JP2008155503A - Manufacturing method of injection-molded article - Google Patents

Manufacturing method of injection-molded article Download PDF

Info

Publication number
JP2008155503A
JP2008155503A JP2006347572A JP2006347572A JP2008155503A JP 2008155503 A JP2008155503 A JP 2008155503A JP 2006347572 A JP2006347572 A JP 2006347572A JP 2006347572 A JP2006347572 A JP 2006347572A JP 2008155503 A JP2008155503 A JP 2008155503A
Authority
JP
Japan
Prior art keywords
cavity
movable mold
injection
molded product
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006347572A
Other languages
Japanese (ja)
Other versions
JP4804334B2 (en
Inventor
Kazuya Sasamoto
和也 佐々本
Kazuaki Igarashi
和明 五十嵐
Toshiki Kawamura
俊樹 河村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2006347572A priority Critical patent/JP4804334B2/en
Publication of JP2008155503A publication Critical patent/JP2008155503A/en
Application granted granted Critical
Publication of JP4804334B2 publication Critical patent/JP4804334B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an injection-molded article which has a presentable appearance and almost uniform quality over the entire product, despite its thick wall. <P>SOLUTION: First, a cavity-side part 12 and a movable half 14 of a mold configuring an injection molding machine 10, are used to form a cavity 18 and the cavity 18 is filled with a molten resin R. Next, the molten resin R is loaded to a specified level while the cavity 18 is enlarged by moving the movable half 14 backward to a specified position. Then the molten resin R is compressed by advancing the movable half 14. Under this state, the molten resin R is cured by cooling into the injection-molded article. Finally, the injection-molded article is unloaded by moving the movable half 14 backward to open the mold. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固定型と可動型とを有する射出成形機を用いて行う射出成形品の製造方法に関する。   The present invention relates to a method of manufacturing an injection molded product that is performed using an injection molding machine having a fixed mold and a movable mold.

燃料電池は、電解質・電極接合体を1対のセパレータで介装した単位セルが所定数積層されたスタックを有する。該スタックの両端には、絶縁板を介してエンドプレートが配設される。必要に応じ、絶縁板とスタックとの間にスペーサが介装されることもある(例えば、特許文献1参照)。   A fuel cell has a stack in which a predetermined number of unit cells each having an electrolyte / electrode assembly interposed by a pair of separators are stacked. End plates are disposed on both ends of the stack via insulating plates. If necessary, a spacer may be interposed between the insulating plate and the stack (see, for example, Patent Document 1).

これらスペーサ及び絶縁板には、例えば、射出成形法によって作製された樹脂成形品が多用されている。すなわち、複数個の型内に溶融樹脂を充填した後に冷却して硬化させる成形方法で設けられた成形品であり、該成形品は、キャビティの形状に対応する形状を有する。   For these spacers and insulating plates, for example, resin molded products produced by an injection molding method are frequently used. That is, it is a molded product provided by a molding method in which molten resin is filled into a plurality of molds and then cooled and cured, and the molded product has a shape corresponding to the shape of the cavity.

ここで、スペーサ及び絶縁板の双方の厚み分の厚みを有する厚肉樹脂成形品を作製すれば、スペーサ及び絶縁板の各々を作製することが不要となり、射出成形回数が低減して作業効率が向上するとともに、燃料電池の部品点数が低減して該燃料電池の組み立てが容易になるとも考えられる。しかしながら、このような厚肉樹脂成形品を射出成形法で作製する場合、溶融樹脂が冷却硬化に伴って体積収縮を起こす際にヒケが発生し易く、このために外観不良の成形品となるという不具合がある。   Here, if a thick resin molded product having a thickness corresponding to both the spacer and the insulating plate is produced, it is not necessary to produce each of the spacer and the insulating plate, and the number of injection moldings is reduced, and the work efficiency is reduced. It is considered that the number of parts of the fuel cell is reduced and the assembly of the fuel cell is facilitated. However, when such a thick-walled resin molded product is produced by an injection molding method, sink marks are likely to occur when the molten resin undergoes volume shrinkage as it cools and cures. There is a bug.

このような不具合を解消するべく、特許文献2、3においては、可動型を変位させることでキャビティの容積を大きくしながら溶融樹脂を射出することが提案されている。   In order to solve such problems, Patent Documents 2 and 3 propose that the molten resin is injected while increasing the volume of the cavity by displacing the movable mold.

特開2004−227894号公報JP 2004-227894 A 特開平7−112457号公報Japanese Patent Laid-Open No. 7-112457 特開平6−320591号公報JP-A-6-320591

厚肉樹脂成形品を作製するべく射出成形法を採用した場合、内部側の密度が外皮側に比して小さく、このために低強度の成形品となることがある。この理由は、厚肉樹脂成形品を得るべく多量の溶融樹脂をキャビティに導入すると、該厚肉樹脂成形品の内部側となる溶融樹脂の硬化速度が外皮側となる溶融樹脂に比して遅いからである。すなわち、内部側の溶融樹脂がキャビティ下方に流動し、その結果、該キャビティ下方で形成される外皮側が密となる一方、内部側が疎になるからである。   When the injection molding method is adopted to produce a thick resin molded product, the density on the inner side is smaller than that on the outer skin side, which may result in a low-strength molded product. The reason for this is that when a large amount of molten resin is introduced into the cavity to obtain a thick resin molded article, the curing rate of the molten resin on the inner side of the thick resin molded article is slower than that of the molten resin on the outer skin side. Because. That is, the molten resin on the inner side flows downward from the cavity, and as a result, the outer side formed below the cavity becomes dense while the inner side becomes sparse.

この不具合は、特許文献2、3に記載されているようにキャビティの容積を変化させながら溶融樹脂を充填させるのみでは、解消することは困難である。   As described in Patent Documents 2 and 3, it is difficult to eliminate this problem only by filling the molten resin while changing the volume of the cavity.

本発明は上記した問題を解決するためになされたもので、厚肉樹脂成形品を作製する場合であっても外観の美観を確保することが可能で、且つ該厚肉樹脂成形品における内部側の密度を外皮側と略同等とすることも可能な射出成形品の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and even when a thick-walled resin molded product is produced, it is possible to ensure an aesthetic appearance, and the inner side of the thick-walled resin molded product. An object of the present invention is to provide a method for manufacturing an injection molded product that can be made substantially equal in density to the outer skin side.

前記の目的を達成するために、本発明は、固定型と可動型とを有する射出成形機を用いて射出成形品を製造する射出成形品の製造方法であって、
前記固定型と前記可動型とでキャビティを設ける工程と、
前記キャビティに原材料の射出を行う工程と、
前記可動型を後退させることで前記キャビティの容積を拡張しながら、該キャビティに前記原材料の射出を行う工程と、
前記可動型を前進させ、前記原材料を圧縮する工程と、
前記可動型を後退させて型開きを行い、前記原材料が硬化することで形成された射出成形品を取り出す工程と、
を有することを特徴とする。
To achieve the above object, the present invention is an injection molded product manufacturing method for manufacturing an injection molded product using an injection molding machine having a fixed mold and a movable mold,
Providing a cavity with the fixed mold and the movable mold;
Injecting raw materials into the cavity;
Injecting the raw material into the cavity while expanding the volume of the cavity by retracting the movable mold; and
Advancing the movable mold and compressing the raw materials;
Retreating the movable mold to perform mold opening and taking out an injection molded product formed by curing the raw material;
It is characterized by having.

すなわち、本発明では、先ず、容積が比較的小さなキャビティを形成して原材料の射出を行い、次に、可動型を後退させることでキャビティの容積を拡張しながら所定量の原材料の射出を行った後、可動型を前進させて原材料を圧縮するようにしている。小容積のキャビティでは、射出成形品の内部側となる原材料がキャビティ下方に流動することが抑制される。また、可動型を前進させて原材料を圧縮することで、キャビティの容積を拡張しながら射出された原材料が流動することも抑制される。その上、キャビティの容積を拡張しながら原材料を導入するので、厚肉の射出成形品を作製することが可能である。   That is, in the present invention, first, a raw material is injected by forming a cavity having a relatively small volume, and then a predetermined amount of the raw material is injected while expanding the volume of the cavity by retracting the movable mold. After that, the movable mold is advanced to compress the raw material. In the small volume cavity, the raw material on the inner side of the injection-molded product is suppressed from flowing below the cavity. Further, by compressing the raw material by moving the movable mold forward, it is possible to suppress the injected raw material from flowing while expanding the volume of the cavity. In addition, since the raw material is introduced while expanding the volume of the cavity, it is possible to produce a thick injection molded product.

以上のような理由から、厚肉であるにも関わらずボイド等の内部欠陥が極めて少なく品質が全体にわたって略一定であり、従って、内部側と外皮側とで密度が略同等であるために高強度を示す射出成形品を得ることができる。   For the reasons described above, the internal defect such as voids is extremely small despite the thickness being thick, and the quality is substantially constant throughout. Therefore, the density is substantially equal on the inner side and the outer skin side. An injection molded product exhibiting strength can be obtained.

しかも、前記の圧縮を行うことで、原材料の冷却硬化に伴う収縮時にヒケが発生することを抑制することもできる。その結果、外観の美観が良好となる。   In addition, by performing the above-described compression, it is possible to suppress the occurrence of sink marks when shrinking due to cooling and hardening of the raw material. As a result, the external appearance is good.

なお、本発明においては、キャビティの拡張容積と原材料の導入量との均衡を図ることが好ましい。キャビティの拡張容積が原材料の導入量よりも過度に小さいと原材料を導入することが困難となり、過度に大きいと溶融樹脂が流動するので成形することが容易でなくなることがあるからである。具体的には、可動型の後退によるキャビティの拡張容積を40〜4800cm3/秒とする一方、原材料の充填量を80〜220cm3/秒とすることが好ましい。 In the present invention, it is preferable to balance the expansion volume of the cavity and the amount of raw material introduced. This is because if the expansion volume of the cavity is excessively smaller than the introduction amount of the raw material, it is difficult to introduce the raw material, and if it is excessively large, the molten resin flows, so that molding may not be easy. Specifically, the expansion volume of the cavity due to the retraction of the movable mold is preferably set to 40 to 4800 cm 3 / sec, while the filling amount of the raw material is preferably set to 80 to 220 cm 3 / sec.

また、可動型の後退変位終了点は、最大で射出成形品の厚みの100%超〜110%となる位置とすることが好ましい。これにより、設計寸法の厚みを有する射出成形品を得ることが著しく容易となる。   In addition, it is preferable that the end point of the backward movement of the movable mold is a position that is at a maximum more than 100% to 110% of the thickness of the injection molded product. Thereby, it becomes remarkably easy to obtain an injection molded product having a thickness of the design dimension.

さらに、最初のキャビティを形成する際には、固定型と可動型とのクリアランスを10mm以内とすることが好ましい。この場合、射出成形品の内部側となる原材料がキャビティの下方に流動することが著しく抑制されるので、内部側の密度が外皮側の密度と略同等の射出成形品を容易に得ることができるようになるからである。   Furthermore, when forming the first cavity, the clearance between the fixed mold and the movable mold is preferably within 10 mm. In this case, since the raw material on the inner side of the injection-molded product is remarkably suppressed from flowing below the cavity, an injection-molded product in which the density on the inner side is substantially equal to the density on the outer skin side can be easily obtained. Because it becomes like this.

本発明によれば、はじめに容積が比較的小さなキャビティを形成して原材料の射出を行い、次に、可動型を後退させることでキャビティの容積を拡張しながら所定量の原材料の射出を行った後、可動型を前進させて原材料を圧縮するようにしているので、ボイド等の内部欠陥が極めて少なく品質が全体にわたって略一定であり、従って、内部側と外皮側とで密度が略同等であるために高強度を示す射出成形品を得ることができる。   According to the present invention, a cavity having a relatively small volume is first formed to inject raw materials, and then a predetermined amount of raw material is injected while expanding the cavity volume by retracting the movable mold. Since the raw material is compressed by advancing the movable mold, the internal defects such as voids are extremely small, and the quality is substantially constant throughout, and therefore the density is approximately equal on the inner side and the outer skin side. An injection molded product exhibiting high strength can be obtained.

さらに、可動型の後退量を調整することによって種々の厚みの射出成形品を得ることができる。   Furthermore, injection molded articles having various thicknesses can be obtained by adjusting the retraction amount of the movable mold.

また、キャビティの容積を拡張しながら原材料を導入するので、上記の射出成形品を厚肉のものとして作製することも可能である。   In addition, since the raw material is introduced while expanding the volume of the cavity, it is also possible to produce the injection molded product as a thick one.

以下、本発明に係る射出成形品の製造方法につき好適な実施の形態を挙げ、添付の図面を参照して詳細に説明する。   Hereinafter, preferred embodiments of the method for producing an injection molded product according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本実施の形態に係る製造方法を実施するための射出成形機10の要部縦断面説明図である。この射出成形機10は、固定型12と、可動型14と、該可動型14に設置されたスクリュ16とを有し、固定型12と可動型14とで形成されるキャビティ18により、平板形状の射出成形品を成形するものである。   FIG. 1 is a longitudinal sectional explanatory view of a main part of an injection molding machine 10 for carrying out the manufacturing method according to the present embodiment. The injection molding machine 10 includes a fixed mold 12, a movable mold 14, and a screw 16 installed on the movable mold 14. A flat plate shape is formed by a cavity 18 formed by the fixed mold 12 and the movable mold 14. The injection-molded product is molded.

固定型12において、可動型14に臨む端面には凹部20が形成されている。この凹部20の鉛直方向寸法及び水平方向寸法は、例えば、約400mm、約200mmに設定される。   In the fixed mold 12, a recess 20 is formed on the end surface facing the movable mold 14. The vertical dimension and horizontal dimension of the recess 20 are set to, for example, about 400 mm and about 200 mm.

また、凹部20には、図示しないノックアウトピンが進退自在に配設されている。前記ノックアウトピンは、射出成形品を設ける工程である第1工程S1〜第4工程S4(後述)が実施されている間は固定型12の内部に埋入され、射出成形品を取り出す第5工程S5工程を行う際に付勢されて凹部20の側面20aから露呈する。   In addition, a knockout pin (not shown) is disposed in the recess 20 so as to freely advance and retract. The knockout pin is embedded in the fixed mold 12 while a first step S1 to a fourth step S4 (described later), which is a step of providing an injection molded product, is performed, and a fifth step of taking out the injection molded product. It is energized when performing S5 process and it exposes from side 20a of crevice 20.

そして、凹部20が形成された端面では、該凹部20の近傍にシム22、22が設置されている。後述するように、これらシム22、22は、可動型14を固定型12から所定距離だけ離間する位置で停止させる役割を果たす。なお、本実施の形態において、前記所定距離は10mm以内に設定される。換言すれば、シム22、22の高さhは、10mm以内である。   And in the end surface in which the recessed part 20 was formed, the shims 22 and 22 are installed in the vicinity of this recessed part 20. As shown in FIG. As will be described later, these shims 22 and 22 serve to stop the movable mold 14 at a position separated from the fixed mold 12 by a predetermined distance. In the present embodiment, the predetermined distance is set within 10 mm. In other words, the height h of the shims 22 and 22 is within 10 mm.

一方の可動型14の一端面には、固定型12の前記凹部20の位置に対応する位置に凸部24が形成されている。図1に示すように、この凸部24は、可動型14が固定型12に最接近した際、凹部20内に挿入される。この挿入に伴い、キャビティ18が形成される。   On one end face of one movable mold 14, a convex part 24 is formed at a position corresponding to the position of the concave part 20 of the fixed mold 12. As shown in FIG. 1, the convex portion 24 is inserted into the concave portion 20 when the movable mold 14 comes closest to the fixed mold 12. With this insertion, a cavity 18 is formed.

可動型14の他端面に設置された前記スクリュ16は、溶融樹脂Rを射出する射出機構を構成する。また、可動型14の内部には、スクリュ16から射出された溶融樹脂Rをキャビティ18に導入するための通路であるランナ26が形成されている。すなわち、ランナ26は可動型14の一端面から他端面(凸部24の先端面)まで貫通形成されており、溶融樹脂Rは、凸部24の先端面からキャビティ18に導入される。   The screw 16 installed on the other end surface of the movable mold 14 constitutes an injection mechanism for injecting the molten resin R. In addition, a runner 26 that is a passage for introducing the molten resin R injected from the screw 16 into the cavity 18 is formed inside the movable mold 14. That is, the runner 26 is formed so as to penetrate from one end surface of the movable mold 14 to the other end surface (the front end surface of the convex portion 24), and the molten resin R is introduced into the cavity 18 from the front end surface of the convex portion 24.

可動型14には、保圧を行うための図示しないガス供給路が形成されている。さらに、可動型14は、図示しない可動機構、例えば、サーボモータや油圧制御モータ等の作用下に固定型12に対して接近・離間する。可動型14の変位及び変位停止は、図示しない制御回路が前記可動機構(サーボモータないし油圧制御モータ等)を制御することで決定される。なお、可動型14の位置は、図示しない位置センサによって検出される。   The movable mold 14 is formed with a gas supply path (not shown) for holding pressure. Further, the movable mold 14 approaches and separates from the fixed mold 12 under the action of a movable mechanism (not shown) such as a servo motor or a hydraulic control motor. The displacement and stoppage of the movable mold 14 are determined by a control circuit (not shown) controlling the movable mechanism (servo motor or hydraulic control motor). Note that the position of the movable mold 14 is detected by a position sensor (not shown).

次に、本実施の形態に係る射出成形品の製造方法につき、そのフローチャートである図2を参照して説明する。この製造方法は、キャビティ18を設ける第1工程S1と、溶融樹脂R(原材料)の射出を行う第2工程S2と、可動型14を後退させることでキャビティ18の容積を拡張しながら溶融樹脂Rの射出を行う第3工程S3と、可動型14を前進させて溶融樹脂Rを圧縮する第4工程S4と、射出成形品を取り出す第5工程S5とを有する。   Next, a method for manufacturing an injection molded product according to the present embodiment will be described with reference to FIG. In this manufacturing method, the first step S1 for providing the cavity 18, the second step S2 for injecting the molten resin R (raw material), and the molten resin R while expanding the volume of the cavity 18 by retracting the movable die 14. The third step S3 for performing the injection, the fourth step S4 for advancing the movable mold 14 to compress the molten resin R, and the fifth step S5 for taking out the injection molded product.

第1工程S1においては、型閉じが行われる。すなわち、可動型14が固定型12に対して接近し、最終的に、図1に示すように、該可動型14がシム22、22の先端面に当接する。この当接により、固定型12と可動型14とがシム22、22の高さh分だけ離間する。換言すれば、固定型12と可動型14との間に10mm以内の適切なクリアランスが設けられる。   In the first step S1, mold closing is performed. That is, the movable die 14 approaches the fixed die 12, and finally the movable die 14 comes into contact with the front end surfaces of the shims 22 and 22, as shown in FIG. By this contact, the fixed mold 12 and the movable mold 14 are separated by the height h of the shims 22 and 22. In other words, an appropriate clearance within 10 mm is provided between the fixed mold 12 and the movable mold 14.

その一方で、可動型14の凸部24が固定型12の凹部20に挿入され、これに伴い、キャビティ18が形成される。厚みが一定である平板形状の射出成形品を作製する本実施の形態では、キャビティ18を形成する凹部20の側面20aと凸部24の先端面との間のクリアランスが、可動型14が固定型12に再接近した際の側面20aと凸部24の先端面との間の離間距離にシム22、22の高さhを加えた値と略同等となる。ここで、本実施の形態では、可動型14が固定型12に再接近した際の側面20aと凸部24の先端面との間の離間距離は、シム22、22の高さhに比して著しく小さい。従って、凹部20の側面20aと凸部24の先端面との間のクリアランスは、シム22、22の高さhに近似される。   On the other hand, the convex part 24 of the movable mold 14 is inserted into the concave part 20 of the fixed mold 12, and the cavity 18 is formed accordingly. In the present embodiment for producing a flat plate-shaped injection molded product having a constant thickness, the clearance between the side surface 20a of the concave portion 20 forming the cavity 18 and the tip surface of the convex portion 24 is such that the movable die 14 is a fixed die. 12 is substantially the same as the value obtained by adding the height h of the shims 22 and 22 to the separation distance between the side surface 20a and the tip surface of the convex portion 24 when approaching 12 again. Here, in the present embodiment, the separation distance between the side surface 20a and the front end surface of the convex portion 24 when the movable mold 14 approaches the fixed mold 12 again is larger than the height h of the shims 22 and 22. Remarkably small. Therefore, the clearance between the side surface 20 a of the concave portion 20 and the tip surface of the convex portion 24 approximates the height h of the shims 22 and 22.

次いで、第2工程S2において、スクリュ16からの溶融樹脂Rの射出を開始する。ここで、溶融樹脂Rとしては、変性ポリフェニレンエーテル、ポリプロピレン、ポリスチレン、ポリカーボネート、アクリロニトリル−ブタジエン−スチレン共重合体等の一般的な熱可塑性樹脂を用いることができる。また、型温度、射出圧力、射出速度は、例えば、それぞれ、70〜150℃、900〜1700kgf/cm2、80〜220cm3/秒の範囲内に設定すればよい。 Next, in the second step S2, the injection of the molten resin R from the screw 16 is started. Here, as the molten resin R, general thermoplastic resins such as modified polyphenylene ether, polypropylene, polystyrene, polycarbonate, acrylonitrile-butadiene-styrene copolymer can be used. Moreover, what is necessary is just to set a mold temperature, an injection pressure, and an injection speed, for example in the range of 70-150 degreeC, 900-1700 kgf / cm < 2 >, 80-220 cm < 3 > / sec, respectively.

第2工程S2では、射出成形品の厚み方向寸法に相当する凹部20の側面20aと凸部24の先端面との間のクリアランスがシム22、22の高さh、すなわち、10mm以内であるキャビティ18に溶融樹脂Rが充填される。厚み方向寸法がこの程度では、凸部24で溶融樹脂Rを押圧するのみであっても、該溶融樹脂Rがキャビティ18の下方に流動することが著しく抑制される。従って、内部側の密度が小さく外皮側の密度が大きい成形品が作製されることが回避される。   In the second step S2, the cavity between the side surface 20a of the concave portion 20 and the front end surface of the convex portion 24 corresponding to the dimension in the thickness direction of the injection molded product is the height h of the shims 22 and 22, that is, a cavity within 10 mm. 18 is filled with molten resin R. When the dimension in the thickness direction is about this level, even if the molten resin R is only pressed by the convex portion 24, the molten resin R is remarkably suppressed from flowing below the cavity 18. Accordingly, it is possible to avoid the production of a molded product having a small density on the inner side and a large density on the outer skin side.

なお、溶融樹脂Rに対する押圧力は、およそ60MPaで十分である。この押圧力は、キャビティ18に配設された圧力センサで溶融樹脂Rの圧力を測定することで検知することが可能である。以下の説明においては、測定された溶融樹脂Rの圧力を「型内圧力」と表記する。   Note that a pressure of about 60 MPa is sufficient for the molten resin R. This pressing force can be detected by measuring the pressure of the molten resin R with a pressure sensor disposed in the cavity 18. In the following description, the measured pressure of the molten resin R is expressed as “in-mold pressure”.

本実施の形態においては、図3に示すように、型内圧力を低減させる途中で次工程である第3工程S3を行う。すなわち、図4に示すように、可動型14を後退させながら溶融樹脂Rの射出を行う。なお、図3中の実線が型内圧力を表し、破線は固定型12と可動型14の離間距離を示す。また、図3中のS1は第1工程S1の進行中であることを意味しており、残余のS2〜S4も同様に、第2工程S2〜第4工程S4のそれぞれが進行中であることを意味する。   In the present embodiment, as shown in FIG. 3, a third step S3, which is the next step, is performed in the middle of reducing the in-mold pressure. That is, as shown in FIG. 4, the molten resin R is injected while the movable mold 14 is retracted. Note that the solid line in FIG. 3 represents the pressure inside the mold, and the broken line represents the separation distance between the fixed mold 12 and the movable mold 14. Further, S1 in FIG. 3 means that the first step S1 is in progress, and the remaining S2 to S4 are also in progress of the second step S2 to the fourth step S4, respectively. Means.

可動型14を後退させることに伴い、キャビティ18の容積が次第に大きくなる。第3工程S3では、このように容積が大きくなりつつあるキャビティ18に溶融樹脂Rを導入する。この際、キャビティ18の拡張容積が溶融樹脂Rの導入量よりも過度に小さいと溶融樹脂Rを導入することが困難となり、一方、過度に大きいと溶融樹脂Rを成形することが容易でなくなる。従って、キャビティ18の拡張容積と溶融樹脂Rの導入量との均衡を図りながら可動型14の後退と溶融樹脂Rの導入を行うことが好ましい。具体的には、キャビティ18を40〜4800cm3/秒ずつ拡張しながら溶融樹脂Rを80〜220cm3/秒の量で射出すると好適である。なお、キャビティ18の拡張容積と溶融樹脂Rの導入量は、比例させることが好ましい。 As the movable die 14 is retracted, the volume of the cavity 18 gradually increases. In the third step S3, the molten resin R is introduced into the cavity 18 whose volume is increasing in this way. At this time, if the expansion volume of the cavity 18 is excessively smaller than the introduction amount of the molten resin R, it is difficult to introduce the molten resin R. On the other hand, if the expansion volume is excessively large, it is not easy to mold the molten resin R. Therefore, it is preferable that the movable mold 14 is retracted and the molten resin R is introduced while balancing the expansion volume of the cavity 18 and the amount of the molten resin R introduced. Specifically, it is preferable to injection in an amount of molten resin R 80~220cm 3 / sec while extending the cavity 18 by 40~4800cm 3 / sec. Note that the expansion volume of the cavity 18 and the introduction amount of the molten resin R are preferably proportional.

図5に示すように、可動型14は、所定の位置まで後退して変位を終了する。本実施の形態において、この変位終了点は、凹部20の側面20aと凸部24の先端面との離間距離が、成形品の厚み方向設計寸法よりも大きくなるように設定される。例えば、厚み方向寸法が20mmである射出成形品を作製する場合、可動型14の変位終了点は、凹部20の側面20aと凸部24の先端面との離間距離が20mmを超えるように設定される。   As shown in FIG. 5, the movable die 14 is retracted to a predetermined position and ends the displacement. In the present embodiment, the displacement end point is set so that the distance between the side surface 20a of the concave portion 20 and the tip surface of the convex portion 24 is larger than the design dimension in the thickness direction of the molded product. For example, when producing an injection molded product having a thickness direction dimension of 20 mm, the displacement end point of the movable mold 14 is set so that the separation distance between the side surface 20a of the concave portion 20 and the front end surface of the convex portion 24 exceeds 20 mm. The

なお、可動型14の変位終了点は、凹部20の側面20aと凸部24の先端面との離間距離が成形品の厚み方向設計寸法の110%以内となるように設定することが好ましい。この場合、厚み方向の寸法が略設計値である射出成形品を容易に得ることができるからである。例えば、上記の例の場合、凹部20の側面20aと凸部24の先端面との離間距離が22mm以内となるように可動型14を停止させることが好ましい。   In addition, it is preferable to set the displacement end point of the movable mold 14 so that the separation distance between the side surface 20a of the concave portion 20 and the front end surface of the convex portion 24 is within 110% of the design dimension in the thickness direction of the molded product. In this case, it is because an injection molded product whose dimension in the thickness direction is a substantially designed value can be easily obtained. For example, in the case of the above example, it is preferable to stop the movable mold 14 so that the separation distance between the side surface 20a of the concave portion 20 and the tip surface of the convex portion 24 is within 22 mm.

第3工程S3を実施する間は、溶融樹脂Rが射出成形品となることに伴って収縮する分を補うべく、圧力を加えながら溶融樹脂Rの冷却硬化を行う、いわゆる保圧を行う。この保圧は、図示しない前記ガス供給路から供給されたガスによって営まれる。   During the execution of the third step S3, so-called pressure holding is performed, in which the molten resin R is cooled and cured while pressure is applied in order to compensate for the shrinkage caused by the molten resin R becoming an injection-molded product. This holding pressure is provided by a gas supplied from the gas supply path (not shown).

そして、第4工程S4において、図6に示すように、可動型14を固定型12に指向して前進させる。これにより可動型14が固定型12に再接近し、その結果、溶融樹脂Rが凸部24によって押圧されて圧縮される。この状態で溶融樹脂Rを冷却硬化させる。   And in 4th process S4, as shown in FIG. 6, the movable mold | type 14 is advanced toward the fixed mold | type 12. As shown in FIG. As a result, the movable mold 14 approaches the fixed mold 12 again, and as a result, the molten resin R is pressed by the convex portion 24 and compressed. In this state, the molten resin R is cooled and cured.

冷却硬化の際、上記したように、溶融樹脂Rが凸部24によって押圧される。これにより、溶融樹脂Rが前記冷却硬化に伴って収縮する際にヒケが発生することが抑制される。従って、厚肉であっても外観の美観に優れた射出成形品Fが得られる。また、前記押圧によって溶融樹脂Rがキャビティ18の下方に流動することが抑制されるので、射出成形品Fにおける内部側の密度と外皮側の密度が略同等となる。すなわち、得られた射出成形品Fは、厚肉であるにも関わらずボイド等の内部欠陥が極めて少なく全体にわたって品質が略一定であり、このために高強度を示す。   During the cooling and curing, the molten resin R is pressed by the convex portion 24 as described above. This suppresses the occurrence of sink marks when the molten resin R shrinks with the cooling and curing. Therefore, even if it is thick, an injection molded product F having an excellent appearance is obtained. In addition, since the molten resin R is suppressed from flowing below the cavity 18 by the pressing, the density on the inner side and the density on the outer skin side of the injection molded product F are substantially equal. That is, although the obtained injection molded product F is thick, there are very few internal defects such as voids, and the quality is substantially constant over the whole, and therefore shows high strength.

以上の第1工程S1〜第4工程S4における型内圧力の変化、及び、固定型12と可動型14の離間距離の変化を図3に併せて示す。   FIG. 3 also shows changes in the pressure in the mold and the changes in the separation distance between the fixed mold 12 and the movable mold 14 in the first step S1 to the fourth step S4.

最後に、第5工程S5において、可動型14を後退させて型開きを行い、図示しない前記ノックアウトピンの作用下に射出成形品F(平板材)を押圧する。これにより、射出成形品Fが取り出されるに至る。   Finally, in the fifth step S5, the movable mold 14 is moved backward to open the mold, and the injection molded product F (flat plate material) is pressed under the action of the knockout pin (not shown). Thereby, the injection molded product F is taken out.

このように、本実施の形態においては、比較的幅狭のキャビティ18を先ず形成して溶融樹脂Rを射出した後、可動型14を後退させることで前記キャビティ18を拡張しながら溶融樹脂Rのさらなる射出を行い、その上、射出が終了した後に可動型14を前進させて溶融樹脂Rを押圧するようにしている。これにより、厚肉であっても外観の美観が良好であり、且つ内部欠陥が少なく全体にわたって略均質な射出成形品Fを得ることができる。   As described above, in the present embodiment, the cavity 18 is first formed and injected with the molten resin R, and then the movable mold 14 is moved backward to expand the cavity 18 while expanding the cavity 18. Further injection is performed, and after the injection is finished, the movable mold 14 is advanced to press the molten resin R. Thereby, even if it is thick, the appearance of the appearance is good, and there can be obtained a substantially homogeneous injection molded product F with few internal defects throughout.

このようにして作製される射出成形品Fの具体例としては、燃料電池を構成するスタックとエンドプレートとの間に介装され、絶縁板とスペーサとの機能を兼ね備える部材が挙げられる。又は、厚みが相違する種々のスペーサであってもよい。   As a specific example of the injection molded product F produced in this way, there is a member that is interposed between the stack and the end plate constituting the fuel cell and has the functions of an insulating plate and a spacer. Alternatively, various spacers having different thicknesses may be used.

なお、上記した実施の形態では、第3工程S3において可動型14を所定の位置まで連続的に変位させるようにしているが、段階的に変位させるようにしてもよい。この場合、可動型14が変位している最中のみ溶融樹脂Rを射出するようにすればよい。   In the above-described embodiment, the movable mold 14 is continuously displaced to a predetermined position in the third step S3. However, the movable mold 14 may be displaced stepwise. In this case, the molten resin R may be injected only while the movable mold 14 is displaced.

また、この実施の形態では、固定型12にシム22、22を設けることで可動型14の前進端を規定し、これにより固定型12の凹部20の側面20aと可動型14の凸部24の先端面との間に所定のクリアランスを設けるようにしているが、凸部24の突出寸法を凹部20の深さ寸法に比して小さくし、これにより可動型14が固定型12に最近接した際に側面20aと凸部24の先端面との間に所定のクリアランスを設けるようにしてもよい。   Further, in this embodiment, the advancing end of the movable mold 14 is defined by providing the fixed mold 12 with shims 22, 22, whereby the side surface 20 a of the concave portion 20 of the fixed mold 12 and the convex portion 24 of the movable mold 14 are defined. Although a predetermined clearance is provided between the front end surface and the protrusion 24, the protruding dimension of the protrusion 24 is made smaller than the depth of the recess 20, so that the movable mold 14 is closest to the fixed mold 12. At this time, a predetermined clearance may be provided between the side surface 20a and the tip surface of the convex portion 24.

さらに、射出成形品Fは、燃料電池の構成部材に特に限定されるものではなく、如何なる部材であってもよい。その形状も、平板形状のものに限定されるものではなく、様々な形状のものを作製することができる。勿論、屈曲部ないし湾曲部を有する射出成形品を設けるようにしてもよい。   Furthermore, the injection molded product F is not particularly limited to the constituent members of the fuel cell, and may be any member. The shape is not limited to a flat plate shape, and various shapes can be produced. Of course, an injection molded product having a bent portion or a curved portion may be provided.

本実施の形態に係る射出成形品の製造方法を実施するための射出成形機の要部縦断面説明図である。It is principal part longitudinal cross-section explanatory drawing of the injection molding machine for enforcing the manufacturing method of the injection molded product which concerns on this Embodiment. 前記製造方法のフローチャートである。It is a flowchart of the said manufacturing method. 溶融樹脂から射出成形品を作製する工程を行っている間の型内圧力の変化、及び、固定型と可動型との離間距離の変化を示すグラフである。It is a graph which shows the change of the pressure in a type | mold during performing the process which produces an injection molded product from molten resin, and the change of the separation distance of a fixed mold | type and a movable mold | type. キャビティを拡張しながら溶融樹脂を射出する第3工程を行っている最中の射出成形機の要部縦断面説明図である。It is principal part longitudinal cross-section explanatory drawing of the injection molding machine in the middle of performing the 3rd process which inject | emits molten resin, expanding a cavity. 可動型が所定位置までの後退変位を終了した時点の射出成形機の要部縦断面説明図である。It is principal part longitudinal cross-section explanatory drawing of the injection molding machine at the time of the movable mold | type complete | finishing the backward displacement to a predetermined position. 可動型を前進させて溶融樹脂を圧縮する第4工程を行っている最中の射出成形機の要部縦断面説明図である。It is principal part longitudinal cross-section explanatory drawing of the injection molding machine in the middle of performing the 4th process which advances a movable mold and compresses molten resin.

符号の説明Explanation of symbols

10…射出成形機 12…固定型
14…可動型 16…スクリュ
18…キャビティ 20…凹部
22…シム 24…凸部
26…ランナ F…射出成形品
R…溶融樹脂
DESCRIPTION OF SYMBOLS 10 ... Injection molding machine 12 ... Fixed mold 14 ... Movable mold 16 ... Screw 18 ... Cavity 20 ... Concave part 22 ... Shim 24 ... Convex part 26 ... Runner F ... Injection molded product R ... Molten resin

Claims (4)

固定型と可動型とを有する射出成形機を用いて射出成形品を製造する射出成形品の製造方法であって、
前記固定型と前記可動型とでキャビティを設ける工程と、
前記キャビティに原材料の射出を行う工程と、
前記可動型を後退させることで前記キャビティの容積を拡張しながら、該キャビティに前記原材料の射出を行う工程と、
前記可動型を前進させ、前記原材料を圧縮する工程と、
前記可動型を後退させて型開きを行い、前記原材料が硬化することで形成された射出成形品を取り出す工程と、
を有することを特徴とする射出成形品の製造方法。
An injection molded product manufacturing method for manufacturing an injection molded product using an injection molding machine having a fixed mold and a movable mold,
Providing a cavity with the fixed mold and the movable mold;
Injecting raw materials into the cavity;
Injecting the raw material into the cavity while expanding the volume of the cavity by retracting the movable mold; and
Advancing the movable mold and compressing the raw materials;
Retreating the movable mold to perform mold opening and taking out an injection molded product formed by curing the raw material;
A method for producing an injection-molded article, comprising:
請求項1記載の製造方法において、前記可動型の後退によって前記キャビティを40〜4800cm3/秒ずつ拡張しながら前記原材料を80〜220cm3/秒の量で射出することを特徴とする射出成形品の製造方法。 2. The injection molding product according to claim 1, wherein the raw material is injected in an amount of 80 to 220 cm 3 / sec while expanding the cavity by 40 to 4800 cm 3 / sec by retreating the movable mold. Manufacturing method. 請求項1又は2記載の製造方法において、前記可動型を最大で前記射出成形品の厚みの100%超〜110%となる位置まで後退させることを特徴とする射出成形品の製造方法。   3. The method of manufacturing an injection molded product according to claim 1, wherein the movable mold is retracted to a position where the movable mold reaches a maximum of more than 100% to 110% of the thickness of the injection molded product. 請求項1〜3のいずれか1項に記載の製造方法において、前記固定型と前記可動型とのクリアランスを10mm以内として前記キャビティを形成することを特徴とする射出成形品の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein the cavity is formed with a clearance between the fixed mold and the movable mold within 10 mm.
JP2006347572A 2006-12-25 2006-12-25 Manufacturing method of injection molded products Expired - Fee Related JP4804334B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006347572A JP4804334B2 (en) 2006-12-25 2006-12-25 Manufacturing method of injection molded products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006347572A JP4804334B2 (en) 2006-12-25 2006-12-25 Manufacturing method of injection molded products

Publications (2)

Publication Number Publication Date
JP2008155503A true JP2008155503A (en) 2008-07-10
JP4804334B2 JP4804334B2 (en) 2011-11-02

Family

ID=39656959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006347572A Expired - Fee Related JP4804334B2 (en) 2006-12-25 2006-12-25 Manufacturing method of injection molded products

Country Status (1)

Country Link
JP (1) JP4804334B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180615B2 (en) 2011-09-22 2015-11-10 Sabic Global Technologies B.V. Method of making a multiple-layered plastic part
JP2017061149A (en) * 2015-09-25 2017-03-30 旭モールディング株式会社 Method for manufacturing resin molding and apparatus for manufacturing resin molding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147225A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Method for molding plastics
JPH08323820A (en) * 1995-05-31 1996-12-10 Honda Motor Co Ltd Injection molding method for resin product with thick-walled part
JP2007184198A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Method of manufacturing fuel cell separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02147225A (en) * 1988-11-29 1990-06-06 Matsushita Electric Ind Co Ltd Method for molding plastics
JPH08323820A (en) * 1995-05-31 1996-12-10 Honda Motor Co Ltd Injection molding method for resin product with thick-walled part
JP2007184198A (en) * 2006-01-10 2007-07-19 Toyota Motor Corp Method of manufacturing fuel cell separator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9180615B2 (en) 2011-09-22 2015-11-10 Sabic Global Technologies B.V. Method of making a multiple-layered plastic part
US9815260B2 (en) 2011-09-22 2017-11-14 Sabic Global Technologies B.V. Thick plastic part and method of making and tool
JP2017061149A (en) * 2015-09-25 2017-03-30 旭モールディング株式会社 Method for manufacturing resin molding and apparatus for manufacturing resin molding

Also Published As

Publication number Publication date
JP4804334B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
US7704423B2 (en) Method for expansion injection molding
US20140212610A1 (en) Foam-molding parts manufacturing method, foam-molding part, and foam-mold
RU2387539C2 (en) Device and method for production of plastic items
JPH07100886A (en) Thin wall molding method
JP6611910B2 (en) FRP sheet press molding method and apparatus
JP2010260175A (en) Injection molding machine
JP4804334B2 (en) Manufacturing method of injection molded products
US20040115505A1 (en) Fuel cell separator molding method and molding die
JP6048827B2 (en) Injection molding method and injection molding machine
JP2008162213A (en) Injection molding mold
JP6189371B2 (en) Molding method for hollow molded products
CN203779789U (en) Bijection mold
JP2013078913A (en) Method for injection compression molding of resin, and device for injection compression molding
JP5777396B2 (en) Insert molding method
JP2015020343A (en) Injection molding method
CN111016105B (en) Insert molding method and device
JP5630476B2 (en) Injection molding method and injection molding apparatus
JP5168897B2 (en) Multilayer molding method of resin
JP2005035196A (en) Method, mold and equipment for injection molding
CN108778660B (en) FRP sheet compression molding method and device, and FRP molded product
JPH06278178A (en) Manufacture of injection molded product and its molding device
JP6246597B2 (en) Injection molding equipment
KR101551296B1 (en) Mold for injection compression molding thin plate
JP2019209639A (en) Method for manufacturing molded product
JP2005246696A (en) Method for molding injection molded product having thick-walled part with hollow interior and injection mold assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110809

R150 Certificate of patent or registration of utility model

Ref document number: 4804334

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees