JP2008153981A - Capacitance change detection circuit and condenser microphone device - Google Patents

Capacitance change detection circuit and condenser microphone device Download PDF

Info

Publication number
JP2008153981A
JP2008153981A JP2006340287A JP2006340287A JP2008153981A JP 2008153981 A JP2008153981 A JP 2008153981A JP 2006340287 A JP2006340287 A JP 2006340287A JP 2006340287 A JP2006340287 A JP 2006340287A JP 2008153981 A JP2008153981 A JP 2008153981A
Authority
JP
Japan
Prior art keywords
capacitor
feedback
operational amplifier
charge pump
input terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006340287A
Other languages
Japanese (ja)
Other versions
JP4959315B2 (en
Inventor
Tatsuya Suzuki
達也 鈴木
Yasuhiro Kaneda
安弘 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
System Solutions Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Semiconductor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Semiconductor Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006340287A priority Critical patent/JP4959315B2/en
Publication of JP2008153981A publication Critical patent/JP2008153981A/en
Application granted granted Critical
Publication of JP4959315B2 publication Critical patent/JP4959315B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problem that it takes time to charge a microcapacitor on start-up of a condenser microphone device using an MEMS (Micro Electro Mechanical Systems) microphone. <P>SOLUTION: A lowpass filter (LPF) 26 comprising a high resistor R1 and a capacitance C1 is provided between one terminal of a condenser Cm constituting the MEMS microphone and a charge pump for charging Cm. The LPF 26 is provided with a diode D1 to be a forward bias when starting charging in parallel. A capacitance C2 and a high resistor R2 are connected in parallel to a feedback route that connects an inverted input terminal of an operational amplifier 28 connected to the other terminal of Cm and an output terminal, and a diode D2 is connected to C2 and R2 in parallel and in the direction of being a forward direction bias when starting charging. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、音声に応じたコンデンサの静電容量の変化を検出する静電容量変化検出回路、及びコンデンサマイクロホン装置に関し、特に、コンデンサマイクロホンの低ノイズ化及び立ち上がり時間の短縮に関する。   The present invention relates to a capacitance change detection circuit that detects a change in capacitance of a capacitor in response to sound, and a capacitor microphone device, and more particularly to noise reduction and rise time reduction of a capacitor microphone.

コンデンサマイクロホンの一種として、近年、MEMSマイクが注目されている。このMEMSマイクの基本的な構造は、ダイアフラムとバックプレートという2枚の近接して対向配置される電極板からなるコンデンサであり、当該構造がMEMS(Micro Electro Mechanical Systems)技術を用いてシリコン基板に形成される。このMEMSマイクは、標準的なはんだリフロープロセスの温度に耐えることができ、例えば、プリント基板上に他の部品と共にはんだ付けすることができる。また、MEMSマイクは、一般的なエレクトレットコンデンサマイク(ECM)より小型に形成することができる。このような点で、MEMSマイクを含む装置は、実装密度を高め小型化を図れる。   In recent years, MEMS microphones have attracted attention as a type of condenser microphone. The basic structure of the MEMS microphone is a capacitor composed of two electrode plates, a diaphragm and a back plate, arranged in close proximity to each other. The structure is formed on a silicon substrate using MEMS (Micro Electro Mechanical Systems) technology. It is formed. The MEMS microphone can withstand the temperatures of standard solder reflow processes and can be soldered with other components on a printed circuit board, for example. Further, the MEMS microphone can be formed smaller than a general electret condenser microphone (ECM). In this respect, the device including the MEMS microphone can be downsized by increasing the mounting density.

ECMは半永久的に電荷を保持するエレクトレット素子を利用することにより、バイアス電圧が不要な構造であるのに対して、MEMSマイクの動作には、比較的高い直流バイアス電圧が必要となる。このバイアス電圧の印加により、MEMSマイクを構成するコンデンサには一定の電荷Qが充電される。この状態で音圧によってダイアフラムが振動すると、当該コンデンサの静電容量Cが変化して、端子間電圧Vの変化を生じる。この電圧Vの変化が音声信号として出力される。   The ECM uses an electret element that holds a charge semipermanently, and thus has a structure that does not require a bias voltage, whereas a MEMS microphone requires a relatively high DC bias voltage for operation. By applying the bias voltage, the capacitor constituting the MEMS microphone is charged with a constant charge Q. When the diaphragm vibrates due to the sound pressure in this state, the capacitance C of the capacitor changes, causing a change in the voltage V between the terminals. This change in voltage V is output as an audio signal.

図4は、従来のMEMSマイクを用いたコンデンサマイクロホン装置の回路図である。当該装置は、MEMSマイクであるコンデンサCm、バイアス電源部2及び出力部4からなる。   FIG. 4 is a circuit diagram of a condenser microphone device using a conventional MEMS microphone. The apparatus includes a capacitor Cm which is a MEMS microphone, a bias power supply unit 2 and an output unit 4.

バイアス電源部2は、チャージポンプ回路10、容量C1及び抵抗R1で構成され、端子VBに接続されるコンデンサCmにバイアス電圧を供給する。   The bias power supply unit 2 includes a charge pump circuit 10, a capacitor C1, and a resistor R1, and supplies a bias voltage to a capacitor Cm connected to the terminal VB.

チャージポンプ回路10が生成する高電圧は、C1及びR1からなるCRローパスフィルタ(LPF)12を経由してコンデンサCmに供給される。LPF12は、チャージポンプ回路10の出力信号を平滑化し、当該出力信号に含まれ得る高帯域ノイズを除去するために設けられる。特に、高音質の音声信号を取得する上で、チャージポンプ回路10の出力信号に含まれるノイズは好適に除去することが望ましい。一方、チャージポンプ回路10の主たる機能は、コンデンサCmを充電し一定のバイアス電圧に保つことであるので、基本的に、LPF12は直流を透過できればよい。このような観点から、抵抗R1は、LPF12のカットオフ周波数を低く抑え、ノイズの通過を十分に阻止できるような高抵抗とされる。   The high voltage generated by the charge pump circuit 10 is supplied to the capacitor Cm via a CR low-pass filter (LPF) 12 composed of C1 and R1. The LPF 12 is provided to smooth the output signal of the charge pump circuit 10 and remove high-band noise that may be included in the output signal. In particular, it is desirable to suitably remove noise included in the output signal of the charge pump circuit 10 when acquiring a high-quality sound signal. On the other hand, since the main function of the charge pump circuit 10 is to charge the capacitor Cm and maintain a constant bias voltage, the LPF 12 basically only needs to be able to transmit direct current. From such a point of view, the resistor R1 is set to a high resistance that can suppress the cut-off frequency of the LPF 12 and sufficiently prevent noise from passing therethrough.

出力部4は、オペアンプ14、容量C2及び抵抗R2で構成される。出力部4は、入力端子INにコンデンサCmを接続され、コンデンサCmが音声に応じて発生する電位変化を入力端子INから取り込み、増幅して出力端子OUTから出力する。   The output unit 4 includes an operational amplifier 14, a capacitor C2, and a resistor R2. The output unit 4 has a capacitor Cm connected to the input terminal IN, takes in the potential change generated by the capacitor Cm according to the sound from the input terminal IN, amplifies it, and outputs it from the output terminal OUT.

オペアンプ14は、反転入力端子にCm、帰還経路にC2をそれぞれ接続され、反転増幅回路を構成する。Cm/C2に応じて定まる反転増幅回路のゲインを1以上とするためには、C2はCmより小さな値に設定される。ここで、Cmは例えば数pF程度の微小な値となり得、それに応じて、C2も極めて小さな値に設定される。反転入力端子は、Cm及びC2のみが接続された状態ではフローティングとなり、またそれら容量は微小であるため平滑化の効果を期待できないため、反転入力端子の電位は不安定となる。そこで、容量C2が接続された帰還経路に並列に抵抗R2を接続し、反転入力端子の電位安定が図られる。一方、R2には、音声に応じて反転入力端子に生じる電位変動を当該R2経由で出力端子へ通過させないことや、コンデンサCmに対する高出力インピーダンスを維持することが要求される。そのため、R2は、十分に大きな値に設定され、反転入力端子と出力端子との間を単に直流的に接続する。
特開平11−317996号公報 特開2003−243944号公報
The operational amplifier 14 is connected to Cm at the inverting input terminal and C2 to the feedback path, thereby constituting an inverting amplifier circuit. In order to set the gain of the inverting amplifier circuit determined according to Cm / C2 to 1 or more, C2 is set to a value smaller than Cm. Here, Cm can be a minute value of about several pF, for example, and C2 is set to a very small value accordingly. The inverting input terminal is floating when only Cm and C2 are connected, and since the capacitance is very small, the smoothing effect cannot be expected, so the potential of the inverting input terminal becomes unstable. Therefore, the resistor R2 is connected in parallel to the feedback path to which the capacitor C2 is connected, so that the potential of the inverting input terminal is stabilized. On the other hand, R2 is required not to pass the potential fluctuation generated at the inverting input terminal according to the sound to the output terminal via R2, and to maintain a high output impedance for the capacitor Cm. Therefore, R2 is set to a sufficiently large value, and the inverting input terminal and the output terminal are simply connected in a direct current manner.
Japanese Patent Laid-Open No. 11-317996 JP 2003-243944 A

MEMSマイクを用いたコンデンサマイクロホン装置を起動する際には、チャージポンプ回路10からの電流でコンデンサCmを充電する必要がある。しかし、低ノイズ化のため抵抗R1を高抵抗としているため、充電時定数が長くなり、コンデンサCmに十分なバイアス電圧が印加されるまでに時間がかかるという問題があった。バイアス電圧が低いと、音声に応じてコンデンサCmの端子間に生じる電圧変化が小さくなり、マイク感度が低下するという問題を生じる。そのため、コンデンサCmを充電して使用する従来のコンデンサマイクロホン装置は、起動から良好な音声信号が得られるまでの時間が長くなるという問題を有していた。   When starting the condenser microphone device using the MEMS microphone, it is necessary to charge the capacitor Cm with the current from the charge pump circuit 10. However, since the resistance R1 is made high to reduce noise, there is a problem that the charging time constant becomes long and it takes time until a sufficient bias voltage is applied to the capacitor Cm. When the bias voltage is low, the voltage change generated between the terminals of the capacitor Cm in accordance with the sound becomes small, causing a problem that the microphone sensitivity is lowered. Therefore, the conventional condenser microphone device that charges and uses the capacitor Cm has a problem that it takes a long time until a good audio signal is obtained after activation.

本発明は上記問題点を解決するためになされたものであり、低ノイズ化を実現する一方で、コンデンサCmの充電開始から短時間で良好な音声信号が得られるコンデンサマイクロホン装置及び静電容量変化検出回路を提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems. A condenser microphone device capable of obtaining a good audio signal in a short time from the start of charging of the capacitor Cm and a capacitance change while realizing low noise. An object is to provide a detection circuit.

本発明に係る静電容量変化検出回路は、コンデンサマイクロホンを構成するコンデンサ部に接続され、音声に応じた当該コンデンサ部の静電容量の変化を電気信号として検出するものであって、前記コンデンサ部の一方に接続され、当該コンデンサ部を充電するチャージポンプと、前記チャージポンプと前記コンデンサ部との間に挿入され、前記チャージポンプの出力信号を平滑化しノイズを除去するローパスフィルタと、前記ローパスフィルタに並列に接続され、前記コンデンサ部の充電開始時におけるバイアス状態が順方向バイアスとなる第1整流回路と、反転入力端子に前記コンデンサ部の他方を接続された演算増幅器及び当該演算増幅器の帰還経路に直列に接続された帰還コンデンサを含む反転増幅回路と、前記帰還コンデンサを含む前記帰還経路に並列に設けられ、前記演算増幅器の出力端子と前記反転入力端子とを接続する帰還抵抗と、前記帰還コンデンサを含む前記帰還経路及び前記帰還抵抗に並列に設けられ、前記演算増幅器の前記出力端子と前記反転入力端子との間を、前記コンデンサ部の前記充電開始時のバイアス状態が順方向バイアスとなる向きに接続する第2整流回路と、を有する。上記第1整流回路又は上記第2整流回路はダイオードで構成することができる。   A capacitance change detection circuit according to the present invention is connected to a capacitor unit constituting a capacitor microphone, and detects a change in capacitance of the capacitor unit according to sound as an electric signal. A charge pump for charging the capacitor unit, a low-pass filter inserted between the charge pump and the capacitor unit for smoothing an output signal of the charge pump and removing noise, and the low-pass filter , A first rectifier circuit in which the bias state at the start of charging of the capacitor unit is a forward bias, an operational amplifier in which the other of the capacitor unit is connected to an inverting input terminal, and a feedback path of the operational amplifier And an inverting amplifier circuit including a feedback capacitor connected in series with the feedback capacitor. Provided in parallel with the feedback path, connected in parallel to the feedback path and the feedback resistor including the feedback capacitor, a feedback resistor connecting the output terminal of the operational amplifier and the inverting input terminal, and the operational amplifier A second rectifier circuit connecting the output terminal and the inverting input terminal in a direction in which a bias state at the start of charging of the capacitor unit is a forward bias. The first rectifier circuit or the second rectifier circuit can be formed of a diode.

本発明に係るコンデンサマイクロホン装置は、音声に応じた静電容量の変化を生じるコンデンサ部と、前記コンデンサ部に接続され、音声に応じた当該コンデンサ部の静電容量の変化を電気信号として検出する静電容量変化検出回路と、有するものであって、前記静電容量変化検出回路は、前記コンデンサ部の一方に接続され、当該コンデンサ部を充電するチャージポンプと、前記チャージポンプと前記コンデンサ部との間に挿入され、前記チャージポンプの出力信号を平滑化しノイズを除去するローパスフィルタと、前記ローパスフィルタに並列に接続され、前記コンデンサ部の充電開始時におけるバイアス状態が順方向バイアスとなる第1整流回路と、反転入力端子に前記コンデンサ部の他方を接続された演算増幅器及び当該演算増幅器の帰還経路に直列に接続された帰還コンデンサを含む反転増幅回路と、前記帰還コンデンサを含む前記帰還経路に並列に設けられ、前記演算増幅器の出力端子と前記反転入力端子とを接続する帰還抵抗と、前記帰還コンデンサを含む前記帰還経路及び前記帰還抵抗に並列に設けられ、前記演算増幅器の前記出力端子と前記反転入力端子との間を、前記コンデンサ部の前記充電開始時のバイアス状態が順方向バイアスとなる向きに接続する第2整流回路と、を有する。上記第1整流回路又は上記第2整流回路はダイオードで構成することができる。   A capacitor microphone device according to the present invention detects a change in capacitance of a capacitor unit that generates a change in capacitance according to sound, and is connected to the capacitor unit as an electric signal. A capacitance change detection circuit, wherein the capacitance change detection circuit is connected to one of the capacitor units and charges the capacitor unit; the charge pump and the capacitor unit; A low-pass filter that smoothes the output signal of the charge pump and removes noise, and is connected in parallel to the low-pass filter, and the bias state at the start of charging of the capacitor unit is a forward bias. A rectifier circuit, an operational amplifier having the other input terminal connected to the inverting input terminal, and the operational amplifier An inverting amplifier circuit including a feedback capacitor connected in series to a feedback path; a feedback resistor provided in parallel to the feedback path including the feedback capacitor; and connecting the output terminal of the operational amplifier and the inverting input terminal; Provided in parallel with the feedback path including the feedback capacitor and the feedback resistor, the bias state at the start of charging of the capacitor unit is forward biased between the output terminal and the inverting input terminal of the operational amplifier. And a second rectifier circuit connected in a direction to be. The first rectifier circuit or the second rectifier circuit can be formed of a diode.

本発明によれば、起動時に、第1整流回路を介してチャージポンプとコンデンサ部の一方側との間に電流が流れ、コンデンサ部の一方側の電位が速やかに通常動作状態に設定される。このとき、容量結合によりコンデンサ部の他方側の電位も一方側に追随して変化し、コンデンサ部にバイアス電圧が有効に印加されないことが起こり得る。本発明によれば、そのようなコンデンサ部の他方側の電位変化は、第2整流回路を介してコンデンサ部の他方側と演算増幅器の出力端子との間に電流が流れることにより、抑制され、又は速やかに解消される。よって、起動時にコンデンサ部に十分なバイアス電圧が速やかに印加され、短時間で良好な音声信号が得られるようになる。   According to the present invention, during startup, a current flows between the charge pump and one side of the capacitor unit via the first rectifier circuit, and the potential on one side of the capacitor unit is quickly set to the normal operation state. At this time, due to capacitive coupling, the potential on the other side of the capacitor portion also changes following one side, and it is possible that the bias voltage is not effectively applied to the capacitor portion. According to the present invention, such a potential change on the other side of the capacitor unit is suppressed by a current flowing between the other side of the capacitor unit and the output terminal of the operational amplifier via the second rectifier circuit, Or it is quickly resolved. Therefore, a sufficient bias voltage is quickly applied to the capacitor unit at the time of startup, and a good audio signal can be obtained in a short time.

以下、本発明の実施の形態(以下実施形態という)について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention (hereinafter referred to as embodiments) will be described with reference to the drawings.

図1は、実施形態に係るコンデンサマイクロホン装置の概略の回路図である。本装置はコンデンサマイクロホンとしてMEMSマイクを用い、さらにMEMSマイクに接続され、音声に応じたMEMSマイクの静電容量の変化を電気信号として検出するための静電容量変化検出回路を含んで構成される。図1において、コンデンサCmがMEMSマイクに構成されたコンデンサ部であり、その一方端子は、静電容量変化検出回路のバイアス電源部20の出力端子VBに接続され、他方端子は静電容量変化検出回路の出力部22の入力端子INに接続される。   FIG. 1 is a schematic circuit diagram of a condenser microphone device according to an embodiment. This device uses a MEMS microphone as a condenser microphone, and further includes a capacitance change detection circuit that is connected to the MEMS microphone and detects a change in capacitance of the MEMS microphone according to sound as an electrical signal. . In FIG. 1, a capacitor Cm is a capacitor unit configured as a MEMS microphone, one terminal of which is connected to the output terminal VB of the bias power supply unit 20 of the capacitance change detection circuit, and the other terminal detects capacitance change. It is connected to the input terminal IN of the output part 22 of the circuit.

静電容量変化検出回路は、例えば、シリコン半導体基板上に集積回路(IC)として形成することができる。ICとして構成する場合、静電容量変化検出回路はMEMSマイクが形成される半導体チップに一体に集積することもできるし、MEMSマイクとは別の半導体チップ上に形成することもできる。   The capacitance change detection circuit can be formed as an integrated circuit (IC) on a silicon semiconductor substrate, for example. When configured as an IC, the capacitance change detection circuit can be integrated on a semiconductor chip on which the MEMS microphone is formed, or can be formed on a semiconductor chip different from the MEMS microphone.

バイアス電源部20は、チャージポンプ回路24、容量C1、抵抗R1及びダイオードD1を含んで構成され、端子VBに接続されるコンデンサCmにバイアス電圧を供給する。   The bias power supply unit 20 includes a charge pump circuit 24, a capacitor C1, a resistor R1, and a diode D1, and supplies a bias voltage to the capacitor Cm connected to the terminal VB.

チャージポンプ回路24は、基準電源の比較的低い電圧を昇圧してMEMSマイクの駆動に必要な高電圧を生成し、その高電圧でコンデンサCmを充電する。本装置では、チャージポンプ回路24は正電圧を出力し、充電電流はコンデンサCmへ向けて流れる。   The charge pump circuit 24 boosts a relatively low voltage of the reference power source to generate a high voltage necessary for driving the MEMS microphone, and charges the capacitor Cm with the high voltage. In this apparatus, the charge pump circuit 24 outputs a positive voltage, and the charging current flows toward the capacitor Cm.

容量C1は、端子VBと接地電位との間に接続される。抵抗R1は端子VBとチャージポンプ回路24の出力端子との間に接続される。これら、C1及びR1はLPF26を構成し、チャージポンプ回路24の出力信号を平滑化し、当該出力信号に含まれ得る高帯域ノイズを除去する。例えば、このLPF26により、チャージポンプ回路24内のスイッチングノイズ、クロックノイズや熱雑音等が除去される。   The capacitor C1 is connected between the terminal VB and the ground potential. The resistor R1 is connected between the terminal VB and the output terminal of the charge pump circuit 24. C1 and R1 constitute an LPF 26, which smoothes the output signal of the charge pump circuit 24 and removes high-band noise that can be included in the output signal. For example, the LPF 26 removes switching noise, clock noise, thermal noise, and the like in the charge pump circuit 24.

特に、高音質の音声信号を取得する上で、チャージポンプ回路24の出力信号に含まれるノイズは好適に除去することが望ましい。一方、チャージポンプ回路24の主たる機能は、コンデンサCmを充電し一定のバイアス電圧に保つことであるので、基本的に、LPF26は直流を透過できればよい。このような観点から、抵抗R1は、LPF26のカットオフ周波数を低く抑え、ノイズの通過を十分に阻止できるような高抵抗とされる。   In particular, it is desirable to suitably remove noise included in the output signal of the charge pump circuit 24 when acquiring a high-quality sound signal. On the other hand, the main function of the charge pump circuit 24 is to charge the capacitor Cm and keep it at a constant bias voltage, so basically the LPF 26 only needs to be able to transmit direct current. From this point of view, the resistor R1 is set to a high resistance that can sufficiently suppress the cut-off frequency of the LPF 26 and sufficiently block the passage of noise.

ダイオードD1は、この抵抗R1に並列に配置され、チャージポンプ回路24の出力端子とコンデンサCmの端子VBとの間にLPF26と並列に接続される。ダイオードD1は、アノードをチャージポンプ回路24の出力端子に接続され、カソードを端子VBに接続され、チャージポンプ回路24からコンデンサCmへ向けて一方向に電流を流す整流回路を構成する。   The diode D1 is arranged in parallel with the resistor R1, and is connected in parallel with the LPF 26 between the output terminal of the charge pump circuit 24 and the terminal VB of the capacitor Cm. The diode D1 has an anode connected to the output terminal of the charge pump circuit 24, a cathode connected to the terminal VB, and constitutes a rectifier circuit that allows current to flow in one direction from the charge pump circuit 24 toward the capacitor Cm.

出力部22は、オペアンプ28、容量C2、抵抗R2及びダイオードD2を含んで構成される。出力部22は、入力端子INにコンデンサCmを接続され、コンデンサCmが音声に応じて発生する電位変化を入力端子INから取り込み、増幅して出力端子OUTから出力する。   The output unit 22 includes an operational amplifier 28, a capacitor C2, a resistor R2, and a diode D2. The output unit 22 has a capacitor Cm connected to the input terminal IN. The capacitor Cm captures a potential change generated according to the sound from the input terminal IN, amplifies it, and outputs it from the output terminal OUT.

オペアンプ28は、入力端子INに反転入力端子を接続された反転増幅回路を構成し、その出力端子が出力部22の出力端子OUTに接続される。オペアンプ28は、反転入力端子に接続されるコンデンサCmと、出力端子及び反転入力端子を結ぶ帰還経路に直列に接続された容量C2とに応じたゲインで、反転入力端子の電位変動を増幅して出力する。また、オペアンプ28は、コンデンサCmに対し高入力インピーダンスを保つ一方、出力端子OUTを低出力インピーダンスとするインピーダンス変換を行う。   The operational amplifier 28 forms an inverting amplifier circuit in which an inverting input terminal is connected to an input terminal IN, and an output terminal thereof is connected to the output terminal OUT of the output unit 22. The operational amplifier 28 amplifies the potential fluctuation of the inverting input terminal with a gain according to the capacitor Cm connected to the inverting input terminal and the capacitor C2 connected in series to the feedback path connecting the output terminal and the inverting input terminal. Output. The operational amplifier 28 performs impedance conversion with the output terminal OUT being a low output impedance while maintaining a high input impedance for the capacitor Cm.

容量C2は、上記反転増幅回路のゲインを調整する。当該ゲインは、基本的にはCm/C2で与えられ、1以上のゲインを得るためには、C2はCmより小さな値に設定される。ここで、Cmは例えば数pF程度の微小な値となり得、それに応じて、C2も極めて小さな値に設定される。   The capacitor C2 adjusts the gain of the inverting amplifier circuit. The gain is basically given by Cm / C2, and C2 is set to a value smaller than Cm in order to obtain a gain of 1 or more. Here, Cm can be a minute value of about several pF, for example, and C2 is set to a very small value accordingly.

抵抗R2は、容量C2が接続された帰還経路に並列に配置され、オペアンプ28の出力端子と反転入力端子とを接続する。この抵抗R2は、Cm及びC2のみが接続された状態ではフローティングとなる反転入力端子の電位を安定させるために設けられている。一方、R2には、音声に応じて反転入力端子に生じる電位変動を当該R2経由で出力端子へ通過させないことや、コンデンサCmに対する高出力インピーダンスを維持することが要求される。そのため、R2は、十分に大きな値に設定され、反転入力端子と出力端子との間を単に直流的に接続する。   The resistor R2 is arranged in parallel with the feedback path to which the capacitor C2 is connected, and connects the output terminal and the inverting input terminal of the operational amplifier 28. The resistor R2 is provided to stabilize the potential of the inverting input terminal that is in a floating state when only Cm and C2 are connected. On the other hand, R2 is required not to pass the potential fluctuation generated at the inverting input terminal according to the sound to the output terminal via R2, and to maintain a high output impedance for the capacitor Cm. Therefore, R2 is set to a sufficiently large value, and the inverting input terminal and the output terminal are simply connected in a direct current manner.

ダイオードD2は、容量C2が接続された帰還経路及び抵抗R2に並列に配置される。ダイオードD2は、オペアンプ28の反転入力端子から出力端子へ向けて一方向に電流を流す整流回路を構成する。   The diode D2 is disposed in parallel with the feedback path to which the capacitor C2 is connected and the resistor R2. The diode D2 forms a rectifier circuit that allows current to flow in one direction from the inverting input terminal of the operational amplifier 28 to the output terminal.

次に、本コンデンサマイクロホン装置の動作について説明する。図2は、バイアス電源部20における電圧変化を示す模式的なグラフであり、横軸が時間t、縦軸が電圧Vを表す。本装置の起動前(t<t0)においては、基本的にコンデンサCmは放電され、例えば、端子VBは0Vとなる。   Next, the operation of this condenser microphone device will be described. FIG. 2 is a schematic graph showing a voltage change in the bias power supply unit 20, where the horizontal axis represents time t and the vertical axis represents the voltage V. Before the start-up of this apparatus (t <t0), the capacitor Cm is basically discharged, and for example, the terminal VB becomes 0V.

時刻t0にて本装置が起動されると、チャージポンプ回路24が昇圧を開始する。チャージポンプ回路24の出力端子の電圧Vcpは、図2にて点線30で示すように速やかに目標値Vmに到達する。コンデンサCmが接続された端子VBの電圧Vbは、チャージポンプ回路24からの電流IcpによってコンデンサCmの充電が進むのにつれて立ち上がる。その立ち上がり時間は、Icpが大きいほど短くなる。図2にて実線32が本装置におけるVbの変化を示す。本装置では、ダイオードD1を設けたことにより、このIcpが従来より大きくなり、立ち上がり時間の短縮が図られる。具体的には、充電開始時にはVcpとVbとの電位差が比較的大きく、ダイオードD1が順方向バイアスされ導通する。これにより、チャージポンプ回路24の出力端子と端子VBとが低抵抗で接続され、抵抗R1を介して流れるより遙かに大きいIcpがコンデンサCmに供給される。   When this apparatus is activated at time t0, the charge pump circuit 24 starts boosting. The voltage Vcp at the output terminal of the charge pump circuit 24 quickly reaches the target value Vm as shown by the dotted line 30 in FIG. The voltage Vb at the terminal VB to which the capacitor Cm is connected rises as the charging of the capacitor Cm proceeds by the current Icp from the charge pump circuit 24. The rise time becomes shorter as Icp increases. In FIG. 2, a solid line 32 indicates a change in Vb in this apparatus. In the present apparatus, since the diode D1 is provided, this Icp becomes larger than the conventional one and the rise time is shortened. Specifically, at the start of charging, the potential difference between Vcp and Vb is relatively large, and the diode D1 is forward biased and becomes conductive. As a result, the output terminal of the charge pump circuit 24 and the terminal VB are connected with a low resistance, and much larger Icp than that flowing through the resistor R1 is supplied to the capacitor Cm.

ダイオードD1の順方向バイアスによる導通は、その両端の電位差が縮小して所定の順方向電圧Vfに達するまで基本的に続く。シリコンダイオードの場合、この順方向電圧Vfは約0.6Vである。Vmの通常の設定値は、少なくともVfの数倍以上の値に設定されるので、ダイオードD1により本装置の起動時間を大幅に短縮することが可能である。図2には、比較のため、立ち上がりの当初からR1を介して充電が行われる従来回路におけるVbの変化を点線34で示している。   The conduction by the forward bias of the diode D1 basically continues until the potential difference between the two ends decreases and reaches a predetermined forward voltage Vf. In the case of a silicon diode, this forward voltage Vf is about 0.6V. Since the normal set value of Vm is set to a value at least several times greater than Vf, the diode D1 can significantly reduce the startup time of the apparatus. In FIG. 2, for comparison, a change in Vb in a conventional circuit in which charging is performed via R1 from the beginning of rising is indicated by a dotted line 34.

なお、Vcp−VbがVfを下回るとダイオードD1はオフし、図4に示す従来回路と同様のR1を介した充電によりVbはVmに漸近し、本装置は定常駆動状態に移行する。この定常駆動状態では、コンデンサCmはR1を介して充電され、電圧Vmでのバイアス状態を維持すると共に、R1及びC1からなるLPF26により、ノイズによるVmの変動が抑制され、良好な音質の音声信号を生成することができる。   When Vcp-Vb falls below Vf, the diode D1 is turned off, and Vb gradually approaches Vm due to charging via R1 as in the conventional circuit shown in FIG. 4, so that the apparatus shifts to a steady drive state. In this steady driving state, the capacitor Cm is charged via R1 and maintains the bias state at the voltage Vm, and the LPF 26 composed of R1 and C1 suppresses the fluctuation of Vm due to noise, and the sound signal with good sound quality. Can be generated.

図3は、出力部22の入力端子INの電圧Vinの変化を示す模式的なグラフであり、図2と同様、横軸が時間t、縦軸が電圧Vを表す。時刻t0にて充電が開始され端子VBの電位Vbが上昇すると、コンデンサCmによる容量結合により端子INの電位Vinも時刻t0から上昇し得る。このとき、上述のようにVinの安定のために出力部22には図4に示す従来回路と同様、抵抗R2が設けられ、このR2は、基本的にVinを出力端子OUTの電位Voutに応じた基底状態に保とうとする。   FIG. 3 is a schematic graph showing a change in the voltage Vin at the input terminal IN of the output unit 22. The horizontal axis represents time t and the vertical axis represents the voltage V, as in FIG. When charging starts at time t0 and the potential Vb of the terminal VB rises, the potential Vin of the terminal IN can also rise from time t0 due to capacitive coupling by the capacitor Cm. At this time, as described above, in order to stabilize Vin, the output section 22 is provided with a resistor R2 as in the conventional circuit shown in FIG. 4, and this R2 basically depends on Vin according to the potential Vout of the output terminal OUT. Try to keep the ground state.

しかし、R2は高抵抗であるため、ダイオードD1を設けたことにより生じる急激なVbの変化に対し、Vinの上昇を抑制することができず、また上昇したVinを基底状態へ速やかに復元させることができない。図3には、本装置の起動時におけるVm近傍までのVinの上昇、及び上昇したVinが抵抗R2により緩やかに基底状態に復元される様子を、点線36で示している。このように、端子INの電位Vinが上昇した状態では、コンデンサCmに対するバイアス電圧が減少し、マイク感度が低下する。   However, since R2 has a high resistance, it is not possible to suppress an increase in Vin with respect to a sudden change in Vb caused by providing the diode D1, and to quickly restore the increased Vin to the ground state. I can't. In FIG. 3, the dotted line 36 shows the rise of Vin up to the vicinity of Vm at the start-up of the present apparatus and how the raised Vin is gradually restored to the ground state by the resistor R2. As described above, when the potential Vin of the terminal IN is increased, the bias voltage with respect to the capacitor Cm is decreased, and the microphone sensitivity is decreased.

この問題に対し、本装置は出力部22にダイオードD2を設けている。ダイオードD2は、端子INの電位Vinが出力端子OUTの電位Voutより順方向電圧Vf以上高くなると、順方向バイアスされ導通する。この状態では、ダイオードD2は、端子INと出力端子OUTとの間を低抵抗で接続し、抵抗R2を介して流れるより遙かに大きい電流を流すことができる。この電流は、電位Vbの急激な上昇により誘起されるVinの電位上昇を抑制又は緩和し、またVbがVm近傍まで達しその変化が緩やかになると、Vinを速やかに基底状態へ向けて低下させる。その結果、図3に実線38で示すように、本装置は、起動時に誘起され得るVinの上昇のピークを低く抑えることができ、また起動時刻t0から基底状態への復帰時間を短くすることができる。よって、起動時におけるマイク感度の低下が抑制され、また高音質の音声信号の取得が迅速に実現される。   In response to this problem, the present apparatus is provided with a diode D2 at the output section 22. The diode D2 is forward biased and becomes conductive when the potential Vin at the terminal IN is higher than the forward voltage Vf by the potential Vout at the output terminal OUT. In this state, the diode D2 can connect a current between the terminal IN and the output terminal OUT with a low resistance, and can pass a much larger current than that flowing through the resistor R2. This current suppresses or reduces the potential increase of Vin induced by the rapid increase in potential Vb, and when Vb reaches the vicinity of Vm and the change becomes gentle, Vin is rapidly lowered toward the ground state. As a result, as shown by a solid line 38 in FIG. 3, this apparatus can suppress the peak of the rise of Vin that can be induced at the time of startup, and can shorten the return time from the startup time t0 to the ground state. it can. Therefore, a decrease in microphone sensitivity at the time of activation is suppressed, and acquisition of a high-quality sound signal is quickly realized.

なお、ダイオードD2のオン電流が大きな値となるように構成することで、実線38に現れるVinのピークの高さを原理的にはVfまで低下させることができる。例えば、ダイオードD2のチャネル断面積を大きくすることで、その大電流化が図れる。   Note that, by configuring the diode D2 so that the on-current of the diode D2 becomes a large value, the height of the peak of Vin appearing on the solid line 38 can be lowered to Vf in principle. For example, the current can be increased by increasing the channel cross-sectional area of the diode D2.

以上説明したように、本装置は、バイアス電源部20の設けたダイオードD1及び出力部22に設けたダイオードD2により、迅速な起動が可能となる。   As described above, this apparatus can be quickly started up by the diode D1 provided in the bias power supply unit 20 and the diode D2 provided in the output unit 22.

ちなみに、音声に応じて生じるコンデンサCmの端子間電圧の変動は、基本的にダイオードの順方向電圧Vfに比べて微小であるので、その電圧変動によりダイオードD1,D2はオンせず、音声信号のダイナミックレンジが損なわれることは基本的にはない。   Incidentally, the fluctuation of the voltage between the terminals of the capacitor Cm generated according to the voice is basically small compared to the forward voltage Vf of the diode, so that the diodes D1 and D2 are not turned on by the voltage fluctuation, and the voice signal Basically there is no loss of dynamic range.

なお、上述の実施形態では、ダイオードD1,D2を用いた構成を示したが、ダイオードに代えて他の整流素子、整流回路、スイッチ素子、スイッチ回路を用いることもできる。   In the above-described embodiment, the configuration using the diodes D1 and D2 is shown, but other rectifiers, rectifier circuits, switch elements, and switch circuits may be used instead of the diodes.

本発明の実施形態に係るコンデンサマイクロホン装置の概略の回路図である。1 is a schematic circuit diagram of a condenser microphone device according to an embodiment of the present invention. バイアス電源部における電圧変化を示す模式的なグラフである。It is a typical graph which shows the voltage change in a bias power supply part. 出力部の入力端子電圧の変化を示す模式的なグラフである。It is a typical graph which shows the change of the input terminal voltage of an output part. 従来のMEMSマイクを用いたコンデンサマイクロホン装置の回路図である。It is a circuit diagram of the capacitor | condenser microphone apparatus using the conventional MEMS microphone.

符号の説明Explanation of symbols

20 バイアス電源部、22 出力部、24 チャージポンプ回路、26 ローパスフィルタ(LPF)、28 オペアンプ、Cm MEMSマイクコンデンサ、C1,C2 容量、D1,D2 ダイオード、R1,R2 抵抗。   20 bias power supply unit, 22 output unit, 24 charge pump circuit, 26 low-pass filter (LPF), 28 operational amplifier, Cm MEMS microphone capacitor, C1, C2 capacitance, D1, D2 diode, R1, R2 resistance.

Claims (4)

コンデンサマイクロホンを構成するコンデンサ部に接続され、音声に応じた当該コンデンサ部の静電容量の変化を電気信号として検出する静電容量変化検出回路であって、
前記コンデンサ部の一方に接続され、当該コンデンサ部を充電するチャージポンプと、
前記チャージポンプと前記コンデンサ部との間に挿入され、前記チャージポンプの出力信号を平滑化しノイズを除去するローパスフィルタと、
前記ローパスフィルタに並列に接続され、前記コンデンサ部の充電開始時におけるバイアス状態が順方向バイアスとなる第1整流回路と、
反転入力端子に前記コンデンサ部の他方を接続された演算増幅器及び当該演算増幅器の帰還経路に直列に接続された帰還コンデンサを含む反転増幅回路と、
前記帰還コンデンサを含む前記帰還経路に並列に設けられ、前記演算増幅器の出力端子と前記反転入力端子とを接続する帰還抵抗と、
前記帰還コンデンサを含む前記帰還経路及び前記帰還抵抗に並列に設けられ、前記演算増幅器の前記出力端子と前記反転入力端子との間を、前記コンデンサ部の前記充電開始時のバイアス状態が順方向バイアスとなる向きに接続する第2整流回路と、
を有することを特徴とする静電容量変化検出回路。
A capacitance change detection circuit that is connected to a capacitor portion constituting a capacitor microphone and detects a change in capacitance of the capacitor portion according to sound as an electric signal,
A charge pump connected to one of the capacitor units and charging the capacitor unit;
A low-pass filter inserted between the charge pump and the capacitor unit to smooth the output signal of the charge pump and remove noise;
A first rectifier circuit connected in parallel to the low-pass filter, wherein the bias state at the start of charging of the capacitor unit is a forward bias;
An inverting amplifier circuit including an operational amplifier connected to the other inverting input terminal of the capacitor unit and a feedback capacitor connected in series to the feedback path of the operational amplifier;
A feedback resistor provided in parallel with the feedback path including the feedback capacitor, and connecting the output terminal of the operational amplifier and the inverting input terminal;
Provided in parallel with the feedback path including the feedback capacitor and the feedback resistor, the bias state at the start of charging of the capacitor unit is forward biased between the output terminal and the inverting input terminal of the operational amplifier. A second rectifier circuit connected in the direction of
A capacitance change detection circuit comprising:
請求項1に記載の静電容量変化検出回路において、
前記第1整流回路又は前記第2整流回路はダイオードであること、を特徴とする静電容量変化検出回路。
The capacitance change detection circuit according to claim 1,
The capacitance change detection circuit, wherein the first rectifier circuit or the second rectifier circuit is a diode.
音声に応じた静電容量の変化を生じるコンデンサ部と、前記コンデンサ部に接続され、音声に応じた当該コンデンサ部の静電容量の変化を電気信号として検出する静電容量変化検出回路と、有するコンデンサマイクロホン装置であって、
前記静電容量変化検出回路は、
前記コンデンサ部の一方に接続され、当該コンデンサ部を充電するチャージポンプと、
前記チャージポンプと前記コンデンサ部との間に挿入され、前記チャージポンプの出力信号を平滑化しノイズを除去するローパスフィルタと、
前記ローパスフィルタに並列に接続され、前記コンデンサ部の充電開始時におけるバイアス状態が順方向バイアスとなる第1整流回路と、
反転入力端子に前記コンデンサ部の他方を接続された演算増幅器及び当該演算増幅器の帰還経路に直列に接続された帰還コンデンサを含む反転増幅回路と、
前記帰還コンデンサを含む前記帰還経路に並列に設けられ、前記演算増幅器の出力端子と前記反転入力端子とを接続する帰還抵抗と、
前記帰還コンデンサを含む前記帰還経路及び前記帰還抵抗に並列に設けられ、前記演算増幅器の前記出力端子と前記反転入力端子との間を、前記コンデンサ部の前記充電開始時のバイアス状態が順方向バイアスとなる向きに接続する第2整流回路と、
を有することを特徴とするコンデンサマイクロホン装置。
A capacitor unit that generates a change in capacitance according to sound; and a capacitance change detection circuit that is connected to the capacitor unit and detects a change in capacitance of the capacitor unit according to sound as an electrical signal. A condenser microphone device,
The capacitance change detection circuit is:
A charge pump connected to one of the capacitor units and charging the capacitor unit;
A low-pass filter inserted between the charge pump and the capacitor unit to smooth the output signal of the charge pump and remove noise;
A first rectifier circuit connected in parallel to the low-pass filter, wherein the bias state at the start of charging of the capacitor unit is a forward bias;
An inverting amplifier circuit including an operational amplifier connected to the other inverting input terminal of the capacitor unit and a feedback capacitor connected in series to the feedback path of the operational amplifier;
A feedback resistor provided in parallel with the feedback path including the feedback capacitor, and connecting the output terminal of the operational amplifier and the inverting input terminal;
Provided in parallel with the feedback path including the feedback capacitor and the feedback resistor, the bias state at the start of charging of the capacitor unit is forward biased between the output terminal and the inverting input terminal of the operational amplifier. A second rectifier circuit connected in the direction of
A condenser microphone device comprising:
請求項3に記載のコンデンサマイクロホン装置において、
前記第1整流回路又は前記第2整流回路はダイオードであること、を特徴とするコンデンサマイクロホン装置。
In the condenser microphone device according to claim 3,
The capacitor microphone device, wherein the first rectifier circuit or the second rectifier circuit is a diode.
JP2006340287A 2006-12-18 2006-12-18 Capacitance change detection circuit and condenser microphone device Expired - Fee Related JP4959315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340287A JP4959315B2 (en) 2006-12-18 2006-12-18 Capacitance change detection circuit and condenser microphone device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340287A JP4959315B2 (en) 2006-12-18 2006-12-18 Capacitance change detection circuit and condenser microphone device

Publications (2)

Publication Number Publication Date
JP2008153981A true JP2008153981A (en) 2008-07-03
JP4959315B2 JP4959315B2 (en) 2012-06-20

Family

ID=39655689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340287A Expired - Fee Related JP4959315B2 (en) 2006-12-18 2006-12-18 Capacitance change detection circuit and condenser microphone device

Country Status (1)

Country Link
JP (1) JP4959315B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010073598A1 (en) * 2008-12-24 2010-07-01 パナソニック株式会社 Balance signal output type sensor
US20100246859A1 (en) * 2009-03-31 2010-09-30 Stmicroelectronics S.R.I. Biasing circuit for a microelectromechanical acoustic transducer and related biasing method
EP2237414A2 (en) 2009-04-03 2010-10-06 Sanyo Electric Co., Ltd. Amplifier circuit of capacitor microphone
EP2410646A1 (en) * 2010-07-23 2012-01-25 Nxp B.V. DC-DC converter
US8600079B2 (en) 2009-04-03 2013-12-03 Sanyo Semiconductor Co., Ltd. Amplifier circuit of capacitor microphone
JP2013251587A (en) * 2012-05-30 2013-12-12 New Japan Radio Co Ltd Capacitive load bias circuit
US8666095B2 (en) 2008-05-05 2014-03-04 Epcos Pte Ltd Fast precision charge pump
US20150023529A1 (en) * 2013-07-18 2015-01-22 Infineon Technologies Ag MEMS Devices, Interface Circuits, and Methods of Making Thereof
US9306449B2 (en) 2013-03-15 2016-04-05 Robert Bosch Gmbh Adjustable biasing circuits for MEMS capacitive microphones
US9332342B2 (en) 2012-07-05 2016-05-03 Semiconductor Components Industries, Llc Microphone amplifier circuit
CN106658303A (en) * 2016-12-01 2017-05-10 北京卓锐微技术有限公司 Microphone system and amplifying circuit
CN106658287A (en) * 2016-11-11 2017-05-10 北京卓锐微技术有限公司 Microphone system and amplifying circuit
CN108882133A (en) * 2018-07-20 2018-11-23 重庆宝力优特科技有限公司 A kind of microphone and method for realizing voice assistant safe handling

