JP2008151795A - X-ray detector - Google Patents

X-ray detector Download PDF

Info

Publication number
JP2008151795A
JP2008151795A JP2007332471A JP2007332471A JP2008151795A JP 2008151795 A JP2008151795 A JP 2008151795A JP 2007332471 A JP2007332471 A JP 2007332471A JP 2007332471 A JP2007332471 A JP 2007332471A JP 2008151795 A JP2008151795 A JP 2008151795A
Authority
JP
Japan
Prior art keywords
ray detector
ray
ppm
alkali metal
sensitivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007332471A
Other languages
Japanese (ja)
Other versions
JP2008151795A5 (en
Inventor
Kenji Sato
賢治 佐藤
Toshiyuki Sato
敏幸 佐藤
Takayuki Nakayama
貴之 中山
Yoichiro Shimura
陽一郎 志村
Kazuhiko Shima
和彦 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shindengen Electric Manufacturing Co Ltd
Shindengen Sensor Device Co Ltd
Original Assignee
Shimadzu Corp
Shindengen Electric Manufacturing Co Ltd
Shindengen Sensor Device Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shindengen Electric Manufacturing Co Ltd, Shindengen Sensor Device Co Ltd filed Critical Shimadzu Corp
Priority to JP2007332471A priority Critical patent/JP2008151795A/en
Publication of JP2008151795A publication Critical patent/JP2008151795A/en
Publication of JP2008151795A5 publication Critical patent/JP2008151795A5/ja
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a large-area X-ray detector which minimizes the structural defects that are potentially generated at the formation of an amorphous selenium (a-Se) semiconductor thick film, minimizes the changes in defects, as nearing the charge trapping center, and the sensitivity of which will not deteriorate. <P>SOLUTION: As a semiconductor layer sensitive to X-rays, an amorphous selenium (a-Se) semiconductor thick film 4 doped with alkali metal in a range of 0.01 ppm to 10 ppm is used. Accordingly, this makes it possible to obtain an X-ray detector which minimizes structural defects and changes in defects, as nearing the charge trapping center and which hardly deteriorates in the sensitivity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、医療分野、工業分野、原子力分野等のX線を計測するためのX線検出器に関する。 The present invention relates to an X-ray detector for measuring X-rays in the medical field, industrial field, nuclear field, and the like.

半導体の両側に電極を形成し、前記電極間に所定のバイアス電圧を印加して、X線入射によって前記半導体内部に発生する電荷を、電気信号として検出するX線検出器では、使用される半導体の材料が用途に応じて種々の材料が使い分けられており、その製法も様々である。一般的に、エネルギー分解能を要するX線検出器の用途には、シリコン(Si)等の高純度単結晶半導体が使用される傾向にある。 A semiconductor used in an X-ray detector that forms electrodes on both sides of a semiconductor, applies a predetermined bias voltage between the electrodes, and detects electric charges generated inside the semiconductor by X-ray incidence as an electric signal. Various materials are properly used depending on the application, and the production methods thereof are also various. Generally, high-purity single crystal semiconductors such as silicon (Si) tend to be used for X-ray detector applications that require energy resolution.

この中で、アモルファス・セレン(a−Se)を用いたX線検出器は、真空蒸着法等の薄膜形成技術を利用して容易に1000cm以上のサイズの高抵抗厚膜を得ることができ、大面積のX線計測が必要な分野への用途として最適である。 Among these, an X-ray detector using amorphous selenium (a-Se) can easily obtain a high resistance thick film having a size of 1000 cm 2 or more by utilizing a thin film forming technique such as a vacuum deposition method. It is ideal for applications in fields that require large area X-ray measurements.

しかし、このような方法で形成したアモルファス・セレン(a−Se)膜は、構造欠陥を多く含む。そこで、性能を改善するために、適量の不純物を添加(ドーピング)することが一般的に行われている(例えば特許文献1参照)。
ヨーロッパ特許公開公報 EP1009038
However, the amorphous selenium (a-Se) film formed by such a method contains many structural defects. Therefore, in order to improve performance, it is common practice to add (doping) an appropriate amount of impurities ( see, for example, Patent Document 1).
European Patent Publication EP1009038

しかしながら、このような構成を有する従来例の場合には、次のような問題がある。すなわち、上述した従来の装置では、単結晶半導体と異なり、潜在的に構造欠陥が多数存在する。そのためX線入射によって半導体層に生成した電子・正孔の電荷移動媒体(キャリア)がこれらに捕獲されるので、捕捉されたキャリアを電気信号として取り出すことができず、X線検出器の感度が劣化するという現象が起こる。 However, the conventional example having such a configuration has the following problems. That is, unlike the single crystal semiconductor, the conventional device described above has a large number of potential structural defects. For this reason, since the electron / hole charge transfer medium (carrier) generated in the semiconductor layer by X-ray incidence is captured by these, the captured carrier cannot be taken out as an electric signal, and the sensitivity of the X-ray detector is reduced. The phenomenon of deterioration occurs.

以下、上記の現象について図2を参照しながら具体的に説明する。なお、図2は、X線検出器の内部構造を説明する図である。 Hereinafter, the above phenomenon will be specifically described with reference to FIG. FIG. 2 is a diagram for explaining the internal structure of the X-ray detector.

アモルファス・セレン(a−Se)中の構造欠陥には、図2(b)に示すように、再結合中心であるD0と、D0がイオン化したD+(電子捕獲中心)およびD−(正孔捕獲中心)とがある一定の比率で存在している。この時のD+とD−の密度により、X線検出器の初期の感度の値が決まることになる。この状態は以下の式で表される。
2D0 → D+ + D−
As shown in FIG. 2B, structural defects in amorphous selenium (a-Se) include D0 which is a recombination center, D + (electron capture center) and D− (hole capture) in which D0 is ionized. It exists at a certain ratio. The initial sensitivity value of the X-ray detector is determined by the density of D + and D− at this time. This state is expressed by the following equation.
2D0 → D + + D-

この状態でX線が入射し、電子(e−)・正孔(h+)の電荷移動媒体(キャリア)がアモルファス・セレン(a−Se)中に発生すると、これらがまず再結合中心D0に捕らえられ、それぞれがD−とD+に変化する。こうしてD+とD−の密度が増加していくことによって、感度の劣化が生ずる。この関係は、次の2つの式で表される。
D0 + e− → D−D0 + h+ → D+
In this state, when X-rays are incident and a charge transfer medium (carrier) of electrons (e−) and holes (h +) is generated in amorphous selenium (a-Se), these are first captured by the recombination center D0. Are changed to D- and D +, respectively. As the density of D + and D− increases in this way, sensitivity is deteriorated. This relationship is expressed by the following two expressions.
D0 + e- → D-D0 + h + → D +

この発明は、アモルファス・セレン(a−Se)中の構造欠陥を補償して、感度劣化のないX線検出器を提供することを目的とする。 It is an object of the present invention to provide an X-ray detector that compensates for structural defects in amorphous selenium (a-Se) and does not deteriorate sensitivity.

この発明は、このような目的を達成するために、次のような構成をとる。すなわち、請求項1に記載の発明は、アルカリ金属がドーピングされたアモルファス・セレンからなり、X線入射によって内部に電子正孔対を発生する半導体層と、
前記半導体層のX線入射面側に設けられ、正のバイアス電圧が印加されるバイアス電圧印加電極と、前記半導体層のX線入射面側とは反対側に設けられたキャリア収集電極と、前記キャリア収集電極から収集した電荷を蓄積するためのコンデンサと、前記コンデンサに蓄積された電荷を読み出すためのスイッチング素子とを有し、前記ナトリウムのドーピング量が、0.01〜10ppmの範囲であることを特徴とするX線検出器であることを特徴とするものである。
In order to achieve such an object, the present invention has the following configuration. That is, the invention according to claim 1 is made of amorphous selenium doped with an alkali metal , and a semiconductor layer that generates electron-hole pairs therein by X-ray incidence;
A bias voltage applying electrode provided on the X-ray incident surface side of the semiconductor layer, to which a positive bias voltage is applied; a carrier collecting electrode provided on the opposite side of the X-ray incident surface side of the semiconductor layer; A capacitor for accumulating the charge collected from the carrier collecting electrode and a switching element for reading out the electric charge accumulated in the capacitor, wherein the sodium doping amount is in the range of 0.01 to 10 ppm; This is an X-ray detector characterized by the following.

(作用・効果)図2(a)に示すように、X線に有感な半導体層であるアモルファス・セレン(a−Se)中に、イオン化傾向の大きいアルカリ金属Mが、構造欠陥Dを補償する量に等しく添加(ドーピング)されているため、アモルファス・セレン(a−Se)中の構造欠陥は、再結合中心であるDと、Dが負イオン化したD(正孔捕獲中心)だけである。この状態は以下の式(1)で表される。 (Operation / Effect) As shown in FIG. 2A, in the amorphous selenium (a-Se) which is a semiconductor layer sensitive to X-rays, an alkali metal M having a large ionization tendency causes structural defects D 0 . Since it is added (doping) equal to the amount to be compensated, the structural defects in amorphous selenium (a-Se) are D 0 which is a recombination center and D (hole trapping center where D 0 is negatively ionized). ) Only. This state is represented by the following formula (1).

2D + M → M + D + D ・・・ (1) 2D 0 + M → M + + D + D 0 (1)

この状態でX線が入射し、電子(e)・正孔(h)の電荷移動媒体(キャリア)がa−Se中に発生すると、電子は再結合中心Dに捕らえられ、Dに変化し、正孔はDに捕らえられてDに変化する。この関係は、次の2つの式(2),(3)で表される。 In this state, when X-rays are incident and a charge transfer medium (carrier) of electrons (e ) and holes (h + ) is generated in a-Se, the electrons are captured by the recombination center D 0 , and D The hole is captured by D and changed to D 0 . This relationship is expressed by the following two expressions (2) and (3).

+ e → D ・・・ (2)
+ h → D ・・・ (3)
D 0 + e → D (2)
D - + h + → D 0 ··· (3)

これらの式(2),(3)からわかるように、電子の捕獲確率と正孔の捕獲確率が全く等しければ、Dの密度が増加していくことはなく、感度の劣化は生じない。たとえ電子の捕獲確率が正孔の捕獲確率よりも大きく、Dの密度が増加していくことがあったとしても、捕獲量が増加するのは正孔だけであり、電子の捕獲量の増加は起こらないので、感度劣化の量は半分に抑えられる。 As can be seen from these equations (2) and (3), if the electron capture probability and the hole capture probability are exactly the same, the density of D does not increase, and the sensitivity does not deteriorate. Even if the electron capture probability is higher than the hole capture probability and the density of D may increase, only the holes increase the capture amount, and the increase in the electron capture amount Does not occur, so the amount of sensitivity degradation can be halved.

また、X線が入射する側の電極が、正極、すなわち、電位が高くなるようにバイアス電圧が印加されているため、 図3に示すように、X線入射によって発生した電子はX線入射側に、正孔はその反対側に移動する。また、X線と物質との相互作用の特徴として、物質の表面ほど反応が起こりやすいという性質があるため、X線入射によって発生する電子の多くはX線入射面付近で発生し、かつ、移動方向がX線入射側の電極方向であるため移動距離が短い。 In addition, since the electrode on the side on which X-rays are incident is positive, that is, a bias voltage is applied so as to increase the potential, as shown in FIG. In addition, the holes move to the opposite side. In addition, as a feature of the interaction between X-rays and substances, since the reaction is more likely to occur on the surface of the substance, most of the electrons generated by the incidence of X-rays are generated near the X-ray incident surface and move. Since the direction is the electrode direction on the X-ray incident side, the moving distance is short.

したがって、電子が再結合中心Dに捕らえられずに電極に到達する確率が大きくなり、Dの増加が最小限に抑えられる。こうして、電子の捕獲量の増加が抑えられるだけでなく、正孔の捕獲量の増加も抑えられ、感度劣化の殆どないX線検出器を得ることができる。 Therefore, the probability that the electrons reach the electrode without being captured by the recombination center D 0 is increased, and the increase in D is minimized. In this way, an increase in the amount of trapped electrons can be suppressed, and an increase in the amount of trapped holes can also be suppressed, thereby obtaining an X-ray detector with little deterioration in sensitivity.

更に、添加(ドーピング)されたアルカリ金属の量が、0.01ppmから10ppmの範囲であるため、a−Seの構造欠陥Dを補償する量にほぼ等しく、(1)式の反応が確実に起り、感度劣化は抑えられる。 Further, since the amount of the alkali metal added (doping) is in the range of 0.01 ppm to 10 ppm, it is almost equal to the amount that compensates for the structural defect D 0 of a-Se, and the reaction of the formula (1) is ensured. It happens and sensitivity degradation is suppressed.

もし仮に、0.01ppmよりも少ない場合には、アルカリ金属の効果が薄れて感度劣化が生じ、10ppmよりも多い場合には、アルカリ金属が単体で析出する等の現象が起り、暗電流の増加や、感度の急激な低下が起こる。 If the content is less than 0.01 ppm, the effect of the alkali metal is diminished and the sensitivity is deteriorated. If the content is more than 10 ppm, a phenomenon such as precipitation of the alkali metal alone occurs and the dark current increases. Or a sudden drop in sensitivity occurs.

また、上記のよう構成されたX線検出器は、ドーピングされたアルカリ金属の量が0.05ppmから2ppmの範囲である(請求項2)Further, X-ray detector configured as described above, the amount of doped alkali metal is in the range of 2ppm from 0.05 ppm (claim 2).

当然のことながら、この量の範囲内であっても、アルカリ金属の種類と、蒸着温度や基板温度等の成膜条件によって最適値が存在する。例えば、0.05ppmから2ppmの範囲である。 Naturally, even within this range, there is an optimum value depending on the type of alkali metal and the film forming conditions such as the deposition temperature and the substrate temperature. For example, the range is from 0.05 ppm to 2 ppm.

上記アルカリ金属は、例えばナトリウムである(請求項3)。The alkali metal is, for example, sodium (Claim 3).

また、単一の前記バイアス電圧印加電極に対して、前記キャリア収集電極、前記コンデンサ、及び、前記スイッチング素子が2次元アレイ状に複数配置されていることにしてもよい(請求項4)。このような構成にかかる従来のX線検出器の場合は、X線の入射強度に応じて感度劣化が起こるため、局所的な感度ムラが生じ、その後に撮影する画質への影響が顕著に現れる。その一方、請求項4に係るX線検出器は、アモルファス・セレン(a−Se)半導体層にアルカリ金属がドーピングされており、バイアス電圧印加電極に正バイアスを印加して使用するため、感度劣化が殆どなく、感度ムラのような画質劣化は生じない。 A plurality of the carrier collection electrodes, the capacitors, and the switching elements may be arranged in a two-dimensional array with respect to a single bias voltage application electrode. In the case of a conventional X-ray detector having such a configuration, sensitivity deterioration occurs according to the incident intensity of X-rays, so that local sensitivity unevenness occurs, and the influence on the image quality to be captured after that appears remarkably. . On the other hand, in the X-ray detector according to claim 4, since the amorphous selenium (a-Se) semiconductor layer is doped with an alkali metal and applied with a positive bias applied to the bias voltage application electrode, the sensitivity deteriorates. There is almost no image quality deterioration such as uneven sensitivity.

以上の説明から明らかなように、この発明によれば、X線に有感な半導体層に、アルカリ金属が0.01ppmから10ppmの範囲だけ添加(ドーピング)されたアモルファス・セレン(a−Se)半導体厚膜を用いているので、構造欠陥と欠陥の電荷捕獲中心への変化が最低限に抑えられ、感度劣化の殆どないX線検出器を得ることができる。 As is apparent from the above description, according to the present invention, amorphous selenium (a-Se) in which an alkali metal is added (doped) in a range of 0.01 ppm to 10 ppm to a semiconductor layer sensitive to X-rays. Since the semiconductor thick film is used, it is possible to obtain an X-ray detector in which the structural defect and the change of the defect to the charge trapping center are suppressed to the minimum and the sensitivity is hardly deteriorated.

このような効果は2次元アレイ構成にした時に顕著に現れ、局所的な感度劣化による感度ムラが生じない大面積X線画像検出器を得ることができる。 Such an effect appears remarkably when the two-dimensional array configuration is adopted, and a large-area X-ray image detector that does not cause sensitivity unevenness due to local sensitivity deterioration can be obtained.

以下、図面を参照してこの発明の一実施例を説明する。 図1ないし図4はこの発明の一実施例に係り、図1は実施例に係るX線検出器の概略断面図、図2は実施例のX線検出器の内部構造を説明する図、
none'>図3はX線検出器の作用を説明する図、図4はX線検出器の変形実施例を示す概略断面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1 to 4 relate to one embodiment of the present invention, FIG. 1 is a schematic sectional view of an X-ray detector according to the embodiment, and FIG. 2 is a diagram for explaining the internal structure of the X-ray detector according to the embodiment.
none '> FIG. 3 is a diagram for explaining the operation of the X-ray detector, and FIG. 4 is a schematic sectional view showing a modified embodiment of the X-ray detector.

この実施例に係るX線検出器は、図1に示すように、キャリア収集電極1と下部キャリア選択層2とが形成されたガラス基板等の絶縁性の基板3上に、0.01ppmから10ppmの範囲、より好ましくは0.05ppmから2ppmの範囲であるように、アルカリ金属が添加(ドーピング)されたアモルファス・セレン(a−Se)半導体厚膜4が形成され、a−Se半導体厚膜1の上面には、上部キャリア選択層5を介して電圧印加電極6が形成されている。 As shown in FIG. 1, the X-ray detector according to this embodiment is formed on an insulating substrate 3 such as a glass substrate on which a carrier collecting electrode 1 and a lower carrier selection layer 2 are formed. An amorphous selenium (a-Se) semiconductor thick film 4 to which an alkali metal is added (doping) is formed so as to be in the range of 0.05 ppm to 2 ppm, and the a-Se semiconductor thick film 1 is formed. A voltage application electrode 6 is formed on the upper surface of the first electrode via an upper carrier selection layer 5.

下部及び上部のキャリア選択層2,5は、暗電流を抑えるためのものであり、電圧印加電極6に正バイアスを印加する場合には、上部キャリア選択層5には、正孔の注入を制限するために、例えばCdSのようなn型の半導体層やSbのような半絶縁層が用いられる。また、下部キャリア選択層2には、電子の注入を制限するために、例えばAsSeのようなp型の半導体層やSbのような半絶縁層が用いられる。 The lower and upper carrier selection layers 2 and 5 are for suppressing dark current. When a positive bias is applied to the voltage application electrode 6, the upper carrier selection layer 5 is restricted from injecting holes. For this purpose, for example, an n-type semiconductor layer such as CdS or a semi-insulating layer such as Sb 2 S 3 is used. For the lower carrier selection layer 2, for example, a p-type semiconductor layer such as AsSe or a semi-insulating layer such as Sb 2 S 3 is used in order to limit electron injection.

この実施例に係るX線検出器は、電圧印加電極6にバイアス電圧を印加して使用し、X線入射によってアモルファス・セレン(a−Se)半導体厚膜4内部に発生する電荷(電子・正孔)が、それぞれ両電極方向に移動することによって誘起される電荷を、キャリア収集電極1から電気信号として検出する。 The X-ray detector according to this embodiment is used by applying a bias voltage to the voltage application electrode 6, and charges generated in the amorphous selenium (a-Se) semiconductor thick film 4 by the X-ray incidence (electron / positive). The holes) detect the electric charges induced by moving in the directions of both electrodes, respectively, from the carrier collecting electrode 1 as electric signals.

アモルファス・セレン(a−Se)半導体厚膜4の内部には、図2(b)に示すように、再結合中心であるDと、Dがイオン化したD(電子捕獲中心)およびD(正孔捕獲中心)の3種類の構造欠陥が潜在的に存在する。しかし、この実施例に係るX線検出器の場合は、アモルファス・セレン(a−Se)半導体厚膜4にはアルカリ金属Mが添加(ドーピング)されているので、図2(a)に示すように、DとDしか存在しない。感度の値はD,Dの密度によって決まるが、上記(2)式に従ってX線照射によってDが増加して行くが、Dの増加はないので、X線検出器の感度の劣化は半分に抑えられる。 Inside the amorphous selenium (a-Se) semiconductor thick film 4, as shown in FIG. 2 (b), and D 0 is the recombination centers, D + (electron trapping centers) D 0 is ionized and D - three structural defects (hole trapping centers) potentially exists. However, in the case of the X-ray detector according to this embodiment, since the alkali metal M is added (doping) to the amorphous selenium (a-Se) semiconductor thick film 4, as shown in FIG. Only D 0 and D exist. The value of sensitivity is determined by the density of D + and D , but D increases by X-ray irradiation according to the above equation (2), but there is no increase of D + , so the sensitivity of the X-ray detector deteriorates. Can be reduced to half.

さらに、X線入射側の電極すなわち、図3においては電圧印加電極6の電位が、キャリア収集電極1の電位よりも高くなるように正のバイアス電圧を印加した場合は、図3に示すように、X線入射によって発生した電子はX線入射側に、正孔はその反対側に移動する。また、X線と物質との相互作用の特徴として、物質の表面ほど反応が起こりやすいという性質があるので、X線入射によって発生する電子の多くはX線入射面付近で発生し、かつ、移動方向がX線入射側の電極方向であるためその移動距離を短くすることができる。よって、電子が再結合中心Dに捕らえられずに電圧印加電極6に到達する確率は大きくなり、Dの増加が最小限に抑えられる。その結果、X線検出器の感度劣化は殆どなくなる。 Further, when a positive bias voltage is applied so that the potential of the X-ray incident side electrode, that is, the potential of the voltage application electrode 6 in FIG. 3 is higher than the potential of the carrier collection electrode 1, as shown in FIG. Electrons generated by X-ray incidence move to the X-ray incidence side, and holes move to the opposite side. In addition, the characteristic of the interaction between X-rays and substances is that the surface of the substance is more likely to react, so most of the electrons generated by X-ray incidence are generated near the X-ray incidence plane and move. Since the direction is the electrode direction on the X-ray incident side, the movement distance can be shortened. Therefore, electrons probability of reaching the voltage application electrode 6 without being captured in the recombination centers D 0 is increased, D - increase is minimized in. As a result, there is almost no sensitivity deterioration of the X-ray detector.

この実施例に係るX線検出器を2次元マトリックス状の複数チャネルに展開し、各キャリア収集電極11に電荷蓄積用のコンデンサ12および電荷読み出し用のスイッチ素子13を設けて2次元アレイ構成とした変形実施例の概略断面図を図4に示す。なお、構成によっては上述したX線検出器と同符号を付すことで詳細な説明を省略する。 The X-ray detector according to this embodiment is expanded to a plurality of channels in a two-dimensional matrix, and each carrier collecting electrode 11 is provided with a charge storage capacitor 12 and a charge readout switch element 13 to form a two-dimensional array configuration. A schematic cross-sectional view of a modified embodiment is shown in FIG. In addition, detailed description is abbreviate | omitted by attaching | subjecting the same code | symbol as the X-ray detector mentioned above depending on the structure.

この変形例に係るX線検出器は、共通電極として全面的に形成された電圧印加電極14にバイアス電圧が印加された状態で、X線が照射された場合、それに伴って生成した電荷(電子・正孔)が両電極方向にそれぞれ移動し、X線の入射場所に応じたキャリア収集電極11を介して接続された電荷蓄積用のコンデンサ12に誘導電荷が蓄積されるとともに、読み出しタイミングになった時に、ゲートドライバ15からゲートライン16を介してオン信号が送り込まれてスイッチ素子13がオン(接続)となり、蓄積電荷が放射線検出信号として読み出しライン17から電荷−電圧変換器群18およびマルチプレクサ19を順に経てデジタル信号として外部に送り出されて、2次元のX線像を得る構成になっている。 In the X-ray detector according to this modification, when X-rays are applied in a state in which a bias voltage is applied to the voltage application electrode 14 formed entirely as a common electrode, charges (electrons) generated accordingly・ Hole) moves in both electrode directions, and induced charges are accumulated in the charge accumulating capacitor 12 connected via the carrier collecting electrode 11 corresponding to the X-ray incident location, and the readout timing is reached. At this time, an ON signal is sent from the gate driver 15 through the gate line 16 and the switch element 13 is turned ON (connected), so that the accumulated charge is a radiation detection signal from the readout line 17 as a charge-voltage converter group 18 and a multiplexer 19. Are sequentially sent out as a digital signal to obtain a two-dimensional X-ray image.

このような2次元アレイ構成にした場合、この発明に係るX線検出器の特徴が顕著に現れる。すなわち、従来のX線検出器の場合は、X線の入射強度に応じて感度劣化が起こるため、局所的な感度ムラが生じ、その後に撮影する画質への影響が顕著に現れる。その一方、この変形実施例に係るX線検出器は、アモルファス・セレン(a−Se)半導体厚膜20にアルカリ金属が添加(ドーピング)されており、電圧印加電極14に正バイアスを印加して使用するため、感度劣化が殆どなく、感度ムラのような画質劣化は生じない。 In the case of such a two-dimensional array configuration, the features of the X-ray detector according to the present invention remarkably appear. That is, in the case of a conventional X-ray detector, sensitivity deterioration occurs according to the incident intensity of X-rays, so that local sensitivity unevenness occurs, and the influence on the image quality to be taken after that appears remarkably. On the other hand, in the X-ray detector according to this modified embodiment, an alkali metal is added (doping) to the amorphous selenium (a-Se) semiconductor thick film 20 and a positive bias is applied to the voltage application electrode 14. Since it is used, there is almost no sensitivity deterioration, and image quality deterioration such as sensitivity unevenness does not occur.

上述したX線検出器と、その変形実施例において、アルカリ金属の例として、Li、Na、Kが代表的であるが、この発明の作用で説明したように、イオン化傾向が大きく、還元効果のある元素であれば、Caのようなアルカリ土類金属や、Hのような非金属元素をドーピングしても同様な効果が得られる。 In the above-described X-ray detector and its modified embodiments, Li, Na, and K are typical examples of alkali metals. However, as explained in the operation of the present invention, the ionization tendency is large and the reduction effect is high. For certain elements, similar effects can be obtained by doping an alkaline earth metal such as Ca or a non-metallic element such as H.

<この発明品の測定データ及び従来例との比較>次に、この実施例に係るX線検出器で、感度劣化が改善されることを実際に確かめる。 <Comparison with Measurement Data of the Invention Product and Conventional Example> Next, it is actually confirmed that the sensitivity deterioration is improved in the X-ray detector according to this example.

サンプルは、以下の表1に示すように、アモルファス・セレン(a−Se)半導体厚膜20中にアルカリ金属Naをそれぞれ、0.01ppm、0.1ppm、0.5ppm、1.0ppm、5.0ppm、10.0ppm添加(ドーピング)した試験用1、試験用2、試験用3、試験用4、試験用5および試験用6のX線検出器と、20.0ppmのアルカリ金属Naをドーピングした比較用1のX線検出器と、ノンドープのアモルファス・セレン(a−Se)半導体厚膜を形成した比較用2の8つのX線検出器である。なお、各X線検出器のアモルファス・セレン(a−Se)半導体厚膜4の厚さは全て1mmである。 As shown in Table 1 below, the samples were obtained by adding 0.01 ppm, 0.1 ppm, 0.5 ppm, 1.0 ppm, and 0.5 ppm of alkali metal Na into the amorphous selenium (a-Se) semiconductor thick film 20, respectively. 0 ppm, 10.0 ppm added (doping) test 1, test 2, test 3, test 4, test 5 and test 6 X-ray detectors and 20.0 ppm alkali metal Na doped These are an X-ray detector for comparison 1 and eight X-ray detectors for comparison 2 in which a non-doped amorphous selenium (a-Se) semiconductor thick film is formed. Note that the thickness of the amorphous selenium (a-Se) semiconductor thick film 4 of each X-ray detector is 1 mm.

Figure 2008151795
Figure 2008151795

試験用・比較用ともに、電圧印加電極6にそれぞれ±10kVのバイアス電圧を印加するとともに、キャリア収集電極1に電流計を接続して、信号電流が読み出せるようにした。この状態で、管電圧80kV、管電流2.2mAの条件でアルミニウム製のフィルター1mmを通したX線を15分間連続照射し、信号電流の変化を記録した。このときの信号電流の変化の例を図5に示す。 For both the test and the comparison, a bias voltage of ± 10 kV was applied to the voltage application electrode 6 and an ammeter was connected to the carrier collection electrode 1 so that the signal current could be read out. In this state, X-rays that passed through a 1 mm aluminum filter were continuously irradiated for 15 minutes under the conditions of a tube voltage of 80 kV and a tube current of 2.2 mA, and the change in signal current was recorded. An example of the change in the signal current at this time is shown in FIG.

比較用2のX線検出器は、正負バイアスともに指数関数的に信号電流が低下していくが、試験用3のX線検出器は、正バイアスでは殆ど信号電流が変化せず、負バイアスでも低下傾向が小さいことがわかる。なお、表1中の信号電流劣化量ΔIは、X線照射直後の信号電流と、15分後の信号電流の差、すなわち、感度劣化量を表す。 The signal current of the X-ray detector for comparison 2 decreases exponentially with both positive and negative biases. However, the signal current of the X-ray detector for test 3 hardly changes with positive bias, and even with negative bias. It can be seen that the downward trend is small. The signal current degradation amount ΔI in Table 1 represents the difference between the signal current immediately after X-ray irradiation and the signal current after 15 minutes, that is, the sensitivity degradation amount.

上記の結果から、アルカリ金属Naのドープ量が0.01〜10.0ppmの範囲で信号電流劣化量ΔIが小さく、感度劣化が少ないことがわかる。また、負バイアスに比べて、正バイアスの感度劣化の方が小さいことがわかる。 From the above results, it is understood that the signal current deterioration amount ΔI is small and the sensitivity deterioration is small when the alkali metal Na doping amount is in the range of 0.01 to 10.0 ppm. It can also be seen that the sensitivity deterioration of the positive bias is smaller than that of the negative bias.

また、同様にカリウム(K)を0.5ppmドーピングした試験用7のX線検出器を作成し、信号電流の変化を調べた。その結果を次の表2に示す。カリウム(K)をドープしていない比較用2の検出器よりも、信号電流劣化量が明らかに小さいことがわかる。 Similarly, a test 7 X-ray detector doped with 0.5 ppm of potassium (K) was prepared, and the change in signal current was examined. The results are shown in Table 2 below. It can be seen that the amount of signal current deterioration is clearly smaller than that of the second detector for comparison not doped with potassium (K).

Figure 2008151795
Figure 2008151795

また、リチウム(Li)を0.1ppmドーピングした試験用8のX線検出器を作成し、同様に信号電流の変化を調べた。その結果を次の表3に示す。リチウム(Li)をドープしていない比較用2の検出器よりも、信号電流劣化量が明らかに小さいことがわかる。 Further, an X-ray detector for test 8 doped with 0.1 ppm of lithium (Li) was prepared, and the change in signal current was similarly examined. The results are shown in Table 3 below. It can be seen that the amount of signal current deterioration is clearly smaller than that of the second detector for comparison not doped with lithium (Li).

Figure 2008151795
Figure 2008151795

これらの結果より、ナトリウム(Na)以外のアルカリ金属をドーピングしても同様な結果が得られ、感度劣化を抑制できることがわかる。 From these results, it can be seen that the same results can be obtained even if an alkali metal other than sodium (Na) is doped, and the sensitivity deterioration can be suppressed.

なお、この発明は上述した実施形態に限定されるものではなく、種々の変形実施が可能である。
In addition, this invention is not limited to embodiment mentioned above, A various deformation | transformation implementation is possible.

この発明の一実施形態であるX線検出器の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the X-ray detector which is one Embodiment of this invention. この発明の一実施形態であるX線検出器の内部構造を説明する図である。It is a figure explaining the internal structure of the X-ray detector which is one Embodiment of this invention. この発明の一実施形態であるX線検出器の作用を説明する図である。It is a figure explaining the effect | action of the X-ray detector which is one Embodiment of this invention. この発明の変形実施例であるX線検出器の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the X-ray detector which is a modified example of this invention. 試験用3・比較用2の2つのX線検出器の信号電流の変化を示すグラフである。It is a graph which shows the change of the signal current of two X-ray detectors for test 3 and comparison 2.

符号の説明Explanation of symbols

1,11 … キャリア収集電極
2 … 下部キャリア選択層
3 … 基板
5 … 上部キャリア選択層
6 … 電圧印加電極
12 … コンデンサ
13 … スイッチ素子
14 … 電圧印加電極
15 … ゲートドライバ
16 … ゲートライン
17 … 読み出しライン
18 … 電荷−電圧変換器群
19 … マルチプレクサ
4,20 … アモルファス・セレン(a−Se)半導体厚膜
DESCRIPTION OF SYMBOLS 1,11 ... Carrier collection electrode 2 ... Lower carrier selection layer 3 ... Substrate 5 ... Upper carrier selection layer 6 ... Voltage application electrode 12 ... Capacitor 13 ... Switch element 14 ... Voltage application electrode 15 ... Gate driver 16 ... Gate line 17 ... Read-out Line 18 ... Charge-voltage converter group 19 ... Multiplexers 4, 20 ... Amorphous selenium (a-Se) semiconductor thick film

Claims (4)

アルカリ金属がドーピングされたアモルファス・セレンからなり、X線入射によって内部に電子・正孔のキャリアを発生する半導体層と、
前記半導体X線入射面側に設けられ、正のバイアス電圧が印加されるバイアス電圧印加電極と、
前記半導体層のX線入射面側とは反対側に設けられ、前記キャリアを収集するためのキャリア収集電極と、
前記キャリア収集電極から収集したキャリアを蓄積するためのコンデンサと、
前記コンデンサに蓄積された電荷を読み出すためのスイッチング素子とを有し、
前記アルカリ金属のドーピング量が、0.01〜10ppmの範囲であることを特徴とするX線検出器。
A semiconductor layer made of amorphous selenium doped with an alkali metal and generating electron / hole carriers therein by X-ray incidence ;
Provided X-ray incident surface side of the semiconductor layer, and the bias voltage application electrode to which a positive bias voltage is applied,
A carrier collecting electrode provided on the opposite side to the X-ray incident surface side of the semiconductor layer, and for collecting the carriers;
A capacitor for accumulating carriers collected from the carrier collection electrode;
A switching element for reading out the electric charge accumulated in the capacitor,
The alkali metal doping amount is in a range of 0.01 to 10 ppm.
前記アルカリ金属のドーピング量が、0.05〜2ppmの範囲であることを特徴とする請求項1記載のX線検出器。The X-ray detector according to claim 1, wherein the doping amount of the alkali metal is in a range of 0.05 to 2 ppm. 前記アルカリ金属がナトリウムであることを特徴とする請求項1又は2記載のX線検出器。The X-ray detector according to claim 1, wherein the alkali metal is sodium. 単一の前記バイアス電圧印加電極に対して、前記キャリア収集電極、前記コンデンサ、及び、前記スイッチング素子が2次元アレイ状に複数配置されていることを特徴とする請求項1〜3いずれかに記載のX線検出器。The carrier collection electrode, the capacitor, and a plurality of the switching elements are arranged in a two-dimensional array with respect to a single bias voltage application electrode. X-ray detector.
JP2007332471A 2007-12-25 2007-12-25 X-ray detector Pending JP2008151795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007332471A JP2008151795A (en) 2007-12-25 2007-12-25 X-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007332471A JP2008151795A (en) 2007-12-25 2007-12-25 X-ray detector

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002120678A Division JP4188619B2 (en) 2002-04-23 2002-04-23 X-ray detector

Publications (2)

Publication Number Publication Date
JP2008151795A true JP2008151795A (en) 2008-07-03
JP2008151795A5 JP2008151795A5 (en) 2008-12-25

Family

ID=39654072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007332471A Pending JP2008151795A (en) 2007-12-25 2007-12-25 X-ray detector

Country Status (1)

Country Link
JP (1) JP2008151795A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252354A (en) * 1984-05-29 1985-12-13 Nippon Mining Co Ltd Electrophotographic sensitive selenium and selenium photosensitive film and its manufacture
JPS60252353A (en) * 1984-05-29 1985-12-13 Nippon Mining Co Ltd Electrophotographic sensitive senlenium and selenium photosensitive film and its manufacture
WO1989004063A1 (en) * 1987-10-21 1989-05-05 Hitachi, Ltd. Light-receiving element and method of operating the same
JPH10104358A (en) * 1996-09-03 1998-04-24 Noranda Inc Multilayer plate for x-ray imaging and method of producing same
EP1009038A2 (en) * 1998-12-10 2000-06-14 Shimadzu Corporation Radiation detecting apparatus
JP2001255376A (en) * 2000-03-08 2001-09-21 Shindengen Electric Mfg Co Ltd Radiation detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60252354A (en) * 1984-05-29 1985-12-13 Nippon Mining Co Ltd Electrophotographic sensitive selenium and selenium photosensitive film and its manufacture
JPS60252353A (en) * 1984-05-29 1985-12-13 Nippon Mining Co Ltd Electrophotographic sensitive senlenium and selenium photosensitive film and its manufacture
WO1989004063A1 (en) * 1987-10-21 1989-05-05 Hitachi, Ltd. Light-receiving element and method of operating the same
JPH10104358A (en) * 1996-09-03 1998-04-24 Noranda Inc Multilayer plate for x-ray imaging and method of producing same
EP1009038A2 (en) * 1998-12-10 2000-06-14 Shimadzu Corporation Radiation detecting apparatus
JP2001255376A (en) * 2000-03-08 2001-09-21 Shindengen Electric Mfg Co Ltd Radiation detector

Similar Documents

Publication Publication Date Title
Street et al. Comparison of PbI 2 and HgI 2 for direct detection active matrix x-ray image sensors
Kasap et al. Direct-conversion flat-panel X-ray image detectors
JP4188619B2 (en) X-ray detector
US4926052A (en) Radiation detecting device
US8129688B2 (en) Method and apparatus for a radiation detector
Kabir et al. Photoconductors for x-ray image detectors
Overdick et al. Status of direct conversion detectors for medical imaging with X-rays
JP5566569B2 (en) Amorphous selenium flat panel X-ray imager for tomosynthesis and static imaging
US9121953B2 (en) Array of virtual Frisch-grid detectors with common cathode and reduced length of shielding electrodes
Street et al. X-ray imaging using lead iodide as a semiconductor detector
US8487266B2 (en) X-ray detector and method for manufacturing the same
WO2006076788A1 (en) Dark current reduction in metal/a-se/metal structures for application as an x-ray photoconductor layer in digital image detectors
JP2005101193A (en) Radiation detector
JP3703217B2 (en) X-ray detector
US20160161426A1 (en) Pillar Based Amorphous and Polycrystalline Photoconductors for X-ray Image Sensors
Nariyuki et al. New development of large-area direct conversion detector for digital radiography using amorphous selenium with a C60-doped polymer layer
JP2005327817A (en) Radiation detector
Hellier et al. Performance evaluation of an amorphous selenium photodetector at high fields for application integration
Overdick et al. Towards direct conversion detectors for medical imaging with X-rays
JP5070031B2 (en) Radiation image detector
Luke et al. Recent developments in semiconductor gamma-ray detectors
Pan et al. Inorganic Perovskite CsPbBr 3 Gamma-Ray Detector
JP2008151795A (en) X-ray detector
JP2005033002A (en) Radiation detector and its manufacturing method
Goldan et al. Reduced photocurrent lag using unipolar solid-state photoconductive detector structures: Application to stabilized nip amorphous selenium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120731