JP2008150452A - Liquid crystal composition, liquid crystal optical element and optical pickup device - Google Patents

Liquid crystal composition, liquid crystal optical element and optical pickup device Download PDF

Info

Publication number
JP2008150452A
JP2008150452A JP2006338449A JP2006338449A JP2008150452A JP 2008150452 A JP2008150452 A JP 2008150452A JP 2006338449 A JP2006338449 A JP 2006338449A JP 2006338449 A JP2006338449 A JP 2006338449A JP 2008150452 A JP2008150452 A JP 2008150452A
Authority
JP
Japan
Prior art keywords
liquid crystal
optical element
crystal composition
general formula
blue laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006338449A
Other languages
Japanese (ja)
Inventor
Makoto Hasegawa
誠 長谷川
Yuriko Kaida
由里子 海田
Yutaka Kumai
裕 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2006338449A priority Critical patent/JP2008150452A/en
Publication of JP2008150452A publication Critical patent/JP2008150452A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal composition for a high-density optical disk using a blue laser beam having high Δn, and having high light resistance to the blue laser beam. <P>SOLUTION: The liquid crystal composition has ≤320 nm maximum absorption wave length, and ≥10 GΩcm initial value of the specific resistance of a liquid crystal layer in a liquid crystal element. Especially the liquid crystal composition contains ≥90 wt.% of one or more kinds of compounds represented by general formula (1): R<SP>1</SP>-Cy-Ph-Ph-(Ph)<SB>n</SB>-R<SP>2</SP>(1) (wherein, R<SP>1</SP>is a 1-12C alkyl group; R<SP>2</SP>is a fluorine atom or a 1-12C alkyl group; Cy is a trans-1,4-cyclohexylene group; Ph is a 1,4-phenylene group; n is 0 or 1; at least one hydrogen atom of at least one 1,4-phenylene group at 2-, 3-, 5- or 6-position is substituted with a fluorine atom). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は青色レーザー用の光ピックアップ装置用の液晶光学素子を構成する液晶組成物、それを封入した液晶光学素子、それを用いた光ピックアップ装置に関するものである。   The present invention relates to a liquid crystal composition constituting a liquid crystal optical element for an optical pickup device for a blue laser, a liquid crystal optical element encapsulating the liquid crystal composition, and an optical pickup device using the same.

光ディスクであるDVDは、同じく光ディスクであるCDに比してディジタル情報が高密度で記録されている。このため、DVDを再生するための光ピックアップ装置では、光源の波長をCDの780nmよりも短い650nmまたは635nmとし、対物レンズの開口数(NA)をCDの0.45よりも大きい0.6として、光ディスク面上に集光するスポット径を小さくしている。   A DVD that is an optical disk records digital information at a higher density than a CD that is also an optical disk. Therefore, in an optical pickup device for reproducing a DVD, the wavelength of the light source is set to 650 nm or 635 nm shorter than 780 nm of CD, and the numerical aperture (NA) of the objective lens is set to 0.6 which is larger than 0.45 of CD. The spot diameter collected on the optical disk surface is reduced.

さらに、高密度の記録を要求される光ディスクであるBDやHDDVDにおいては、光源としてさらに短波長の波長が405nm帯の青色レーザー光を出射する半導体レーザーを用い、NAが0.6より大きい対物レンズを備えることで、より大きな記録密度を得るようにされている。それに伴い、従来の無機材料による光学素子のみならず、電圧により位相差や波面を制御、補正する種々の液晶光学素子も提案されている。   Furthermore, in BD and HDDVD, which are optical discs that require high-density recording, an objective lens having a NA greater than 0.6 is used as a light source using a semiconductor laser that emits blue laser light with a shorter wavelength of 405 nm. By providing this, a higher recording density is obtained. Accordingly, not only conventional optical elements made of inorganic materials but also various liquid crystal optical elements that control and correct phase differences and wavefronts by voltage have been proposed.

特許文献1には、青色レーザー用の光ピックアップ装置用の液晶光学素子として球面収差補正を行う青色レーザー用の液晶レンズが示されている。その液晶光学素子として求められる光学特性、すなわち位相差を発生しうるΔnを有し、さらに青色レーザー光に対し充分に耐性のある液晶材料が適宜使用される。しかし、従来の液晶光学素子で用いられている液晶材料は、青色レーザー光に対する耐性が低く、長期の耐久性に関して問題があった。特に、液晶レンズでは、入射光の焦点を変化させるパワー成分に相当する大きな位相差の発生が必要となり、液晶材料にも高いΔnを示すものが求められが、これは通常は同時に青色レーザー光に対する耐光性も低下させる傾向があり、長期の耐久性の確保が困難であった。   Patent Document 1 discloses a liquid crystal lens for blue laser that performs spherical aberration correction as a liquid crystal optical element for an optical pickup device for blue laser. A liquid crystal material having optical characteristics required for the liquid crystal optical element, that is, Δn capable of generating a phase difference, and sufficiently resistant to blue laser light is appropriately used. However, the liquid crystal material used in the conventional liquid crystal optical element has low resistance to blue laser light and has a problem with long-term durability. In particular, in a liquid crystal lens, it is necessary to generate a large phase difference corresponding to a power component that changes the focal point of incident light, and a liquid crystal material is also required to exhibit a high Δn. There was a tendency to reduce light resistance, and it was difficult to ensure long-term durability.