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107426658B (en) * 2017-08-01 2020-06-19 重庆东微电子股份有限公司 Biasing circuit and MEMS microphone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062462A (en) * 1996-08-26 1998-03-06 Murata Mfg Co Ltd Insulating resistance measuring apparatus
JP2001091554A (en) * 1999-09-22 2001-04-06 Murata Mfg Co Ltd Device for measuring insulation resistance in capacitive electronic part
JP2001249151A (en) * 2000-03-02 2001-09-14 Denso Corp Capacity detection circuit
WO2006033269A1 (en) * 2004-09-24 2006-03-30 Hosiden Corporation Signal amplifying circuit and acceleration sensor having the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1062462A (en) * 1996-08-26 1998-03-06 Murata Mfg Co Ltd Insulating resistance measuring apparatus
JP2001091554A (en) * 1999-09-22 2001-04-06 Murata Mfg Co Ltd Device for measuring insulation resistance in capacitive electronic part
JP2001249151A (en) * 2000-03-02 2001-09-14 Denso Corp Capacity detection circuit
WO2006033269A1 (en) * 2004-09-24 2006-03-30 Hosiden Corporation Signal amplifying circuit and acceleration sensor having the same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8666095B2 (en) 2008-05-05 2014-03-04 Epcos Pte Ltd Fast precision charge pump
WO2010073598A1 (en) * 2008-12-24 2010-07-01 パナソニック株式会社 Balance signal output type sensor
JPWO2010073598A1 (en) * 2008-12-24 2012-06-07 パナソニック株式会社 Balanced signal output type sensor
US20100246859A1 (en) * 2009-03-31 2010-09-30 Stmicroelectronics S.R.I. Biasing circuit for a microelectromechanical acoustic transducer and related biasing method
ITTO20090243A1 (en) * 2009-03-31 2010-10-01 St Microelectronics Srl POLARIZATION CIRCUIT FOR A MICROELETTROMECHANICAL ACOUSTIC TRANSDUCER AND ITS POLARIZATION METHOD
CN101854575B (en) * 2009-03-31 2015-06-03 意法半导体股份有限公司 Biasing circuit for a microelectromechanical acoustic transducer and related biasing method
CN101854575A (en) * 2009-03-31 2010-10-06 意法半导体股份有限公司 The biasing circuit and the Associativeoffsets method that are used for microelectromechanicacoustic acoustic transducer
US9329610B2 (en) 2009-03-31 2016-05-03 Stmicroelectronics S.R.L. Biasing circuit for a microelectromechanical acoustic transducer and related biasing method
US8488812B2 (en) 2009-03-31 2013-07-16 Stmicroelectronics S.R.L. Biasing circuit for a microelectromechanical acoustic transducer and related biasing method
EP2237414A2 (en) 2009-04-03 2010-10-06 Sanyo Electric Co., Ltd. Amplifier circuit of capacitor microphone
US8600079B2 (en) 2009-04-03 2013-12-03 Sanyo Semiconductor Co., Ltd. Amplifier circuit of capacitor microphone
US8374363B2 (en) 2009-04-03 2013-02-12 Sanyo Semiconductor Co., Ltd. Amplifier circuit of capacitor microphone
US8674559B2 (en) 2010-07-23 2014-03-18 Nxp B.V. DC-DC converter
EP2410646A1 (en) * 2010-07-23 2012-01-25 Nxp B.V. DC-DC converter
JP2013251587A (en) * 2012-05-30 2013-12-12 New Japan Radio Co Ltd Capacitive load bias circuit
US9332342B2 (en) 2012-07-05 2016-05-03 Semiconductor Components Industries, Llc Microphone amplifier circuit
US9306449B2 (en) 2013-03-15 2016-04-05 Robert Bosch Gmbh Adjustable biasing circuits for MEMS capacitive microphones
US9179221B2 (en) * 2013-07-18 2015-11-03 Infineon Technologies Ag MEMS devices, interface circuits, and methods of making thereof
KR101593809B1 (en) * 2013-07-18 2016-02-15 인피니언 테크놀로지스 아게 Mems devices, interface circuits, and methods of making thereof
US20150023529A1 (en) * 2013-07-18 2015-01-22 Infineon Technologies Ag MEMS Devices, Interface Circuits, and Methods of Making Thereof
CN106658287A (en) * 2016-11-11 2017-05-10 北京卓锐微技术有限公司 Microphone system and amplifying circuit
CN106658303A (en) * 2016-12-01 2017-05-10 北京卓锐微技术有限公司 Microphone system and amplifying circuit
CN108882133A (en) * 2018-07-20 2018-11-23 重庆宝力优特科技有限公司 A kind of microphone and method for realizing voice assistant safe handling

Also Published As

Publication number Publication date
JP4959315B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4959315B2 (en) Capacitance change detection circuit and condenser microphone device
US9014398B2 (en) Charging circuit and amplifier
US9337722B2 (en) Fast power-up bias voltage circuit
KR101592617B1 (en) Fast precision charge pump
JP5319368B2 (en) Amplifier circuit for condenser microphone
US8861765B2 (en) Microphone component and method for operating same
US9329610B2 (en) Biasing circuit for a microelectromechanical acoustic transducer and related biasing method
JP2005151777A (en) Charge pumping circuit and amplifier
KR20140036790A (en) Mems microphone using noise filter
JP2007512793A (en) Microphone with voltage pump
TWI362495B (en) Detection circuit for variation of electrostatic capacitance and semiconductor device
CN107426658B (en) Biasing circuit and MEMS microphone
TWI223559B (en) Circuit for preventing shock sound
JP2008224292A (en) Capacitance change detection circuit
JP2007189434A (en) Semiconductor integrated circuit
JP5423060B2 (en) Step-up switching regulator
JPWO2019151172A1 (en) Drive device and fluid control device
JP2013046385A (en) Converter and bias voltage generating circuit
CN112788509B (en) Microphone assembly, integrated circuit and method of operating audio circuit
CN110324770B (en) Microphone, integrated circuit thereof and electronic equipment
JP2015056699A (en) Preamplifier circuit for capacitance transducer
TW201117541A (en) Dc-dc converter
JP2011082728A (en) Converter and noise reduction circuit
JP2007288845A (en) Charge pump system dc-dc converter
JP4487788B2 (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees