JP2008150669A - Method for manufacturing high-strength steel tube - Google Patents

Method for manufacturing high-strength steel tube Download PDF

Info

Publication number
JP2008150669A
JP2008150669A JP2006340071A JP2006340071A JP2008150669A JP 2008150669 A JP2008150669 A JP 2008150669A JP 2006340071 A JP2006340071 A JP 2006340071A JP 2006340071 A JP2006340071 A JP 2006340071A JP 2008150669 A JP2008150669 A JP 2008150669A
Authority
JP
Japan
Prior art keywords
steel pipe
strength
less
tube
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006340071A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Shinya Sakamoto
真也 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006340071A priority Critical patent/JP2008150669A/en
Publication of JP2008150669A publication Critical patent/JP2008150669A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a high-strength steel tube with which the high strength steel tube having ≥590 MPa TS, suitable to a round tube, a square tube and a deformed tube, etc., used for constructive members for automobile. <P>SOLUTION: The steel tube composed by mass% of 0.005-0.50% C, ≤0.6% Si, 0.3-3.0% Mn, ≤0.02% P, ≤0.006% S, 0.001-0.08% Al, 0.001-0.006% N, ≤0.006% O and further, at least one or more among 0.5-1.2% Cu, 0.005-0.10% Nb and 0.01-0.10% V and the balance Fe with inevitable impurities, is made to be a raw tube stock, and after performing tube extending work at cold-rolling to this raw tube stock so as to become 10-60% reduction area ratio, a heat-treatment in the temperature range of 500-650°C for 30 sec, is applied and successively, air-cooling is performed as the manufacturing method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車等の構造部材に使用される、590MPa以上の引張強度(TS)を有した丸管、角管及び異形管等の製造に好適な高強度鋼管の製造方法に関する。   The present invention relates to a method for manufacturing a high-strength steel pipe suitable for manufacturing round tubes, square tubes, deformed tubes and the like having a tensile strength (TS) of 590 MPa or more, which are used for structural members such as automobiles.

近年、自動車から排出される炭酸ガスの抑制によって地球温暖化を防止する観点から、燃費向上を目的とした車体の軽量化が検討されている。さらに、衝突安全性に関する基準も厳しくなっていることから、その安全性向上のための検討が盛んに行なわれている。このような、自動車の軽量化と安全性を両立させる方法として、高強度鋼を自動車の構造部材に適用する検討が活発化してきている。
また、上述のような自動車用の構造部材の形状は複雑化しており、丸管だけでなく、角管や異形管も要求されるようになっている。
In recent years, from the viewpoint of preventing global warming by suppressing carbon dioxide emitted from automobiles, weight reduction of vehicle bodies for the purpose of improving fuel efficiency has been studied. Furthermore, since the standards for collision safety are becoming stricter, studies for improving the safety have been actively conducted. As a method for achieving both weight reduction and safety of automobiles, studies for applying high-strength steel to structural members of automobiles have been activated.
Moreover, the shape of the structural member for automobiles as described above is complicated, and not only a round tube but also a square tube and a deformed tube are required.

鋼管の強度を増加させる方法としては、例えば、特許文献1に記載されているような、素材となる熱延鋼板の強度を増加させる方法や、非特許文献1に記載されているような、電縫鋼管を造管した後、焼き入れ及び焼き戻しを行う方法がある。   As a method for increasing the strength of a steel pipe, for example, a method for increasing the strength of a hot-rolled steel sheet as a material as described in Patent Document 1, or a method for increasing the strength of a steel pipe as described in Non-Patent Document 1. There is a method of quenching and tempering after making a sewn steel pipe.

しかしながら、特許文献1に記載の熱延鋼板の強度を増加させる方法では、鋼板の合金元素の添加量を多くしなければならず、また、造管時のスプリングバックが大きく成形形状が安定化しないため、電縫溶接部の品質が劣化するという問題がある。
一方、非特許文献1に記載の造管後に焼き入れ及び焼き戻しを行う方法では、焼き入れ性を確保するために合金元素の添加量を多くする必要があり、電縫溶接部の品質が劣化するとともに、焼き入れ時に鋼管の曲がりが発生するために矯正を行なう必要があり、製造コストが高くなるという問題がある。
However, in the method for increasing the strength of the hot-rolled steel sheet described in Patent Document 1, the amount of alloying element added to the steel sheet must be increased, and the spring shape during pipe making is large and the formed shape is not stabilized. Therefore, there is a problem that the quality of the ERW welded portion is deteriorated.
On the other hand, in the method of quenching and tempering after pipe making described in Non-Patent Document 1, it is necessary to increase the amount of alloying elements to ensure hardenability, and the quality of the ERW welds deteriorates. In addition, since the steel pipe is bent at the time of quenching, it is necessary to correct the steel pipe, which increases the manufacturing cost.

これらの問題に対して、特許文献2では、CuあるいはMoを含有した熱延鋼板を用いて造管し、鋼管を500℃〜650℃で熱処理する、高強度電縫鋼管の製造方法が開示されている。特許文献2に記載の製造方法は、熱間圧延鋼板から成形、溶接、定型を経て造管した後、熱処理することによって高強度化する方法であり、その後、冷間での伸管工程と焼鈍工程が付与される。   With respect to these problems, Patent Document 2 discloses a method for producing a high-strength ERW steel pipe, in which a pipe is formed using a hot rolled steel sheet containing Cu or Mo, and the steel pipe is heat-treated at 500 ° C. to 650 ° C. ing. The manufacturing method described in Patent Document 2 is a method of forming a pipe from a hot-rolled steel sheet through forming, welding, and forming, followed by heat treatment to increase the strength, and then performing a cold drawing process and annealing. A process is given.

しかしながら、特許文献2に記載の製造方法では、熱処理によって鋼管の強度が高くなるため、冷間での伸管加工において大きな減面率がとれず、所定の鋼管サイズに製造する際、生産性が低下して製造コストが高くなるという問題がある。また、特許文献2に記載の方法では、鋼管の強度を高めるためにCu添加量を1.5%程度まで添加する例が開示されているが、このような添加量とした場合には、鋳片のひび割れが発生しやすくなるという問題がある。さらに、特許文献2に記載の方法では、ひび割れを防止するために多量のNi添加が必要となるので、製造コストが高くなるという問題があった。
特開昭52−114519号公報 特開平4−103718号公報 「日新製鋼技法」、日新製鋼株式会社、第48号、p.88
However, in the manufacturing method described in Patent Document 2, since the strength of the steel pipe is increased by heat treatment, a large reduction in area cannot be obtained in the cold drawing process, and productivity is increased when manufacturing to a predetermined steel pipe size. There exists a problem that it falls and manufacturing cost becomes high. In addition, in the method described in Patent Document 2, an example is disclosed in which the amount of Cu added is increased to about 1.5% in order to increase the strength of the steel pipe. There is a problem that cracking of the pieces is likely to occur. Furthermore, the method described in Patent Document 2 has a problem that the production cost increases because a large amount of Ni is required to prevent cracking.
JP 52-114519 A JP-A-4-103718 “Nisshin Steel Making Technique”, Nisshin Steel Corporation, No. 48, p. 88

本発明は上記課題に鑑みてなされたものであり、特に、自動車用の構造部材に使用される丸管、角管および異形管等に好適な、TSが590MPa以上の高強度鋼管を安価に製造できる、高強度鋼管の製造方法を提供することを目的とする。   The present invention has been made in view of the above-mentioned problems. In particular, a high-strength steel pipe having a TS of 590 MPa or more, which is suitable for round tubes, rectangular tubes and deformed tubes used for structural members for automobiles, is inexpensively manufactured. An object of the present invention is to provide a method for producing a high-strength steel pipe.

本発明の要旨とするところは以下の通りである。   The gist of the present invention is as follows.

(1) 質量%で、C:0.005%〜0.50%、Si:0.6%以下、Mn:0.3〜3.0%、P:0.02%以下、S:0.006%以下、Al:0.001〜0.08%、N:0.001〜0.006%、O:0.006%以下をそれぞれ含有し、さらに、Cu:0.5〜1.2%、Nb:0.005〜0.10%、V:0.01〜0.10%の内の少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなる鋼管を素管とし、該素管を減面率10%以上60%以下となるように冷間で伸管加工した後、500℃から650℃の温度範囲で30秒以上の熱処理を行い、次いで空冷することを特徴とする高強度鋼管の製造方法。 (1) By mass%, C: 0.005% to 0.50%, Si: 0.6% or less, Mn: 0.3 to 3.0%, P: 0.02% or less, S: 0.00. 006% or less, Al: 0.001 to 0.08%, N: 0.001 to 0.006%, O: 0.006% or less, and Cu: 0.5 to 1.2% , Nb: 0.005 to 0.10%, V: 0.01 to 0.10% of at least one or two or more types of steel pipes with the balance of iron and unavoidable impurities The tube is subjected to cold drawing so that the area reduction rate is 10% or more and 60% or less, and then heat treatment is performed at a temperature range of 500 ° C. to 650 ° C. for 30 seconds or more, and then air cooling is performed. A method for producing a high-strength steel pipe.

(2) 前記素菅とされる鋼管が、さらに、質量%で、Ni:0.1〜2.0%、Cr:0.1〜2.0%、Mo:0.1〜2.5%、Ti:0.005〜0.030%の内の少なくとも1種または2種以上を含有することを特徴とする上記(1)に記載の高強度鋼管の製造方法。 (2) The steel pipe used as the raw material is further in mass%, Ni: 0.1-2.0%, Cr: 0.1-2.0%, Mo: 0.1-2.5% , Ti: containing at least one or more of 0.005 to 0.030%, The method for producing a high-strength steel pipe according to the above (1).

(3) 前記素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却する工程が備えられていることを特徴とする上記(1)又は(2)に記載の高強度鋼管の製造方法。 (3) The method described in (1) or (2) above, further comprising a step of heating and cooling to a temperature equal to or higher than the Ac3 transformation point before the tube is cold-drawn. Manufacturing method of high strength steel pipe.

本発明の高強度鋼管の製造方法によれば、上記構成により、丸管、角管および異形管等に好適な、TSが590MPa以上の高強度鋼管を、安価に製造することができる。このような、本発明の高強度鋼管の製造方法で得られる高強度鋼管を自動車等の構造部材に採用することにより、自動車等の軽量化が可能となるとともに、衝突安全性を著しく向上させることができ、さらに、自動車等の燃費が向上するので、資源の有効利用が可能となる。   According to the method for producing a high-strength steel pipe of the present invention, a high-strength steel pipe having a TS of 590 MPa or more, which is suitable for a round pipe, a square pipe, a deformed pipe and the like, can be produced at a low cost. By adopting such a high-strength steel pipe obtained by the method for producing a high-strength steel pipe of the present invention for a structural member such as an automobile, it becomes possible to reduce the weight of the automobile or the like and to significantly improve the collision safety. In addition, since the fuel efficiency of automobiles and the like is improved, resources can be effectively used.

以下、本発明に係る高強度鋼管の製造方法の実施の形態について詳細に説明する。
なお、この実施形態は、発明の趣旨をより良く理解させるために詳細に説明するものであるから、特に指定の無い限り、本発明を限定するものではない。
Hereinafter, an embodiment of a method for producing a high-strength steel pipe according to the present invention will be described in detail.
In addition, since this embodiment is described in detail for better understanding of the gist of the invention, the present invention is not limited unless otherwise specified.

本発明の高強度鋼管の製造方法は、質量%で、C:0.005%〜0.50%、Si:0.6%以下、Mn:0.3〜3.0%、P:0.02%以下、S:0.006%以下、Al:0.001〜0.08%、N:0.001〜0.006%、O:0.006%以下をそれぞれ含有し、さらに、Cu:0.5〜1.2%、Nb:0.005〜0.10%以下、V:0.01〜0.10%以下の内の少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなる鋼管を素管とし、該素管を減面率10%以上60%以下となるように冷間で伸管加工した後、500℃から650℃の温度範囲で30秒以上の熱処理を行い、次いで空冷する方法である。   The manufacturing method of the high strength steel pipe of this invention is the mass%, C: 0.005-0.50%, Si: 0.6% or less, Mn: 0.3-3.0%, P: 0.00. 02% or less, S: 0.006% or less, Al: 0.001 to 0.08%, N: 0.001 to 0.006%, O: 0.006% or less, and Cu: 0.5 to 1.2%, Nb: 0.005 to 0.10% or less, V: 0.01 to 0.10% or less of at least one or two or more types, with the balance being iron and A steel pipe made of inevitable impurities is used as a raw pipe, and the raw pipe is cold-drawn so that the area reduction rate is 10% or more and 60% or less, and then at a temperature range of 500 ° C to 650 ° C for 30 seconds or more. In this method, heat treatment is performed, followed by air cooling.

本発明の高強度鋼管の製造方法は、Cu、Nb、Vの内の少なくとも1種または2種以上を含有する鋼管を素管として、この鋼管を冷間で伸管加工した後、熱処理することにより、Cu、Nb、Vの析出強化を最大限に発揮させて鋼管の高強度を達成することが可能な方法である。   The method for producing a high-strength steel pipe according to the present invention includes a steel pipe containing at least one or more of Cu, Nb, and V as a base pipe, and the steel pipe is cold-drawn and then heat-treated. Thus, it is possible to achieve the high strength of the steel pipe by maximizing the precipitation strengthening of Cu, Nb and V.

「素菅の成分組成」
以下に、本発明で規定する素菅(鋼管母材)の成分組成の限定理由について詳述する。
"Composition of ingredients"
Below, the reason for limitation of the component composition of the raw material (steel pipe base material) prescribed | regulated by this invention is explained in full detail.

(C:0.005%〜0.50%)
C(炭素)は、母材の強度を確保するために、0.005%以上の添加量とすることが必要である。しかしながら、Cの添加量が0.50%を超えると、素菅の加工性や靭性が低下することから、0.50%を上限値とした。
(C: 0.005% to 0.50%)
C (carbon) needs to be added in an amount of 0.005% or more in order to ensure the strength of the base material. However, if the amount of addition of C exceeds 0.50%, the workability and toughness of the green will deteriorate, so 0.50% was made the upper limit.

(Si:0.6%以下)
Si(ケイ素)は、脱酸や強度向上のために添加する元素であるが、添加量が多すぎるとスケール生成による表面性状の劣化が著しくなるので、上限を0.6%とした。
(Si: 0.6% or less)
Si (silicon) is an element added for deoxidation and strength improvement, but if the addition amount is too large, the surface properties deteriorate due to scale formation, so the upper limit was made 0.6%.

(Mn:0.3%〜3.0%)
Mn(マンガン)は、強度を確保する上で不可欠な元素であり、その添加量の下限は0.3%である。しかしながら、Mnの添加量が多すぎると連続鋳造鋼片の中心偏析を助長し、成形時に亀裂を発生させるので、上限を3.0%とした。
(Mn: 0.3% to 3.0%)
Mn (manganese) is an indispensable element for securing strength, and the lower limit of the amount of addition is 0.3%. However, if the amount of Mn added is too large, the center segregation of the continuously cast steel piece is promoted and cracks are generated at the time of molding, so the upper limit was made 3.0%.

(P:0.02%以下)
本発明では、不可避的不純物であるP(リン)の含有量を0.02%以下とする。この主たる理由としては、溶接部の割れ発生を防止することが挙げられる。また、Pの含有量の低減は、連続鋳造スラブの中心偏析を低減させ、粒界破壊を防止し低温靭性を向上させるという効果がある。
(P: 0.02% or less)
In the present invention, the content of P (phosphorus), which is an inevitable impurity, is set to 0.02% or less. The main reason is to prevent the occurrence of cracks in the weld. Moreover, the reduction of the P content has the effect of reducing the center segregation of the continuously cast slab, preventing the grain boundary fracture and improving the low temperature toughness.

(S:0.006%以下)
S(硫黄)も、Pと同様に不可避的に混入する元素であり、その含有量が0.006%を超えると溶接部に割れが発生するので、上限の値を0.006%とした。
(S: 0.006% or less)
S (sulfur) is an element inevitably mixed in the same way as P. If the content of S (sulfur) exceeds 0.006%, cracks occur in the weld zone, so the upper limit value was set to 0.006%.

(Al:0.001〜0.08%)
Al(アルミニウム)は、キルド鋼の場合、その含有量を0.001%未満におさえることは製鋼技術上難しく、また、0.08%を超えると鋳片の割れや酸化物系巨大介在物の形成による内質欠陥を巻き起こすので、上限の値を0.08%とした。
(Al: 0.001 to 0.08%)
In the case of Al (aluminum), in the case of killed steel, it is difficult to suppress the content to less than 0.001% in terms of steelmaking technology, and when it exceeds 0.08%, cracks in slabs and large oxide inclusions Since an internal defect due to formation is caused, the upper limit value is set to 0.08%.

(N:0.001〜0.006%)
N(窒素)は、TiとともにTiNを形成し、スラブ再加熱時のγ粒の粗大化を抑制して低温靭性を向上させる効果があり、このために必要な最小添加量は0.001%である。しかしながら、Nの添加量が多すぎるとスラブ表面疵の原因となるので、その上限の値は0.006%に抑える必要がある。
(N: 0.001 to 0.006%)
N (nitrogen) forms TiN together with Ti and has the effect of improving the low temperature toughness by suppressing the coarsening of γ grains during slab reheating, and the minimum addition amount required for this is 0.001% is there. However, if the amount of N added is too large, it causes slab surface flaws, so the upper limit value must be limited to 0.006%.

(O:0.006%以下)
O(酸素)は、鋼管の靱性を劣化させる不可避的不純物であるので、その含有量が少ないほど好ましい。特に0.006%を超えると、鋼中に粗大な酸化物が多量に生成するため、靱性が劣化するので、その上限の値を0.006%とした。
(O: 0.006% or less)
O (oxygen) is an unavoidable impurity that deteriorates the toughness of the steel pipe, so the smaller the content, the better. In particular, if it exceeds 0.006%, a large amount of coarse oxides are produced in the steel and the toughness deteriorates, so the upper limit value was made 0.006%.

(Cu:0.5〜1.2%)
Cu(銅)は、冷間加工後の熱処理時に析出硬化をもたらす重要な元素であり、このような効果を充分に発揮させるためには0.5%以上の添加が必要である。しかしながら、Cuを過剰に添加すると熱間圧延時にCu−クラックが発生するため、その上限の値を1.2%とした。
(Cu: 0.5-1.2%)
Cu (copper) is an important element that brings about precipitation hardening at the time of heat treatment after cold working, and 0.5% or more of addition is necessary in order to sufficiently exhibit such an effect. However, if Cu is added excessively, Cu-cracks are generated during hot rolling, so the upper limit value was set to 1.2%.

(Nb:0.005〜0.10%)
Nb(ニオブ)も、Cuと同様、冷間加工後の熱処理時に析出硬化をもたらす重要な元素であり、このような効果を得るためには最低0.005%のNbが必要である。しかしながら、Nbの添加量が多すぎると延性が劣化するので、その上限の値を0.10%に限定した。
(Nb: 0.005-0.10%)
Nb (niobium), like Cu, is an important element that brings about precipitation hardening during heat treatment after cold working, and at least 0.005% Nb is necessary to obtain such an effect. However, if the amount of Nb added is too large, the ductility deteriorates, so the upper limit value was limited to 0.10%.

(V:0.01〜0.10%)
V(バナジウム)は、Nbとほぼ同様の効果を有し、その効果を発揮させるためには0.01%以上の添加が必要である。また、上限は延性の点から0.10%まで許容できる。
(V: 0.01-0.10%)
V (vanadium) has substantially the same effect as Nb, and 0.01% or more of addition is necessary to exert the effect. Further, the upper limit is allowable up to 0.10% from the viewpoint of ductility.

次に、Ni、Cr、Mo、Tiを添加する理由について説明する。本発明において、上記基本成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の特徴を損なうことなく強度の向上を図るためである。従って、その添加量は自ずから制限されるべき性質のものである。   Next, the reason for adding Ni, Cr, Mo, Ti will be described. In the present invention, the main purpose of adding these elements to the above basic components is to improve the strength without impairing the characteristics of the steel of the present invention. Therefore, the amount of addition is naturally limited.

(Ni:0.1〜2.0%)
Ni(ニッケル)は、溶接性に悪影響を及ぼすことなく母材の強度を向上させる効果があるが、0.1%以下ではその効果が充分に得られず、また、2.0%を超える添加は溶接性に好ましくないため、その上限の値を2.0%とした。
(Ni: 0.1-2.0%)
Ni (nickel) has the effect of improving the strength of the base material without adversely affecting the weldability, but the effect cannot be sufficiently obtained at 0.1% or less, and addition exceeding 2.0% Is not preferable for weldability, so the upper limit value was made 2.0%.

(Cr:0.1〜2.0%)
Cr(クロム)は、母材の強度を増加させる効果があり、0.1%以上の添加が必要である。しかしながら、Crの添加量が多すぎると溶接性を著しく劣化させるため、上限の値を2.0%とした。
(Cr: 0.1-2.0%)
Cr (chromium) has the effect of increasing the strength of the base material, and it is necessary to add 0.1% or more. However, if the amount of Cr added is too large, the weldability is remarkably deteriorated, so the upper limit value was set to 2.0%.

(Mo:0.1〜2.5%)
Mo(モリブデン)は、母材の強度を上昇させる元素であるが、2.5%を超えて添加するとCrと同様に溶接性を劣化させ、また、0.1%以下の添加では、その効果が充分に得られない。
(Mo: 0.1-2.5%)
Mo (molybdenum) is an element that increases the strength of the base metal, but if added over 2.5%, the weldability is deteriorated in the same manner as Cr. Cannot be obtained sufficiently.

(Ti:0.005〜0.030%)
Ti(チタン)は、Nとともに微細なTiNを形成し、スラブ再加熱時のγ粒の粗大化を抑制してミクロ組織を微細化し、母材の強度及び靭性の改善に寄与する元素であり、このような効果を発揮させるためには、0.005%以上の添加が必要である。また、Tiの添加量が多すぎると、TiNの粗大化やTiCによる析出硬化が生じ、低温靭性を劣化させるので、その上限の値を0.030%に限定した。
(Ti: 0.005 to 0.030%)
Ti (titanium) is an element that forms fine TiN together with N, suppresses the coarsening of γ grains during slab reheating, refines the microstructure, and contributes to the improvement of the strength and toughness of the base material. In order to exhibit such an effect, addition of 0.005% or more is necessary. Moreover, since the coarsening of TiN and the precipitation hardening by TiC will arise if there is too much addition amount of Ti and low temperature toughness will be deteriorated, the upper limit was limited to 0.030%.

「製造方法」
以下に、本発明の高強度交換の製造方法で規定する各製造条件について説明する。
"Production method"
Below, each manufacturing condition prescribed | regulated with the manufacturing method of the high intensity | strength exchange of this invention is demonstrated.

本発明の製造方法は、上記成分範囲の鋼管を素管とし、該素管を減面率10%以上60%以下となるように冷間で伸管加工した後、500℃から650℃の温度範囲で30秒以上の熱処理を行い、次いで空冷する方法である。
本発明では、素管を冷間で伸管加工することによってひずみを鋼中に導入し、その後、上記温度範囲の熱処理を行ない、Cu、Nb、V等の炭窒化物を転位上に微細析出させることにより、高強度化された鋼管が得られる。
In the production method of the present invention, a steel pipe having the above component range is used as a raw pipe, and the raw pipe is cold-drawn so that the area reduction rate is 10% or more and 60% or less. This is a method of performing heat treatment for 30 seconds or more in the range and then air-cooling.
In the present invention, strain is introduced into the steel by cold-drawing the raw tube, and then heat treatment in the above temperature range is performed to finely precipitate carbonitrides such as Cu, Nb, and V on the dislocations. By doing so, a steel pipe with increased strength can be obtained.

冷間での伸管加工時の減面率が10%未満だと、鋼中に充分なひずみが導入されないので、析出強化による強度上昇の効果が充分に得られない。また、減面率が60%を超えると、鋼が冷間加工時に破断するため、減面率は60%以下に制限した。
熱処理の温度が500℃未満だと、Cu、Nb、Vの析出が不充分となり、また、650℃を超えると過時効となり、充分な強度が得られない。また、熱処理の時間が30秒未満だと、Cu、Nb、Vの析出が不十分となる。
If the area reduction during cold drawing is less than 10%, sufficient strain cannot be introduced into the steel, so that the effect of increasing the strength by precipitation strengthening cannot be obtained sufficiently. Further, when the area reduction rate exceeds 60%, the steel is broken during cold working, so the area reduction rate is limited to 60% or less.
If the temperature of the heat treatment is less than 500 ° C., Cu, Nb and V are not sufficiently precipitated, and if it exceeds 650 ° C., overaging occurs and sufficient strength cannot be obtained. Further, if the heat treatment time is less than 30 seconds, the precipitation of Cu, Nb, and V becomes insufficient.

なお、本発明の製造方法では、上記各製造条件に加え、さらに、素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却する工程が備えられていることが、より優れた強度特性及び延性(伸び)を有する高強度鋼管が得られる点で好ましい。   In addition to the above manufacturing conditions, the manufacturing method of the present invention further includes a step of heating and cooling to a temperature equal to or higher than the Ac3 transformation point before the tube is cold-drawn. However, it is preferable at the point from which the high strength steel pipe which has the outstanding strength characteristic and ductility (elongation) is obtained.

以上説明したように、本発明の高強度鋼管の製造方法によれば、上記構成により、丸管、角管および異形管等に好適な、TSが590MPa以上の高強度鋼管を、安価に製造することができる。このような、本発明の高強度鋼管の製造方法で得られる高強度鋼管を自動車等の構造部材に採用することにより、自動車等の軽量化が可能となるとともに、衝突安全性を著しく向上させることができ、さらに、自動車等の燃費が向上するので、資源の有効利用が可能となる。   As described above, according to the method for manufacturing a high-strength steel pipe of the present invention, a high-strength steel pipe having a TS of 590 MPa or more suitable for round tubes, square tubes, deformed tubes, and the like is manufactured at low cost by the above configuration. be able to. By adopting such a high-strength steel pipe obtained by the method for producing a high-strength steel pipe of the present invention for a structural member such as an automobile, it becomes possible to reduce the weight of the automobile or the like and to significantly improve the collision safety. In addition, since the fuel efficiency of automobiles and the like is improved, resources can be effectively used.

以下、本発明に係る高強度鋼管の製造方法の実施例を挙げ、本発明をより具体的に説明するが、本発明は、もとより下記実施例に限定されるものではなく、前、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれるものである。   Hereinafter, examples of the method for producing a high-strength steel pipe according to the present invention will be given and the present invention will be described more specifically. However, the present invention is not originally limited to the following examples, but the purpose described above and below The present invention can be carried out with appropriate modifications within a range that can be adapted to the above, and all of them are included in the technical scope of the present invention.

[サンプル作製]
下記表1に示す化学成分組成を有する符号1から23までの鋼を用いて、鋼管サイズが63.5mm(φ)×2.2mm(t)の素菅(母材鋼管)を準備し、下記表2に示す条件で伸菅加工及び熱処理を行い、本発明鋼(鋼1〜12)からなる高強度鋼管、及び比較鋼(鋼13〜23)からなる鋼管を得た。
[Sample preparation]
Using steel from 1 to 23 having the chemical composition shown in Table 1 below, a steel pipe (base steel pipe) having a steel pipe size of 63.5 mm (φ) × 2.2 mm (t) is prepared. Stretching and heat treatment were performed under the conditions shown in Table 2 to obtain a high-strength steel pipe made of the steel of the present invention (steels 1 to 12) and a steel pipe made of comparative steel (steels 13 to 23).

[評価試験]
上記方法によって製造された各鋼管のサンプルについて、引張試験を行うことにより、機械的性質を調査した。
引張試験は、JIS Z 2201に準拠し、鋼管長手方向から5号試験片を採取し、JIS Z 2241に準拠して行った。なお、表2に示すYS(MPa)は降伏強度、TS(MPa)は引張強度、EL(%)は全伸びである。
[Evaluation test]
Each steel pipe sample manufactured by the above method was examined for mechanical properties by conducting a tensile test.
The tensile test was performed in accordance with JIS Z 2241 and sampled No. 5 test piece from the longitudinal direction of the steel pipe and in accordance with JIS Z 2241. In Table 2, YS (MPa) is the yield strength, TS (MPa) is the tensile strength, and EL (%) is the total elongation.

本実施例の各鋼の化学成分組成の一覧を表1に示し、また、鋼管の製造条件及び機械的性質の一覧を表2に示す。   Table 1 shows a list of chemical composition of each steel of this example, and Table 2 shows a list of manufacturing conditions and mechanical properties of the steel pipe.

Figure 2008150669
Figure 2008150669

Figure 2008150669
Figure 2008150669

[評価結果]
表1及び表2に示す結果から明らかなように、本発明で規定する範囲内の化学成分組成の鋼(鋼1〜12)を用い、本発明で規定する範囲内の製造条件によって鋼管を製造した場合には、高い強度特性を有するとともに良好な延性(伸び)を有する高強度鋼管が得られることが分かる。
[Evaluation results]
As is clear from the results shown in Tables 1 and 2, steel pipes (steel 1 to 12) having a chemical composition within the range specified in the present invention are used, and a steel pipe is manufactured according to the manufacturing conditions within the range specified in the present invention. In this case, it is understood that a high-strength steel pipe having high strength characteristics and good ductility (elongation) can be obtained.

これに対して、化学成分組成又は各製造条件の何れかが、本発明の規定範囲外とされた比較鋼(鋼13〜23)からなる鋼管は、機械的特性の何れかが劣る結果となっている。
鋼13は、Cuの添加量が質量%で0.35%と少ないため、引張強度TSが500(MPa)と低い結果となっている。また、鋼14は、Cuの添加量が1.3%と多過ぎるため、Cu−クラックが発生する結果となった。
鋼15は、Nbの添加量が0.002%と少ないため、引張強度TSが480(MPa)と低い結果となっている。また、鋼16は、Nbの添加量が0.110%と多過ぎるため、全伸びELが4%と劣る結果となっている。
鋼17は、Vの添加量が少ないため、引張強度TSが470(MPa)と低い結果となっている。また、鋼18は、Vの添加量が0.11%と多過ぎるため、全伸びELが4%と劣る結果となっている。
In contrast, a steel pipe made of comparative steel (steel 13 to 23) whose chemical component composition or each manufacturing condition is outside the specified range of the present invention results in inferior mechanical properties. ing.
Steel 13 has a low tensile strength TS of 500 (MPa) because the amount of Cu added is as low as 0.35% by mass. Moreover, since the addition amount of Cu was too much with 1.3%, the result of which the Cu-crack generate | occur | produced was produced for the steel 14.
Steel 15 has a low tensile strength TS of 480 (MPa) because the amount of Nb added is as low as 0.002%. Moreover, since the amount of Nb added is too large at 0.110%, the total elongation EL is inferior at 4%.
Steel 17 has a low tensile strength TS of 470 (MPa) because the amount of V added is small. Moreover, since the addition amount of V is too much at 0.11%, the total elongation EL is inferior at 4%.

鋼19は、伸菅加工の際の減面率が5%と小さいため、引張強度TSが560(MPa)と低い結果となっている。また、鋼20は、伸菅加工の際の減面率が65%と大き過ぎるため、伸管加工中に破断する結果となった。
鋼21は、熱処理温度が450℃と低いため、引張強度TSが565(MPa)と低い結果となっている。また、鋼22は、熱処理温度が700℃と高過ぎるため、引張強度TSが560(MPa)と低い結果となっている。
鋼23は、熱処理の時間が20秒と短いため、引張強度TSが555(MPa)と低い結果となっている。
Since steel 19 has a small area reduction rate of 5% during the drawing process, the tensile strength TS is as low as 560 (MPa). Moreover, since the area reduction rate in the drawing process of steel 20 was too large at 65%, it resulted in a fracture during the drawing process.
Since the heat treatment temperature of steel 21 is as low as 450 ° C., the tensile strength TS is as low as 565 (MPa). Moreover, since the heat processing temperature of steel 22 is too high with 700 degreeC, it has a low tensile strength TS of 560 (MPa).
Steel 23 has a low tensile strength TS of 555 (MPa) because the heat treatment time is as short as 20 seconds.

本発明の製造方法で得られる高強度鋼管は、強度特性及び延性に優れており、自動車分野の他、各種分野の構造部材に適用することができる。   The high-strength steel pipe obtained by the production method of the present invention is excellent in strength characteristics and ductility, and can be applied to structural members in various fields in addition to the automobile field.

Claims (3)

質量%で、
C:0.005%〜0.50%、
Si:0.6%以下、
Mn:0.3〜3.0%、
P:0.02%以下、
S:0.006%以下、
Al:0.001〜0.08%、
N:0.001〜0.006%、
O:0.006%以下
をそれぞれ含有し、さらに、
Cu:0.5〜1.2%、
Nb:0.005〜0.10%、
V:0.01〜0.10%
の内の少なくとも1種または2種以上を含有し、残部が鉄および不可避的不純物からなる鋼管を素管とし、
該素管を減面率10%以上60%以下となるように冷間で伸管加工した後、500℃から650℃の温度範囲で30秒以上の熱処理を行い、次いで空冷することを特徴とする高強度鋼管の製造方法。
% By mass
C: 0.005% to 0.50%,
Si: 0.6% or less,
Mn: 0.3-3.0%
P: 0.02% or less,
S: 0.006% or less,
Al: 0.001 to 0.08%,
N: 0.001 to 0.006%,
O: each containing 0.006% or less,
Cu: 0.5 to 1.2%,
Nb: 0.005 to 0.10%,
V: 0.01-0.10%
A steel pipe containing at least one or more of the above, with the balance being iron and inevitable impurities,
The base tube is subjected to cold drawing so that the area reduction rate is 10% or more and 60% or less, then heat-treated at a temperature range of 500 ° C. to 650 ° C. for 30 seconds or more, and then air-cooled. To manufacture high strength steel pipe.
前記素菅とされる鋼管が、さらに、質量%で、
Ni:0.1〜2.0%、
Cr:0.1〜2.0%、
Mo:0.1〜2.5%、
Ti:0.005〜0.030%
の内の少なくとも1種または2種以上を含有することを特徴とする請求項1に記載の高強度鋼管の製造方法。
The steel pipe used as the raw material is further in mass%,
Ni: 0.1 to 2.0%,
Cr: 0.1 to 2.0%,
Mo: 0.1 to 2.5%,
Ti: 0.005-0.030%
2. The method for producing a high-strength steel pipe according to claim 1, comprising at least one or more of the above.
前記素管を冷間で伸管加工する前に、Ac3変態点以上の温度に加熱し、冷却する工程が備えられていることを特徴とする請求項1又は2に記載の高強度鋼管の製造方法。

The high-strength steel pipe according to claim 1 or 2, further comprising a step of heating and cooling to a temperature equal to or higher than the Ac3 transformation point before the pipe is cold-drawn. Method.

JP2006340071A 2006-12-18 2006-12-18 Method for manufacturing high-strength steel tube Withdrawn JP2008150669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006340071A JP2008150669A (en) 2006-12-18 2006-12-18 Method for manufacturing high-strength steel tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006340071A JP2008150669A (en) 2006-12-18 2006-12-18 Method for manufacturing high-strength steel tube

Publications (1)

Publication Number Publication Date
JP2008150669A true JP2008150669A (en) 2008-07-03

Family

ID=39653157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006340071A Withdrawn JP2008150669A (en) 2006-12-18 2006-12-18 Method for manufacturing high-strength steel tube

Country Status (1)

Country Link
JP (1) JP2008150669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131754A1 (en) * 2009-05-15 2010-11-18 株式会社神戸製鋼所 Hollow seamless pipe for high-strength springs

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131754A1 (en) * 2009-05-15 2010-11-18 株式会社神戸製鋼所 Hollow seamless pipe for high-strength springs
JP2010265523A (en) * 2009-05-15 2010-11-25 Kobe Steel Ltd Hollow seamless pipe for high strength spring
KR101386871B1 (en) 2009-05-15 2014-04-17 가부시키가이샤 고베 세이코쇼 Hollow seamless pipe for high-strength springs
US9689051B2 (en) 2009-05-15 2017-06-27 Kobe Steel, Ltd. Hollow seamless pipe for high-strength springs

Similar Documents

Publication Publication Date Title
JP4475440B1 (en) Seamless steel pipe and manufacturing method thereof
CN110100032B (en) Tempered martensitic steel having low yield ratio and excellent uniform elongation and method for producing same
JP4381355B2 (en) Steel having excellent delayed fracture resistance and tensile strength of 1600 MPa class or more and method for producing the molded product thereof
WO2015129403A1 (en) Rolled material for high strength spring, and wire for high strength spring
TWI460292B (en) Ferritic stainless steel
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
EP2551366A1 (en) High-strength electrical-resistance-welded steel pipe and manufacturing method therefor
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP4057930B2 (en) Machine structural steel excellent in cold workability and method for producing the same
JPH07188834A (en) High strength steel sheet having high ductility and its production
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
CN110088331B (en) Hot-rolled steel sheet for electric resistance welded steel pipe having excellent weldability and method for producing same
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP2006110581A (en) High strength and high toughness wire for arc welding
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP4967356B2 (en) High strength seamless steel pipe and manufacturing method thereof
JP5935678B2 (en) High toughness high strength steel and method for producing the same
JP2000104116A (en) Production of steel excellent in strength and toughness
JP2008150669A (en) Method for manufacturing high-strength steel tube
KR101707340B1 (en) Chain steel and manufacturing method thereof
WO2018139672A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
WO2018139671A1 (en) Steel pipe for underbody components of automobiles, and underbody component of automobiles
KR20160078844A (en) Steel sheet having excellent resistance to hydrogen induced cracking, and method of manufacturing the same
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP2003342638A (en) Process for manufacturing high-strength bent tube

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302