JP2008155105A - Removal method of arsenic from arsenic-containing aqueous solution - Google Patents

Removal method of arsenic from arsenic-containing aqueous solution Download PDF

Info

Publication number
JP2008155105A
JP2008155105A JP2006345418A JP2006345418A JP2008155105A JP 2008155105 A JP2008155105 A JP 2008155105A JP 2006345418 A JP2006345418 A JP 2006345418A JP 2006345418 A JP2006345418 A JP 2006345418A JP 2008155105 A JP2008155105 A JP 2008155105A
Authority
JP
Japan
Prior art keywords
arsenic
aqueous solution
iron powder
metal iron
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006345418A
Other languages
Japanese (ja)
Inventor
Norihisa Toki
典久 土岐
Masaki Imamura
正樹 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2006345418A priority Critical patent/JP2008155105A/en
Publication of JP2008155105A publication Critical patent/JP2008155105A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for simply, efficiently and inexpensively removing arsenic from an arsenic-including aqueous solution of every kind such as industrial wastewater, an aqueous solution of nickel sulfate being an intermediate raw material of a nickel chemical forming compound becoming an electronic material, etc. <P>SOLUTION: A metal iron powder is added to the arsenic-including aqueous solution to be mixed with it under stirring or the arsenic-including aqueous solution is passed through a column or the like filled with the metal iron powder to react arsenic with the metal iron powder on its surface. Thereafter, the metal iron powder having arsenic adsorbed thereon as an iron compound is recovered by solid-liquid separation. The particle size of the metal iron powder is adjusted to 1 mm or below, preferably 10 μm-1 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、砒素を含有する排水や金属塩水溶液等から、簡便に低濃度まで砒素を除去する方法に関する。   The present invention relates to a method for easily removing arsenic from wastewater containing arsenic or an aqueous metal salt solution to a low concentration.

近年、砒素(As)は人体に対して有毒であり、少量であっても長期的には慢性的な中毒症状を引き起こすため、上水中あるいは排水中のAs濃度を低減することが求められている。また、工業的にも、排水中だけでなく、各種電子材料となるニッケル化成品中へのAsの混入を防ぐため、その中間原料である硫酸ニッケル等からAsを除去することが望まれている。   In recent years, arsenic (As) is toxic to the human body, and even a small amount causes chronic poisoning symptoms in the long term. Therefore, it is required to reduce the concentration of As in drinking water or waste water. . Also, industrially, it is desired to remove As from nickel sulfate, which is an intermediate raw material, in order to prevent As from being mixed not only in wastewater but also in nickel chemical products as various electronic materials. .

各種の化学形態のAsを含有する水溶液からAsを除去することは多くの産業分野で検討されており、例えば凝集沈殿法、吸着法、硫化法等が提案されている。凝集沈殿法は、例えば特開2003−19404号公報に記載されるように、アルミ二ウム塩や鉄塩等の凝集剤を添加して凝集フロックを形成し、この凝集フロックと共にAsを沈殿させる方法である。凝集沈殿法は、原水中の濁質と同時にAsを除去できることから広く採用されているが、As以外に多くの金属元素を含有している原水の場合、凝集により大量の沈殿物を発生するため、この凝集フロックの後処理に多大な手間と費用を要するという問題点がある。   Removal of As from aqueous solutions containing various chemical forms of As has been studied in many industrial fields, for example, a coagulation precipitation method, an adsorption method, a sulfurization method and the like have been proposed. For example, as described in JP-A-2003-19404, the coagulation sedimentation method is a method in which an aggregation floc is formed by adding an aggregating agent such as an aluminum salt or an iron salt, and As is precipitated together with the aggregation floc. It is. The coagulation sedimentation method is widely adopted because it can remove As simultaneously with the turbidity in the raw water, but in the case of raw water containing many metal elements other than As, a large amount of precipitate is generated by aggregation. There is a problem in that post-processing of the aggregated floc requires a lot of labor and cost.

吸着法は、例えば特開2005−000747号公報に記載されるように、活性白土やキレート材を用いてAsを選択的に除去する方法である。しかし、吸着剤自体のコスト、溶離液として使用される薬剤のコスト、As溶離液の処理コストが高く、コスト的に特段優れる方法ではない。   The adsorption method is a method of selectively removing As using activated clay or a chelating material as described in, for example, JP-A-2005-000747. However, the cost of the adsorbent itself, the cost of the drug used as the eluent, and the processing cost of the As eluent are high, and this is not a particularly excellent method in terms of cost.

また、硫化法は、例えば特開2005−224686号公報に記載されるように、As含有水溶液に水溶性硫化物や硫化水素ガスを添加し、Asを硫化砒素として不溶化させた後、固液分離する方法である。しかし、As濃度が10mg/l以下の希薄なAs含有溶液の場合は、硫化砒素の結晶生成が極めて遅く、Asを一定濃度以下に除去するためには比較的長時間を要し、実用性に難点がある。また、As以外に硫化物となり易い金属元素を含有している原水の場合、大量の硫化沈澱物を発生するという問題もある。   Further, as described in, for example, JP-A-2005-224686, the sulfurization method is performed by adding a water-soluble sulfide or hydrogen sulfide gas to an As-containing aqueous solution to insolubilize As as arsenic sulfide, and then perform solid-liquid separation. It is a method to do. However, in the case of a dilute As-containing solution with an As concentration of 10 mg / l or less, arsenic sulfide crystal formation is extremely slow, and it takes a relatively long time to remove As to a certain concentration or less. There are difficulties. In addition, in the case of raw water containing a metal element that easily becomes sulfide other than As, there is also a problem that a large amount of sulfide precipitate is generated.

特開2003−19404号公報Japanese Patent Laid-Open No. 2003-19404 特開2005−000747号公報JP 2005-000747 A 特開2005−224686号公報JP 2005-224686A

本発明は、上記した従来の問題点に鑑み、砒素を含有する水溶液から、簡単な方法により、効率よく且つ低コストで砒素を除去する方法を提供することを目的とする。   In view of the above-described conventional problems, an object of the present invention is to provide a method for removing arsenic from an aqueous solution containing arsenic efficiently and at low cost.

上記目的を達成するために、本発明が提供する砒素含有水溶液からの砒素除去方法は、砒素を含有する水溶液に粒径1mm以下の金属鉄粉を接触させ、該金属鉄粉の表面で砒素を反応させた後、固液分離により砒素が鉄の化合物として吸着された金属鉄粉を回収することを特徴とするものである。   In order to achieve the above object, the present invention provides a method for removing arsenic from an arsenic-containing aqueous solution by bringing a metallic iron powder having a particle size of 1 mm or less into contact with the aqueous solution containing arsenic, and After the reaction, the metal iron powder in which arsenic is adsorbed as an iron compound is recovered by solid-liquid separation.

本発明によれば、砒素を含有する水溶液に金属鉄粉を接触、反応させるという簡単な方法により、工業排水や、電子材料となるニッケル化成品の中間原料である硫酸ニッケル水溶液など、各種の砒素含有水溶液中の砒素を、効率よく且つ低コストで除去することができる。   According to the present invention, various types of arsenic such as industrial waste water and nickel sulfate aqueous solution that is an intermediate raw material for nickel chemical products to be used as electronic materials can be obtained by a simple method of contacting and reacting metallic iron powder with an aqueous solution containing arsenic. Arsenic in the aqueous solution can be removed efficiently and at low cost.

本発明の方法においては、水溶液中に含有される砒素(As)を除去するために、砒素含有水溶液に金属鉄粉を接触させる。砒素含有水溶液と金属鉄粉との接触方法としては、砒素含有水溶液に金属鉄粉を添加して撹拌混合する方法や、金属鉄粉を充填したカラム等に砒素含有水溶液を通液する方法がある。   In the method of the present invention, in order to remove arsenic (As) contained in the aqueous solution, metallic iron powder is brought into contact with the arsenic-containing aqueous solution. As a method of contacting the arsenic-containing aqueous solution with the metallic iron powder, there are a method of adding the metallic iron powder to the arsenic-containing aqueous solution and stirring and mixing, and a method of passing the arsenic-containing aqueous solution through a column filled with the metallic iron powder. .

水溶液中の砒素は、例えば下記の化学式に示すように、金属鉄粉の表面で還元・吸着反応を起こし、水溶液から除去されていると考えられる。また、下記化学式により生成したAsは、FeAs合金等の鉄の化合物を形成して、金属鉄粉の表面に吸着されるものと推定される。
[化学式]
2HAsO+3Fe+HSO
→ 2As+3FeSO+4H
Arsenic in the aqueous solution is considered to have been removed from the aqueous solution by causing a reduction / adsorption reaction on the surface of the metallic iron powder, for example, as shown in the chemical formula below. Moreover, As produced | generated by the following chemical formula forms iron compounds, such as a FeAs alloy, and it is estimated that it adsorb | sucks to the surface of metal iron powder.
[Chemical formula]
2HAsO 2 + 3Fe 0 + H 2 SO 4
→ 2As 0 + 3FeSO 4 + 4H 2 O

上記還元・吸着反応の後、吸引ろ過等の手段により固液分離を行う。上記したように砒素はFeAs合金等の鉄の化合物として金属鉄粉の表面に吸着されているため、固液分離により金属鉄粉を回収することによって、砒素を水溶液から除去することができる。   After the reduction / adsorption reaction, solid-liquid separation is performed by means such as suction filtration. As described above, since arsenic is adsorbed on the surface of the metal iron powder as an iron compound such as an FeAs alloy, the arsenic can be removed from the aqueous solution by collecting the metal iron powder by solid-liquid separation.

上記還元・吸着反応は固液反応であるため、金属鉄粉と砒素含有水溶液の接触頻度が高い方が、即ち金属鉄粉の粒径が小さいほうが有利である。そのため、本発明では粒径1mm以下の金属鉄粉を用いることにより、水液中に含有される砒素を効率よく除去することが可能となる。しかし、金属鉄粉の粒径が小さすぎると、固液分離やカラム通水時に目詰まりを起こす可能性があるため、金属鉄粉の粒径は10μm〜1mm程度に調整したものを用いることが好ましい。   Since the reduction / adsorption reaction is a solid-liquid reaction, it is advantageous that the contact frequency between the metal iron powder and the arsenic-containing aqueous solution is higher, that is, the particle diameter of the metal iron powder is smaller. Therefore, in the present invention, it is possible to efficiently remove arsenic contained in the aqueous liquid by using metallic iron powder having a particle size of 1 mm or less. However, if the particle size of the metal iron powder is too small, there is a possibility of clogging during solid-liquid separation or column water flow, so that the particle size of the metal iron powder should be adjusted to about 10 μm to 1 mm. preferable.

上記還元・吸着反応においては、反応温度や反応時間は特に限定されるものではなく、室温又は加熱しなくても、あるいは60分以内の比較的短い時間でも、砒素を除去することが可能である。また、対象とするAs含有水溶液のpHは、特に限定されず、工業的にはpH7〜8の中性域の排水や、pH2〜7程度の弱酸性の硫酸ニッケル水溶液が一般的である。ただし、水溶液のpHが2を下回ると金属鉄粉が溶解するため、pHの下限はpH2程度が好ましい。   In the above reduction / adsorption reaction, the reaction temperature and reaction time are not particularly limited, and it is possible to remove arsenic even at room temperature, without heating, or in a relatively short time within 60 minutes. . In addition, the pH of the target As-containing aqueous solution is not particularly limited, and industrially, a neutral drainage of pH 7 to 8 or a weakly acidic nickel sulfate aqueous solution of about pH 2 to 7 is generally used. However, since the metallic iron powder dissolves when the pH of the aqueous solution is lower than 2, the lower limit of the pH is preferably about pH 2.

[実施例1]
As濃度2.6mg/lの硫酸ニッケル溶液100ミリリットル(Ni濃度90g/l、初期pH5.6)に、金属鉄粉10gを添加し、pH成り行きにて20℃で、合成樹脂製ペラを用いて60分撹拌を行った。反応後、5Cのろ布を用いた吸引ろ過により、終液(pH6.2)を固液分離した。得られたろ液のAs濃度は0.1mg/l以下であった。
[Example 1]
To 100 ml of nickel sulfate solution with an As concentration of 2.6 mg / l (Ni concentration of 90 g / l, initial pH of 5.6), 10 g of metallic iron powder was added, and the pH was reached at 20 ° C. using a synthetic resin peller. Stirring was performed for 60 minutes. After the reaction, the final solution (pH 6.2) was subjected to solid-liquid separation by suction filtration using a 5C filter cloth. The As concentration of the obtained filtrate was 0.1 mg / l or less.

尚、使用した金属鉄粉は、化学成分が、トータルFe:96.7%、金属Fe:92.5%、FeO:5.4%であった。また、粒度分布は、+425μm:0.0%、〜300μm:0.7%、〜250μm:5.2%、〜150μm:30.5%、〜106μm:22.3%、〜75μm:18.5%、−75μm:22.8である。   The metal iron powder used had chemical components of total Fe: 96.7%, metal Fe: 92.5%, and FeO: 5.4%. The particle size distribution is +425 μm: 0.0%, ˜300 μm: 0.7%, ˜250 μm: 5.2%, ˜150 μm: 30.5%, ˜106 μm: 22.3%, ˜75 μm: 18. 5%, −75 μm: 22.8.

[実施例2]
As濃度2.6mg/lの硫酸ニッケル溶液100ミリリットル(Ni濃度90g/l、初期pH5.6)に、上記金属鉄粉10gを添加し、pH成り行きにて40℃で、合成樹脂製ペラを用いて60分撹拌を行った。反応後、5Cのろ布を用いた吸引ろ過により、終液(pH5.7)を固液分離した。得られたろ液のAs濃度は0.1mg/l以下であった。
[Example 2]
To 100 ml of nickel sulfate solution with an As concentration of 2.6 mg / l (Ni concentration of 90 g / l, initial pH of 5.6), 10 g of the above metal iron powder is added, and at 40 ° C. according to the pH, using a synthetic resin peller. For 60 minutes. After the reaction, the final liquid (pH 5.7) was subjected to solid-liquid separation by suction filtration using a 5C filter cloth. The As concentration of the obtained filtrate was 0.1 mg / l or less.

[実施例3]
As濃度2.6mg/lの硫酸ニッケル溶液100ミリリットル(Ni濃度90g/l、初期pH5.6)に上記金属鉄粉10gを添加し、40℃にて硫酸でpHを2.0に調整しながら、合成樹脂製ペラを用いて60分撹拌を行った。反応後、5Cのろ布を用いた吸引ろ過により、終液を固液分離した。得られたろ液のAs濃度は0.1mg/l以下であった。
[Example 3]
While adding 10 g of the above metal iron powder to 100 ml of nickel sulfate solution with an As concentration of 2.6 mg / l (Ni concentration of 90 g / l, initial pH of 5.6), adjusting the pH to 2.0 with sulfuric acid at 40 ° C. The mixture was stirred for 60 minutes using a synthetic resin peller. After the reaction, the final liquid was subjected to solid-liquid separation by suction filtration using a 5C filter cloth. The As concentration of the obtained filtrate was 0.1 mg / l or less.

[比較例1]
As濃度2.6mg/lの硫酸ニッケル溶液100ミリリットル(Ni濃度90g/l、初期pH5.6)に、上記金属鉄粉の代わりに金属銅粉(試薬1級)10gを添加し、pH成り行きにて20℃で、合成樹脂製ペラを用いて60分撹拌を行った。反応後、5Cのろ布を用いた吸引ろ過により、終液を固液分離した。得られたろ液のAs濃度は1.7mg/lであった。
[Comparative Example 1]
To 100 ml of nickel sulfate solution with an As concentration of 2.6 mg / l (Ni concentration of 90 g / l, initial pH of 5.6), 10 g of metal copper powder (reagent grade 1) is added instead of the above metal iron powder, and the pH is reached. The mixture was stirred at 20 ° C. for 60 minutes using a synthetic resin peller. After the reaction, the final liquid was subjected to solid-liquid separation by suction filtration using a 5C filter cloth. The As concentration of the obtained filtrate was 1.7 mg / l.

[比較例2]
As濃度2.6mg/lの硫酸ニッケル溶液100ミリリットル(Ni濃度90g/l、初期pH5.6)に、活性白土粉2gを添加し、pH成り行きにて20℃で、合成樹脂製ペラを用いて60分撹拌を行った。その後、5Cのろ布を用いた吸引ろ過により、終液を固液分離した。得られたろ液のAs濃度は0.8mg/lであった。
[Comparative Example 2]
To 100 ml of nickel sulfate solution with an As concentration of 2.6 mg / l (Ni concentration of 90 g / l, initial pH of 5.6), 2 g of activated clay powder was added, and at 20 ° C according to the pH, using a synthetic resin peller. Stirring was performed for 60 minutes. Thereafter, the final liquid was subjected to solid-liquid separation by suction filtration using a 5C filter cloth. The As concentration of the obtained filtrate was 0.8 mg / l.

[比較例3]
As濃度2.6mg/lの硫酸ニッケル溶液100ミリリットル(Ni濃度90g/l、初期pH5.6)に、硫化ナトリウム溶液2ミリリットルを添加し、pH2.5にて40℃で、合成樹脂製ペラを用いて60分撹拌を行った。その後、5Cのろ布を用いた吸引ろ過により、終液を固液分離した。得られたろ液のAs濃度は0.3mg/lであった。
[Comparative Example 3]
To 100 ml of nickel sulfate solution with an As concentration of 2.6 mg / l (Ni concentration of 90 g / l, initial pH of 5.6), 2 ml of sodium sulfide solution was added, and a synthetic resin peller was placed at 40 ° C. at pH 2.5. And stirred for 60 minutes. Thereafter, the final liquid was subjected to solid-liquid separation by suction filtration using a 5C filter cloth. The As concentration of the obtained filtrate was 0.3 mg / l.

Claims (2)

砒素を含有する水溶液から砒素を除去する方法であって、砒素を含有する水溶液に粒径1mm以下の金属鉄粉を接触させ、該金属鉄粉の表面で砒素を反応させた後、固液分離により砒素が鉄の化合物として吸着された金属鉄粉を回収することを特徴とする砒素含有水溶液からの砒素除去方法。   A method for removing arsenic from an aqueous solution containing arsenic, wherein a metal iron powder having a particle size of 1 mm or less is brought into contact with the aqueous solution containing arsenic, and arsenic is reacted on the surface of the metal iron powder, followed by solid-liquid separation. A method for removing arsenic from an arsenic-containing aqueous solution, characterized in that metallic iron powder in which arsenic is adsorbed as an iron compound is recovered. 前記砒素を含有する水溶液が硫酸ニッケル水溶液であることを特徴とする、請求項1に記載の砒素含有水溶液からの砒素除去方法。   The method for removing arsenic from an arsenic-containing aqueous solution according to claim 1, wherein the aqueous solution containing arsenic is an aqueous nickel sulfate solution.
JP2006345418A 2006-12-22 2006-12-22 Removal method of arsenic from arsenic-containing aqueous solution Pending JP2008155105A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006345418A JP2008155105A (en) 2006-12-22 2006-12-22 Removal method of arsenic from arsenic-containing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006345418A JP2008155105A (en) 2006-12-22 2006-12-22 Removal method of arsenic from arsenic-containing aqueous solution

Publications (1)

Publication Number Publication Date
JP2008155105A true JP2008155105A (en) 2008-07-10

Family

ID=39656609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006345418A Pending JP2008155105A (en) 2006-12-22 2006-12-22 Removal method of arsenic from arsenic-containing aqueous solution

Country Status (1)

Country Link
JP (1) JP2008155105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003864A (en) * 2018-10-08 2020-04-14 昆明理工大学 Method for removing arsenic in ultrasonic-enhanced contaminated acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270773A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Cleaning reactant of water containing pollutant and cleaning treatment method of polluted aquifer using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005270773A (en) * 2004-03-24 2005-10-06 Kurita Water Ind Ltd Cleaning reactant of water containing pollutant and cleaning treatment method of polluted aquifer using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111003864A (en) * 2018-10-08 2020-04-14 昆明理工大学 Method for removing arsenic in ultrasonic-enhanced contaminated acid

Similar Documents

Publication Publication Date Title
JP5261950B2 (en) Method and apparatus for treating selenium-containing wastewater
Quiton et al. Recovery of cobalt and copper from single-and co-contaminated simulated electroplating wastewater via carbonate and hydroxide precipitation
CN111484161A (en) Regeneration treatment method of leaching waste liquid generated by soil remediation, regenerated leaching liquid and application
JP4877103B2 (en) Method and apparatus for treating selenium-containing wastewater
JP5137232B2 (en) Method for producing porous iron oxide and method for treating water to be treated
JP4614093B2 (en) Arsenic wastewater treatment method
JP2007001835A (en) Phosphorus adsorbent
JP2015047534A (en) Water treatment method and apparatus
JP4231934B2 (en) How to remove selenium in wastewater
JP2008155105A (en) Removal method of arsenic from arsenic-containing aqueous solution
JP6208648B2 (en) Treatment agent and treatment method for contaminated water or soil
JP4567344B2 (en) How to remove arsenic
JP2009011915A (en) Selenium-containing wastewater treatment method and apparatus
TWI694057B (en) Method for manufacturing gypsum and method for manufacturing cement composition
JP6597349B2 (en) Blast furnace wastewater treatment method
JP4808093B2 (en) Recycling method of iron powder for arsenic removal
CN105521711B (en) The removal methods of heavy metal ion in a kind of renewable organic amine desulfurizing agent
JP4862191B2 (en) Method for treating selenium-containing water
JP2015039652A (en) Method and apparatus for treating selenium-containing water
JP6901807B1 (en) Treatment method of water containing selenate ion
JP2015003295A (en) Adsorbent, water treatment tank, method for producing adsorbent and water treatment system
JP5810639B2 (en) Method and apparatus for treating selenium-containing water
Quiton et al. Reclamation of Cobalt and Copper from Single-and Co-contaminated Wastewater via Carbonate and Hydroxide Precipitation
JP4029054B2 (en) Liquid purification device
JP4771284B2 (en) Method and apparatus for treating selenium-containing wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090422

A977 Report on retrieval

Effective date: 20110323

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A02 Decision of refusal

Effective date: 20111011

Free format text: JAPANESE INTERMEDIATE CODE: A02