一般に、Δnの大きな液晶材料には、それを構成する分子の化学構造に対し、(A)強い電子吸引性基(例えば、シアノ基、ニトロ基、チオイソシアネート基など)およびアミノ基などの電子供与性基の導入したもの、(B)トラン液晶に見られるような分子骨格への−C≡C−の導入により共役性の増大を図ったものが、用いられている。これらは同時に化合物およびそれら化合物で構成される組成物の吸収を長波長側にシフトさせ、青色レーザー光の波長帯における吸収およびそれに伴う分解を引き起こす傾向があった。
特許文献2には、400〜500nmのレーザー光用を用いた場合、液晶材料が光照射による光損傷を受けやすく、液晶材料として不飽和結合(芳香環中の不飽和結合を除く)を有する分子の含有比が20mol%以下の液晶材料を用いることが好ましいことが示されている。
In general, a liquid crystal material having a large Δn has (A) a strong electron-withdrawing group (for example, a cyano group, a nitro group, a thioisocyanate group, etc.) and an electron donating group such as an amino group. Those having a functional group introduced, and (B) those having increased conjugation by introducing -C≡C- into the molecular skeleton as found in tolan liquid crystals are used. These simultaneously shifted the absorption of the compounds and compositions composed of these compounds to the longer wavelength side and tended to cause absorption in the wavelength band of blue laser light and the accompanying decomposition.
In Patent Document 2, when a laser beam having a wavelength of 400 to 500 nm is used, the liquid crystal material is easily damaged by light irradiation and has a unsaturated bond (excluding an unsaturated bond in an aromatic ring) as the liquid crystal material. It is shown that it is preferable to use a liquid crystal material having a content ratio of 20 mol% or less.

このように、青色レーザーに対する液晶材料の耐光性を確保しようとする場合、青色レーザー光の波長帯における液晶材料の吸収係数に配慮する。このため、一般的にはそのΔnは0.1以下の小さいものが用いられる。例えば、特許文献3では、青色光を含む可視域全体で比較的強い光が照射され、かつ高温にさらされる液晶プロジェクター用の液晶材料として、Δnが0.08のものを用いることで耐光性を確保している。   Thus, when it is going to ensure the light resistance of the liquid crystal material with respect to a blue laser, consideration is given to the absorption coefficient of the liquid crystal material in the wavelength band of the blue laser light. For this reason, generally, a small Δn of 0.1 or less is used. For example, in Patent Document 3, light resistance is improved by using a liquid crystal material for a liquid crystal projector that is irradiated with relatively strong light in the entire visible range including blue light and exposed to a high temperature, with Δn of 0.08. Secured.

特開2006−85801号公報JP 2006-85801 A 特開2003−90990号公報JP 2003-90990 A 特開平07−18258号公報Japanese Patent Laid-Open No. 07-18258

しかしながら、表示素子の場合と異なり、光ピックアップ装置に用いる液晶レンズなどの液晶光学素子においては、上記レベルのΔnでは充分なパワーもしくは位相差を発生させることは困難である。一方、位相差を確保するために凹凸形状の段差を大きくして液晶層の厚みを厚くするという手法もあるが、これでは電圧に対する応答時間が低下してしまい駆動特性に問題が生じる。また、偏光回折格素子の場合には、やはり回折格子の凹凸の高さを高くする必要があり、正確な格子形状の形成が難しいことおよび液晶層の厚みが厚くなるという同様の問題を生じる。そのため、液晶材料には、できるだけ高いΔnと青色レーザー光に対する耐光性の確保が求められていた。   However, unlike the case of a display element, it is difficult to generate a sufficient power or phase difference in a liquid crystal optical element such as a liquid crystal lens used in an optical pickup device at Δn of the above level. On the other hand, there is a method of increasing the thickness of the liquid crystal layer by enlarging the uneven step to ensure the phase difference, but this reduces the response time to the voltage and causes a problem in drive characteristics. In the case of a polarization diffraction grating element, it is necessary to increase the height of the concave and convex portions of the diffraction grating, which causes the same problem that it is difficult to form an accurate grating shape and the thickness of the liquid crystal layer is increased. For this reason, liquid crystal materials have been required to ensure as high Δn as possible and light resistance against blue laser light.

本発明は、上記課題、すなわち、ある程度高いΔnを示しつつ青色レーザーの波長帯域における耐光性も確保するという課題を解決することを目的としており、新規な液晶組成物、それを封入した液晶光学素子、それを用いた光ピックアップ装置を提供する。   The present invention aims to solve the above-mentioned problem, that is, the problem of securing light resistance in the wavelength band of a blue laser while exhibiting a somewhat high Δn, a novel liquid crystal composition, and a liquid crystal optical element encapsulating the same An optical pickup device using the same is provided.

[1]青色レーザー用光源を有する光ピックアップ装置に配された液晶光学素子用の液晶組成物において、最大吸収波長が320nm以下であり、かつ、液晶光学素子中における液晶層の比抵抗の初期値が10GΩcm以上であることを特徴とする液晶組成物。 [1] In a liquid crystal composition for a liquid crystal optical element disposed in an optical pickup device having a blue laser light source, the maximum absorption wavelength is 320 nm or less, and the initial value of the specific resistance of the liquid crystal layer in the liquid crystal optical element Is a liquid crystal composition characterized by being 10 GΩcm or more.

[2]400〜420nmにおける吸収係数が10−5μm−1以下である前記[1]に記載の液晶組成物。 [2] The liquid crystal composition according to [1], wherein an absorption coefficient at 400 to 420 nm is 10 −5 μm −1 or less.

[3]下記一般式(1)で表される1種類以上の化合物を90重量%以上含む前記[1]また前記[2]に記載の液晶性組成物。
−Cy−Ph−Ph−(Ph)−R (1)
(ただし、Rは炭素数が1〜12のアルキル基、Rはフッ素原子または炭素数が1〜12のアルキル基、Cyは1,4−シクロヘキシレン基、Phは1,4−フェニレン基、nは0または1を意味し、少なくとも1個の1,4−フェニレン基の少なくとも1個の水素原子がフッ素原子に置換されている。)
[3] The liquid crystalline composition according to the above [1] or [2], comprising 90% by weight or more of one or more compounds represented by the following general formula (1).
R 1 -Cy-Ph-Ph- (Ph) n -R 2 (1)
(However, R 1 is an alkyl group having 1 to 12 carbon atoms, R 2 is a fluorine atom or an alkyl group having 1 to 12 carbon atoms, Cy is a 1,4-cyclohexylene group, and Ph is a 1,4-phenylene group. , N means 0 or 1, and at least one hydrogen atom of at least one 1,4-phenylene group is substituted with a fluorine atom.)

[4]下記一般式(1A)および(1B)で表される夫々1種類以上の化合物を90重量%以上含む前記[3]に記載の液晶性組成物。
−Cy−Ph−Ph−R (1A)
−Cy−Ph−Ph−Ph−R (1B)
(ただし、R、R、CyおよびPhは上記と同じ意味を有し、かつ一般式(1A)と一般式(1B)とでは夫々同じであっても異なっていてもよい。)
[4] The liquid crystalline composition according to the above [3], comprising 90% by weight or more of each of one or more compounds represented by the following general formulas (1A) and (1B).
R 1 -Cy-Ph-Ph-R 2 (1A)
R 1 -Cy-Ph-Ph-Ph-R 2 (1B)
(However, R 1 , R 2 , Cy and Ph have the same meaning as described above, and General Formula (1A) and General Formula (1B) may be the same or different from each other.)

[5]下記一般式(2)で表される1種類以上の化合物を80〜90重量%含み、さらに下記一般式(3)で表される1種類以上の化合物を10〜20重量%含む前記[4]に記載の液晶性組成物。 [5] The above-mentioned composition containing 80 to 90% by weight of one or more compounds represented by the following general formula (2), and further containing 10 to 20% by weight of one or more compounds represented by the following general formula (3) The liquid crystalline composition according to [4].

Figure 2008150452
Figure 2008150452

(ただし、R,R,Rは夫々独立に炭素数が1〜12のアルキル基を意味する)。 (However, R 3 , R 4 , and R 5 each independently represents an alkyl group having 1 to 12 carbon atoms).

[6]青色レーザー光の波長帯である400〜420nmにおける屈折率異方性が0.19以上である前記[1]〜前記[5]のいずれかに記載の液晶組成物。 [6] The liquid crystal composition according to any one of [1] to [5], in which a refractive index anisotropy in a wavelength band of blue laser light of 400 to 420 nm is 0.19 or more.

[7]前記[1]〜前記[6]のいずれかに記載の液晶組成物を用いたことを特徴とする青色レーザー用光源を有する光ピックアップ装置用の液晶光学素子。 [7] A liquid crystal optical element for an optical pickup device having a blue laser light source, wherein the liquid crystal composition according to any one of [1] to [6] is used.

[8]前記[1]〜前記[6]のいずれかに記載の液晶組成物を封入した液晶光学素子と、少なくとも青色レーザー用を発光する光源と、光検知器とを有することを特徴とする光ピックアップ装置。 [8] A liquid crystal optical element encapsulating the liquid crystal composition according to any one of [1] to [6], a light source emitting at least a blue laser light, and a photodetector. Optical pickup device.

本発明の液晶組成物は,光源として波長400〜420nmの光を出射する青色レーザーを用いた光ピックアップ装置中に配された液晶光学素子に封入して用いられる。   The liquid crystal composition of the present invention is used by being encapsulated in a liquid crystal optical element disposed in an optical pickup device using a blue laser that emits light having a wavelength of 400 to 420 nm as a light source.

本発明における液晶光学素子に用いられる液晶組成物は、最大吸収波長が320nm以下であり、かつ、液晶光学素子中における液晶層の比抵抗の初期値が10GΩcm以上であるものが用いられる。実際に使用する波長は400〜420nmの光であるが、最大吸収波長を320nm以下にすることにより、使用波長域での吸収が低く、光損傷を低下できる。さらに液晶層の比抵抗を10GΩcm以上とすることにより、耐光性がさらに向上し、高光量(単位面積当り)に長時間さらされても、液晶光学素子の劣化を低減させることができる。   The liquid crystal composition used for the liquid crystal optical element in the present invention has a maximum absorption wavelength of 320 nm or less and an initial value of specific resistance of the liquid crystal layer in the liquid crystal optical element of 10 GΩcm or more. The wavelength actually used is light of 400 to 420 nm. However, by setting the maximum absorption wavelength to 320 nm or less, absorption in the use wavelength region is low, and optical damage can be reduced. Furthermore, by setting the specific resistance of the liquid crystal layer to 10 GΩcm or more, the light resistance is further improved, and the deterioration of the liquid crystal optical element can be reduced even when exposed to a high amount of light (per unit area) for a long time.

特に、400〜420nmにおける吸収係数が10−5μm−1以下となる液晶組成物が、使用する光に対する劣化が少なく好ましい。 In particular, a liquid crystal composition having an absorption coefficient at 400 to 420 nm of 10 −5 μm −1 or less is preferable with little deterioration with respect to light used.

この液晶組成物には、下記一般式(1)で表される1種類以上の化合物を90重量%以上含む液晶性組成物を用いることが好ましい。
−Cy−Ph−Ph−(Ph)−R (1)
(ただし、R1は炭素数が1〜12のアルキル基、Rはフッ素原子または炭素数が1〜12のアルキル基、Cyはトランス−1,4−シクロヘキシレン基、Phは1,4−フェニレン基、nは0または1を意味し、少なくとも1個の1,4−フェニレン基の少なくとも1個の水素原子がフッ素原子に置換されている。)
For this liquid crystal composition, it is preferable to use a liquid crystal composition containing 90% by weight or more of one or more compounds represented by the following general formula (1).
R 1 -Cy-Ph-Ph- (Ph) n -R 2 (1)
(However, R1 an alkyl group having 1 to 12 carbon atoms, R 2 is a fluorine atom or an alkyl group having 1 to 12 carbon, Cy is trans-1,4-cyclohexylene group, Ph is 1,4-phenylene Group n represents 0 or 1, and at least one hydrogen atom of at least one 1,4-phenylene group is substituted with a fluorine atom.)

すなわち、一般式(1)の化合物は、その複数ある1,4−フェニレン基の中の少なくとも1個の水素原子がフッ素原子に置換されている化合物である。このフッ素原子は、1,4−フェニレン基の2、3、5、6位に存在するものであり、Rのフッ素原子とは異なる。この液晶材料を用いることにより、400〜420nmの光による劣化が少なく、かつ、高いΔnを有する液晶組成物とすることができる。この一般式(1)の化合物は1種類で用いることもできるが、各種特性を調整するために、2種類以上組み合わせて用いることが好ましい。これに組み合わせる他の液晶材料は、屈折率、使用温度域等を調整する目的で10重量%以下加えてもよく、公知の種々の材料を用いることができるが、400〜420nmの光による劣化が少ない材料を用いることが好ましい。 That is, the compound of the general formula (1) is a compound in which at least one hydrogen atom in the plurality of 1,4-phenylene groups is substituted with a fluorine atom. This fluorine atom is present at the 2, 3, 5, 6 position of the 1,4-phenylene group, and is different from the fluorine atom of R 2 . By using this liquid crystal material, it is possible to obtain a liquid crystal composition with little deterioration due to light of 400 to 420 nm and having a high Δn. Although the compound of this general formula (1) can also be used by 1 type, in order to adjust various characteristics, it is preferable to use in combination of 2 or more types. Other liquid crystal materials combined with this may be added in an amount of 10% by weight or less for the purpose of adjusting the refractive index, the operating temperature range, etc., and various known materials can be used, but deterioration due to light of 400 to 420 nm is possible. It is preferable to use less material.

本発明では、一般式(1)の化合物として、下記一般式(1A)および(1B)で表される夫々1種類以上の化合物を90重量%以上含む液晶性組成物を用いることがΔnや青色レーザーへの耐久性の点からみて好ましい。
−Cy−Ph−Ph−R (1A)
−Cy−Ph−Ph−Ph−R (1B)
(ただし、R、R、CyおよびPhは一般式(1)の化合物と同じ意味を有し、かつ一般式(1A)と一般式(1B)とでは夫々同じであっても異なっていてもよい。)
In the present invention, as the compound of the general formula (1), it is preferable to use a liquid crystalline composition containing 90% by weight or more of each of one or more compounds represented by the following general formulas (1A) and (1B). This is preferable from the viewpoint of durability to laser.
R 1 -Cy-Ph-Ph-R 2 (1A)
R 1 -Cy-Ph-Ph-Ph-R 2 (1B)
(However, R 1 , R 2 , Cy and Ph have the same meaning as the compound of the general formula (1), and the general formula (1A) and the general formula (1B) are the same or different from each other). May be good.)

上記一般式(1)の化合物としては、以下のような化合物が例示される。R、Rについては、前記一般式(1)の場合と同様に、Rは炭素数が1〜12のアルキル基、Rはフッ素原子または炭素数が1〜12のアルキル基を意味する。nが0か1かで3環構造と4環構造の化合物がある。なお、ここでは1つのフェニレン基の水素原子のみがフッ素原子に置換した化合物を例示するが、複数のフェニレン基において水素原子がフッ素原子に置換した化合物であっても使用できる。
n=0の場合、すなわち一般式(1A)の化合物(3環構造)の場合には、以下のような化合物が例示される。
Examples of the compound of the general formula (1) include the following compounds. As for R 1 and R 2 , as in the case of the general formula (1), R 1 represents an alkyl group having 1 to 12 carbon atoms, and R 2 represents a fluorine atom or an alkyl group having 1 to 12 carbon atoms. To do. There are compounds having a tricyclic structure and a tetracyclic structure where n is 0 or 1. Here, a compound in which only a hydrogen atom of one phenylene group is substituted with a fluorine atom is exemplified, but a compound in which a hydrogen atom is substituted with a fluorine atom in a plurality of phenylene groups can also be used.
In the case of n = 0, that is, in the case of the compound of the general formula (1A) (tricyclic structure), the following compounds are exemplified.

Figure 2008150452
Figure 2008150452

Figure 2008150452
Figure 2008150452

n=1の場合、すなわち一般式(1B)の化合物(4環構造)の場合には、以下のような化合物が例示される。   In the case of n = 1, that is, in the case of the compound of the general formula (1B) (tetracyclic structure), the following compounds are exemplified.

Figure 2008150452
Figure 2008150452

Figure 2008150452
Figure 2008150452

Figure 2008150452
Figure 2008150452

上記の化合物は、1種の化合物でも所望の物性を備えていれば使用可能であるが、特性を調整するためには2種以上の化合物を混合して用いることが好ましい。上記一般式(1)の化合物を複数用いる場合としては、特に、下記一般式(2)で表される1種類以上の化合物を80〜90重量%含み、さらに下記一般式(3)で表される1種類以上の化合物を10〜20重量%含むようにすることが高Δn、高耐久という点で好ましい。   The above-mentioned compounds can be used even if one kind of compound has desired physical properties, but it is preferable to use a mixture of two or more kinds of compounds in order to adjust the characteristics. In the case of using a plurality of compounds of the above general formula (1), in particular, it contains 80 to 90% by weight of one or more compounds represented by the following general formula (2), and is further represented by the following general formula (3). It is preferable in terms of high Δn and high durability to contain 10 to 20% by weight of one or more compounds.

Figure 2008150452
Figure 2008150452

ただし、R,R,Rは夫々独立に炭素数が1〜12のアルキル基を意味する。
この液晶組成物とする場合、Δnは高い傾向があるが、特に、組成を組む化合物を選択してΔnが0.19以上とすることが好ましい。これにより、液晶レンズや偏光回折素子として用いられた場合、凹凸の高さを低くでき、製造がしやすくなり、液晶の駆動電圧を低減させることができる。
However, R < 3 >, R < 4 >, R < 5 > means a C1-C12 alkyl group each independently.
When this liquid crystal composition is used, Δn tends to be high, but it is particularly preferable that Δn is 0.19 or more by selecting a compound having a composition. Thereby, when used as a liquid crystal lens or a polarization diffraction element, the height of the unevenness can be lowered, the manufacturing can be facilitated, and the driving voltage of the liquid crystal can be reduced.

400〜420nmの発振波長を有し、記録用では最大光出力30mW以上の光源を有する光ピックアップ装置では、その光路中に本発明の液晶組成物を封入した液晶光学素子を配置して用いることになる。この場合、本発明の液晶組成物を用いた液晶光学素子では、光源の光によるダメージを受けにくいという効果がある。光ピックアップ装置では、レーザー光自体の総光量はわずかではあるが、極めて小さい面積をそのレーザー光が通過するため、単位面積当りの光量は極めて大きいことになり、液晶光学素子の耐光性が低いと劣化が早く進行する。   In an optical pickup device having an oscillation wavelength of 400 to 420 nm and a light source having a maximum light output of 30 mW or more for recording, a liquid crystal optical element in which the liquid crystal composition of the present invention is enclosed is used in the optical path. Become. In this case, the liquid crystal optical element using the liquid crystal composition of the present invention has an effect that it is not easily damaged by light from the light source. In the optical pickup device, the total amount of laser light itself is small, but the laser light passes through a very small area, so the amount of light per unit area is extremely large, and the light resistance of the liquid crystal optical element is low. Deterioration progresses quickly.

本発明の液晶組成物に好適な液晶化合物としては、その分子の環の1個〜複数個の水素原子がフッ素原子に置換された構造を有する。このフッ素原子の立体障害により凝集系においても分子間相互作用が小さく、その結果、吸収の長波長側への広がりを抑制する効果がある。   The liquid crystal compound suitable for the liquid crystal composition of the present invention has a structure in which one to a plurality of hydrogen atoms in the ring of the molecule are substituted with fluorine atoms. Due to the steric hindrance of the fluorine atom, the intermolecular interaction is small even in the aggregated system, and as a result, there is an effect of suppressing the spread of absorption toward the long wavelength side.

本発明における液晶光学素子は、基板間に液晶組成物を封入した構成を有する。通常は、2枚の基板ともに透明基板を用いればよいが、偏光回折格子のような場合には、反射型とすることも可能なので、一方の基板を不透明な基板とすることもできる。基板には、必要に応じて電極、凹凸構造、配向膜等を形成する。そのような基板をシール材で周辺シールして空セルを形成し、注入口から液晶組成物を注入して注入口を封止して液晶光学素子を完成させる。液晶組成物を基板上に滴下してシール材の硬化と液晶の封入を同時に行うこともできる。このような液晶光学素子の構造、製法については、公知の液晶表示素子の製造方法が利用できる。   The liquid crystal optical element in the present invention has a configuration in which a liquid crystal composition is sealed between substrates. Usually, a transparent substrate may be used for both of the two substrates. However, in the case of a polarization diffraction grating, since it can be a reflection type, one of the substrates can be an opaque substrate. An electrode, a concavo-convex structure, an alignment film, and the like are formed on the substrate as necessary. Such a substrate is peripherally sealed with a sealing material to form an empty cell, and a liquid crystal composition is injected from the injection port to seal the injection port, thereby completing a liquid crystal optical element. The liquid crystal composition can be dropped on the substrate to simultaneously cure the sealing material and encapsulate the liquid crystal. For the structure and manufacturing method of such a liquid crystal optical element, a known method for manufacturing a liquid crystal display element can be used.

この液晶光学素子は、偏光依存性をなくす、効果をより大きくする、変化の多様性を増やす等の目的で、液晶層を複数設けることもできる。液晶層を2層設ける場合、基板は3枚としてもよく、4枚としてもよい。また、必要に応じて液晶光学素子の外面に、絞り、無反射層、回折格子等を形成してもよいし、位相板等を積層してもよい。液晶層に接する透明基板の面に凹状、凸状などの曲面を形成してもよい。   In this liquid crystal optical element, a plurality of liquid crystal layers can be provided for the purpose of eliminating the polarization dependence, increasing the effect, and increasing the variety of changes. When two liquid crystal layers are provided, the number of substrates may be three or four. If necessary, a diaphragm, a non-reflective layer, a diffraction grating, or the like may be formed on the outer surface of the liquid crystal optical element, or a phase plate or the like may be laminated. A curved surface such as a concave shape or a convex shape may be formed on the surface of the transparent substrate in contact with the liquid crystal layer.

本発明の液晶光学素子は、液晶レンズ、偏光回折格子、位相板等に使用でき、特に、電極への電圧印加状況により、液晶光学素子の特性を変化させることができる用途に好適である。具体的には、電圧印加により波面を変化させて収差制御、回折のオンオフ制御、位相板としての機能のオンオフ制御等がある。   The liquid crystal optical element of the present invention can be used for a liquid crystal lens, a polarization diffraction grating, a phase plate, and the like, and is particularly suitable for applications in which the characteristics of the liquid crystal optical element can be changed depending on the state of voltage application to the electrodes. Specifically, there are aberration control, diffraction on / off control, on / off control of the function as a phase plate, etc. by changing the wavefront by applying a voltage.

以下、実施例および比較例により本発明を詳細に説明する。
実施例および比較例として、下記式(9)〜(13)に示した化合物を調合して組成物とした。表1に、組成物1(実施例)と組成物2、3(比較例)の調合割合(重量%)、室温における相、液晶相‐等方相相相転移温度、くさび法による組成物の波長405nmのΔnを示す。
Hereinafter, the present invention will be described in detail by way of examples and comparative examples.
As examples and comparative examples, compounds represented by the following formulas (9) to (13) were prepared to give compositions. Table 1 shows the blending ratio (% by weight) of Composition 1 (Example) and Compositions 2 and 3 (Comparative Example), the phase at room temperature, the liquid crystal phase-isotropic phase transition temperature, the composition by the wedge method. Δn at a wavelength of 405 nm is shown.

Figure 2008150452
Figure 2008150452

Figure 2008150452
Figure 2008150452

本実施例および比較例における液晶組成物の耐光性試験を行うために液晶光学素子を作成した。ガラス基板上に、ITOによる透明導電膜を形成し、その上に市販のポリイミド配向膜を塗布し、硬化させた後にラビング法によりラビングして配向膜を形成して2枚の透明電極付きのガラス基板を製造した。その後、一方のガラス基板の周辺部にシール材を付与し、3.5μm径のスペーサーを配向膜表面に散布し、他方のガラス基板を両ガラス基板の配向処理方向が平行になるように重ねて空セルを製造した。この空セルのシール材に設けてあった切り欠きである、注入口から組成物1、組成物2、組成物3を夫々注入し、注入口を封止して液晶光学素子1、液晶光学素子2および液晶光学素子3を製造した。   In order to perform the light resistance test of the liquid crystal compositions in the present examples and comparative examples, liquid crystal optical elements were prepared. A transparent conductive film made of ITO is formed on a glass substrate, a commercially available polyimide alignment film is applied on the glass substrate, cured, and then rubbed by a rubbing method to form an alignment film. A substrate was manufactured. Thereafter, a sealing material is applied to the periphery of one glass substrate, a spacer having a diameter of 3.5 μm is spread on the surface of the alignment film, and the other glass substrate is stacked so that the alignment processing directions of both glass substrates are parallel. An empty cell was produced. The liquid crystal optical element 1 and the liquid crystal optical element are prepared by injecting the composition 1, the composition 2 and the composition 3 from the injection port, which are notches provided in the sealing material of the empty cell, respectively, and sealing the injection port. 2 and liquid crystal optical element 3 were produced.

耐光性試験として、光源にはコヒーレント社製Krレーザー(波長:405nmおよび413nm、強度:40mW)の直線偏光を用い、その偏光方向が液晶光学素子のラビング方向と平行になるように液晶素子に入射させた。本耐光性試験は70℃の温度下で液晶光学素子の両透明電極間に交流電圧(周波数:1kHz,電圧:9V)を印加しながら行なった。レーザー照射開始より380時間経過後の液晶性組成物のレーザー耐性を、レーザー照射前(初期値)と照射後の液晶層の比抵抗を測定することにより評価した(ソーラトロン社製インピーダンスアナライザー「SI1260」)。また、液晶光学素子の素子機能は、液晶光学素子の電圧−透過率特性の閾値電圧の変化により見積もった。その結果を表2に示す。   As a light resistance test, linearly polarized light of a Coherent Kr laser (wavelength: 405 nm and 413 nm, intensity: 40 mW) was used as the light source, and the light was incident on the liquid crystal element so that the polarization direction was parallel to the rubbing direction of the liquid crystal optical element. I let you. This light resistance test was conducted at a temperature of 70 ° C. while applying an alternating voltage (frequency: 1 kHz, voltage: 9 V) between the transparent electrodes of the liquid crystal optical element. The laser resistance of the liquid crystalline composition after 380 hours from the start of laser irradiation was evaluated by measuring the specific resistance of the liquid crystal layer before laser irradiation (initial value) and after irradiation (impedance analyzer “SI1260” manufactured by Solartron). ). The element function of the liquid crystal optical element was estimated by a change in the threshold voltage of the voltage-transmittance characteristic of the liquid crystal optical element. The results are shown in Table 2.

Figure 2008150452
Figure 2008150452

液晶光学素子2(組成物2)のパネルは、レーザー照射後、焼き付きが発生し、電圧−透過率特性の測定が不可能であった。また、液晶光学素子3(組成物3)のパネルは、レーザー照射後、比抵抗および閾値電圧については大きな劣化は見られなかったものの、パネルに多数の配向欠陥領域が発生した。一方、液晶光学素子1(組成物1)のパネルは、レーザー照射後においてもパネルの焼き付きや配向欠陥の発生もなく安定であった。   The panel of the liquid crystal optical element 2 (composition 2) was seized after laser irradiation, and voltage-transmittance characteristics could not be measured. Further, the panel of the liquid crystal optical element 3 (composition 3) did not show great deterioration in specific resistance and threshold voltage after laser irradiation, but a large number of alignment defect regions were generated in the panel. On the other hand, the panel of the liquid crystal optical element 1 (composition 1) was stable without the occurrence of image sticking and alignment defects even after laser irradiation.

以上のように本発明によれば、青色レーザー光に対して高い耐光性を有し、かつ、比較的に高いΔnを有する液晶組成物を得られる。この液晶組成物を封入した液晶光学素子を光ピックアップ装置に用いることにより、青色レーザー光を用いた高密度の光ディスク装置を得ることができる。使用する材料を選別することにより、容易に高Δnにできるので、波面補正や回折格子の凹凸の高さも低くでき、凹凸加工容易になり、駆動電圧も低くすることができる。   As described above, according to the present invention, a liquid crystal composition having high light resistance to blue laser light and having a relatively high Δn can be obtained. By using a liquid crystal optical element encapsulating the liquid crystal composition in an optical pickup device, a high-density optical disk device using blue laser light can be obtained. By selecting the material to be used, it can be easily made high Δn, so that the wavefront correction and the height of the concavo-convex of the diffraction grating can be reduced, the concavo-convex processing becomes easy, and the driving voltage can be lowered.

Claims (8)

青色レーザー用光源を有する光ピックアップ装置に配された液晶光学素子用の液晶組成物において、最大吸収波長が320nm以下であり、かつ、液晶光学素子中における液晶層の比抵抗の初期値が10GΩcm以上であることを特徴とする液晶組成物。   In a liquid crystal composition for a liquid crystal optical element disposed in an optical pickup device having a blue laser light source, the maximum absorption wavelength is 320 nm or less, and the initial value of the specific resistance of the liquid crystal layer in the liquid crystal optical element is 10 GΩcm or more A liquid crystal composition characterized by the above. 400〜420nmにおける吸収係数が10−4μm−1以下である請求項1に記載の液晶組成物。 The liquid crystal composition according to claim 1, wherein an absorption coefficient at 400 to 420 nm is 10 −4 μm −1 or less. 下記一般式(1)で表される1種類以上の化合物を90重量%以上含む請求項1または2に記載の液晶性組成物。
−Cy−Ph−Ph−(Ph)−R (1)
(ただし、Rは炭素数が1〜12のアルキル基、Rはフッ素原子または炭素数が1〜12のアルキル基、Cyはトランス−1,4−シクロヘキシレン基、Phは1,4−フェニレン基、nは0または1を意味し、少なくとも1個の1,4−フェニレン基の2、3、5、6位の少なくとも1個の水素原子がフッ素原子に置換されている。)
The liquid crystalline composition according to claim 1 or 2, comprising 90% by weight or more of one or more compounds represented by the following general formula (1).
R 1 -Cy-Ph-Ph- (Ph) n -R 2 (1)
(Wherein R 1 is an alkyl group having 1 to 12 carbon atoms, R 2 is a fluorine atom or an alkyl group having 1 to 12 carbon atoms, Cy is a trans-1,4-cyclohexylene group, and Ph is 1,4- A phenylene group, n means 0 or 1, and at least one hydrogen atom at the 2, 3, 5, 6 position of at least one 1,4-phenylene group is substituted with a fluorine atom.
下記一般式(1A)および(1B)で表される夫々1種類以上の化合物を90重量%以上含む請求項3に記載の液晶性組成物。
−Cy−Ph−Ph−R (1A)
−Cy−Ph−Ph−Ph−R (1B)
(ただし、R、R、CyおよびPhは上記と同じ意味を有し、かつ一般式(1A)と一般式(1B)とでは夫々同じであっても異なっていてもよい。)
The liquid crystalline composition according to claim 3, comprising 90% by weight or more of one or more compounds represented by the following general formulas (1A) and (1B).
R 1 -Cy-Ph-Ph-R 2 (1A)
R 1 -Cy-Ph-Ph-Ph-R 2 (1B)
(However, R 1 , R 2 , Cy and Ph have the same meaning as described above, and General Formula (1A) and General Formula (1B) may be the same or different from each other.)
下記一般式(2)で表される1種類以上の化合物を80〜90重量%含み、さらに下記一般式(3)で表される1種類以上の化合物を10〜20重量%含む請求項4に記載の液晶性組成物。
Figure 2008150452
(ただし、R,R,Rは夫々独立に炭素数が1〜12のアルキル基を意味する)。
The compound according to claim 4, comprising 80 to 90% by weight of one or more compounds represented by the following general formula (2), and further comprising 10 to 20% by weight of one or more compounds represented by the following general formula (3). The liquid crystalline composition as described.
Figure 2008150452
(However, R 3 , R 4 , and R 5 each independently represents an alkyl group having 1 to 12 carbon atoms).
青色レーザー光の波長帯である400〜420nmにおける屈折率異方性が0.19以上である請求項1〜5のいずれかに記載の液晶組成物。   The liquid crystal composition according to any one of claims 1 to 5, wherein the refractive index anisotropy at 400 to 420 nm which is a wavelength band of blue laser light is 0.19 or more. 請求項1〜6のいずれかに記載の液晶組成物を用いたことを特徴とする青色レーザー用光源を有する光ピックアップ装置用の液晶光学素子。   A liquid crystal optical element for an optical pickup device having a light source for blue laser, wherein the liquid crystal composition according to claim 1 is used. 請求項1〜6のいずれかに記載の液晶組成物を封入した液晶光学素子と、少なくとも青色レーザー用を発光する光源と、光検知器とを有することを特徴とする光ピックアップ装置。   An optical pickup device comprising: a liquid crystal optical element in which the liquid crystal composition according to claim 1 is sealed; a light source that emits at least blue laser light; and a photodetector.
JP2006338449A 2006-12-15 2006-12-15 Liquid crystal composition, liquid crystal optical element and optical pickup device Pending JP2008150452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006338449A JP2008150452A (en) 2006-12-15 2006-12-15 Liquid crystal composition, liquid crystal optical element and optical pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338449A JP2008150452A (en) 2006-12-15 2006-12-15 Liquid crystal composition, liquid crystal optical element and optical pickup device

Publications (1)

Publication Number Publication Date
JP2008150452A true JP2008150452A (en) 2008-07-03

Family

ID=39652984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338449A Pending JP2008150452A (en) 2006-12-15 2006-12-15 Liquid crystal composition, liquid crystal optical element and optical pickup device

Country Status (1)

Country Link
JP (1) JP2008150452A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810739B2 (en) 2011-06-06 2014-08-19 Seiko Epson Corporation Projection type display apparatus and optical unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8810739B2 (en) 2011-06-06 2014-08-19 Seiko Epson Corporation Projection type display apparatus and optical unit

Similar Documents

Publication Publication Date Title
JP5321555B2 (en) Liquid crystal light modulation element and optical head device
JP5386824B2 (en) Liquid crystal light modulation element and optical head device
JP2006127707A (en) Aperture controlling element and optical head device
Fuhrmann et al. Synthesis and properties of a hole-conducting, photopatternable molecular glass
KR101858576B1 (en) Photorefractive polymer composite, photorefractive device and hologram display device including the same
CN102046584B (en) Compound, polymerizable liquid crystalline composition, optical element, and optical information recording/reproduction device
JP2010197450A (en) Liquid crystal optical element and optical pickup device
JP2008150452A (en) Liquid crystal composition, liquid crystal optical element and optical pickup device
JP5034501B2 (en) Optical head device
JPH09281330A (en) Liquid crystal diffraction grating, its production and optical head device formed by using the same
JP2004263037A (en) Acrylic acid derivative composition, polymer liquid crystal by polymerizing this, and application
JP5413365B2 (en) Liquid crystalline compound, polymerizable liquid crystalline composition, optically anisotropic material, optical element, and optical information recording / reproducing apparatus
JP2009025489A (en) Method for manufacturing liquid crystal optical element, and optical head device
JP2009108239A (en) Liquid crystalline composition, optical element, and optical information recording and playback apparatus
CN100454412C (en) Optical pickup device
JP2010181902A (en) Optical member, optical diffraction element, and phase plate
JP2008176848A (en) Liquid crystal device and optical head device
JP2003317298A (en) Optical head device
WO2004079436A1 (en) Optical attenuator and optical head device
JP4631332B2 (en) Optical member, optical diffraction element, and phase plate
JP2010007031A (en) Polymerizable liquid crystalline composition, optically anisotropic material, optical element, and optical head device
JP4368172B2 (en) LIQUID CRYSTAL OPTICAL ELEMENT AND ITS MANUFACTURING METHOD, OPTICAL PICKUP AND OPTICAL RECORDING MEDIUM DRIVE DEVICE
JP3113898B2 (en) Method for controlling interaction between substrate and liquid crystal and liquid crystal device
JP4882737B2 (en) Liquid crystal element and optical head device
JP2006084562A (en) Liquid crystal optical device