JP2008150665A - Method for producing ozone water - Google Patents

Method for producing ozone water Download PDF

Info

Publication number
JP2008150665A
JP2008150665A JP2006339998A JP2006339998A JP2008150665A JP 2008150665 A JP2008150665 A JP 2008150665A JP 2006339998 A JP2006339998 A JP 2006339998A JP 2006339998 A JP2006339998 A JP 2006339998A JP 2008150665 A JP2008150665 A JP 2008150665A
Authority
JP
Japan
Prior art keywords
cation exchange
ozone water
anode
cathode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006339998A
Other languages
Japanese (ja)
Other versions
JP4464387B2 (en
Inventor
Yoshiyuki Nishimura
喜之 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikka Micron Co Ltd
Original Assignee
Nikka Micron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikka Micron Co Ltd filed Critical Nikka Micron Co Ltd
Priority to JP2006339998A priority Critical patent/JP4464387B2/en
Publication of JP2008150665A publication Critical patent/JP2008150665A/en
Application granted granted Critical
Publication of JP4464387B2 publication Critical patent/JP4464387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing ozone water which can simply and inexpensively recover the fatigue with elapsed time of a cation-exchange membrane and remove a stain component. <P>SOLUTION: The method of producing the ozone water comprises pressing an anode 22 to one face of the cation-exchange membranes 21a to 21c, pressing a cathode 23 to the other face, supplying water to the anode 22 and the cathode 23, and applying a direct-current voltage between the anode 22 and the cathode 23, wherein the ozone water is produced by applying a direct-current voltage with positive polarity to the cation-exchange membranes 21a to 21c which have absorbed water while the water has been supplied to the anode 22 and the cathode 23, and then stopping the current for a fixed period of time or longer, and applying a direct-current voltage with reverse polarity to give displacement to the cation-exchange membranes 21a to 21c. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、陽イオン交換膜の経時疲労と不純物の付着に起因する膜性能の低下を防止することのできるオゾン水生成方法に関する。   The present invention relates to a method for generating ozone water that can prevent deterioration in membrane performance due to fatigue over time and adhesion of impurities in a cation exchange membrane.

現在、産業用に普及しているオゾン水の製法は、大別して放電により生成したオゾンガスに溶解させるガス溶解法、電解により生成したオゾンガスを水に溶解させる電解ガス溶解法、電解面に原料水を直接接触させてオゾン水を生成させる直接電解法(例えば、特許文献1参照)の3方式が実用されている。直接電解法は、ガス溶解法や電解ガス溶解法に比べて、より簡単な方法で高濃度のオゾン水を生成できると知られている。
このような直接電解法は、具体的には、ケーシング内を固形電解質膜によって陽極室と陰極室とに仕切り、陽極室側の固形電解室膜面に陽極電極を、陰極室側の固形電解質膜面に陰極電極をそれぞれ圧接して設けた装置を使用して、陽極室及び陰極室に水を供給するとともに陽極電極と陰極電極との間に直流電圧を印加することによってオゾン水を生成している。
しかし、上記装置においてオゾン水生成運転を継続すると、オゾン水の濃度が次第に低下する現象が観察されている。この原因としては、継続運転することによって固形電解質膜の分子配列が少しずつ乱れることによって、膜の性能が低下するためであることが知られている。また、継続運転によって固形電解質膜の陰極側の表面にカルシウムやマグネシウムなどの汚れ成分(主として硬度成分)が付着し、これらの汚れ成分によってもオゾン水生成効率が阻害されるという問題がある。
そこで、固形電解質膜自体の性能の劣化防止として、陽極電極と陰極電極の両方を液圧シリンダによって固形電解質膜に対して圧接及び離脱可能に設け、直流電圧の印加時に液圧シリンダを前進作動させて陽極電極及び陰極電極を固形電解質膜に圧接させ、直流電圧のオフ時に液圧シリンダを後退作動させて陽極電極及び陰極電極を固形電解質膜から離脱させることにより、固形電解質膜が再び電解に使用し得る回復状態になる所定時間の間停止させる技術がある(例えば、特許文献2参照)。
特開平8−134678号公報 特開平11−172482号公報
Currently, the ozone water production method widely used for industrial purposes is roughly divided into a gas dissolution method for dissolving in ozone gas generated by discharge, an electrolytic gas dissolution method for dissolving ozone gas generated by electrolysis in water, and raw water on the electrolytic surface. Three methods of direct electrolysis (for example, refer to Patent Document 1) in which ozone water is generated by direct contact are put into practical use. It is known that the direct electrolysis method can generate high-concentration ozone water by a simpler method than the gas dissolution method and the electrolytic gas dissolution method.
Specifically, such a direct electrolysis method divides the inside of the casing into an anode chamber and a cathode chamber by a solid electrolyte membrane, an anode electrode on the surface of the solid electrolyte chamber on the anode chamber side, and a solid electrolyte membrane on the cathode chamber side Using a device in which the cathode electrode is pressed on the surface, ozone water is generated by supplying water to the anode chamber and the cathode chamber and applying a DC voltage between the anode electrode and the cathode electrode. Yes.
However, when the ozone water generation operation is continued in the above apparatus, a phenomenon has been observed in which the concentration of ozone water gradually decreases. It is known that this is because the performance of the membrane deteriorates due to the disorder of the molecular arrangement of the solid electrolyte membrane little by little by continuous operation. Further, there is a problem that due to the continuous operation, dirt components such as calcium and magnesium (mainly hardness components) adhere to the surface of the cathode side of the solid electrolyte membrane, and the ozone water generation efficiency is also inhibited by these dirt components.
Therefore, in order to prevent the deterioration of the performance of the solid electrolyte membrane itself, both the anode electrode and the cathode electrode are provided so that they can be pressed and detached from the solid electrolyte membrane by a hydraulic cylinder, and the hydraulic cylinder is operated forward when a DC voltage is applied. The anode and cathode electrodes are pressed against the solid electrolyte membrane, and when the DC voltage is turned off, the hydraulic cylinder is retracted to separate the anode and cathode electrodes from the solid electrolyte membrane, so that the solid electrolyte membrane can be used again for electrolysis. There is a technique for stopping for a predetermined period of time when a recovery state is possible (see, for example, Patent Document 2).
JP-A-8-134678 Japanese Patent Laid-Open No. 11-172482

しかしながら、上記特許文献2に記載の装置では、陽極電極及び陰極電極を固形電解質膜から圧接・離脱するために液圧シリンダといった機械的な手段が必要なため、装置が極めて複雑で大型化し、高価になるという問題がある。
本発明は、上記事情に鑑みてなされたもので、陽イオン交換膜の経時疲労の回復及び汚れ成分の除去を簡易にかつ安価に行うことのできるオゾン水生成方法を提供することを目的としている。
However, in the apparatus described in Patent Document 2, mechanical means such as a hydraulic cylinder is required to press and release the anode electrode and the cathode electrode from the solid electrolyte membrane, so that the apparatus is extremely complicated, large, and expensive. There is a problem of becoming.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an ozone water generation method capable of easily and inexpensively recovering fatigue over time of a cation exchange membrane and removing dirt components. .

上記課題を解決するため、請求項1の発明は、例えば図1に示すように、
陽イオン交換膜21a〜21cの一方の面に陽極電極22を圧接し、他方の面に陰極電極23を圧接し、前記陽極電極及び前記陰極電極に水を供給するとともに前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成方法において、
前記陽極電極及び前記陰極電極に水を供給することによって吸水状態となった前記陽イオン交換膜に、正極性の直流電圧を印加してオゾン水を生成した後、一定時間以上の無通電時間を置いて、逆極性の直流電圧を印加することにより前記陽イオン交換膜に変位を与えることを特徴とする。
In order to solve the above problem, the invention of claim 1 is, for example, as shown in FIG.
The anode electrode 22 is pressed against one surface of the cation exchange membranes 21a to 21c, the cathode electrode 23 is pressed against the other surface, water is supplied to the anode electrode and the cathode electrode, and the anode electrode and the cathode electrode are supplied. In the ozone water generation method of generating ozone water by applying a DC voltage between
After generating ozone water by applying a positive direct current voltage to the cation exchange membrane that has become water-absorbed by supplying water to the anode electrode and the cathode electrode, a non-energization time of a certain time or more is provided. The cation exchange membrane is displaced by applying a DC voltage having a reverse polarity.

請求項1の発明によれば、吸水状態となった陽イオン交換膜に正極性の直流電圧を印加してオゾン水を生成した後、一定時間以上の無通電時間を置いて、逆極性の直流電圧を印加することにより、陽イオン交換膜の分子配列をみだりに撹乱することなく陽イオン交換膜に電気刺激が与えられて、電歪現象により、陽イオン交換膜の分子配列の乱れが矯正されて、元の膜性能に復帰させることができる。その結果、陽イオン交換膜の経時疲労の回復と、陽イオン交換膜に付着したカルシウムやマグネシウム等といった汚れ成分を除去することができる。これによって、陽イオン交換膜の性能が低下することなく、オゾン水生成効率の向上を図ることができる。また、従来のように液圧シリンダといった機械的な手段を必要とせずに、装置も単純となり小型化を図れ、安価に製造することができる。
無通電時間を置かずに逆極性の直流電圧を印加した場合、陽イオン交換膜の分子配列が一層大きく乱されて、次に正極性の直流電圧を印加してオゾン水を生成しても逆に性能を低下させてしまったり、性能の回復が不能になったりすることがあるためである。
According to the first aspect of the present invention, after generating ozone water by applying a positive direct current voltage to the water-absorbed cation exchange membrane, a non-energization time of a certain time or more is allowed, and a reverse polarity direct current is applied. By applying voltage, electrical stimulation is given to the cation exchange membrane without disturbing the molecular arrangement of the cation exchange membrane, and the disturbance of the molecular arrangement of the cation exchange membrane is corrected by electrostriction. The original membrane performance can be restored. As a result, it is possible to recover the fatigue of the cation exchange membrane over time and remove soil components such as calcium and magnesium adhering to the cation exchange membrane. As a result, the ozone water generation efficiency can be improved without degrading the performance of the cation exchange membrane. Further, unlike the conventional case, no mechanical means such as a hydraulic cylinder is required, the apparatus is simplified, the size can be reduced, and the apparatus can be manufactured at low cost.
When a reverse polarity DC voltage is applied without leaving the current-carrying time, the molecular arrangement of the cation exchange membrane is further disturbed, and then the positive polarity DC voltage is applied to generate ozone water. This is because the performance may be deteriorated or the performance may not be recovered.

請求項2の発明は、請求項1に記載のオゾン水生成方法において、
前記一定時間以上の無通電時間を1分間以上とすることを特徴とする。
Invention of Claim 2 is the ozone water production | generation method of Claim 1,
The non-energization time of the predetermined time or longer is 1 minute or longer.

請求項2の発明によれば、1分間以上の無通電時間を置くことによって、無通電時間後に逆極性の直流電圧を印加して電歪現象を起こさせると、陽イオン交換膜は無通電時間(休止時間)の間に正常な状態に復帰しようとする状態に入る。そして、逆極性の直流電圧を印加すると陽イオン交換膜の分子配列が正しく矯正されて、次に正極性の直流電圧を印加してオゾン水を生成した場合には、経時疲労や汚れ成分の除去はほぼ初期状態に近い性能を示すまで回復させることができる。   According to the second aspect of the present invention, when an electrostriction phenomenon is caused by applying a DC voltage having a reverse polarity after the non-energization time by setting a non-energization time of 1 minute or more, the cation exchange membrane is not energized. During the (pause time), it enters a state where it tries to return to a normal state. When a DC voltage of reverse polarity is applied, the molecular arrangement of the cation exchange membrane is corrected correctly, and when ozone water is generated by applying a positive DC voltage, fatigue with time and removal of dirt components are eliminated. Can be recovered until it shows performance close to the initial state.

請求項3の発明は、請求項1又は2に記載のオゾン水生成方法において、
前記陽イオン交換膜は、複数枚重ねられていることを特徴とする。
Invention of Claim 3 is the ozone water production | generation method of Claim 1 or 2,
A plurality of the cation exchange membranes are stacked.

請求項3の発明によれば、陽イオン交換膜は複数枚重ねられているので、逆極性の直流電圧を印加した場合に見られる電歪現象は、陽イオン交換膜を同じ厚さの1枚の膜にした場合に比べて、薄い複数枚の膜とした場合の方が大きく変位し、汚れを落とし易くなる。特に、カルシウムやマグネシウムなどの汚れ成分の大部分は陰極電極に接している膜の、陰極電極側に付着するので、陰極電極に接触している膜には薄い陽イオン交換膜を使用することが効果的である。   According to the invention of claim 3, since a plurality of the cation exchange membranes are stacked, the electrostriction phenomenon seen when a reverse polarity DC voltage is applied is the same thickness of the cation exchange membranes. Compared to the case of using the film, the case of using a plurality of thin films is greatly displaced, and it becomes easier to remove dirt. In particular, since most of the soil components such as calcium and magnesium adhere to the cathode electrode side of the membrane in contact with the cathode electrode, it is necessary to use a thin cation exchange membrane for the membrane in contact with the cathode electrode. It is effective.

請求項4の発明は、請求項3に記載のオゾン水生成方法において、
前記複数の陽イオン交換膜は、互いに質量が異なるものであることを特徴とする。
Invention of Claim 4 is the ozone water production | generation method of Claim 3,
The plurality of cation exchange membranes are different in mass from each other.

厚さの厚い陽イオン交換膜は電気抵抗がそれだけ大きく、高い電圧を維持するのでオゾン発生には有利である。一方、電歪現象を利用して付着した汚れを落とすためには、厚さの薄い膜が有利である。これら両方を実現するためには、オゾンを発生する陽極電極側の陽イオン交換膜には厚い膜を、陰極電極側の陽イオン交換膜には薄い膜を使用することが有効である。
請求項4の発明によれば、複数の陽イオン交換膜は互いに質量が異なるものであるので、オゾン発生にも、付着した汚れを落とすにも有効なオゾン水生成方法を実現することができる。
A thick cation exchange membrane is advantageous in generating ozone because it has a high electrical resistance and maintains a high voltage. On the other hand, a thin film is advantageous in order to remove the adhered dirt using the electrostriction phenomenon. In order to realize both of these, it is effective to use a thick film for the cation exchange membrane on the anode electrode side that generates ozone and a thin film for the cation exchange membrane on the cathode electrode side.
According to the invention of claim 4, since the plurality of cation exchange membranes have different masses, it is possible to realize an ozone water generation method that is effective for both ozone generation and removal of attached dirt.

請求項5の発明は、請求項1〜4のいずれか一項に記載のオゾン水生成方法において、 前記通電は、パルス波電流を印加することを特徴とする。   Invention of Claim 5 is the ozone water production | generation method as described in any one of Claims 1-4. WHEREIN: The said electricity supply applies a pulse wave electric current, It is characterized by the above-mentioned.

請求項5の発明によれば、パルス波電流を印加することによって通電するので、電歪現象を繰り返し起こさせることで、陽イオン交換膜の膜性能の劣化をより回復させることができる。特に、カルシウムやマグネシウム等の除去に有効となる。   According to the fifth aspect of the invention, since the current is applied by applying the pulse wave current, the deterioration of the membrane performance of the cation exchange membrane can be further recovered by causing the electrostriction phenomenon repeatedly. In particular, it is effective for removing calcium and magnesium.

請求項6の発明は、請求項1〜5のいずれか一項に記載のオゾン水生成方法において、 前記陽イオン交換膜の一方の面に前記陽極電極が圧接し、他方の面に前記陰極電極が圧接することによって、前記陽イオン交換膜は前記陽極電極と前記陰極電極との間で保持されて、前記陽イオン交換膜の前記陽極電極面側及び前記陰極電極面側以外の周面がフリーな状態とされていることを特徴とする。   Invention of Claim 6 is the ozone water production | generation method as described in any one of Claims 1-5. WHEREIN: The said anode electrode press-contacts to one surface of the said cation exchange membrane, and the said cathode electrode to the other surface The cation exchange membrane is held between the anode electrode and the cathode electrode, and the peripheral surfaces other than the anode electrode surface side and the cathode electrode surface side of the cation exchange membrane are free. It is characterized by being in a neutral state.

請求項6の発明によれば、陽イオン交換膜が陽極電極と陰極電極との間で保持されて、陽イオン交換膜の陽極電極面側及び陰極電極面側以外の周面がフリーな状態とされているので、陽イオン交換膜の変位が阻害されずに、電歪現象を起こし易く保持することができる。   According to invention of Claim 6, a cation exchange membrane is hold | maintained between an anode electrode and a cathode electrode, and the surrounding surfaces other than the anode electrode surface side and cathode electrode surface side of a cation exchange membrane are free states. Therefore, the displacement of the cation exchange membrane is not hindered, and the electrostriction phenomenon can easily occur.

本発明によれば、陽イオン交換膜の経時疲労の回復と、付着した汚れ成分の除去を簡易かつ安価に行うことができ、オゾン水生成効率の向上を図ることができる。   According to the present invention, recovery of fatigue over time of a cation exchange membrane and removal of attached dirt components can be performed easily and inexpensively, and the efficiency of ozone water generation can be improved.

以下、本発明の実施の形態について図面を参照しながら説明する。
図1は、オゾン水生成装置100の側断面図であり、 (a)は、陽イオン交換膜21a〜21cを強く圧接した場合を示し、(b)は、電歪現象を起こしやすくするため陽イオン交換膜21a〜21cを軽く接触した場合を示したものである。
まず、本発明に係るオゾン水生成方法で使用するオゾン水生成装置100について説明する。オゾン水生成装置100は、原料水(例えば、水道水)が流入されるケーシング1内に触媒電極2を配置して構成したもので、触媒電極2に正極性の直流電圧を印加することによって微細オゾン気泡を発生させて、発生間近の微細オゾン気泡を水に溶解させることによりオゾン水を生成し、生成後、逆極性の直流電圧を印加することによって触媒電極2の陽イオン交換膜21の経時疲労の回復及び汚れ成分の除去を行うことのできる装置である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a side cross-sectional view of the ozone water generating apparatus 100. (a) shows a case where the cation exchange membranes 21a to 21c are strongly pressed, and (b) shows a positive flow for facilitating electrostriction. The case where the ion exchange membranes 21a to 21c are lightly contacted is shown.
First, the ozone water generating apparatus 100 used in the ozone water generating method according to the present invention will be described. The ozone water generating device 100 is configured by arranging a catalyst electrode 2 in a casing 1 into which raw water (for example, tap water) flows, and is fine by applying a positive DC voltage to the catalyst electrode 2. Ozone bubbles are generated, ozone water is generated by dissolving fine ozone bubbles that are close to being generated in water, and after generation, a DC voltage having a reverse polarity is applied to the cation exchange membrane 21 of the catalyst electrode 2 over time. It is an apparatus that can recover from fatigue and remove dirt components.

具体的には、ケーシング1は、長尺な筒状をなし、ケーシング1内の略中央部に触媒電極2が配置されて、これによってケーシング1内の空間が陽極室11Aと陰極室11Bとに仕切られている。また、ケーシング1の上端部には、陽極室11Aに連通し、水が供給される陽極側供給口12Aと、陰極室11Bに連通し、水が供給される陰極側供給口12Bとがそれぞれ形成されている。陽極側供給口12Aには陽極室11Aに通じる陽極側供給路13Aが形成され、陰極側供給口12Bには陰極室11Bに通じる陰極側供給路13Bが形成されている。また、陽極側供給口12A及び陰極側供給口12Bには、例えば、図示しないが水が貯留されたタンクに接続された低吐出圧の小型ポンプや水道栓に連結されている。
一方、ケーシング1の下端部には、陽極室11Aに連通し、陽極室11Aで生成されたオゾン水が排出される陽極側排出口14Aと、陰極室11Bで生成された水素水等が排出される陰極側排出口14Bとがそれぞれ形成されている。陽極排出口14Aには陽極室11Aに通じる陽極側排出路15Aが形成され、陰極側排出口14Bには陰極室11Bに通じる陰極側排出路15Bが形成されている。陽極側排水口14Aには、例えば図示しないが、ケーシング1内で生成されたオゾン水を貯留するタンクに接続するためのポンプやノズル等に連結されている。陰極側排水口14Bには、例えば図示しないが、ケーシング1内で生成された水素水を貯留するタンクに接続するためのポンプやノズル等に連結されている。
また、陽極側供給口12Aと陰極側供給口12Bとの間のケーシング1の内壁面には、後述する複数枚の陽イオン交換膜21a〜21cの上端部が挿入される挿入穴16が形成され、陽極側排出口14Aと陰極側排出口14Bとの間のケーシング1の内壁面には、複数枚の陽イオン交換膜21a〜21cの下端部が挿入される挿入穴17が形成されている。
このようなケーシング1において、陽極側供給口12A及び陰極側供給口12Bから水が供給され、陽極側供給路13A、陽極側排出路15A、陰極側供給路13B及び陰極側排出路15Bを通って、陽極側排出口14A及び陰極側排出口14Bへと水流が発生している。
Specifically, the casing 1 has a long cylindrical shape, and the catalyst electrode 2 is disposed at a substantially central portion in the casing 1, whereby the space in the casing 1 is divided into the anode chamber 11 </ b> A and the cathode chamber 11 </ b> B. It is partitioned. Further, an anode side supply port 12A that communicates with the anode chamber 11A and supplies water and a cathode side supply port 12B that communicates with the cathode chamber 11B and supplies water are formed at the upper end of the casing 1, respectively. Has been. An anode-side supply path 13A that communicates with the anode chamber 11A is formed at the anode-side supply port 12A, and a cathode-side supply path 13B that communicates with the cathode chamber 11B is formed at the cathode-side supply port 12B. The anode-side supply port 12A and the cathode-side supply port 12B are connected to, for example, a low discharge pressure small pump or a water tap connected to a tank in which water is stored (not shown).
On the other hand, the lower end portion of the casing 1 communicates with the anode chamber 11A, and discharges the anode-side discharge port 14A from which ozone water generated in the anode chamber 11A is discharged and hydrogen water generated in the cathode chamber 11B. The cathode side discharge port 14B is formed. An anode side discharge path 15A leading to the anode chamber 11A is formed at the anode discharge port 14A, and a cathode side discharge path 15B leading to the cathode chamber 11B is formed at the cathode side discharge port 14B. For example, although not shown, the anode-side drain port 14A is connected to a pump, a nozzle, or the like for connecting to a tank that stores ozone water generated in the casing 1. For example, although not illustrated, the cathode side drain port 14B is connected to a pump, a nozzle, or the like for connecting to a tank for storing hydrogen water generated in the casing 1.
An insertion hole 16 is formed in the inner wall surface of the casing 1 between the anode side supply port 12A and the cathode side supply port 12B, into which upper ends of a plurality of cation exchange membranes 21a to 21c described later are inserted. In the inner wall surface of the casing 1 between the anode side discharge port 14A and the cathode side discharge port 14B, an insertion hole 17 into which the lower ends of the plurality of cation exchange membranes 21a to 21c are inserted is formed.
In such a casing 1, water is supplied from the anode side supply port 12A and the cathode side supply port 12B, and passes through the anode side supply path 13A, the anode side discharge path 15A, the cathode side supply path 13B, and the cathode side discharge path 15B. A water flow is generated to the anode side outlet 14A and the cathode side outlet 14B.

触媒電極2は、互いに対向して配置された複数枚の陽イオン交換膜21a〜21cと、陽イオン交換膜21aの陽極室11A側を向く一方の面に圧接された陽極電極22と、陽イオン交換膜21cの陰極室側11Bを向く他方の面に圧接された陰極電極23とを備えている。
ケーシング1の内壁面のうち陽極室11A側を向く面には凹部が形成されて、この凹部内に陽極電極22を保持する保持板18Aが取り付けられて、陽極電極22が保持板18Aに保持されている。同様に、ケーシング1の内壁面のうち陰極室11B側を向く面に凹部が形成されて、この凹部内に陰極電極23を保持する保持板18Bが取り付けられて、陰極電極11Bが保持板18Bに保持されている。保持板18A,18Bの背面には、適切なバネ定数のゴムや樹脂等の部材を組み合わせることが、オゾン生成に優れ、後述の逆極印加にも有効な接触圧力を実現できる点で好ましい。
The catalyst electrode 2 includes a plurality of cation exchange membranes 21a to 21c arranged to face each other, an anode electrode 22 pressed against one surface of the cation exchange membrane 21a facing the anode chamber 11A side, and a cation A cathode electrode 23 in pressure contact with the other surface of the exchange membrane 21c facing the cathode chamber side 11B.
A concave portion is formed in the inner wall surface of the casing 1 facing the anode chamber 11A side, and a holding plate 18A for holding the anode electrode 22 is attached in the concave portion, and the anode electrode 22 is held by the holding plate 18A. ing. Similarly, a recess is formed on the inner wall surface of the casing 1 facing the cathode chamber 11B side, and a holding plate 18B for holding the cathode electrode 23 is attached in the recess, and the cathode electrode 11B is attached to the holding plate 18B. Is retained. Combining members such as rubber and resin with appropriate spring constants on the rear surfaces of the holding plates 18A and 18B is preferable because it is excellent in ozone generation and can realize a contact pressure effective for reverse pole application described later.

また、陽極電極22と陰極電極23との間には、電源装置(図示しない)の出力端24が電気的に連結され、直流電圧が印加されるように構成されている。すなわち、陽極電極22及び陰極電極23は、各電極22,23に導線を介して電源装置に連結されている。陽極電極22と陰極電極23間に印加する直流電圧は、例えば6〜15ボルトが好ましく、パルス波電流が好ましい。   An output terminal 24 of a power supply device (not shown) is electrically connected between the anode electrode 22 and the cathode electrode 23 so that a DC voltage is applied. That is, the anode electrode 22 and the cathode electrode 23 are connected to the power supply device through the conductive wires to the electrodes 22 and 23. The DC voltage applied between the anode electrode 22 and the cathode electrode 23 is preferably 6 to 15 volts, for example, and is preferably a pulse wave current.

複数枚の陽イオン交換膜21a〜21cとしては、従来公知のものを使用することができ、発生するオゾンに耐久性の強いフッ素系陽イオン交換膜を使用することができ、例えば厚さおよそ100〜300μmが好ましい。また、陽極電極22及び陰極電極23よりも上下の長さが長くなっており、その上端部及び下端部が上述した挿入穴16,17にそれぞれ挿入されている。さらに、これら複数枚の陽イオン交換膜21a〜21cは、互いに質量が異なるもの、例えば陽極電極22側の陽イオン交換膜21aは厚いものを、陰極電極23側の陽イオン交換膜21cは薄いものを使用することが好ましい。これによって、オゾン発生にも優れ、汚染防止にも優れたオゾン生成装置100とすることができる。   As the plurality of cation exchange membranes 21a to 21c, conventionally known ones can be used, and a fluorine-based cation exchange membrane having a high durability against the generated ozone can be used. ˜300 μm is preferred. Moreover, the vertical length is longer than that of the anode electrode 22 and the cathode electrode 23, and the upper end portion and the lower end portion thereof are inserted into the insertion holes 16 and 17, respectively. Further, the plurality of cation exchange membranes 21a to 21c have different masses, for example, the cation exchange membrane 21a on the anode electrode 22 side is thick, and the cation exchange membrane 21c on the cathode electrode 23 side is thin. Is preferably used. Thereby, it is possible to provide an ozone generator 100 that is excellent in ozone generation and excellent in preventing pollution.

陽極電極22は、織網状又はグレーチングメタル状とすることが好ましい、なお、図1中では、陽極電極22が織網状の場合を示している。具体的に、織網状とは細い線材を格子状に織ったもので、グレーチングメタル状とは、線材を溶接したような一体格子状のものである。   The anode electrode 22 is preferably in the form of a woven mesh or a grating metal. Note that FIG. 1 shows the case where the anode 22 is a woven mesh. Specifically, the woven net shape is a thin wire rod woven in a lattice shape, and the grating metal shape is an integral lattice shape in which the wire rod is welded.

陽極電極22としては、オゾン発生触媒機能を有した金属を使用し、この金属としては白金又は白金被覆金属の電極を使用することが好ましい。   As the anode electrode 22, a metal having an ozone generation catalyst function is used, and it is preferable to use an electrode of platinum or a platinum-coated metal as the metal.

このように織網状やグレーチング状の陽極電極22とすることによって、陽極電極22を構成する部材の交点部位Pが尖って外面に突出し、水流と接触して渦流を生じ、陽極電極22で発生したオゾンの微泡を巻き込んで溶解を早めることができる。   Thus, by using the woven net-like or grating-like anode electrode 22, the intersection part P of the members constituting the anode electrode 22 sharply protrudes to the outer surface, generates a vortex in contact with the water flow, and is generated at the anode electrode 22. Ozone bubbles can be involved to accelerate dissolution.

陰極電極23としては、白金、銀、チタン等の金属や薄い銀製金網の表面を塩化銀被覆を施したものを使用することが好ましい。また、陰極電極23も陽極電極22と同様にグレーチング状とすることが好ましく、特に、陰極電極23は陽極電極22よりも目の粗さが粗くなるように形成されていることが好ましい。
以上の複数枚の陽イオン交換膜21a〜21c、陽極電極22及び陰極電極23は、それぞれ平板状に形成されており、これら複数枚の陽イオン交換膜21a〜21c、陽極電極22及び陰極電極23が密着して圧接されている。ここで、陽イオン交換膜21a〜21cと、陽極電極22及び陰極電極23との接合圧力は、図1(a)、(b)に示すように、通電できる状態でかつ後述するように逆極性の直流電圧の印加により陽イオン交換膜21a〜21cが変位できる範囲に調整する。すなわち、通電できる状態とは、陽イオン交換膜21a〜21cと陽極電極22及び陰極電極23が接触していることが条件となり、接触面圧を下げ、軽く接触させることが好ましい(例えば、図1(b)参照)。陽イオン交換膜21a〜21cが変位できる範囲とは、陽イオン交換膜の厚み、重ねる枚数などにより異なり、オゾンの生成状態や電歪現象を観察しながら決定することが好ましい。
As the cathode electrode 23, it is preferable to use a metal such as platinum, silver, or titanium or a thin silver wire mesh whose surface is coated with silver chloride. The cathode electrode 23 is also preferably formed in a grating shape like the anode electrode 22. In particular, the cathode electrode 23 is preferably formed so as to have coarser eyes than the anode electrode 22.
The plurality of cation exchange membranes 21a to 21c, the anode electrode 22 and the cathode electrode 23 are formed in a flat plate shape, and the plurality of cation exchange membranes 21a to 21c, the anode electrode 22 and the cathode electrode 23 are formed. Are in close contact and pressure contact. Here, the junction pressures of the cation exchange membranes 21a to 21c and the anode electrode 22 and the cathode electrode 23 are in a state of being energized as shown in FIGS. The cation exchange membranes 21a to 21c are adjusted so as to be displaced by applying a direct current voltage. In other words, the state where electricity can be supplied is that the cation exchange membranes 21a to 21c are in contact with the anode electrode 22 and the cathode electrode 23, and it is preferable that the contact surface pressure is lowered and lightly contacted (for example, FIG. 1). (See (b)). The range in which the cation exchange membranes 21a to 21c can be displaced varies depending on the thickness of the cation exchange membranes, the number of stacked layers, etc., and is preferably determined while observing the ozone generation state and the electrostriction phenomenon.

そして、陽イオン交換膜21a〜21cの上端部及び下端部を各挿入穴16,17に挿入するとともに、保持板18Aに陽極電極22を固定し、保持板18Bに陰極電極23を固定することによって触媒電極2がケーシング1内に取り付けられている。このように、陽イオン交換膜21a〜21cは陽極電極22と陰極電極23との間で保持されて、陽イオン交換膜21a〜21cの上下端部がケーシング1内に固定されている。   Then, by inserting the upper and lower ends of the cation exchange membranes 21a to 21c into the respective insertion holes 16, 17, the anode electrode 22 is fixed to the holding plate 18A, and the cathode electrode 23 is fixed to the holding plate 18B. A catalyst electrode 2 is mounted in the casing 1. Thus, the cation exchange membranes 21 a to 21 c are held between the anode electrode 22 and the cathode electrode 23, and the upper and lower ends of the cation exchange membranes 21 a to 21 c are fixed in the casing 1.

次に、上述の構成からなるオゾン水生成装置100を使用したオゾン水生成方法について説明する。
陽極側供給口12A及び陰極側供給口12Bから水をケーシング1内に供給して、陽極電極22面及び陰極電極23面に水を連続接触させる。同時に、電源装置を駆動させることによって陽極電極22及び陰極電極23間に所定の電圧を印加する。この通電により水が電気分解されて、陽極電極22側にはオゾン気泡が発生し、陰極電極23側には水素気泡が発生する。発生したオゾン気泡は水に溶解してオゾン水となり、陽極側排出口14Aから排出され、水素気泡は水に溶解して水素水となり、陰極側排出口14Bから排出される。
Next, an ozone water generation method using the ozone water generation apparatus 100 having the above-described configuration will be described.
Water is supplied into the casing 1 from the anode side supply port 12A and the cathode side supply port 12B, and water is continuously brought into contact with the surface of the anode electrode 22 and the surface of the cathode electrode 23. At the same time, a predetermined voltage is applied between the anode electrode 22 and the cathode electrode 23 by driving the power supply device. Water is electrolyzed by this energization, ozone bubbles are generated on the anode electrode 22 side, and hydrogen bubbles are generated on the cathode electrode 23 side. The generated ozone bubbles are dissolved in water to become ozone water and discharged from the anode side outlet 14A, and the hydrogen bubbles are dissolved in water to become hydrogen water and discharged from the cathode side outlet 14B.

このようにしてオゾン水が生成されると、一定時間以上の無通電時間を置いて逆極性の直流電圧を印加する。一定時間以上とは、例えば1分間以上とすることが好ましい。ここで、正極性とは、陽極電極22を陽極とし陰極電極23を陰極とすることを言い、逆極性とは、陽極電極22を陰極とし陰極電極23を陽極とすることを言う。実用的には2個の電磁接触器などの手段を用いて、正逆の切り換えを行い、所定の電圧を印加する。   When ozone water is generated in this manner, a reverse polarity DC voltage is applied with a non-energization time of a certain time or more. For example, the predetermined time or longer is preferably 1 minute or longer. Here, positive polarity means that the anode electrode 22 is an anode and the cathode electrode 23 is a cathode, and reverse polarity means that the anode electrode 22 is a cathode and the cathode electrode 23 is an anode. Practically, using a means such as two electromagnetic contactors, forward / reverse switching is performed and a predetermined voltage is applied.

なお、正極性の電圧印加と逆極性の電圧印加の変更時は、例えば、正極性の電圧を所定時間印加することによって自動的に逆極性の電圧印加に変更され、その後、逆極性の電圧を所定時間印加することによって自動的に正極性の電圧印加に変更されるように設定することが好ましい。
このように正極性から逆極性の電圧を印加することによって、吸水したゲル状の陽イオン交換膜21a〜21cが短時間の電気刺激によりミクロ状態で変位する。このため、陽イオン交換膜21a〜21cの経時疲労が回復し、付着したカルシウムやマグネシウム等の汚れ成分が除去される。その後、再び正極性の電圧を印加することによって、陽イオン交換膜21a〜21cの性能が低下することなく、繰り返しオゾン水を生成することができる。
In addition, when changing the application of the positive polarity voltage and the reverse polarity voltage, for example, the positive polarity voltage is automatically changed to the reverse polarity voltage application for a predetermined time, and then the reverse polarity voltage is changed. It is preferable to set so that it is automatically changed to positive voltage application by applying for a predetermined time.
In this way, by applying a reverse polarity voltage from the positive polarity, the gelled cation exchange membranes 21a to 21c that have absorbed water are displaced in a micro state by short-time electrical stimulation. For this reason, the fatigue over time of the cation exchange membranes 21a to 21c is recovered, and adhered components such as calcium and magnesium are removed. Thereafter, by applying a positive voltage again, ozone water can be repeatedly generated without degrading the performance of the cation exchange membranes 21a to 21c.

以上のように、本発明の実施の形態によれば、吸水状態となった陽イオン交換膜21a〜21cに正極性の直流電圧を印加してオゾン水を生成した後、一定時間以上の無通電時間を置いて、逆極性の直流電圧を印加することにより、陽イオン交換膜21a〜21cの分子配列をみだりに撹乱することなく電気刺激が与えられて、電歪現象により、陽イオン交換膜21a〜21cの分子配列の乱れが矯正されて、元の膜性能に復帰させることができる。その結果、陽イオン交換膜21a〜21cの経時疲労の回復と、陽イオン交換膜21a〜21cに付着したカルシウムやマグネシウム等といった汚れ成分を除去することができる。これによって、陽イオン交換膜21a〜21cの性能が低下することなく、オゾン水生成効率の向上を図ることができる。また、従来のように液圧シリンダといった機械的な手段を必要とせずに、装置も単純となり小型化を図れ、安価に製造することができる
パルス波電流を印加するので、電歪現象を繰り返し起こさせることで、陽イオン交換膜21a〜21cの膜性能の劣化をより回復させることができる。特に、カルシウムやマグネシウム等の除去に有効となる。
As described above, according to the embodiment of the present invention, after ozone water is generated by applying a positive DC voltage to the cation exchange membranes 21a to 21c that have become in a water-absorbing state, no energization is performed for a predetermined time or more. By applying a DC voltage having a reverse polarity after a while, electrical stimulation is given without disturbing the molecular arrangement of the cation exchange membranes 21a to 21c, and the cation exchange membranes 21a to 21 are caused by electrostriction. The disorder of the molecular arrangement of 21c can be corrected and the original film performance can be restored. As a result, recovery of fatigue over time of the cation exchange membranes 21a to 21c and contamination components such as calcium and magnesium attached to the cation exchange membranes 21a to 21c can be removed. As a result, the efficiency of ozone water generation can be improved without degrading the performance of the cation exchange membranes 21a to 21c. In addition, it does not require mechanical means such as a hydraulic cylinder as in the prior art, and the apparatus is simplified and can be reduced in size and can be manufactured at low cost. By making it, the deterioration of the membrane performance of cation exchange membranes 21a-21c can be recovered more. In particular, it is effective for removing calcium and magnesium.

なお、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で適宜変更可能である。
例えば、上記実施の形態では、陽イオン交換膜21a〜21cは三枚使用したが、一枚や二枚であっても良く、四枚以上であっても構わない。
In addition, this invention is not limited to the said embodiment, In the range which does not deviate from the summary, it can change suitably.
For example, in the above embodiment, three cation exchange membranes 21a to 21c are used. However, one or two cation exchange membranes 21a to 21c may be used, or four or more may be used.

また、上記実施の形態では、陽イオン交換膜21a〜21cの上下端部が、挿入穴16,17に挿入されて固定されているとしたが、陽イオン交換膜21a〜21cの上下端部が挿入穴16,17に挿入されずに、陽極電極22及び陰極電極23にのみ保持されて、陽イオン交換膜21a〜21cの陽極電極面22側及び陰極電極面23側以外の周面がフリーな状態とされていても良い。このように陽イオン交換膜21a〜21cの前記周面をフリーな状態とすることによって、陽イオン交換膜21a〜21cの変位が阻害されずに、電歪現象を起こし易い状態で保持することができる。   In the above embodiment, the upper and lower ends of the cation exchange membranes 21a to 21c are inserted and fixed in the insertion holes 16 and 17, but the upper and lower ends of the cation exchange membranes 21a to 21c are fixed. Instead of being inserted into the insertion holes 16 and 17, it is held only by the anode electrode 22 and the cathode electrode 23, and the peripheral surfaces other than the anode electrode surface 22 side and the cathode electrode surface 23 side of the cation exchange membranes 21a to 21c are free. It may be in a state. In this way, by setting the peripheral surfaces of the cation exchange membranes 21a to 21c in a free state, the displacement of the cation exchange membranes 21a to 21c is not hindered and can be held in a state in which electrostriction is likely to occur. it can.

次に、本発明のオゾン水生成方法による実施例について説明する。
白金製の陽極電極を用い、銀に塩化銀被覆を施した陰極電極を使用し、厚さの異なる三枚の陽イオン交換膜にはデュポン製のナフイオン膜を使用した。そして、これら三枚の陽イオン交換膜、陽極電極及び陰極電極を重ね合わせて圧接した触媒電極を、図1に示すようにケーシング内の所定位置に配置し、陽極側供給口及び陰極側供給口から蒸留水を供給し、陽極電極及び陰極電極間に12Vの正極性の直流電圧を印加したところ、流量5L/分において約28Aの電流が流れ、陽極側排出口から5ppmのオゾン水を得た。180分経過後、4ppmの濃度に低下したので、2分間の休止後、1秒間の逆極性の直流電圧を印加して電気刺激を与えることにより、元の5ppmのオゾン濃度に復帰したことが観察された。すなわち、経時劣化した陽イオン交換膜の膜性能が電気刺激により回復し、また、膜表面に付着したカルシウムやマグネシウムが離脱したためであると考えられる。また、経時疲労や汚れの度合いにより無通電時間の長短が考えられるが、上記実験によれば2分以上置けばほぼ問題なく回復することが認められる。したがって、本発明の効果が認められる。
Next, the Example by the ozone water production | generation method of this invention is described.
A platinum anode electrode was used, a cathode electrode in which silver was coated with silver chloride was used, and a DuPont naphth ion membrane was used for the three cation exchange membranes having different thicknesses. Then, a catalyst electrode in which these three cation exchange membranes, an anode electrode and a cathode electrode are overlapped and pressed is disposed at a predetermined position in the casing as shown in FIG. 1, and an anode side supply port and a cathode side supply port are arranged. Distilled water was supplied from the anode and a positive DC voltage of 12 V was applied between the anode electrode and the cathode electrode. As a result, a current of about 28 A flowed at a flow rate of 5 L / min, and 5 ppm of ozone water was obtained from the anode side outlet. . After 180 minutes, the concentration dropped to 4 ppm, so it was observed that after returning to the original 5 ppm ozone concentration by applying a DC voltage of reverse polarity for 1 second and applying electrical stimulation after a pause of 2 minutes It was done. That is, it is considered that the membrane performance of the cation exchange membrane deteriorated with time is restored by electrical stimulation, and calcium and magnesium adhering to the membrane surface are detached. Further, the length of the non-energization time can be considered depending on the degree of fatigue with time and dirt, but according to the above-mentioned experiment, it can be recognized that the recovery can be performed almost without problems if it is left for 2 minutes or longer. Therefore, the effect of the present invention is recognized.

オゾン水生成装置100の側断面図であり、(a)は、陽イオン交換膜21a〜21cを強く圧接した場合を示し、(b)は、電歪現象を起こしやすくするため陽イオン交換膜21a〜21cを軽く接触した場合を示したものである。It is a sectional side view of the ozone water generating apparatus 100, (a) shows a case where the cation exchange membranes 21a to 21c are strongly pressed, and (b) shows a cation exchange membrane 21a for facilitating electrostriction. The case where -21c is lightly contacted is shown.

符号の説明Explanation of symbols

2 触媒電極
21a,21b,21c 陽イオン交換膜
22 陽極電極
23 陰極電極
100 オゾン水生成装置
2 Catalytic electrodes 21a, 21b, 21c Cation exchange membrane 22 Anode electrode 23 Cathode electrode 100 Ozone water generator

Claims (6)

陽イオン交換膜の一方の面に陽極電極を圧接し、他方の面に陰極電極を圧接し、前記陽極電極及び前記陰極電極に水を供給するとともに前記陽極電極と前記陰極電極との間に直流電圧を印加することによってオゾン水を生成するオゾン水生成方法において、
前記陽極電極及び前記陰極電極に水を供給することによって吸水状態となった前記陽イオン交換膜に、正極性の直流電圧を印加してオゾン水を生成した後、一定時間以上の無通電時間を置いて、逆極性の直流電圧を印加することにより前記陽イオン交換膜に変位を与えることを特徴とするオゾン水生成方法。
An anode electrode is pressed against one surface of the cation exchange membrane, a cathode electrode is pressed against the other surface, water is supplied to the anode electrode and the cathode electrode, and direct current is applied between the anode electrode and the cathode electrode. In the ozone water generation method for generating ozone water by applying a voltage,
After generating ozone water by applying a positive direct current voltage to the cation exchange membrane that has become water-absorbed by supplying water to the anode electrode and the cathode electrode, a non-energization time of a certain time or more is provided. The ozone water generation method is characterized in that the cation exchange membrane is displaced by applying a DC voltage having a reverse polarity.
前記一定時間以上の無通電時間を1分間以上とすることを特徴とする請求項1に記載のオゾン水生成方法。   The ozone water generation method according to claim 1, wherein the non-energization time of the predetermined time or longer is 1 minute or longer. 前記陽イオン交換膜は、複数枚重ねられていることを特徴とする請求項1又は2に記載のオゾン水生成方法。   The ozone water generation method according to claim 1 or 2, wherein a plurality of the cation exchange membranes are stacked. 前記複数の陽イオン交換膜は、互いに質量が異なるものであることを特徴とする請求項3に記載のオゾン水生成方法。   The ozone water generation method according to claim 3, wherein the plurality of cation exchange membranes have different masses. 前記通電は、パルス波電流を印加することを特徴とする請求項1〜4のいずれか一項に記載のオゾン水生成方法。   The ozone water generating method according to any one of claims 1 to 4, wherein the energization applies a pulse wave current. 前記陽イオン交換膜の一方の面に前記陽極電極が圧接し、他方の面に前記陰極電極が圧接することによって、前記陽イオン交換膜は前記陽極電極と前記陰極電極との間で保持されて、前記陽イオン交換膜の前記陽極電極面側及び前記陰極電極面側以外の周面がフリーな状態とされていることを特徴とする請求項1〜5のいずれか一項に記載のオゾン水生成方法。



The anode electrode is pressed against one surface of the cation exchange membrane, and the cathode electrode is pressed against the other surface, whereby the cation exchange membrane is held between the anode electrode and the cathode electrode. The peripheral surface other than the anode electrode surface side and the cathode electrode surface side of the cation exchange membrane is in a free state, ozone water according to any one of claims 1 to 5 Generation method.



JP2006339998A 2006-12-18 2006-12-18 Ozone water generation method Expired - Fee Related JP4464387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006339998A JP4464387B2 (en) 2006-12-18 2006-12-18 Ozone water generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006339998A JP4464387B2 (en) 2006-12-18 2006-12-18 Ozone water generation method

Publications (2)

Publication Number Publication Date
JP2008150665A true JP2008150665A (en) 2008-07-03
JP4464387B2 JP4464387B2 (en) 2010-05-19

Family

ID=39653153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006339998A Expired - Fee Related JP4464387B2 (en) 2006-12-18 2006-12-18 Ozone water generation method

Country Status (1)

Country Link
JP (1) JP4464387B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039290A1 (en) * 2009-08-31 2011-03-03 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Method for oxidation anodic treatment of electrically conductive, natural water and/or aqueous solution, comprises pressing a perforated structure in a cell housing on a cation exchanger membrane and a porous cathode plate
WO2011135748A1 (en) 2010-04-30 2011-11-03 Aquaecos Ltd. Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP2012145436A (en) * 2011-01-12 2012-08-02 Nikka Micron Kk Cleaning method of ozone water sensor
JP5090574B1 (en) * 2012-02-15 2012-12-05 日科ミクロン株式会社 Ozone water generator
WO2013035762A1 (en) 2011-09-08 2013-03-14 Aquaecos Ltd. Electrolysis system and electrolysis method for the same
JP2014133910A (en) * 2013-01-08 2014-07-24 Panasonic Corp Ozone water production apparatus
US10053380B2 (en) 2015-07-03 2018-08-21 Aquaecos Ltd. Electrolysis device and apparatus for producing electrolyzed ozonated water
CN112313176A (en) * 2018-03-29 2021-02-02 北极星医疗放射性同位素有限责任公司 System and method for an ozonated water generator
CN114150332A (en) * 2021-12-15 2022-03-08 珠海格力电器股份有限公司 Disinfectant liquid manufacturing apparatus and control method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009039290A1 (en) * 2009-08-31 2011-03-03 Eilenburger Elektrolyse- Und Umwelttechnik Gmbh Method for oxidation anodic treatment of electrically conductive, natural water and/or aqueous solution, comprises pressing a perforated structure in a cell housing on a cation exchanger membrane and a porous cathode plate
WO2011135748A1 (en) 2010-04-30 2011-11-03 Aquaecos Ltd. Membrane-electrode assembly, electrolytic cell using the same, method and apparatus for producing ozone water, method for disinfection and method for wastewater or waste fluid treatment
JP2012145436A (en) * 2011-01-12 2012-08-02 Nikka Micron Kk Cleaning method of ozone water sensor
WO2013035762A1 (en) 2011-09-08 2013-03-14 Aquaecos Ltd. Electrolysis system and electrolysis method for the same
JP5090574B1 (en) * 2012-02-15 2012-12-05 日科ミクロン株式会社 Ozone water generator
JP2014133910A (en) * 2013-01-08 2014-07-24 Panasonic Corp Ozone water production apparatus
US10053380B2 (en) 2015-07-03 2018-08-21 Aquaecos Ltd. Electrolysis device and apparatus for producing electrolyzed ozonated water
CN112313176A (en) * 2018-03-29 2021-02-02 北极星医疗放射性同位素有限责任公司 System and method for an ozonated water generator
CN112313176B (en) * 2018-03-29 2023-03-28 北极星医疗放射性同位素有限责任公司 System and method for an ozonated water generator
CN114150332A (en) * 2021-12-15 2022-03-08 珠海格力电器股份有限公司 Disinfectant liquid manufacturing apparatus and control method thereof

Also Published As

Publication number Publication date
JP4464387B2 (en) 2010-05-19

Similar Documents

Publication Publication Date Title
JP4464387B2 (en) Ozone water generation method
JP6077087B2 (en) Electrolyzer for ozone generation
JP5574877B2 (en) Ozone water generator
JP2011517012A (en) Device and method for performing a reverse electrodialysis process
JP3680096B2 (en) Electrolytic ozone water production method and apparatus, and method for regenerating solid polymer electrolyte membrane
JP4637885B2 (en) Ozone water generator
JP5868421B2 (en) Electrodeionization equipment
JP5828058B2 (en) Method for producing hypochlorite and associated seawater electrolyzer with scale resistant equipment
JP2019508223A (en) Electrochemical cell with conductive diamond electrode
JP5061266B1 (en) Ozone water generator
JP6000673B2 (en) Ozone water generator refresh cleaning method
JP2005219011A (en) Regeneration method for ion-exchange resin
JP6132234B2 (en) Electrolyzed water generator
JP2012091121A (en) Apparatus for producing electrolytic water
TW200427634A (en) Fluid deionization system
JP3509999B2 (en) Electrolyzed water generator
KR100698580B1 (en) Device for circulation the electrode water for electrodeionization apparatus
JP2007277632A (en) Method for producing ozone water
JP5210456B1 (en) Wash water generator
JP2019116650A (en) Electric corrosion prevention system and electrolyte desalination plant
JP2014108377A (en) Water treatment equipment
JP5051701B2 (en) Scale-inhibiting electrolysis unit for running water electrolyzer
JP2008049245A (en) Water softener
JP2005095725A (en) Electrolytic water generating apparatus
JP2005296878A (en) Electrolytic ion water preparation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090223

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090831

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4464387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160226

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees