A (en) * | 2021-06-25 | 2021-09-24 | 哈尔滨工业大学 | Pressureless sintering preparation method of three-dimensional porous structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05345685A (en) * | 1992-06-15 | 1993-12-27 | Toshiba Ceramics Co Ltd | Production of siliceous porous material |
WO2005026074A1 (en) * | 2003-09-12 | 2005-03-24 | Ibiden Co., Ltd. | Sintered ceramic compact and ceramic filter |
-
2006
- 2006-12-25 JP JP2006348246A patent/JP5082067B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05345685A (en) * | 1992-06-15 | 1993-12-27 | Toshiba Ceramics Co Ltd | Production of siliceous porous material |
WO2005026074A1 (en) * | 2003-09-12 | 2005-03-24 | Ibiden Co., Ltd. | Sintered ceramic compact and ceramic filter |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011230981A (en) * | 2010-04-30 | 2011-11-17 | Noritake Co Ltd | Injection molding material for manufacturing porous ceramic, and method of manufacturing the porous ceramic using the same |
JP2014101253A (en) * | 2012-11-20 | 2014-06-05 | Tokyo Yogyo Co Ltd | Method for producing silicon carbide sintered compact, and silicon carbide sintered compact |
WO2015128983A1 (en) * | 2014-02-27 | 2015-09-03 | 株式会社エスエヌジー | Method for producing particulate inorganic porous material |
JP6068725B2 (en) * | 2014-02-27 | 2017-01-25 | 株式会社エスエヌジー | Method for producing granular inorganic porous material |
JP2017135250A (en) * | 2016-01-27 | 2017-08-03 | 日本特殊陶業株式会社 | Aluminum nitride substrate, part for semiconductor manufacturing, cvd heater, and method for manufacturing aluminum nitride substrate |
CN113427002A (en) * | 2021-06-25 | 2021-09-24 | 哈尔滨工业大学 | Pressureless sintering preparation method of three-dimensional porous structure |
CN113427002B (en) * | 2021-06-25 | 2022-06-21 | 哈尔滨工业大学 | Pressureless sintering preparation method of three-dimensional porous structure |
Also Published As
Publication number | Publication date |
---|---|
JP5082067B2 (en) | 2012-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hotza et al. | Silicon carbide filters and porous membranes: A review of processing, properties, performance and application | |
Eom et al. | Processing and properties of macroporous silicon carbide ceramics: A review | |
US10350532B2 (en) | Porous alpha-SiC-containing shaped body having a contiguous open pore structure | |
Fung et al. | Nickel aluminate spinel reinforced ceramic hollow fibre membrane | |
Suwanmethanond et al. | Porous silicon carbide sintered substrates for high-temperature membranes | |
US7767257B2 (en) | Method for preparing a porous inorganic coating on a porous support using certain pore formers | |
Kim et al. | Processing and properties of glass-bonded silicon carbide membrane supports | |
JP2010528835A5 (en) | ||
JP5082067B2 (en) | Method for producing high-strength macroporous porous ceramic and porous body thereof | |
JP6667614B2 (en) | Porous support, method for manufacturing porous support, separation membrane structure, and method for manufacturing separation membrane structure | |
EP2046696B1 (en) | Imroved diesel particulate filter | |
Brouczek et al. | Open‐porous silicon nitride‐based ceramics in tubular geometry obtained by slip‐casting and gelcasting | |
JP2011136328A (en) | Inorganic hollow yarn and method of manufacturing the same | |
Jiansheng et al. | Preparation and characterization of Al2O3 hollow fiber membranes | |
JP2007261882A (en) | Mesoporous silicon carbide film and its producing method | |
JP2001240480A (en) | Porous ceramic structural body, its manufacturing method and fluid permeable member | |
Choudhary et al. | Hierarchically porous biomorphic polymer derived C–SiOC ceramics | |
KR100666426B1 (en) | Porous material and method for preparation thereof, and honeycomb structure | |
Song et al. | Effects of silicon particle size on microstructure and permeability of silicon-bonded SiC ceramics | |
Ha et al. | Preparation and characterization of alumina-coated silicon carbide supports | |
JP2015193489A (en) | Silicon nitride based porous body and method for producing the same | |
Selamat et al. | Effect of Yeast Content as Pores Forming Agent on Porous Alumina Ceramic | |
JP2006199561A (en) | Ceramic porous body and method of manufacturing the same | |
JP2010180096A (en) | Ceramic porous material and method for producing the same | |
JP2004002130A (en) | Ceramic porous body and its forming process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110524 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110725 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20110725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120118 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120319 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120521 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120801 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5082067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150914 Year of fee payment: 3 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |