JP2008153346A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2008153346A
JP2008153346A JP2006338256A JP2006338256A JP2008153346A JP 2008153346 A JP2008153346 A JP 2008153346A JP 2006338256 A JP2006338256 A JP 2006338256A JP 2006338256 A JP2006338256 A JP 2006338256A JP 2008153346 A JP2008153346 A JP 2008153346A
Authority
JP
Japan
Prior art keywords
semiconductor
region
conductivity type
impurity diffusion
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338256A
Other languages
Japanese (ja)
Other versions
JP4950648B2 (en
Inventor
Naoto Saito
直人 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2006338256A priority Critical patent/JP4950648B2/en
Publication of JP2008153346A publication Critical patent/JP2008153346A/en
Application granted granted Critical
Publication of JP4950648B2 publication Critical patent/JP4950648B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method which can achieve a power management semiconductor device and an analog semiconductor device which are low cost, can be shortened in manufacturing period, use less power, and have a high driving performance and a high accuracy. <P>SOLUTION: In the manufacturing method for a power management semiconductor device and an analog semiconductor device which include a CMOS, the resistance of a drain region is reduced at surge input by expanding upwards a silicon region which constitutes a lightly doped drain and thermal destruction is suppressed by suppressing a local increase in temperature. Consequently, a power management semiconductor device and an analog semiconductor device with a higher degree of freedom in designing a transistor can be achieved. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は低電圧動作、低消費電力および高駆動能力が要求される半導体装置、特に電圧検出器(Voltage Detector、以後VDと表記)や定電圧レギュレータ(Voltage Regulator、以後VRと表記)やスイッチングレギュレータ(Switching Regulator、以後SWRと表記)などのパワーマネージメント半導体装置およびその製造方法に関する。   The present invention relates to a semiconductor device that requires low voltage operation, low power consumption, and high driving capability, particularly a voltage detector (Voltage Detector, hereinafter referred to as VD), a constant voltage regulator (Voltage Regulator, hereinafter referred to as VR), and a switching regulator. The present invention relates to a power management semiconductor device such as (Switching Regulator, hereinafter referred to as SWR) and a manufacturing method thereof.

従来技術について、図2を基に説明する。   The prior art will be described with reference to FIG.

図2は従来技術の半導体装置の製造方法を示す工程順模式的断面図である。   FIG. 2 is a schematic cross-sectional view in order of steps showing a conventional method for manufacturing a semiconductor device.

図2(a)において、P型半導体基板21、例えばボロン添加した抵抗率20Ωcmから30Ωcmの不純物濃度の半導体基板に、Pウェル22、例えばボロンを1×1011atoms/cm2から1×1013atoms/cm2のドーズ量でイオン注入し、1000〜1200℃で数時間〜十数時間アニールすることにより形成する拡散層を形成し、LOCOS法によりフィールド絶縁膜23、例えば膜厚数千Åから1μmの熱酸化膜を形成した後、MOSトランジスタを形成する領域の絶縁膜を除去し、ゲート絶縁膜24、例えば膜厚10nmから100nmの熱酸化膜を形成する。ゲート絶縁膜24を形成する前もしくはゲート絶縁膜24を形成した後にP型半導体基板1及びPウェル22の不純物濃度を調整するためのイオン注入を行う。 In FIG. 2A, a P-type semiconductor substrate 21, for example, a boron-doped semiconductor substrate having an impurity concentration of 20 Ωcm to 30 Ωcm, a P well 22, for example, boron is added from 1 × 10 11 atoms / cm 2 to 1 × 10 13. A diffusion layer is formed by implanting ions at a dose of atoms / cm 2 and annealing at 1000 to 1200 ° C. for several hours to several tens of hours. From the field insulating film 23, for example, several thousand Å in thickness by the LOCOS method. After the 1 μm thermal oxide film is formed, the insulating film in the region where the MOS transistor is to be formed is removed, and a gate insulating film 24, for example, a thermal oxide film having a thickness of 10 nm to 100 nm is formed. Ion implantation for adjusting the impurity concentrations of the P-type semiconductor substrate 1 and the P well 22 is performed before the gate insulating film 24 is formed or after the gate insulating film 24 is formed.

次に図2(b)において、ゲート絶縁膜24上に多結晶シリコンを堆積し、プリデポあるいはイオン注入により不純物を導入し、パターニングを行うことによりゲート電極となる多結晶シリコンゲート25が形成される。   Next, in FIG. 2B, polycrystalline silicon is deposited on the gate insulating film 24, impurities are introduced by pre-deposition or ion implantation, and patterning is performed, thereby forming a polycrystalline silicon gate 25 serving as a gate electrode. .

続いて、多結晶シリコンゲート25からある間隔を離して、ソースおよびドレイン高濃度領域26、例えばシート抵抗を低減するためにAsを好ましくは1×1014〜1×1016atoms/cm2の濃度でイオン注入する。続いて、多結晶シリコンゲート25をマスクとしてセルフアラインにより、ソースおよびドレイン低濃度領域27、例えばリンを好ましくは1×1012〜1×1014atoms/cm2の濃度でイオン注入する。 Subsequently, at a certain distance from the polycrystalline silicon gate 25, the source and drain high concentration regions 26, for example, As to reduce the sheet resistance, is preferably at a concentration of 1 × 10 14 to 1 × 10 16 atoms / cm 2 . Ion implantation. Subsequently, the source and drain low-concentration regions 27, for example, phosphorus, for example, are ion-implanted at a concentration of preferably 1 × 10 12 to 1 × 10 14 atoms / cm 2 by self-alignment using the polycrystalline silicon gate 25 as a mask.

次に図2(c)において、層間絶縁膜28を200nm〜800nm程度の膜厚で堆積させる。   Next, in FIG. 2C, an interlayer insulating film 28 is deposited to a thickness of about 200 nm to 800 nm.

次に図2(d)において、ソースおよびドレイン高濃度領域26領域と配線の接続をとるためのコンタクトホール29を形成する。続いて、配線金属をスパッタ等で形成、パターニングを行うと、配線金属30とソースおよびドレイン高濃度領域26表面がコンタクトホール29を通して接続される。(例えば非特許文献1参照)
前田和夫、「はじめての半導体プロセス」、工業調査会、2000年12月10日、p30
Next, in FIG. 2D, a contact hole 29 for connecting the source and drain high concentration region 26 to the wiring is formed. Subsequently, when the wiring metal is formed and patterned by sputtering or the like, the wiring metal 30 and the surface of the high concentration source / drain region 26 are connected through the contact hole 29. (For example, see Non-Patent Document 1)
Kazuo Maeda, “First Semiconductor Process”, Industrial Research Committee, December 10, 2000, p30

上記の従来の製造方法による半導体装置においては、ある程度の高い接合耐圧、表面ブレイクダウン耐圧、スナップバック耐圧、あるいは低いインパクトイオン化率を確保するために、より濃度の薄いドレイン領域を形成しようとすると、ESD耐圧が減少する方向にあり、ESD耐圧規格を満たすことができない場合が出てくる。   In the semiconductor device according to the above-described conventional manufacturing method, in order to ensure a certain degree of high junction breakdown voltage, surface breakdown breakdown voltage, snapback breakdown voltage, or low impact ionization rate, a drain region having a lower concentration is formed. There is a case where the ESD withstand voltage is decreasing and the ESD withstand voltage standard cannot be satisfied.

すなわち、トランジスタの重要な各特性と、ESD耐圧の両立ができないことがあり、トランジスタのサイズを大きくして何とか特性、規格を満たす一方でコストアップは容認しなければならない、という問題があった。   That is, each important characteristic of the transistor and the ESD withstand voltage may not be compatible, and there is a problem that the transistor size must be increased to meet the characteristics and standards, while the increase in cost must be accepted.

また、一般的にコンタクト領域における配線金属のカバレッジは良好ではなく、平坦部上の配線厚さの概ね20%程度となっていることが多い。これが電流密度を制限する要因であり、結果として少ない面積で大電流を流すことが困難であった。本発明は以上のような点に着目してなされたもので、本発明は十分なESD耐圧を満たしつつ、面積の小さいトランジスタを形成すること、低コストかつ短TAT(Turn Around Time)であり、低寄生抵抗及び高精度となる半導体装置の実現を可能とする製造方法を提供することを目的とする。   In general, the coverage of the wiring metal in the contact region is not good, and is generally about 20% of the wiring thickness on the flat portion. This is a factor that limits the current density. As a result, it is difficult to flow a large current with a small area. The present invention has been made paying attention to the above points, and the present invention is to form a transistor with a small area while satisfying a sufficient ESD withstand voltage, low cost and short TAT (Turn Around Time), An object of the present invention is to provide a manufacturing method capable of realizing a semiconductor device with low parasitic resistance and high accuracy.

上記課題を解決するために、本発明は次の手段を用いた。
(1)半導体基板上の第一導電型の半導体層上に薄い酸化膜領域を形成する工程と、前記第一導電型の半導体層上の特定の領域に、前記薄い酸化膜より厚い熱酸化膜を形成する工程と、前記第一導電型の半導体層上の熱酸化膜をすべて除去することにより半導体表面の高さが高い領域と低い領域の2つの領域を形成する工程と、前記第一導電型の半導体層上にゲート絶縁膜を形成する工程と、前記ゲート絶縁膜上にゲート電極を形成する工程と、前記ゲート電極に不純物を導入する工程と、前記第一導電型の半導体層内にソースおよびドレインとなる第二導電型の第一の濃度を有する第一の不純物拡散層を前記ゲート電極直下から前記半導体表面の高さが高い領域にかけて形成する工程と、第二導電型の第二の濃度を有する第二の不純物拡散層を前記第一の不純物拡散層に接する位置に形成する工程と、前記半導体基板上に層間絶縁膜を形成する工程と、前記第一の不純物拡散層および前記第二の不純物拡散層との電気的接続をとるためのコンタクトホールを前記半導体表面の高さが高い領域に形成する工程と、配線金属を堆積し、前記第一および第二の不純物拡散層と前記配線金属とを前記コンタクトホールを介して電気的に接続する工程とを有する半導体装置の製造方法とした。
(2)前記半導体表面の高さが高い領域と低い領域の2つの領域の高低差が、0.1μm〜1μmとなるように熱酸化を行うこととした。
(3)前記厚い酸化膜の形成工程は、シリコン窒化膜を用いたLOCOS法であることとした。
(4)前記シリコン窒化膜の膜厚は、10nm〜200nmであることとした。
In order to solve the above problems, the present invention uses the following means.
(1) A step of forming a thin oxide film region on a first conductivity type semiconductor layer on a semiconductor substrate, and a thermal oxide film thicker than the thin oxide film in a specific region on the first conductivity type semiconductor layer Forming a region having a high semiconductor surface and a region having a low semiconductor surface by removing all of the thermal oxide film on the semiconductor layer of the first conductivity type; and Forming a gate insulating film on the type semiconductor layer, forming a gate electrode on the gate insulating film, introducing an impurity into the gate electrode, and in the first conductive type semiconductor layer Forming a first impurity diffusion layer having a first concentration of a second conductivity type to be a source and a drain from directly under the gate electrode to a region having a high height of the semiconductor surface; and a second conductivity type second Second impurity diffusion with a concentration of Between the first impurity diffusion layer and the second impurity diffusion layer, a step of forming an interlayer insulating film on the semiconductor substrate, and an electrical connection between the first impurity diffusion layer and the second impurity diffusion layer. Forming a contact hole for connection in a region having a high height on the semiconductor surface, depositing a wiring metal, and connecting the first and second impurity diffusion layers and the wiring metal through the contact hole; And a method of manufacturing a semiconductor device having an electrical connection step.
(2) Thermal oxidation is performed so that the difference in height between the two regions of the semiconductor surface having a high height and a low region is 0.1 μm to 1 μm.
(3) The thick oxide film forming step is a LOCOS method using a silicon nitride film.
(4) The silicon nitride film has a thickness of 10 nm to 200 nm.

上述したように、本発明はCMOSを含むパワーマネージメント半導体装置やアナログ半導体装置の製造方法において、シリコン表面の一部に凸部を設け、ここにMOSトランジスタにおける低濃度ドレイン領域を形成することにより、低濃度ドレイン領域の体積が拡大し、通常の回路動作時はドレイン抵抗の低減に寄与し、ESDサージ入力時にはドレイン低濃度領域の温度上昇を抑制することで、シリコンの熱破壊を抑止することが可能であるためESD耐圧が向上する。従って、ドレイン低濃度領域の濃度設定の自由度が増すため、所望のトランジスタ特性を実現することが容易となる。さらに、この凸部において配線金属とのコンタクトを取るためにステップカバレッジが改善され、同じ面積でも従来よりも大きな電流を流すことが可能となる。   As described above, the present invention provides a method for manufacturing a power management semiconductor device or an analog semiconductor device including a CMOS, by providing a convex portion on a part of a silicon surface, and forming a low-concentration drain region in a MOS transistor here. The volume of the low-concentration drain region expands, contributing to the reduction of drain resistance during normal circuit operation, and suppressing the temperature rise of the drain low-concentration region at the time of ESD surge input, thereby suppressing the thermal destruction of silicon. Since this is possible, the ESD withstand voltage is improved. Accordingly, the degree of freedom in setting the concentration of the drain low concentration region is increased, and it becomes easy to realize desired transistor characteristics. Furthermore, the step coverage is improved in order to make contact with the wiring metal at the convex portion, and it is possible to flow a larger current than in the past even in the same area.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明に係る半導体装置の製造方法の第一の実施例を示す模式的断面フローである。   FIG. 1 is a schematic cross-sectional flow showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention.

図1(a)において、P型半導体基板1、例えばボロン添加した抵抗率20Ωcmから30Ωcmの不純物濃度の半導体基板に、Pウェル2、例えばボロンを1×1011atoms/cm2から1×1013atoms/cm2のドーズ量でイオン注入し、1000〜1200℃で数時間〜十数時間アニールすることにより形成する拡散層を形成する。ここではP型半導体基板にPウェルを形成する工程を示したが、N型半導体基板にPウェルを形成する場合も同様である。基板の導電型は本発明の本質とは関係ない。 In FIG. 1A, a P-type semiconductor substrate 1, for example, a boron-doped semiconductor substrate having an impurity concentration of 20 Ωcm to 30 Ωcm, and a P well 2, for example, boron is added from 1 × 10 11 atoms / cm 2 to 1 × 10 13. A diffusion layer is formed by ion implantation at a dose of atoms / cm 2 and annealing at 1000 to 1200 ° C. for several hours to tens of hours. Here, the process of forming the P well in the P-type semiconductor substrate is shown, but the same applies to the case of forming the P well in the N-type semiconductor substrate. The conductivity type of the substrate is not related to the essence of the present invention.

続いて、LOCOS法により厚い酸化膜3、例えば膜厚0.2μmから2μmの熱酸化膜を形成する。このとき、コンタクト形成予定領域4には厚い酸化膜3を形成しない。ここで形成される酸化膜の厚さは、所望のESD耐圧を満たすように設定される。すなわち、酸化膜を厚く形成すればするほど結果的にESD耐圧は向上する。また、厚い酸化膜3を形成するとき、コンタクト形成予定領域4上に設置される窒化膜(図示していない)の膜厚は、10nm〜200nmであることが好ましく、窒化膜の下に形成しておく薄い酸化膜の膜厚は、10nm〜40nmであることが好ましいが、これらの膜厚を調整することにより、次工程で形成する、シリコン表面が凸型であるコンタクトの形状、高さは自由に設定、制御できる
その後、図1(b)に示したように、ウェットエッチングにより表面のシリコン酸化膜をすべて除去すると、シリコン凸部5が出来上がる。このときのシリコン凸部5の高さは、前述の厚い酸化膜の半分程度であり、0.1μmから1μmとなる。
Subsequently, a thick oxide film 3, for example, a thermal oxide film having a thickness of 0.2 μm to 2 μm is formed by the LOCOS method. At this time, the thick oxide film 3 is not formed in the contact formation scheduled region 4. The thickness of the oxide film formed here is set so as to satisfy a desired ESD withstand voltage. That is, as the oxide film is formed thicker, the ESD withstand voltage is improved as a result. When the thick oxide film 3 is formed, the thickness of the nitride film (not shown) provided on the contact formation planned region 4 is preferably 10 nm to 200 nm, and is formed under the nitride film. The film thickness of the thin oxide film is preferably 10 nm to 40 nm, but by adjusting these film thicknesses, the shape and height of the contact with a convex silicon surface formed in the next step is After that, as shown in FIG. 1B, when the silicon oxide film on the surface is completely removed by wet etching, the silicon convex portion 5 is completed. At this time, the height of the silicon convex portion 5 is about half of the above-described thick oxide film, and is 0.1 μm to 1 μm.

続いて、図1(c)に示したように、LOCOS法によりフィールド絶縁膜6、例えば膜厚数千Åから1μmの熱酸化膜を形成した後、MOSトランジスタを形成する領域の絶縁膜を除去し、ゲート絶縁膜7、例えば膜厚10nmから100nmの熱酸化膜を形成する。ゲート絶縁膜7を形成する前もしくはゲート絶縁膜7を形成した後にP型半導体基板1及びPウェル2の不純物濃度を調整するためのイオン注入を行う。引き続いて、ゲート絶縁膜7上に多結晶シリコンを堆積し、プリデポジションあるいはイオン注入により不純物を導入し、パターニングを行うことによりゲート電極となる多結晶シリコンゲート8が形成される。   Subsequently, as shown in FIG. 1C, a field insulating film 6, for example, a thermal oxide film having a film thickness of several thousand to 1 μm is formed by the LOCOS method, and then the insulating film in the region for forming the MOS transistor is removed. Then, a gate insulating film 7, for example, a thermal oxide film having a thickness of 10 nm to 100 nm is formed. Ion implantation for adjusting the impurity concentrations of the P-type semiconductor substrate 1 and the P well 2 is performed before the gate insulating film 7 is formed or after the gate insulating film 7 is formed. Subsequently, polycrystalline silicon is deposited on the gate insulating film 7, impurities are introduced by predeposition or ion implantation, and patterning is performed, so that a polycrystalline silicon gate 8 serving as a gate electrode is formed.

続いて、図1(d)に示したように、多結晶シリコンゲート8からある間隔を離してソースおよびドレイン高濃度領域9、例えばAsを、シート抵抗を低減するために、好ましくは1×1014〜1×1016atoms/cm2の濃度でイオン注入する。続いて、多結晶シリコンゲート8をマスクとしてセルフアラインによりソースおよびドレイン低濃度領域10、例えばリンを好ましくは1×1012〜1×1014atoms/cm2の濃度でイオン注入する。 Subsequently, as shown in FIG. 1D, the source and drain high-concentration regions 9 such as As are separated from the polycrystalline silicon gate 8 by a certain distance, preferably 1 × 10 6 in order to reduce the sheet resistance. Ions are implanted at a concentration of 14 to 1 × 10 16 atoms / cm 2 . Subsequently, the polycrystalline silicon gate 8 is used as a mask, and the source and drain lightly doped regions 10, for example, phosphorus, are ion-implanted at a concentration of preferably 1 × 10 12 to 1 × 10 14 atoms / cm 2 by self-alignment.

続いて、層間絶縁膜6を200nm〜800nm程度の膜厚となるよう堆積させる。   Subsequently, the interlayer insulating film 6 is deposited so as to have a thickness of about 200 nm to 800 nm.

次に図1(d)において、ソースおよびドレイン領域と配線の接続をとるためのコンタクトホール11をシリコン凸部5上に形成する。その後、配線金属12をスパッタで形成、パターニングを行うと、配線金属12とソースおよびドレイン表面がコンタクトホール11を通して接続する。   Next, in FIG. 1D, a contact hole 11 for connecting the source and drain regions to the wiring is formed on the silicon protrusion 5. Thereafter, when the wiring metal 12 is formed by sputtering and patterned, the wiring metal 12 and the source and drain surfaces are connected through the contact holes 11.

本発明に係る半導体装置の製造方法の第一の実施例を示す工程順模式的断面図Sectional schematic cross-sectional view showing a first embodiment of a method of manufacturing a semiconductor device according to the present invention 従来の半導体装置の製造方法を示す工程順模式的断面図Schematic sectional view in order of steps showing a conventional method of manufacturing a semiconductor device

符号の説明Explanation of symbols

1 P型半導体基板
2 Pウェル
3 厚い酸化膜
4 コンタクト形成予定領域
5 シリコン凸部
6 フィールド絶縁膜
7 ゲート絶縁膜
8 多結晶シリコンゲート
9 ソースおよびドレイン高濃度領域
10 ソースおよびドレイン低濃度領域
11 コンタクトホール
12 配線金属
13 層間絶縁膜
21 P型半導体基板
22 Pウェル
23 フィールド絶縁膜
24 ゲート絶縁膜
25 多結晶シリコンゲート
26 ソースおよびドレイン高濃度領域
27 ソースおよびドレイン低濃度領域
28 層間絶縁膜
29 コンタクトホール
30 配線金属
DESCRIPTION OF SYMBOLS 1 P-type semiconductor substrate 2 P well 3 Thick oxide film 4 Contact formation area 5 Silicon convex part 6 Field insulating film 7 Gate insulating film 8 Polycrystalline silicon gate 9 Source and drain high concentration area | region 10 Source and drain low concentration area | region 11 Contact Hole 12 Wiring metal 13 Interlayer insulating film 21 P-type semiconductor substrate 22 P well 23 Field insulating film 24 Gate insulating film 25 Polycrystalline silicon gate 26 Source and drain high concentration region 27 Source and drain low concentration region 28 Interlayer insulating film 29 Contact hole 30 Wiring metal

Claims (5)

半導体基板上の第一導電型の半導体層上に薄い酸化膜領域を形成する工程と、
前記第一導電型の半導体層上の特定の領域に、前記薄い酸化膜より厚い熱酸化膜を形成する工程と、
前記第一導電型の半導体層上の熱酸化膜をすべて除去することにより半導体表面の高さが高い領域と低い領域の2つの領域を形成する工程と、
前記第一導電型の半導体層上にゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜上にゲート電極を形成する工程と、
前記ゲート電極に不純物を導入する工程と、
前記第一導電型の半導体層内にソースおよびドレインとなる第二導電型の第一の濃度を有する第一の不純物拡散層を前記ゲート電極直下から前記半導体表面の高さが高い領域にかけて形成する工程と、
第二導電型の第二の濃度を有する第二の不純物拡散層を前記第一の不純物拡散層に接する位置に形成する工程と、
前記半導体基板上に層間絶縁膜を形成する工程と、
前記第一の不純物拡散層および前記第二の不純物拡散層との電気的接続をとるためのコンタクトホールを前記半導体表面の高さが高い領域に形成する工程と、
配線金属を堆積し、前記第一および第二の不純物拡散層と前記配線金属とを前記コンタクトホールを介して電気的に接続する工程とを有する半導体装置の製造方法。
Forming a thin oxide film region on a semiconductor layer of a first conductivity type on a semiconductor substrate;
Forming a thermal oxide film thicker than the thin oxide film in a specific region on the semiconductor layer of the first conductivity type;
Removing all of the thermal oxide film on the semiconductor layer of the first conductivity type to form two regions of a high and low semiconductor surface,
Forming a gate insulating film on the first conductivity type semiconductor layer;
Forming a gate electrode on the gate insulating film;
Introducing an impurity into the gate electrode;
A first impurity diffusion layer having a second conductivity type first concentration serving as a source and a drain is formed in the first conductivity type semiconductor layer from directly under the gate electrode to a region where the semiconductor surface is high. Process,
Forming a second impurity diffusion layer having a second concentration of the second conductivity type at a position in contact with the first impurity diffusion layer;
Forming an interlayer insulating film on the semiconductor substrate;
Forming a contact hole in the region having a high height of the semiconductor surface for establishing electrical connection with the first impurity diffusion layer and the second impurity diffusion layer;
A method of manufacturing a semiconductor device, comprising: depositing a wiring metal, and electrically connecting the first and second impurity diffusion layers and the wiring metal through the contact hole.
前記半導体表面の高さが高い領域と低い領域の2つの領域の高低差が、0.1μ〜1μmとなるように熱酸化を行うことを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein thermal oxidation is performed such that a difference in height between two regions of a high surface and a low region of the semiconductor surface is 0.1 μm to 1 μm. . 前記厚い酸化膜の形成工程は、シリコン窒化膜を用いたLOCOS法であることを特徴とする請求項1または請求項2に記載の半導体装置の製造方法。   3. The method of manufacturing a semiconductor device according to claim 1, wherein the step of forming the thick oxide film is a LOCOS method using a silicon nitride film. 前記シリコン窒化膜の膜厚は、10nm〜200nmであることを特徴とする請求項3に記載の半導体装置の製造方法。   4. The method of manufacturing a semiconductor device according to claim 3, wherein the thickness of the silicon nitride film is 10 nm to 200 nm. 半導体基板と、
前記半導体基板の表面に設けられた、半導体表面の高さが高い領域と低い領域の2つの領域を有する第一導電型の半導体領域と、
前記第一導電型の半導体領域上に設けられたゲート絶縁膜と、
前記ゲート絶縁膜上に設けられたゲート電極と、
前記第一導電型の半導体領域内の前記ゲート電極直下から前記半導体表面の高さが高い領域にかけて設けられたにソースおよびドレインとなる第二導電型の第一の濃度を有する第一の不純物拡散層と、
前記第一の不純物拡散層に接する位置に設けられた第二導電型の第二の濃度を有する第二の不純物拡散層と、
前記半導体基板上に設けられた層間絶縁膜と、
前記半導体表面の高さが高い領域に設けられた前記第一の不純物拡散層および前記第二の不純物拡散層との電気的接続をとるためのコンタクトホールと、
前記コンタクトホールを介して前記第一および第二の不純物拡散層と電気的に接続された配線金属とからなる半導体装置。
A semiconductor substrate;
A semiconductor region of a first conductivity type provided on the surface of the semiconductor substrate, the first conductivity type semiconductor region having two regions of a region having a high semiconductor surface and a region having a low height;
A gate insulating film provided on the semiconductor region of the first conductivity type;
A gate electrode provided on the gate insulating film;
A first impurity diffusion having a first concentration of a second conductivity type provided as a source and a drain provided immediately under the gate electrode in the first conductivity type semiconductor region to a region having a high semiconductor surface height Layers,
A second impurity diffusion layer having a second concentration of the second conductivity type provided at a position in contact with the first impurity diffusion layer;
An interlayer insulating film provided on the semiconductor substrate;
A contact hole for electrical connection with the first impurity diffusion layer and the second impurity diffusion layer provided in a region where the height of the semiconductor surface is high;
A semiconductor device comprising a wiring metal electrically connected to the first and second impurity diffusion layers through the contact hole.
JP2006338256A 2006-12-15 2006-12-15 Semiconductor device and manufacturing method thereof Expired - Fee Related JP4950648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338256A JP4950648B2 (en) 2006-12-15 2006-12-15 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338256A JP4950648B2 (en) 2006-12-15 2006-12-15 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008153346A true JP2008153346A (en) 2008-07-03
JP4950648B2 JP4950648B2 (en) 2012-06-13

Family

ID=39655232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338256A Expired - Fee Related JP4950648B2 (en) 2006-12-15 2006-12-15 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4950648B2 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753981A (en) * 1980-09-17 1982-03-31 Toshiba Corp Manufacture of semiconductor device
JPS63127570A (en) * 1986-11-17 1988-05-31 Nec Corp Manufacture of insulated gate type field-effect transister
JPH04350971A (en) * 1991-05-28 1992-12-04 Sharp Corp Manufacture of semiconductor device
JPH0567688A (en) * 1991-09-10 1993-03-19 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH06310718A (en) * 1993-03-10 1994-11-04 Samsung Electron Co Ltd Preparation of mosfet element
JPH08264775A (en) * 1995-03-27 1996-10-11 Sanyo Electric Co Ltd High breakdown voltage mos transistor and its manufacture
JPH0955495A (en) * 1995-08-14 1997-02-25 Sony Corp Transistor and its manufacture
JPH1197675A (en) * 1997-09-22 1999-04-09 Nittetsu Semiconductor Kk Semiconductor device and manufacture thereof
JPH11214681A (en) * 1998-01-23 1999-08-06 Toshiba Corp Semiconductor device and fabrication thereof
JP2005044944A (en) * 2003-07-25 2005-02-17 Semiconductor Leading Edge Technologies Inc Semiconductor device
JP2005223109A (en) * 2004-02-05 2005-08-18 Renesas Technology Corp Semiconductor device and its manufacturing method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5753981A (en) * 1980-09-17 1982-03-31 Toshiba Corp Manufacture of semiconductor device
JPS63127570A (en) * 1986-11-17 1988-05-31 Nec Corp Manufacture of insulated gate type field-effect transister
JPH04350971A (en) * 1991-05-28 1992-12-04 Sharp Corp Manufacture of semiconductor device
JPH0567688A (en) * 1991-09-10 1993-03-19 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH06310718A (en) * 1993-03-10 1994-11-04 Samsung Electron Co Ltd Preparation of mosfet element
JPH08264775A (en) * 1995-03-27 1996-10-11 Sanyo Electric Co Ltd High breakdown voltage mos transistor and its manufacture
JPH0955495A (en) * 1995-08-14 1997-02-25 Sony Corp Transistor and its manufacture
JPH1197675A (en) * 1997-09-22 1999-04-09 Nittetsu Semiconductor Kk Semiconductor device and manufacture thereof
JPH11214681A (en) * 1998-01-23 1999-08-06 Toshiba Corp Semiconductor device and fabrication thereof
JP2005044944A (en) * 2003-07-25 2005-02-17 Semiconductor Leading Edge Technologies Inc Semiconductor device
JP2005223109A (en) * 2004-02-05 2005-08-18 Renesas Technology Corp Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JP4950648B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP5079687B2 (en) Manufacturing method of SOI device
JP4783050B2 (en) Semiconductor device and manufacturing method thereof
TWI412130B (en) Semiconductor device and method of manufacturing the same
JP5078312B2 (en) Semiconductor integrated circuit device and manufacturing method thereof
JP5616823B2 (en) Semiconductor device and manufacturing method thereof
CN107680955B (en) Electrostatic discharge protection device, semiconductor device and manufacturing method
TWI324826B (en) Semiconductor device and manufacturing method of the same
JP5331497B2 (en) Semiconductor device and manufacturing method thereof
US9018067B2 (en) Semiconductor device with pocket regions and method of manufacturing the same
JP4950648B2 (en) Semiconductor device and manufacturing method thereof
JP5925419B2 (en) Offtra ESD protection device and method for manufacturing the same
JP2008085082A (en) Power mosfet, semiconductor device equipped with the same, and manufacturing method of power mosfet
JP2008244008A (en) High breakdown voltage mos transistor and manufacturing method thereof
US8470677B2 (en) Method of manufacturing semiconductor device
JP2008166560A (en) Semiconductor device, and its manufacturing method
JP2006108249A (en) Semiconductor device and its manufacturing method
JP2005322730A (en) Semiconductor device and manufacturing method therefor
JP2006324468A (en) Semiconductor device and its manufacturing method
TW439290B (en) CMOS transistor
JP2006344660A (en) Semiconductor device and its manufacturing method
JP5970763B2 (en) Semiconductor device
JP2005191327A (en) Method for fabricating horizontal mos transistors
JP2005347372A (en) Semiconductor device and manufacturing method therefor
JP2008041673A (en) Semiconductor device and manufacturing method therefor
JP2013258432A (en) Semiconductor device, and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090826

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091105

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees