KR101858576B1 - Photorefractive polymer composite, photorefractive device and hologram display device including the same - Google Patents

Photorefractive polymer composite, photorefractive device and hologram display device including the same Download PDF

Info

Publication number
KR101858576B1
KR101858576B1 KR1020120127730A KR20120127730A KR101858576B1 KR 101858576 B1 KR101858576 B1 KR 101858576B1 KR 1020120127730 A KR1020120127730 A KR 1020120127730A KR 20120127730 A KR20120127730 A KR 20120127730A KR 101858576 B1 KR101858576 B1 KR 101858576B1
Authority
KR
South Korea
Prior art keywords
photorefractive
carbon atoms
group
polymer matrix
weight
Prior art date
Application number
KR1020120127730A
Other languages
Korean (ko)
Other versions
KR20140060856A (en
Inventor
최칠성
변경석
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020120127730A priority Critical patent/KR101858576B1/en
Priority to US13/971,049 priority patent/US9134550B2/en
Publication of KR20140060856A publication Critical patent/KR20140060856A/en
Application granted granted Critical
Publication of KR101858576B1 publication Critical patent/KR101858576B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0018Electro-optical materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/0126Opto-optical modulation, i.e. control of one light beam by another light beam, not otherwise provided for in this subclass
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/026Recording materials or recording processes
    • G03H2001/0264Organic recording material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0476Holographic printer
    • G03H2001/048Parallel printer, i.e. a fringe pattern is reproduced
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/2655Time multiplexing, i.e. consecutive records wherein the period between records is pertinent per se
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2260/00Recording materials or recording processes
    • G03H2260/50Reactivity or recording processes
    • G03H2260/54Photorefractive reactivity wherein light induces photo-generation, redistribution and trapping of charges then a modification of refractive index, e.g. photorefractive polymer

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Holo Graphy (AREA)

Abstract

광굴절 고분자 복합체, 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자 및 홀로그램 디스플레이 장치가 개시된다. 개시된 광굴절 고분자 복합체는 광전도성 고분자 매트릭스, 비선형 광학색소, 가소제 및 그래파이트계 광전하 발생체를 포함한다.Disclosed is a photorefractive polymer composite, a photorefractive element including the photorefractive polymer composite, and a hologram display device. The disclosed photorefractive polymer composite includes a photoconductive polymer matrix, a nonlinear optical pigment, a plasticizer, and a graphite-based photocharge generator.

Description

광굴절 고분자 복합체, 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자 및 홀로그램 디스플레이 장치{Photorefractive polymer composite, photorefractive device and hologram display device including the same}[0001] The present invention relates to a photorefractive polymer composite, a photorefractive polymer composite including the photorefractive polymer composite, and a hologram display device,

광굴절 고분자 복합체, 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자 및 홀로그램 디스플레이 장치가 개시된다. 보다 상세하게는, 그래파이트계 광전하 발생체를 포함하는 광굴절 고분자 복합체, 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자 및 홀로그램 디스플레이 장치가 개시된다.Disclosed is a photorefractive polymer composite, a photorefractive element including the photorefractive polymer composite, and a hologram display device. More particularly, the present invention relates to a photorefractive polymer composite including a graphite-based photocharge generator, a photorefractive element including the photorefractive polymer composite, and a hologram display device.

홀로그램(hologram)을 구현하기 위하여 광굴절 고분자 복합체(photorefractive composite)를 이용한 광굴절 소자가 활발하게 연구되고 있다. 광굴절 고분자 복합체는 광학적 비선형성(optical nonlinearity)과 광전도성(photoconductivity)을 동시에 갖고 있는 물질로서, 조사하는 빛에 의해 발생한 전하의 재분포로 인하여 물질의 굴절률이 공간상에서 주기적으로 변화(spatial modutation of refractvie index)하는 물질이다. 광굴절 소자는 레이점 빔과 같은 광빔(light beam)의 강도(intensity)와 전기장을 조절하여 굴절률을 변조할 수 있는 소자로서 3D 정보를 가역적으로 기록하는 것이 가능하다. 그러나, 종래의 광굴절 소자는 제한된 광전하 발생체를 사용하여 제조되며, 높은 광전도성을 얻기 위해서는 1W/cm2의 강한 세기의 레이저를 사용하여야 한다. 이에 따라, 종래의 광굴절 소자는 수명 특성이 좋지 않고 고가의 레이저를 사용해야 하는 단점을 갖는다. 또한, 종래의 광굴절 소자는 최대 회절 효율을 나타내는 인가전압이 높아 구동 인가전압이 높은 문제점이 있다. A photorefractive element using a photorefractive composite has been actively studied to realize a hologram. The photorefractive polymer composite has both optical nonlinearity and photoconductivity. The redistribution of charge generated by the irradiated light causes the refractive index of the material to change periodically refractvie index. A photorefractive element is a device capable of modulating the refractive index by controlling the intensity and electric field of a light beam such as a ray point beam, and it is possible to record 3D information reversibly. However, a conventional photorefractive element is manufactured using a limited photogenerating material, and a laser of a strong intensity of 1 W / cm 2 should be used to obtain high photoconductivity. Accordingly, the conventional photorefractive element is disadvantageous in that it has a poor lifetime characteristic and an expensive laser should be used. In addition, the conventional photorefractive element has a problem that the applied voltage exhibiting the maximum diffraction efficiency is high and the driving applied voltage is high.

본 발명의 일 구현예는 그래파이트계 광전하 발생체를 포함하는 광굴절 고분자 복합체를 제공한다.One embodiment of the present invention provides a photorefractive polymer composite comprising a graphite-based photo-charge generator.

본 발명의 다른 구현예는 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자를 제공한다.Another embodiment of the present invention provides a photorefractive element comprising the photorefractive polymer composite.

본 발명의 또 다른 구현예는 상기 광굴절 소자를 포함하는 홀로그램 디스플레이 장치를 제공한다.Another embodiment of the present invention provides a holographic display device including the photorefractive element.

본 발명의 일 측면은,According to an aspect of the present invention,

광전도성 고분자 매트릭스;Photoconductive polymer matrix;

비선형 광학색소;Nonlinear optical pigments;

가소제; 및Plasticizers; And

그래파이트계 광전하 발생체를 포함하는 광굴절 고분자 복합체를 제공한다.The present invention provides a photorefractive polymer composite comprising a graphite-based photocharge generator.

상기 광전도성 고분자 매트릭스는 적어도 하나의 트리아릴아민 모이어티를 갖는 반복단위를 포함할 수 있다.The photoconductive polymer matrix may comprise a repeating unit having at least one triarylamine moiety.

상기 광전도성 고분자 매트릭스는 하기 화학식 1로 표시될 수 있다:The photoconductive polymer matrix may be represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112012092941710-pat00001
Figure 112012092941710-pat00001

화학식 1에서, n은 약 10 내지 약 1,000의 정수이고, R1 내지 R32는 각각 서로 독립적으로 수소원자, 탄소수 1 내지 10의 선형 또는 분지형 알킬기, 탄소수 6 내지 11의 아릴기, 탄소수 5 내지 10의 헤테로아릴기, 탄소수 2 내지 10의 알켄기, 탄소수 2 내지 10의 알킨기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 3 내지 10의 시클로알켄기, 탄소수 3 내지 10의 시클로알킨기, 탄소수 1 내지 10의 헤테로알킬기, 탄소수 2 내지 10의 헤테로알케닐기, 또는 탄소수 2 내지 10의 헤테로알키닐기이다.Wherein n is an integer of about 10 to about 1,000, and R 1 to R 32 each independently represent a hydrogen atom, a linear or branched alkyl group of 1 to 10 carbon atoms, an aryl group of 6 to 11 carbon atoms, An alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, a cycloalkynylene group having 3 to 10 carbon atoms, a cycloalkyl group having 1 to 10 carbon atoms, A heteroalkenyl group having 2 to 10 carbon atoms, or a heteroalkynyl group having 2 to 10 carbon atoms.

상기 광전도성 고분자 매트릭스의 중량평균분자량은 5,000~500,000일 수 있다.The weight average molecular weight of the photoconductive polymer matrix may be 5,000 to 500,000.

상기 광전도성 고분자 매트릭스의 함량은 상기 광굴절 고분자 복합체 100중량부를 기준으로 하여 30~70중량부일 수 있다.The content of the photoconductive polymer matrix may be 30 to 70 parts by weight based on 100 parts by weight of the photorefractive polymer composite.

상기 비선형 광학색소는 P-IP-DC(2-[3-[(E)-2-(piperidino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden] malononitrile), DB-IP-DC(2-{3-[(E)-2-(dibu-tylamino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden} malononitrile), PDCST(dicyanostyrene derivative 4-piperidinobenzylidene-malonitrile), DMNPAA(2,5-dimethyl-4-(p-phenylazo)anisole), AODCST(4-di(2-methoxyethyl)aminobenzylidene malononitrile), DBDC(3-(N,N-di-n-butylaniline-4-yl)-1-dicyanomethylidene-2-cyclohexene), DCDHF(2-dicyanomethylene-3-cyano-2,5-dihydrofuran)-6, DHADC-MPN(2,N,N-dihexylamino-7-dicyanomethylidenyl-3,4,5,6,10-pentahydronaphthalene), ATOP(amino-thienyl-dioxocyano-pyridine)-3, Lemke-E((3-(2-(4-(N,N-diethylamino)phenyl)ethenyl)-5,5-dimethyl-1,2-cyclohexenylidene)propanedinitrile), BDMNPAB(1-n-butoxyl-2,5-dimethyl-4-(4′-nitrophenylazo) benzene), FTCN(fluorinated cyano-tolane chromophore), DEANST(diethylamino-nitrostyrene) 또는 이들의 조합을 포함할 수 있다.The nonlinear optical coloring matter may be selected from the group consisting of P-IP-DC (2- [3- [(E) -2- (piperidino) -1-ethenyl] -5,5- dimethyl- 2- cyclohexenyliden] malononitrile, DB- (Dicyanostyrene derivative 4-piperidinobenzylidene-malonitrile), DMNPAA (dibenzylidene-ethyl) 2,5-dimethyl-4- (p-phenylazo) anisole), AODCST (4-di (2-methoxyethyl) aminobenzylidene malononitrile), DBDC (3- (N, 1-dicyanomethylidene-2-cyclohexene), DCDHF (2-dicyanomethylene-3-cyano-2,5-dihydrofuran) -6, DHADC-MPN (2, N, N-dihexylamino- 6,10-pentahydronaphthalene), ATOP (amino-thienyl-dioxocyano-pyridine) -3, Lemke-E (3- (2- (4- (N, Ndiethylamino) phenyl) -1,2-cyclohexenylidene) propanedinitrile), BDMNPAB (1-n-butoxyl-2,5-dimethyl-4- (4'-nitrophenylazo) benzene, fluorinated cyano-tolane chromophore (FTCN), diethylamino- Or a combination thereof.

상기 비선형 광학색소의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 10~100중량부일 수 있다. The content of the nonlinear optical dye may be 10 to 100 parts by weight based on 100 parts by weight of the photoconductive polymer matrix.

상기 가소제는 BBP(benzylbutyl phthalate), DPP(diphenyl phthalate), DOP(di-2-ethylhexyl phthalate), ECZ(N-ethylcarbazole), EHMPA(n-(2-ethylhexyl)-n-(3-methylphenyl)-aniline), DMP(dimethylphthalate), DEP(diethylphthalate), DIBP(diisobutylphtalate), DBP(dibutylphtalate), DHP((diheptylphtalate), DIOP(dioctyl phthalate), DnOP (di-n-octyl phthalate), DNP(dinonylphthalate), DIDP(diisodecylphthalate), DTDP(ditridecylphthalate), DCHP(dicyclohexyl phthalate), BLP(butyllauryl phthalate), DOA(dioctyl adipate), DIDA(diisodecyl adipate), DOZ(dioctyl azelate), DBS(dibutyl sebacate), DOS(dioctyl sebacate), DOTP(dioctyl terephthalate), DEDB(diethylene glycol dibenzoate), BO(butyl oleate), TCP(tricresyl phosphate), TOP (trioctyl phosphate), TPP(triphenyl phosphate), TCEP(trichloroethyl phosphate) 또는 이들의 조합을 포함할 수 있다. The plasticizer is selected from the group consisting of benzylbutyl phthalate (BBP), diphenyl phthalate (DPP), di-2-ethylhexyl phthalate (DOP), N-ethylcarbazole (ECZ), N- (2-ethylhexyl) aniline), dimethylphthalate (DMP), diethylphthalate (DEP), diisobutylphthalate (DBP), dibutylphthalate (DBP), diheptylphthalate (DHP), dioctyl phthalate (DIOP), di- Diisodecylphthalate (DIDP), ditridecylphthalate (DTDP), dicyclohexyl phthalate (DCHP), butyllauryl phthalate (BLP), dioctyl adipate (DOA), diisodecyl adipate (DIDA), dioctyl azelate (DBZ), dibutyl sebacate ), DOTP (dioctyl terephthalate), DEDB (diethylene glycol dibenzoate), BO (butyl oleate), TCP (tricresyl phosphate), TOP (trioctyl phosphate), TPP (triphenyl phosphate), TCEP (trichloroethyl phosphate) can do.

상기 가소제의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 10~40중량부일 수 있다. The content of the plasticizer may be 10 to 40 parts by weight based on 100 parts by weight of the photoconductive polymer matrix.

상기 그래파이트계 광전하 발생체는 그래파이트, 그래핀, 그래핀 옥사이드(graphene oxide, GO), 환원된 그래핀 옥사이드(reduced graphene oxide, RGO) 또는 이들의 조합을 포함할 수 있다.The graphite-based photo-charge generator may include graphite, graphene oxide (GO), reduced graphene oxide (RGO), or a combination thereof.

상기 그래파이트계 광전하 발생체의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 0.001~1.0중량부일 수 있다.The content of the graphite-based photo-charge generator may be 0.001 to 1.0 part by weight based on 100 parts by weight of the photoconductive polymer matrix.

본 발명의 다른 측면은,According to another aspect of the present invention,

제1 전극; A first electrode;

상기 제1 전극과 대향되게 배치된 제2 전극; 및 A second electrode facing the first electrode; And

상기 제1 전극과 상기 제2 전극 사이에 개재된 것으로, 상기 광굴절 고분자 복합체를 포함하는 광굴절 소자를 제공한다.The present invention also provides a photorefractive element comprising the photorefractive polymer composite interposed between the first electrode and the second electrode.

본 발명의 또 다른 측면은,According to another aspect of the present invention,

상기 광굴절 소자를 포함하는 홀로그램 디스플레이 장치를 제공한다.And a hologram display device including the photorefractive element.

본 발명의 일 구현예에 따른 광굴절 고분자 복합체는 그래파이트계 광전하 발생체를 포함함으로써, 넓은 파장범위에서 광감응이 가능하다.The photorefractive polymer composite according to an embodiment of the present invention includes a graphite-based photo-charge generator, thereby allowing photo-sensitivity in a wide wavelength range.

또한, 본 발명의 일 구현예에 따른 광굴절 소자는 3D 프린터, 3D 디스플레이, 실시간 입체 홀로그래피, 광 컴퓨팅, 3차원 정보저장, 비파괴 홀로그램을 이용한 나노 크기의 에러 탐지 등에 유용하게 사용될 수 있다.Also, the photorefractive element according to an embodiment of the present invention can be used for 3D printer, 3D display, real-time stereoscopic holography, optical computing, three-dimensional information storage, nano-sized error detection using nondestructive hologram.

도 1은 본 발명의 일 구현예에 따른 광굴절 소자를 개략적으로 도시한 단면도이다.
도 2는 본 발명의 일 구현예에 따른 홀로그램 디스플레이 장치를 개략적으로 도시한 단면도이다.
도 3은 실시예 1에서 제조된 광굴절 소자의 전기장에 따른 광전도도 변화를 나타낸 그래프이다.
도 4는 실시예 1에서 제조된 광굴절 소자의 사광파 혼합에 의한 전기장에 따른 회절 효율의 변화를 나타낸 그래프이다.
1 is a cross-sectional view schematically showing a photorefractive element according to an embodiment of the present invention.
2 is a cross-sectional view schematically showing a hologram display device according to an embodiment of the present invention.
FIG. 3 is a graph showing the change in photoconductivity according to the electric field of the photorefractive element manufactured in Example 1. FIG.
FIG. 4 is a graph showing a change in diffraction efficiency according to an electric field by the four-photon wave mixing of the photorefractive element manufactured in Example 1. FIG.

이하, 본 발명의 일 구현예에 따른 광굴절 고분자 복합체를 상세히 설명한다.Hereinafter, the photorefractive polymer composite according to one embodiment of the present invention will be described in detail.

본 발명의 일 구현예에 따른 광굴절 고분자 복합체는 광전도성 고분자 매트릭스(photoconductive polymer matrix), 비선형 광학색소(nonlinear optical chromophore), 가소제(plasticize) 및 그래파이트계 광전하 발생체(graphite-based photocharge generator 또는 photosensitizer)를 포함한다. 본 명세서에서, “그래파이트계 광전하 발생체”란 그래파이트 또는 그래파이트로부터 유도된 광전하 발생체를 의미한다.The photorefractive polymer composite according to an exemplary embodiment of the present invention may include a photoconductive polymer matrix, a nonlinear optical chromophore, a plasticizer, and a graphite-based photocharge generator photosensitizer). In the present specification, the term "graphite-based photo-charge generator" means a photo-charge generator derived from graphite or graphite.

상기 비선형 광학색소, 가소제 및 그래파이트계 광전하 발생체는 상기 광전도성 고분자 매트릭스에 분산된 상태로 존재할 수 있다.The nonlinear optical dye, plasticizer, and graphite-based photocharge generators may be dispersed in the photoconductive polymer matrix.

상기 광전도성 고분자 매트릭스는 전자기 방사선(electomagnetic radiation)을 흡수할 경우 전기 전도도가 향상되는 물질이다. 상기 전자기 방사선에는 가시광, UV, 적외선 등의 광이 포함될 수 있다. 이러한 광전도성 고분자 매트릭스는 광굴절 고분자 복합체 내에서 광조사에 의해 생성된 전하를 이동시켜 정공과 전자의 공간적 비율을 변화시킴으로써 광굴절 고분자 복합체의 내부에 전기장을 유도시킬 수 있다.The photoconductive polymer matrix is a material having improved electrical conductivity when absorbing electromagnet radiation. The electromagnetic radiation may include visible light, UV light, and infrared light. Such a photoconductive polymer matrix can induce an electric field inside the photorefractive polymer composite by changing the spatial ratio of holes and electrons by moving charges generated by light irradiation in the photorefractive polymer composite.

상기 광전도성 고분자 매트릭스는 적어도 하나의 트리아릴아민 모이어티를 갖는 반복단위를 포함할 수 있다. The photoconductive polymer matrix may comprise a repeating unit having at least one triarylamine moiety.

일례로서, 상기 광전도성 고분자 매트릭스는 2개의 트리아릴아민 모이어티를 갖는 반복단위를 포함할 수 있다. 구체적으로, 상기 광전도성 고분자 매트릭스는 하기 화학식 1로 표시될 수 있다:As an example, the photoconductive polymer matrix may include a repeating unit having two triarylamine moieties. Specifically, the photoconductive polymer matrix may be represented by the following Formula 1:

[화학식 1][Chemical Formula 1]

Figure 112012092941710-pat00002
Figure 112012092941710-pat00002

상기 화학식 1에서, n은 약 10 내지 약 1,000의 정수이고, R1 내지 R32는 각각 서로 독립적으로 수소원자, 탄소수 1 내지 10의 선형 또는 분지형 알킬기, 탄소수 6 내지 11의 아릴기, 탄소수 5 내지 10의 헤테로아릴기, 탄소수 2 내지 10의 알켄기, 탄소수 2 내지 10의 알킨기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 3 내지 10의 시클로알켄기, 탄소수 3 내지 10의 시클로알킨기, 탄소수 1 내지 10의 헤테로알킬기, 탄소수 2 내지 10의 헤테로알케닐기, 또는 탄소수 2 내지 10의 헤테로알키닐기이다.R 1 to R 32 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, an aryl group having 5 to 10 carbon atoms, An alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkenyl group having 3 to 10 carbon atoms, a cycloalkyne group having 3 to 10 carbon atoms, A heteroalkyl group having 1 to 10 carbon atoms, a heteroalkenyl group having 2 to 10 carbon atoms, or a heteroalkynyl group having 2 to 10 carbon atoms.

구체적으로, 상기 화학식 1에서, n은 약 20 내지 약 100일 수 있고, R1 내지 R4, R6 내지 R13, R15 내지 R23은 R25 내지 R32는 수소원자일 수 있고, R5, R14 및 R24는 각각 서로 독립적으로 수소원자, 탄소수 1 내지 10의 선형 또는 분지형 알킬기, 탄소수 6 내지 11의 아릴기, 탄소수 5 내지 10의 헤테로아릴기, 탄소수 2 내지 10의 알켄기, 탄소수 2 내지 10의 알킨기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 3 내지 10의 시클로알켄기, 탄소수 3 내지 10의 시클로알킨기, 탄소수 1 내지 10의 헤테로알킬기, 탄소수 2 내지 10의 헤테로알케닐기, 또는 탄소수 2 내지 10의 헤테로알키닐기일 수 있다.In the formula 1, n may be about 20 to about 100, and R 1 to R 4 , R 6 to R 13 , R 15 to R 23 , R 25 to R 32 may be a hydrogen atom, and R 5 , R 14 and R 24 each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, a heteroaryl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms , An alkyne group having 2 to 10 carbon atoms, a cycloalkyl group having 3 to 10 carbon atoms, a cycloalkene group having 3 to 10 carbon atoms, a cycloalkyne group having 3 to 10 carbon atoms, a heteroalkyl group having 1 to 10 carbon atoms, a heteroalkene having 2 to 10 carbon atoms Or a heteroalkynyl group having 2 to 10 carbon atoms.

상기 화학식 1에서 양말단기는 서로 독립적으로 수소 또는 메틸기(-CH3)일 수 있다.In the above formula (1), the terminal groups may independently be hydrogen or a methyl group (-CH 3 ).

다른 예로서, 상기 광전도성 고분자 매트릭스는 1개의 트리아릴아민 모이어티를 갖는 반복단위를 포함할 수 있다. 구체적으로, 상기 광전도성 고분자 매트릭스는 하기 화학식 2로 표시될 수 있다:As another example, the photoconductive polymer matrix may comprise a repeating unit having one triarylamine moiety. Specifically, the photoconductive polymer matrix may be represented by the following Formula 2:

[화학식 2](2)

Figure 112012092941710-pat00003

Figure 112012092941710-pat00003

상기 화학식 2에서, n은 약 1 내지 약 1,000일 수 있고, R1 및 R2는 위에서 정의된 것과 같다.In Formula 2, n may be from about 1 to about 1,000, and R 1 and R 2 are as defined above.

상기 화학식 2에서 양말단기는 서로 독립적으로 수소 또는 메틸기(-CH3)일 수 있다.In the formula (2), the terminal groups may be independently hydrogen or a methyl group (-CH 3 ).

상기 광전도성 고분자 매트릭스는 기타 광전도성 고분자 매트릭스를 더 포함할 수 있다. 상기 기타 광전도성 고분자 매트릭스는 폴리비닐카바졸(polyvinylcarbazole: PVK), 폴리실록산카바졸(polysiloxane carbazole), 폴리파라페닐렌비닐렌(polyparaphenylenevinylene), 폴리피롤(polypyrrole), 폴리티오펜(polythiophene), 폴리알킬티오펜(polyalkylthiophene), 카바졸 치환된 폴리실록산(carbazole-substituted polysiloxane: PSX-Cz), 폴리파라페닐렌테레프탈레이트카바졸(poly(p-phenylene terephthalate) carbazole: PPT-CZ), 폴리아크릴레이트트리페닐아민(polyacrylate triphenylamine: TATPD), 이들의 유도체, 이들의 혼합물 또는 이들의 공중합체를 포함할 수 있다.The photoconductive polymer matrix may further include other photoconductive polymer matrix. The other photoconductive polymer matrix may be at least one selected from the group consisting of polyvinylcarbazole (PVK), polysiloxane carbazole, polyparaphenylenevinylene, polypyrrole, polythiophene, Polyalkylthiophene, carbazole-substituted polysiloxane (PSX-Cz), poly (p-phenylene terephthalate) carbazole (PPT-CZ), polyacrylate triphenylamine polyacrylate triphenylamine (TATPD), derivatives thereof, mixtures thereof, or copolymers thereof.

상기 화학식 1 또는 2로 표시되는 광전도성 고분자 매트릭스, 또는 상기 기타 광전도성 고분자 매트릭스의 중량평균분자량은 5,000~500,000, 예를 들어, 10,000~50,000일 수 있다. 상기 광전도성 고분자 매트릭스 또는 상기 기타 광전도성 고분자 매트릭스의 중량평균분자량이 상기 범위(5,000~500,000)이내이면, 전기적 안정성이 높아 전기장 인가시 항복현상(breakdown)이 발생할 염려가 없는 광굴절 소자를 얻을 수 있으며, 상기 광전도성 고분자 매트릭스 또는 상기 기타 광전도성 고분자 매트릭스의 용매에 대한 용해도가 적당하여 광굴절 소자의 제조에 사용되기가 용이하다.The weight average molecular weight of the photoconductive polymer matrix represented by Formula 1 or 2 or the other photoconductive polymer matrix may be 5,000 to 500,000, for example, 10,000 to 50,000. When the weight average molecular weight of the photoconductive polymer matrix or the other photoconductive polymer matrix is within the above range (5,000 to 500,000), a photorefractive element having high electrical stability and free from breakdown in the application of an electric field can be obtained And the solubility of the photoconductive polymer matrix or the other photoconductive polymer matrix in a solvent is suitable, so that the photoconductive polymer matrix can be easily used in the manufacture of a photorefractive element.

상기 광전도성 고분자 매트릭스의 함량은 상기 광굴절 고분자 복합체 100중량부를 기준으로 하여 30~70중량부, 예를 들어, 40~55중량부일 수 있다. 상기 광전도성 고분자 매트릭스의 함량이 상기 범위(30~70중량부)이내이면, 광전도성이 높아 내부공간 전하장의 크기가 커서 낮은 인가전압이 사용될 수 있으며, 상온(약 25℃)에서도 광굴절 현상을 나타낼 수 있는 광굴절 소자를 얻을 수 있다.The content of the photoconductive polymer matrix may be 30 to 70 parts by weight, for example, 40 to 55 parts by weight based on 100 parts by weight of the photorefractive polymer composite. If the content of the photoconductive polymer matrix is within the above range (30 to 70 parts by weight), a high applied voltage can be used because the photoconductivity is high and the size of the internal space charge field is large. A photorefractive element can be obtained.

상기 비선형 광학 색소는 상기 광굴절 고분자 복합체 내부에 유도된 전기장에 의해 활성화되어 공간적인 굴절률 차이를 발현시킨다. 즉, 상기 비선형 광학색소는 1차적으로는 외부에서 인가된 전기장에 의해 배열되고, 광전도성에 의해 생성된 내부공간 전하장에 의해 재배열되게 된다.The nonlinear optical dye is activated by an electric field induced inside the photorefractive polymer composite, thereby manifesting a spatial refractive index difference. That is, the nonlinear optical dye is primarily arranged by an externally applied electric field, and is rearranged by the internal space charge field generated by the photoconductivity.

상기 비선형 광학색소는, P-IP-DC(2-[3-[(E)-2-(piperidino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden] malononitrile), DB-IP-DC(2-{3-[(E)-2-(dibu-tylamino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden} malononitrile), PDCST(dicyanostyrene derivative 4-piperidinobenzylidene-malonitrile), DMNPAA(2,5-dimethyl-4-(p-phenylazo)anisole), AODCST(4-di(2-methoxyethyl)aminobenzylidene malononitrile), DBDC(3-(N,N-di-n-butylaniline-4-yl)-1-dicyanomethylidene-2-cyclohexene), DCDHF(2-dicyanomethylene-3-cyano-2,5-dihydrofuran)-6, DHADC-MPN(2,N,N-dihexylamino-7-dicyanomethylidenyl-3,4,5,6,10-pentahydronaphthalene), ATOP(amino-thienyl-dioxocyano-pyridine)-3, Lemke-E((3-(2-(4-(N,N-diethylamino)phenyl)ethenyl)-5,5-dimethyl-1,2-cyclohexenylidene)propanedinitrile), BDMNPAB(1-n-butoxyl-2,5-dimethyl-4-(4′-nitrophenylazo) benzene), FTCN(fluorinated cyano-tolane chromophore), DEANST(diethylamino-nitrostyrene) 또는 이들의 조합을 포함할 수 있다.The nonlinear optical dye may be selected from the group consisting of P-IP-DC (2- [3- [piperidino) -1-ethenyl] -5,5-dimethyl- 2- cyclohexenyliden] malononitrile, DB- DC (dicyanostyrene derivative 4-piperidinobenzylidene-malonitrile), DMNPAA (dibutylaminoethyl) -1,5-dimethyl-2- (2,5-dimethyl-4- (p-phenylazo) anisole), AODCST (4-di (2-methoxyethyl) aminobenzylidene malononitrile), DBDC (3- -1-dicyanomethylidene-2-cyclohexene), DCDHF (2-dicyanomethylene-3-cyano-2,5-dihydrofuran) -6, DHADC-MPN (2, N, N-dihexylamino-7-dicyanomethylidenyl- , 6,10-pentahydronaphthalene), ATOP (amino-thienyl-dioxocyano-pyridine) -3, Lemke-E (3- (2- (4- (N, Ndiethylamino) phenyl) dimethyl-1,2-cyclohexenylidene) propanedinitrile, BDMNPAB (1-n-butoxyl-2,5-dimethyl-4- (4'-nitrophenylazo) benzene), FTCN (fluorinated cyano-tolane chromophore), DEANST ), Or a combination thereof.

Figure 112012092941710-pat00004
<P-IP-DC>
Figure 112012092941710-pat00004
<P-IP-DC>

Figure 112012092941710-pat00005
<PDCST>
Figure 112012092941710-pat00005
<PDCST>

Figure 112012092941710-pat00006
<DMNPAA>
Figure 112012092941710-pat00006
<DMNPAA>

Figure 112012092941710-pat00007
<DHADC-MPN>
Figure 112012092941710-pat00007
<DHADC-MPN>

Figure 112012092941710-pat00008
<AODCST>
Figure 112012092941710-pat00008
<AODCST>

Figure 112012092941710-pat00009
<ATOP>
Figure 112012092941710-pat00009
<ATOP>

Figure 112012092941710-pat00010
<FTCN>
Figure 112012092941710-pat00010
<FTCN>

Figure 112012092941710-pat00011
<DEANST>
Figure 112012092941710-pat00011
<DEANST>

상기 비선형 광학색소의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 10~100중량부, 예를 들어, 50~70중량부일 수 있다. 상기 비선형 광학색소의 함량이 상기 범위(10~100중량부)이내이면, 낮은 인가전압에서도 높은 복굴절률을 나타낼 수 있으며, 상기 비선형 광학색소의 입자들이 서로 응집하지 않아 제조가 용이하고 전기적 안정성이 높은 광굴절 소자를 얻을 수 있다.The content of the nonlinear optical dye may be 10 to 100 parts by weight, for example, 50 to 70 parts by weight based on 100 parts by weight of the photoconductive polymer matrix. When the content of the nonlinear optical dye is within the above range (10 to 100 parts by weight), it is possible to exhibit a high birefringence even at a low applied voltage. Since the particles of the nonlinear optical dye do not cohere with each other, A photorefractive element can be obtained.

상기 가소제는 상기 광굴절 고분자 복합체의 유리전이온도를 감소시킴으로써, 상기 광굴절 고분자 복합체 물질들의 자유도를 증가시켜 배향 증가(orientational enhancement) 효과에 의해 광굴절 효율(예를 들어, 회절 효율)을 향상시킬 수 있다.The plasticizer may increase the degree of freedom of the photorefractive polymer composite material by decreasing the glass transition temperature of the photorefractive polymer composite to improve the optical refraction efficiency (for example, diffraction efficiency) by an orientational enhancement effect .

상기 가소제는 BBP(benzyl butyl phthalate), DPP(diphenyl phthalate), DOP(di-2-ethylhexyl phthalate), ECZ(N-ethylcarbazole), EHMPA(n-(2-ethylhexyl)-n-(3-methylphenyl)-aniline), DMP(dimethylphthalate), DEP(diethylphthalate), DIBP(diisobutylphtalate), DBP(dibutylphtalate), DHP((diheptylphtalate), DIOP(dioctyl phthalate), DnOP (di-n-octyl phthalate), DNP(dinonylphthalate), DIDP(diisodecylphthalate), DTDP(ditridecylphthalate), DCHP(dicyclohexyl phthalate), BLP(butyllauryl phthalate), DOA(dioctyl adipate), DIDA(diisodecyl adipate), DOZ(dioctyl azelate), DBS(dibutyl sebacate), DOS(dioctyl sebacate), DOTP(dioctyl terephthalate), DEDB(diethylene glycol dibenzoate), BO(butyl oleate), TCP(tricresyl phosphate), TOP (trioctyl phosphate), TPP(triphenyl phosphate), TCEP(trichloroethyl phosphate) 또는 이들의 조합을 포함할 수 있다.The plasticizer is selected from benzyl butyl phthalate (DPP), diphenyl phthalate (DPP), di-2-ethylhexyl phthalate (DOP), N-ethylcarbazole (ECZ), N- (2-ethylhexyl) dibutylphthalate, dibutylphthalate, DHP (diheptylphthalate), DIOP (dioctyl phthalate), DnOP (di-n-octyl phthalate), DNP (dinonylphthalate) , Diisodecylphthalate (DIDP), ditridecylphthalate (DTDP), dicyclohexyl phthalate (DCHP), butyllauryl phthalate (BLP), dioctyl adipate (DOA), diisodecyl adipate (DIDA), dioctyl azelate, dibutyl sebacate sebacate, dioctyl terephthalate (DOTB), butyl oleate (BO), tricresyl phosphate (TCP), trioctyl phosphate (TOP), triphenyl phosphate (TPP), trichloroethyl phosphate .

상기 가소제의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 10~40중량부, 예를 들어, 15~25중량부일 수 있다. 상기 가소제의 함량이 상기 범위(10~40중량부)이내이면, 상온(약 25℃)에서도 광굴절 현상을 나타낼 수 있으며, 고전압 인가시에도 전기적 안정성이 높게 유지되는 광굴절 소자를 얻을 수 있다.The content of the plasticizer may be 10 to 40 parts by weight, for example, 15 to 25 parts by weight, based on 100 parts by weight of the photoconductive polymer matrix. When the content of the plasticizer is within the above range (10 to 40 parts by weight), it is possible to obtain a photorefractive element capable of exhibiting a photorefractive phenomenon even at room temperature (about 25 ° C) and maintaining high electrical stability even when a high voltage is applied.

상기 그래파이트계 광전하 발생체는 다양한 파장대의 광원, 예를 들어 가시광선에 의해 여기되어 전자와 정공을 생성할 수 있다. 이러한 그래파이트계 광전하 발생체는 종래의 광전하 발생체에 비해 하기와 같은 잇점을 갖는다: 첫째, 광원으로서 낮은 세기의 레이저를 사용하더라도 우수한 광전도성을 갖는 광굴절 소자를 얻을 수 있다. 둘째, 수명 특성이 우수하며 저가의 레이저를 광원으로 사용할 수 있는 광굴절 소자를 얻을 수 있다. 최대 회절 효율을 나타내는 인가전압이 낮아 구동 인가전압이 낮은 광굴절 소자를 얻을 수 있다.The graphite-based photocharge generators can be excited by light sources of various wavelength ranges, for example, visible light, to generate electrons and holes. Such a graphite-type photo-charge generator has the following advantages over conventional photo-charge generators: First, a photorefractive element having excellent photoconductivity can be obtained even if a low-intensity laser is used as a light source. Second, it is possible to obtain a photorefractive element which has excellent lifetime characteristics and can use a low-cost laser as a light source. It is possible to obtain a photorefractive element having a low drive voltage and a low applied voltage indicating the maximum diffraction efficiency.

상기 그래파이트계 광전하 발생체는 그래파이트, 그래핀, 그래핀 옥사이드(graphene oxide, GO), 환원된 그래핀 옥사이드(reduced graphene oxide, RGO) 또는 이들의 조합을 포함할 수 있다.The graphite-based photo-charge generator may include graphite, graphene oxide (GO), reduced graphene oxide (RGO), or a combination thereof.

상기 그래핀 옥사이드 중의 산소 함량은 15~30중량%일 수 있다.The oxygen content of the graphene oxide may be 15 to 30 wt%.

상기 환원된 그래핀 옥사이드 중의 산소 함량은 1.5~10중량%일 수 있다.The oxygen content of the reduced graphene oxide may be 1.5 to 10 wt%.

상기 그래파이트계 광전하 발생체의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 0.001~1.0중량부, 예를 들어, 0.05~0.5중량부일 수 있다. 상기 그래파이트계 광전하 발생체의 함량이 상기 범위(0.001~1.0중량부)이내이면, 광굴절 특성 및 전기적 안정성이 우수하고, 빔패닝(beam fanning) 현상이 발생하지 않는 광굴절 소자를 얻을 수 있다.The content of the graphite-based photo-charge generator may be 0.001 to 1.0 parts by weight, for example, 0.05 to 0.5 parts by weight, based on 100 parts by weight of the photoconductive polymer matrix. When the content of the graphite-based photogenerating material is within the above range (0.001 to 1.0 part by weight), a photorefractive element having excellent photorefractive characteristics and electrical stability and not causing beam fanning phenomenon can be obtained .

상기 광굴절성 고분자 복합체는 보조 광전하 발생체(co-photosensitizer)를 더 포함할 수 있다. The photorefractive polymer composite may further include a co-photosensitizer.

상기 보조 광전하 발생체는 C60 풀러렌(C60 fullerene), PCBM(phenyl-C61-butyric acid methyl ester), TNF(2,4,7-trinitrofluorenone), TNFDM(2,4,7-trinitro-9-fluorenylidene-malononitrile) 또는 이들의 조합을 포함할 수 있다.The auxiliary optical carrier generation material is a C 60 fullerene (C 60 fullerene), PCBM ( phenyl-C 61 -butyric acid methyl ester), TNF (2,4,7-trinitrofluorenone), TNFDM (2,4,7-trinitro- 9-fluorenylidene-malononitrile) or a combination thereof.

Figure 112012092941710-pat00012
Figure 112012092941710-pat00013
Figure 112012092941710-pat00012
Figure 112012092941710-pat00013

<C60 풀러렌> <PCBM ><C 60 fullerene><PCBM>

Figure 112012092941710-pat00014
Figure 112012092941710-pat00015
Figure 112012092941710-pat00014
Figure 112012092941710-pat00015

<TNF> <TNFDM>
<TNF><TNFDM>

이하에서는 도면을 참조하여 본 발명의 일 구현예에 따른 광굴절 소자 및 홀로그램 디스플레이 장치를 상세히 설명한다.Hereinafter, a photorefractive element and a hologram display device according to an embodiment of the present invention will be described in detail with reference to the drawings.

도 1은 본 발명의 일 구현예에 따른 광굴절 소자(100)를 개략적으로 도시한 단면도이다. 1 is a cross-sectional view schematically showing a photorefractive element 100 according to an embodiment of the present invention.

도 1을 참조하면, 본 발명의 일 구현예에 따른 광굴절 소자(100)는 제1 전극(10), 제1 전극(10)과 대향되게 배치된 제2 전극(30), 제1 전극(10)과 제2 전극(30) 사이에 개재된 광굴절층(20)을 포함한다. 제1 전극(10)은 Au, Al, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide) 등의 물질을 포함할 수 있으나, 이에 한정되는 것은 아니다. 제2 전극(30)은 제1 전극(10)과 동일한 물질을 포함할 수 있다. Referring to FIG. 1, a photorefractive element 100 according to an exemplary embodiment of the present invention includes a first electrode 10, a second electrode 30 disposed to face the first electrode 10, And a photorefractive layer 20 interposed between the first electrode 10 and the second electrode 30. The first electrode 10 may include a material such as Au, Al, ITO (Indium Tin Oxide), or IZO (indium zinc oxide), but is not limited thereto. The second electrode 30 may include the same material as the first electrode 10.

광굴절층(20)은 전술한 광굴절 고분자 복합체를 포함할 수 있다. The photorefractive layer 20 may include the above-described photorefractive polymer composite.

광굴절층(20)에 동일한 파장의 간섭성 광(coherent light)이 조사되면 보강간섭이 일어난 부분에서 전하가 생성되어 이동하면서 내부 전기장이 생성된다. 상기 내부 전기장에 의해 광굴절층(20)의 공간적인 굴절률이 변하여 회절 격자가 형성된다. 광굴절 소자(100)에 형성된 회절 패턴은 3차원 영상의 정보를 가지고 있어 기준광(reference beam)을 조사해 주면 광굴절 소자(100) 주위에 3차원 영상을 형성시키게 된다. When a coherent light of the same wavelength is irradiated to the photorefractive layer 20, electric charge is generated in a portion where the constructive interference occurs, and an internal electric field is generated while moving. The spatial refractive index of the photorefractive layer 20 is changed by the internal electric field to form a diffraction grating. The diffraction pattern formed on the photorefractive element 100 has information of a three-dimensional image, and when a reference beam is irradiated, a three-dimensional image is formed around the photorefractive element 100.

광굴절 소자(100)는 공간 광변조기(spatial light modulator, SLM)로 사용될 수 있다.The photorefractive element 100 may be used as a spatial light modulator (SLM).

본 발명의 일 구현에에 따른 광굴절 소자(100)는 그래파이트계 광전하 발생체를 포함하는 광굴절 고분자 복합체를 포함함으로써, 0.1W/cm2 이하의 낮은 세기의 레이저를 광원으로 사용하더라도 우수한 광전도성을 얻을 수 있으며, 수명 특성이 우수하고, 저가의 레이저를 광원으로 사용할 수 있으며, 최대 회절 효율을 나타내는 인가전압이 낮은(즉, 구동 인가전압이 낮은) 잇점을 갖는다.Since the photorefractive element 100 according to an embodiment of the present invention includes the photorefractive polymer composite material including the graphite-based photoreceptor, even if a laser of a low intensity of 0.1 W / cm 2 or less is used as a light source, Conductivity, an excellent lifetime, an inexpensive laser as a light source, and an advantage that the applied voltage showing the maximum diffraction efficiency is low (that is, the driving voltage is low).

본 발명의 일 구현예에 따른 광굴절 소자(200)는 3D 프린터, 3D 디스플레이, 실시간 입체 홀로그래피, 광 컴퓨팅, 3차원 정보저장, 비파괴 홀로그램을 이용한 나노 크기의 에러 탐지 등에 유용하게 사용될 수 있다.The photorefractive element 200 according to an exemplary embodiment of the present invention can be usefully used for 3D printers, 3D displays, real-time stereoscopic holography, optical computing, three-dimensional information storage, and nano-sized error detection using nondestructive holograms.

도 2는 본 발명의 일 구현예에 따른 홀로그램 디스플레이 장치(200)를 개략적으로 도시한 단면도이다.2 is a cross-sectional view schematically showing a hologram display device 200 according to an embodiment of the present invention.

도 2를 참조하면, 본 발명의 일 구현예에 따른 홀로그램 디스플레이 장치(200)는 광원부(210), 입력부(220), 광학계(230) 및 표시부(240)를 포함한다.2, the hologram display device 200 includes a light source 210, an input unit 220, an optical system 230, and a display unit 240.

광원부(210)는 입력부(220) 및 표시부(240)에서 물체의 3차원 영상 정보를 제공, 기록 및 재생하는데 사용되는 레이저빔을 조사하는 부분이다. The light source unit 210 irradiates a laser beam used for providing, recording, and reproducing three-dimensional image information of an object in the input unit 220 and the display unit 240. [

입력부(220)는 표시부(240)에 기록할 물체의 3차원 영상 정보를 미리 입력하는 부분이다. 입력부(220)는, 예를 들어, 전기 구동 액정 SLM(electrically addressed liquid crystal SLM)(221)에 공간별 빛의 세기와 위상과 같은 물체의 3차원 정보를 입력할 수 있다. 이때, 입력빔(212)이 사용될 수 있다. The input unit 220 is a unit for inputting three-dimensional image information of an object to be recorded in advance on the display unit 240. [ The input unit 220 is capable of inputting three-dimensional information of an object such as intensity and phase of light for each space into, for example, an electrically addressed liquid crystal SLM (SLM) 221. At this time, the input beam 212 may be used.

광학계(230)는 미러, 편광기, 빔스플리터, 빔셔터, 렌즈 등으로 구성될 수 있다. 광학계(230)는 광원부(210)에서 방출되는 레이저빔(211)을 입력부(220)로 보내는 입력빔(212), 표시부(240)로 보내는 기록빔(213), 기준빔(214), 소거빔(215), 독출빔(216) 등으로 분배할 수 있다. The optical system 230 may be composed of a mirror, a polarizer, a beam splitter, a beam shutter, a lens, or the like. The optical system 230 includes an input beam 212 that transmits the laser beam 211 emitted from the light source unit 210 to the input unit 220, a recording beam 213 that is transmitted to the display unit 240, a reference beam 214, The beam 215, the reading beam 216, and the like.

표시부(240)는 입력부(220)로부터 물체의 3차원 영상 정보를 전달받아서 광학 구동 SLM(optically addressed SLM)으로 이루어진 홀로그램 플레이트(241)에 기록하고, 물체의 3차원 영상을 재생할 수 있다. 이때, 입력빔(213)과 기준빔(214)의 간섭을 통하여 물체의 3차원 영상 정보를 기록할 수 있다. 홀로그램 플레이트(241)의 광학 구동 SLM는 도 1의 광굴절 소자(100)일 수 있다. 홀로그램 플레이트(241)에 기록된 물체의 3차원 영상 정보는 독출빔(216)이 생성하는 회절 패턴에 의해 3차원 영상으로 재생될 수 있다. 소거빔(215)은 형성된 회절 패턴을 빠르게 제거하기 위해 사용될 수 있다. 한편, 홀로그램 플레이트(241)는 3차원 영상을 입력하는 위치와 재생하는 위치 사이에서 이동될 수 있다. The display unit 240 receives three-dimensional image information of an object from the input unit 220, records the three-dimensional image information on the hologram plate 241 formed of an optically addressed SLM, and reproduces a three-dimensional image of the object. At this time, the three-dimensional image information of the object can be recorded through the interference between the input beam 213 and the reference beam 214. The optical drive SLM of the hologram plate 241 may be the photorefractive element 100 of Fig. The three-dimensional image information of the object recorded on the hologram plate 241 can be reproduced as a three-dimensional image by the diffraction pattern generated by the read beam 216. [ The erase beam 215 can be used to quickly remove the formed diffraction pattern. On the other hand, the hologram plate 241 can be moved between a position at which the three-dimensional image is input and a position at which the three-dimensional image is reproduced.

본 발명의 일 구현예에 따른 홀로그램 디스플레이 장치(200)는 홀로그램 플레이트(241)의 광학 구동 SLM으로서 도 1의 광굴절 소자(100)를 사용함으로써, 빠른 광변조 속도에 따라서 화면 전환 속도가 향상될 수 있다.The hologram display device 200 according to an embodiment of the present invention uses the photorefractive element 100 of FIG. 1 as the optical driving SLM of the hologram plate 241, so that the screen switching speed is improved according to the fast optical modulation rate .

전술한 광굴절 고분자 복합체 및 광굴절 소자(100)는 위에서 설명한 홀로그램 디스플레이 장치(200)뿐만 아니라, 다른 다양한 형태의 홀로그램 디스플레이 장치에 적용될 수 있다.The photorefractive polymer composite and the photorefractive element 100 may be applied not only to the hologram display device 200 described above but also to various other types of hologram display devices.

이하, 본 발명을 하기 실시예를 들어 설명하지만, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to the following examples, but the present invention is not limited thereto.

실시예Example

제조예Manufacturing example 1: 환원된  1: Reduced 그래핀Grapina 옥사이드(RGO)의Oxide (RGO) 합성 synthesis

하기와 같이 Hummers법을 이용하여 그래파이트를 산처리하였다. 먼저, 0℃에서 그래파이트 1g를 황산(sulfuric acid)에 분산시켜 그래파이트 분산액을 제조한 후, 상기 그래파이트 분산액에 초산나트륨(sodium acetate) 2g을 첨가하여 상기 초산나트륨을 10분 동안 용해시켰다. 이후, 상기 그래파이트 분산액에 과망간산칼륨(potassium permanganate) 12g을 더 첨가하여 상기 과망간산칼륨을 10분 동안 용해시킨 후 상온(25℃)에서 12시간 동안 그래파이트의 산화 반응을 진행시켰다. 산화 반응이 종결된 후, 결과물을 증류수 2L에 부어 교반시킨 후 과산화수소(hydroperoxide) 20 mL를 더 첨가하여 과망간산칼륨을 제거하였다. 결과로서, 그래핀 옥사이드(GO) 분산액을 얻었다. 이후, 상기 GO 분산액을 원심분리기를 이용하여 증류수와 그래핀 옥사이드(GO)로 분리시켰다. 분리된 GO를 여러번 세척하여 pH 6∼7로 중화시킨 후 동결건조기로 건조하여 GO(산소 함량: 28.6중량%)를 얻었다. 이렇게 얻은 GO 1g을 1,000mL의 증류수에 넣은 후 초음파 처리에 의해 완전히 분산시켜 그래핀 옥사이드(GO) 수분산액을 얻었다. 상기 GO 수분산액에 하이드라진 하이드레이트 10mL를 첨가 후 100℃에서 24시간 동안 GO의 환원 반응을 진행시켰다. 환원 반응이 종결된 후, 결과물을 여과하여 고형물을 얻은 후 상기 고형물을 에탄올 수용액(물과 에탄올을 부피 기준으로 1:1 비율로 섞어 제조)으로 2~3회 세척하였다. 이후, 세척된 고형물을 180℃에서 진공 건조하여 환원된 그래핀 옥사이드(RGO)(산소 함량: 6.3중량%)를 얻었다.The graphite was acid-treated using the Hummers method as described below. First, 1 g of graphite was dispersed in sulfuric acid at 0 占 폚 to prepare a graphite dispersion. Then, 2 g of sodium acetate was added to the graphite dispersion to dissolve the sodium acetate for 10 minutes. Then, 12 g of potassium permanganate was further added to the graphite dispersion, and the potassium permanganate was dissolved for 10 minutes, and the oxidation reaction of the graphite was proceeded at room temperature (25 캜) for 12 hours. After the oxidation reaction was completed, the resultant was poured into 2 L of distilled water and stirred. Then, 20 mL of hydroperoxide was further added to remove potassium permanganate. As a result, a graphene oxide (GO) dispersion was obtained. Thereafter, the GO dispersion was separated into distilled water and graphene oxide (GO) using a centrifugal separator. Separated GO was washed several times to neutralize to pH 6-7, and then dried with a freeze dryer to obtain GO (oxygen content: 28.6% by weight). 1 g of GO thus obtained was placed in 1,000 mL of distilled water and completely dispersed by ultrasonic treatment to obtain a graphene oxide (GO) water dispersion. 10 mL of hydrazine hydrate was added to the GO aqueous dispersion, and the reduction reaction of GO was carried out at 100 ° C for 24 hours. After the reduction reaction was completed, the resultant was filtered to obtain a solid, and the solid was washed with ethanol aqueous solution (prepared by mixing water and ethanol at a ratio of 1: 1 by volume) 2-3 times. Thereafter, the washed solid was vacuum-dried at 180 DEG C to obtain reduced graphene oxide (RGO) (oxygen content: 6.3 wt%).

실시예Example 1: 광굴절 고분자 복합체 및 광굴절 소자의 제조 1: Fabrication of photorefractive polymer composite and photorefractive element

실시예 1에서는, 광전도성 고분자로서 하기 화학식 3으로 표시되는 콘주게이트 트리페닐아민(Con-TPD, n=30, 양말단기: 메틸기(-CH3), 중량 평균 분자량=180,000)을 사용하였고, 비선형 광학색소로서 P-IP-DC(2-[3-[(E)-2-(piperidino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden] malononitrile)를 사용하였으며, 가소제로서 BBP(benzylbutyl phthalate)를 사용하였으며, 광전하 발생체로서 상기 제조예 1에서 제조된 RGO를 사용하였다.In Example 1, conjugated triphenylamine (Con-TPD, n = 30, short-chain methyl group (-CH 3 ), weight average molecular weight = 180,000) represented by the following formula 3 was used as a photoconductive polymer, As the optical pigment, P-IP-DC (2- [3 - [(E) -2- (piperidino) -1-ethenyl] -5,5- dimethyl- 2- cyclohexenyliden] malononitrile was used. benzylbutyl phthalate), and RGO prepared in Preparation Example 1 was used as a photocharge generator.

[화학식 3](3)

Figure 112012092941710-pat00016
Figure 112012092941710-pat00016

먼저, RGO 0.05mg을 DMF(dimethyl formamide)0.5mL에 넣어 상기 RGO를 초음파 분산기로 용해시킨 후, 광전도성 고분자 55mg, 비선형 광학색소 30mg 및 가소제 15mg을 더 첨가하고 분산시켜 도포용 조성물을 얻었다. 상기 도포용 조성물을 필터막(평균기공크기: 0.2㎛)을 통하여 60℃로 가열된 ITO-코팅 유리기판 위에 떨어뜨렸다. 상기 ITO-코팅 유리기판 위에 도포된 조성물을 60℃의 감압오븐(0.01mmHg)에 넣고 상기 조성물로부터 12시간 동안 용매(DMF)를 제거하여 광굴절 고분자 복합체 전구필름을 얻었다. 상기 광굴절 고분자 복합체 전구필름의 양 옆에 두 개의 테프론 스페이서(두께 100㎛)를 배치하고, 제2의 ITO-코팅 유리기판을 그 위에 덮었다. 두 개의 ITO-코팅 유리기판 사이에 개재된 광굴절 고분자 복합체 전구필름을 120℃의 핫플레이트 위에서 5분 동안 연화시켜, 두 개의 ITO-코팅 유리기판 및 이들 사이에 개재된 광굴절 고분자 복합체로 구성된 광굴절 소자를 얻었다. 이후, 상기 광굴절 소자의 두께 균일도를 높이기 위해 120℃ 오븐에 10분간 유지시킨 후 드라이아이스를 이용하여 상기 광굴절 소자를 급랭시켰다.First, 0.05 mg of RGO was added to 0.5 ml of DMF, and the RGO was dissolved in an ultrasonic disperser. Then, 55 mg of a photoconductive polymer, 30 mg of a nonlinear optical dye and 15 mg of a plasticizer were further added and dispersed to obtain a coating composition. The coating composition was dropped onto an ITO-coated glass substrate heated to 60 占 폚 through a filter membrane (average pore size: 0.2 占 퐉). The composition coated on the ITO-coated glass substrate was placed in a vacuum oven (0.01 mmHg) at 60 ° C and the solvent (DMF) was removed from the composition for 12 hours to obtain a light refracting polymer composite precursor film. Two Teflon spacers (100 占 퐉 thick) were placed on both sides of the light-reflecting polymer composite film and the second ITO-coated glass substrate was covered thereon. The photorefractive polymer composite film sandwiched between two ITO-coated glass substrates was softened on a hot plate at 120 DEG C for 5 minutes to form two ITO-coated glass substrates and a light composed of a photorefractive polymer composite interposed therebetween A refraction element was obtained. Then, in order to increase the thickness uniformity of the photorefractive element, the photorefractive element was quenched by using dry ice after being kept in an oven at 120 ° C for 10 minutes.

실시예Example 2 및  2 and 비교예Comparative Example 1: 광굴절 고분자 복합체 및 광굴절 소자의 제조 1: Fabrication of photorefractive polymer composite and photorefractive element

광전하 발생체인 RGO의 함량을 하기 표 1과 같이 변화시킨 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 광굴절 고분자 복합체 및 광굴절 소자를 제조하였다.A photorefractive polymer composite and a photorefractive element were prepared in the same manner as in Example 1, except that the content of RGO as a photogenerator was changed as shown in Table 1 below.

비교예Comparative Example 2: 광굴절 고분자 복합체 및 광굴절 소자의 제조 2: Fabrication of photorefractive polymer composite and photorefractive element

광전하 발생체로서 RGO 대신에 PCBM(phenyl-C61-butyric acid methyl ester)을 사용한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 광굴절 고분자 복합체 및 광굴절 소자를 제조하였다.A photorefractive polymer composite and a photorefractive element were prepared in the same manner as in Example 1 except that PCBM (phenyl-C61-butyric acid methyl ester) was used instead of RGO as a photogenerating material.

실시예 1~2 및 비교예 1~2의 광굴절 고분자 복합체의 조성 및 유리전이온도(Tg)를 하기 표 1에 요약하였다.The compositions and glass transition temperatures (Tg) of the photorefractive polymer composites of Examples 1 and 2 and Comparative Examples 1 and 2 are summarized in Table 1 below.

항목Item 광전도성
고분자 및 그 함량(mg)
Photoconductivity
Polymer and its content (mg)
비선형 광학색소(P-IP-DC) 함량(mg)Non-linear optical pigment (P-IP-DC) Content (mg) 가소제(BBP) 함량(mg)Plasticizer (BBP) content (mg) 광전하 발생체
및 그 함량(mg)
Photocharge generator
And its content (mg)
광전도성 고분자 복합체의 유리전이온도(Tg)(℃)Glass Transition Temperature (Tg) (° C) of Photoconductive Polymer Complex
실시예 1Example 1 Con-TPD: 55Con-TPD: 55 3030 1515 RGO: 0.05RGO: 0.05 2929 실시예 2Example 2 Con-TPD: 55Con-TPD: 55 3030 1515 RGO: 0.5RGO: 0.5 3030 비교예 1Comparative Example 1 Con-TPD: 55Con-TPD: 55 3030 1515 0.00.0 2929 비교예 2Comparative Example 2 Con-TPD: 55Con-TPD: 55 3030 1515 PCBM: 0.05PCBM: 0.05 2929

상기 표 1에서 유리전이온도(Tg)는 시차주사열량분석기(Differential Scanning Calorimetry, DSC)를 이용하여 TA instruments사의 DSC Q100으로 10°C/min 의 속도로 측정되었다.
The glass transition temperature (Tg) in the above Table 1 was measured at a rate of 10 ° C / min by DSC Q100 of TA instruments using differential scanning calorimetry (DSC).

평가예Evaluation example

실시예 1~2 및 비교예 1~2에서 제조된 광굴절 소자(또는 광굴절 고분자 복합체)의 상안정성, 광전도도, 이득계수, 최대 회절 효율 인가전압 및 최대 회절 효율을 하기와 같은 방법으로 평가하여 그 결과를 하기 표 2에 나타내었다.The phase stability, the photoconductivity, the gain coefficient, the maximum diffraction efficiency applied voltage and the maximum diffraction efficiency of the photorefractive element (or photorefractive polymer composite) prepared in Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the following method The results are shown in Table 2 below.

(상안정성의 평가)(Evaluation of phase stability)

60℃의 오븐에서 1개월 동안 방치하였을 때 상분리가 일어나는지 여부를 관찰하였다. 1개월 동안 상분리가 발생하지 않은 경우는 "우수"로, He-Ne 레이저 빔의 초기 투과도 대비 1개월 동안의 투과도 변화가 10% 이하인 경우는 "양호"로 기록하였다. It was observed whether phase separation occurred when left in an oven at 60 ° C for one month. "Good" when no phase separation occurred for one month, and "Good" when the transmittance change for 1 month compared to the initial transmittance of He-Ne laser beam was 10% or less.

(광전도도의 측정)(Measurement of photoconductivity)

광굴절 재료에 있어서, 광굴절성의 발현을 위해서는 재료 내부에 빛의 세기에 따른 공간전하장의 형성이 필요하다. 내부 공간전하장의 크기 및 형성속도는 주로 광전도도에 의하여 결정된다. 여기서, 광전도도는 광전하 발생량과 광전하 이동도에 영향을 받는다. 광전도도의 측정은 표준조건(1atm, 25℃)에서 광굴절 소자(두께 100㎛)에 5,000V의 직류전압을 인가한 후, He-Ne 633nm와 10mW/cm2 하에서 광굴절 소자의 단위면적당 전류를 측정함으로써 실시되었다.In photorefractive materials, the formation of a space charge field in accordance with the intensity of light is required for the expression of optical refractivity. The size and the formation rate of the internal space charge field are mainly determined by the photoconductivity. Here, the photoconductivity is affected by the amount of photo-charge generated and the photo-charge mobility. Measurement of the optical conductivity is standard conditions (1atm, 25 ℃) optical refractive element (thickness 100㎛) in then applying a DC voltage of 5,000V, He-Ne 633nm and 10mW / cm 2 per unit area of the current in the optical refractive element under &Lt; / RTI &gt;

(이득계수(2BC(two-beam coupling) 측정)(Gain coefficient (two-beam coupling) measurement)

내부 공간전하장의 형성에 따라 비선형 광학색소의 재배열이 발생하고, 이에 따라 광굴절 소자의 공간적인 굴절률이 변조된다. 광굴절 현상에 있어서는, 빛에 의해 유도되는 굴절률의 변화가 광의 분포와 일치하지 않고, 공간상으로 이동된 위상 차이를 보인다. 이와 같은 위상 차이로 인하여, 광굴절 재료에 조사되는 두 레이저 빔 간에 에너지 전이 현상이 발생한다. 즉, 한쪽 빔의 에너지가 다른 쪽 빔으로 전이된다. 두 빔 간의 에너지 전이의 크기(γ)는 두 개의 p-편광 빔(I1, I2)을 시료에 조사한 후 투과된 빔의 세기를 측정함으로써 구할 수 있다: γ = [I1( I2 ≠0) / I1(I2=0)], 여기서, I1 ( I2 =0)는, I2가 조사되지 않을 때, 시료를 투과한 I1의 세기이고, I1(I2≠0)는, I2가 조사될 때, 시료를 투과한 I1의 세기이다. 이득계수(Γ)는 다음의 식으로부터 계산된다: Γ=[ln(γ·β)-ln(1+β-γ)]/L, 여기서 β=(I2/I1)d이고, L은 광로의 길이이고, d는 시료의 두께이다. 여기서, 이득계수는 "Appl. Phys. Lett. 94, 053302 (2009), J. Mater. Chem. 12, 858 (2002)"의 측정방법을 사용하여 측정되었다.With the formation of the internal space charge field, rearrangement of the nonlinear optical dye occurs, thereby modulating the spatial refractive index of the photorefractive element. In the photorefractive phenomenon, the change in the refractive index induced by the light does not coincide with the distribution of the light, but the phase difference is shifted to the space. Due to such a phase difference, an energy transfer phenomenon occurs between the two laser beams irradiated to the photorefractive material. That is, the energy of one beam is transferred to the other beam. The magnitude of energy transfer (γ) between the two beams can be obtained by measuring the intensity of the transmitted beam after irradiating the sample with two p-polarized beams (I 1 , I 2 ): γ = [I 1 ( I 2 ≠ 0 ) / I 1 (I2 = 0 )], where, I 1 (I2 = 0), when I 2 is not irradiated, the intensity of I 1 passing through the sample, I 1 (I2 ≠ 0), the I 2 is the intensity of I 1 transmitted through the sample when irradiated. Gain coefficient (Γ) is calculated from the following equation: Γ = [ln (γ · β) -ln (1 + β-γ)] / L, where β = (I 2 / I 1 ) d a, L is Is the length of the optical path, and d is the thickness of the sample. Here, the gain factor was measured using the measurement method of "Appl. Phys. Lett., 94, 053302 (2009), J. Mater., 12, 858 (2002)".

(회절 효율(diffraction efficiency)의 측정)(Measurement of diffraction efficiency)

회절 효율의 측정에서는, 교차된 두 개의 기록 빔(writing beam)에 의해 광굴절 재료 내부에 형성된 광굴절 격자(즉, 회절 격자)에 판독 빔(reading beam)을 조사하여, 회절되는 판독 빔의 세기를 측정함으로써, 회절 효율(η)을 결정한다. 두 기록 빔 간의 에너지 전이를 최소화하기 위하여, 기록 빔으로는 s-편광 빔을 사용한다. 입사되는 판독 빔의 방향은 브래그조건(Bragg condition)을 만족하도록 조정된다. 회절 효율(η)은 다음과 같이 결정된다: η = IR - diffracted / (IR - diffracted + IR -transmitted), 여기서, IR - diffracted는 회절되어 투과된 판독광의 세기이고, IR - transmitted는 회절되지 않고 투과된 판독광의 세기이다. 회절 효율의 측정은 광굴절 현상에 대한 직접적인 증거는 아니다. 먼저, 이광파(2BC) 측정을 통하여 에너지 전이 현상이 관찰된 재료의 경우에만, 판독 빔의 회절이 다른 광학현상에 의한 것이 아니고 광굴절 격자(즉, 회절 격자)에 의한 것임을 확인할 수 있다. 여기서, 회절 효율은 "Appl. Phys. Lett. 94, 053302 (2009), J. Mater. Chem. 12, 858 (2002)"의 측정방법을 사용하여 측정되었다. 광굴절 소자에 인가되는 전압을 변화시키면서, 인가전압 변화에 따른 회절 효율의 변화를 측정하였다. 이로부터, 최대 회절 효율 값을 나타내는 전압을 결정하였다.In the measurement of the diffraction efficiency, a reading beam is irradiated to a photorefractive grating (i.e., a diffraction grating) formed inside the photorefractive material by two crossing writing beams to measure the intensity of the diffracted reading beam The diffraction efficiency? Is determined. In order to minimize energy transfer between two recording beams, an s-polarized beam is used as the recording beam. The direction of the incident read beam is adjusted to satisfy the Bragg condition. The diffraction efficiency (η) is determined as follows: η = I R - diffracted / (I R - diffracted + I R -transmitted ), where I R - diffracted is the intensity of diffracted and transmitted read light and I R - transmitted is the intensity of the transmitted read light without diffraction. Measurement of the diffraction efficiency is not direct evidence of photorefractive phenomena. First, it can be seen that the diffraction of the read beam is due to a photorefractive grating (i.e., a diffraction grating) rather than another optical phenomenon, only in the case of a material in which the energy transfer phenomenon is observed through the measurement of two waves (2BC). Here, the diffraction efficiency was measured using the measuring method of "Appl. Phys. Lett., 94, 053302 (2009), J. Mater. The change of the diffraction efficiency according to the applied voltage change was measured while changing the voltage applied to the photorefractive element. From this, a voltage indicating the maximum diffraction efficiency value was determined.

항목Item 상안정성Phase stability 광전도도,
@50V/㎛[nA]
Photoconductivity,
@ 50 V / m [nA]
이득계수, @80V/㎛[cm-1]Gain factor, @ 80V / 탆 [cm -1 ] 최대 회절 효율
(@ 인가전압)
Maximum diffraction efficiency
(@ Applied voltage)
실시예 1Example 1 우수Great 226226 -55-55 60%(@35V/㎛)60% (@ 35 V / m) 실시예 2Example 2 양호Good 1,2001,200 -20-20 30%(@40V/㎛)30% (@ 40 V / m) 비교예 1Comparative Example 1 우수Great 1One -- -- 비교예 2Comparative Example 2 우수Great 3030 -- 25%(@40V/㎛)25% (@ 40 V / m)

상기 표 2를 참조하면, 실시예 1~2에서 제조된 광굴절 소자는 비교예 1~2에서 제조된 광굴절 소자에 비해 광전도도가 높고, 이득계수가 크며, 최대 회절 효율이 높고, 최대 회절 효율을 나타내는 인가전압이 같거나 낮은 것으로 나타났다.Referring to Table 2, the photovoltaic devices manufactured in Examples 1 and 2 have higher photoconductivity, higher gain coefficient, higher maximum diffraction efficiency, and higher maximum diffraction efficiency than the photovoltage devices manufactured in Comparative Examples 1 and 2, The applied voltage indicating the efficiency was found to be the same or lower.

한편, 비교예 1에서 제조된 광굴절 소자는 광전하 발생체를 전혀 포함하지 않아 633nm에서 광전도도를 갖지 않으므로 광굴절 현상이 일어나지 않았다(즉, 회절 효율이 없음).  비교예 2에서 제조된 광굴절 소자는 낮은 광전도도로 인하여 실시예 1~2에서 제조된 광굴절 소자에 비해 상대적으로 광굴절 효율(즉, 최대 회절 효율)이 떨어짐을 알 수 있다. On the other hand, the photorefractive element prepared in Comparative Example 1 did not contain any photo-charge generator and did not have photoconductivity at 633 nm, so that no photorefractive phenomenon occurred (i.e., no diffraction efficiency). It can be seen that the photorefractive element manufactured in Comparative Example 2 has a lower optical refraction efficiency (i.e., maximum diffraction efficiency) than the photorefractive element manufactured in Examples 1 and 2 due to its low photoconductivity.

광굴절 재료가 광굴절 현상을 나타내기 위해서는 광전도성과 2차 비선형 광학특성을 동시에 가져야 한다. 따라서, 광굴절 재료에 대한 광전도성과 전기광학 특성의 측정은 필수적인 항목이다. 실시예 1의 광굴절 소자에 대한 전기장에 따른 광전도도를 도 3에 나타내었다.In order for a photorefractive material to exhibit photorefractive phenomena, it should have both photoconductivity and secondary nonlinear optical properties. Therefore, measurement of the photoconductivity and the electro-optic characteristic for a photorefractive material is an indispensable item. The photoconductivity of the photorefractive element according to the electric field according to Example 1 is shown in Fig.

도 3을 참조하면, 실시예 1에서 제조된 광굴절 소자는 빛이 조사되지 않는 상태에서의 전기전도도(암전도도)는 매우 낮은 반면에, 빛이 조사되는 상태에서의 전기전도도(광전도도)는 매우 높았다. 이러한 결과는 실시예 1에서 사용된 광전하 발생체(즉, RGO)가 효과적으로 기능함을 보여주는 것이다. Referring to FIG. 3, the optical refractive index of the photovoltaic device manufactured in Example 1 has a very low electrical conductivity (dark conductivity) in a state in which no light is irradiated, while an electrical conductivity (photoconductivity) Was very high. These results show that the photo-charge generator used in Example 1 (i.e., RGO) effectively functions.

실제적인 응용에 있어서 가장 중요한 요소는 광굴절 재료의 회절 효율이다. 도 4는 실시예 1에서 제조된 광굴절 소자에 대하여, 사광파 혼합(four wave mixing, FWM)에 의한 전기장에 따른 회절 효율의 변화를 나타낸 그래프이다. 도 4를 참조하면, 실시예 1에서 제조된 광굴절 소자는 홀로그램 디스플레이 장치에 사용되기에 충분할 정도의 매우 우수한 회절 효율을 나타내는 것으로 나타났다.The most important factor in practical applications is the diffraction efficiency of the photorefractive material. FIG. 4 is a graph showing a change in diffraction efficiency according to an electric field by four wave mixing (FWM) for the photorefractive element manufactured in Example 1. FIG. Referring to FIG. 4, the photorefractive element manufactured in Example 1 exhibits a very high diffraction efficiency sufficient to be used in a hologram display device.

이상에서는 도면 및 실시예를 참조하여 본 발명에 따른 바람직한 구현예가 설명되었으나, 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 구현예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 보호범위는 첨부된 특허청구범위에 의해서 정해져야 할 것이다. While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. . Accordingly, the scope of protection of the present invention should be determined by the appended claims.

100: 광굴절 소자 10: 제1 전극
20: 광굴절층 30: 제2 전극
200: 홀로그램 디스플레이 장치 210: 광원부
220: 입력부 230: 광학계
240: 표시부 221: 전기 구동 액정 SLM
241: 홀로그램 플레이트
100: photorefractive element 10: first electrode
20: photorefractive layer 30: second electrode
200: Hologram display device 210: Light source unit
220: input unit 230: optical system
240: display portion 221: electric driving liquid crystal SLM
241: Hologram plate

Claims (13)

광전도성 고분자 매트릭스;
비선형 광학색소;
가소제; 및
그래파이트계 광전하 발생체를 포함하고,
상기 광전도성 고분자 매트릭스는 하기 화학식 1로 표시되는 광굴절 고분자 복합체:
[화학식 1]
Figure 112018002167605-pat00022

상기 화학식 1에서, n은 20 내지 100이고, R1 내지 R4, R6 내지 R13, R15 내지 R23 및 R25 내지 R32는 수소원자이고, R5, R14 및 R24는 각각 서로 독립적으로 수소원자, 탄소수 1 내지 10의 선형 또는 분지형 알킬기, 탄소수 6 내지 11의 아릴기, 탄소수 5 내지 10의 헤테로아릴기, 탄소수 2 내지 10의 알켄기, 탄소수 2 내지 10의 알킨기, 탄소수 3 내지 10의 시클로알킬기, 탄소수 3 내지 10의 시클로알켄기, 탄소수 3 내지 10의 시클로알킨기, 탄소수 1 내지 10의 헤테로알킬기, 탄소수 2 내지 10의 헤테로알케닐기, 또는 탄소수 2 내지 10의 헤테로알키닐기이다.
Photoconductive polymer matrix;
Nonlinear optical pigments;
Plasticizers; And
A graphite-based photocharge generator,
Wherein the photoconductive polymer matrix is represented by the following Formula 1:
[Chemical Formula 1]
Figure 112018002167605-pat00022

Wherein n is from 20 to 100, R 1 to R 4 , R 6 to R 13 , R 15 to R 23 and R 25 to R 32 are hydrogen atoms, and R 5 , R 14 and R 24 are A linear or branched alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 11 carbon atoms, a heteroaryl group having 5 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an alkynyl group having 2 to 10 carbon atoms, A cycloalkyl group having 3 to 10 carbon atoms, a cycloalkene group having 3 to 10 carbon atoms, a cycloalkene group having 3 to 10 carbon atoms, a heteroalkyl group having 1 to 10 carbon atoms, a heteroalkenyl group having 2 to 10 carbon atoms, Alkynyl group.
제1항에 있어서,
상기 광전도성 고분자 매트릭스는 적어도 하나의 트리아릴아민 모이어티를 갖는 반복단위를 포함하는 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the photoconductive polymer matrix comprises a repeating unit having at least one triarylamine moiety.
삭제delete 제1항에 있어서,
상기 광전도성 고분자 매트릭스의 중량평균분자량은 5,000~500,000인 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the photoconductive polymer matrix has a weight average molecular weight of 5,000 to 500,000.
제1항에 있어서,
상기 광전도성 고분자 매트릭스의 함량은 상기 광굴절 고분자 복합체 100중량부를 기준으로 하여 30~70중량부인 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the content of the photoconductive polymer matrix is 30 to 70 parts by weight based on 100 parts by weight of the photoconductive polymer composite.
제1항에 있어서,
상기 비선형 광학색소는 P-IP-DC(2-[3-[(E)-2-(piperidino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden] malononitrile), DB-IP-DC(2-{3-[(E)-2-(dibu-tylamino)-1-ethenyl]-5,5-dimethyl-2-cyclohexenyliden} malononitrile), PDCST(dicyanostyrene derivative 4-piperidinobenzylidene-malonitrile), DMNPAA(2,5-dimethyl-4-(p-phenylazo)anisole), AODCST(4-di(2-methoxyethyl)aminobenzylidene malononitrile), DBDC(3-(N,N-di-n-butylaniline-4-yl)-1-dicyanomethylidene-2-cyclohexene), DCDHF(2-dicyanomethylene-3-cyano-2,5-dihydrofuran)-6, DHADC-MPN(2,N,N-dihexylamino-7-dicyanomethylidenyl-3,4,5,6,10-pentahydronaphthalene), ATOP(amino-thienyl-dioxocyano-pyridine)-3, Lemke-E((3-(2-(4-(N,N-diethylamino)phenyl)ethenyl)-5,5-dimethyl-1,2-cyclohexenylidene)propanedinitrile), BDMNPAB(1-n-butoxyl-2,5-dimethyl-4-(4′-nitrophenylazo) benzene), FTCN(fluorinated cyano-tolane chromophore), DEANST(diethylamino-nitrostyrene) 또는 이들의 조합을 포함하는 광굴절 고분자 복합체.
The method according to claim 1,
The nonlinear optical coloring matter may be selected from the group consisting of P-IP-DC (2- [3- [(E) -2- (piperidino) -1-ethenyl] -5,5- dimethyl- 2- cyclohexenyliden] malononitrile, DB- (Dicyanostyrene derivative 4-piperidinobenzylidene-malonitrile), DMNPAA (dibenzylidene-ethyl) 2,5-dimethyl-4- (p-phenylazo) anisole), AODCST (4-di (2-methoxyethyl) aminobenzylidene malononitrile), DBDC (3- (N, 1-dicyanomethylidene-2-cyclohexene), DCDHF (2-dicyanomethylene-3-cyano-2,5-dihydrofuran) -6, DHADC-MPN (2, N, N-dihexylamino- 6,10-pentahydronaphthalene), ATOP (amino-thienyl-dioxocyano-pyridine) -3, Lemke-E (3- (2- (4- (N, Ndiethylamino) phenyl) -1,2-cyclohexenylidene) propanedinitrile), BDMNPAB (1-n-butoxyl-2,5-dimethyl-4- (4'-nitrophenylazo) benzene, fluorinated cyano-tolane chromophore (FTCN), diethylamino- Or a combination thereof.
제1항에 있어서,
상기 비선형 광학색소의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 10~100중량부인 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the content of the nonlinear optical dye is 10 to 100 parts by weight based on 100 parts by weight of the photoconductive polymer matrix.
제1항에 있어서,
상기 가소제는 BBP(benzylbutyl phthalate), DPP(diphenyl phthalate), DOP(di-2-ethylhexyl phthalate), ECZ(N-ethylcarbazole), EHMPA(n-(2-ethylhexyl)-n-(3-methylphenyl)-aniline), DMP(dimethylphthalate), DEP(diethylphthalate), DIBP(diisobutylphtalate), DBP(dibutylphtalate), DHP((diheptylphtalate), DIOP(dioctyl phthalate), DnOP (di-n-octyl phthalate), DNP(dinonylphthalate), DIDP(diisodecylphthalate), DTDP(ditridecylphthalate), DCHP(dicyclohexyl phthalate), BLP(butyllauryl phthalate), DOA(dioctyl adipate), DIDA(diisodecyl adipate), DOZ(dioctyl azelate), DBS(dibutyl sebacate), DOS(dioctyl sebacate), DOTP(dioctyl terephthalate), DEDB(diethylene glycol dibenzoate), BO(butyl oleate), TCP(tricresyl phosphate), TOP (trioctyl phosphate), TPP(triphenyl phosphate), TCEP(trichloroethyl phosphate) 또는 이들의 조합을 포함하는 광굴절 고분자 복합체.
The method according to claim 1,
The plasticizer is selected from the group consisting of benzylbutyl phthalate (BBP), diphenyl phthalate (DPP), di-2-ethylhexyl phthalate (DOP), N-ethylcarbazole (ECZ), N- (2-ethylhexyl) aniline), dimethylphthalate (DMP), diethylphthalate (DEP), diisobutylphthalate (DBP), dibutylphthalate (DBP), diheptylphthalate (DHP), dioctyl phthalate (DIOP), di- Diisodecylphthalate (DIDP), ditridecylphthalate (DTDP), dicyclohexyl phthalate (DCHP), butyllauryl phthalate (BLP), dioctyl adipate (DOA), diisodecyl adipate (DIDA), dioctyl azelate (DBZ), dibutyl sebacate ), DOTP (dioctyl terephthalate), DEDB (diethylene glycol dibenzoate), BO (butyl oleate), TCP (tricresyl phosphate), TOP (trioctyl phosphate), TPP (triphenyl phosphate), TCEP (trichloroethyl phosphate) Photorefractive polymer complex.
제1항에 있어서,
상기 가소제의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 10~40중량부인 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the content of the plasticizer is 10 to 40 parts by weight based on 100 parts by weight of the photoconductive polymer matrix.
제1항에 있어서,
상기 그래파이트계 광전하 발생체는 그래파이트, 그래핀, 그래핀 옥사이드(graphene oxide, GO), 환원된 그래핀 옥사이드(reduced graphene oxide, RGO) 또는 이들의 조합을 포함하는 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the graphite-based photo-charge generator comprises graphite, graphene oxide (GO), reduced graphene oxide (RGO), or a combination thereof.
제1항에 있어서,
상기 그래파이트계 광전하 발생체의 함량은 상기 광전도성 고분자 매트릭스 100 중량부를 기준으로 하여 0.001~1.0중량부인 광굴절 고분자 복합체.
The method according to claim 1,
Wherein the content of the graphite-based photo-charge generator is 0.001 to 1.0 part by weight based on 100 parts by weight of the photoconductive polymer matrix.
제1 전극;
상기 제1 전극과 대향되게 배치된 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 개재된 것으로, 제1항, 제2항 및 제4항 내지 제10항 중 어느 한 항에 따른 광굴절 고분자 복합체를 포함하는 광굴절 소자.
A first electrode;
A second electrode facing the first electrode; And
The photorefractive element according to any one of claims 1, 2 and 4 to 10, interposed between the first electrode and the second electrode.
제12항에 따른 광굴절 소자를 포함하는 홀로그램 디스플레이 장치.
A holographic display device comprising the photorefractive element according to claim 12.
KR1020120127730A 2012-11-12 2012-11-12 Photorefractive polymer composite, photorefractive device and hologram display device including the same KR101858576B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120127730A KR101858576B1 (en) 2012-11-12 2012-11-12 Photorefractive polymer composite, photorefractive device and hologram display device including the same
US13/971,049 US9134550B2 (en) 2012-11-12 2013-08-20 Photorefractive polymer composite, and photorefractive device and hologram display device including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120127730A KR101858576B1 (en) 2012-11-12 2012-11-12 Photorefractive polymer composite, photorefractive device and hologram display device including the same

Publications (2)

Publication Number Publication Date
KR20140060856A KR20140060856A (en) 2014-05-21
KR101858576B1 true KR101858576B1 (en) 2018-05-16

Family

ID=50681455

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120127730A KR101858576B1 (en) 2012-11-12 2012-11-12 Photorefractive polymer composite, photorefractive device and hologram display device including the same

Country Status (2)

Country Link
US (1) US9134550B2 (en)
KR (1) KR101858576B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2601556A4 (en) * 2010-08-05 2014-06-25 Nitto Denko Corp Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum
WO2013024840A1 (en) * 2011-08-15 2013-02-21 国立大学法人九州大学 High refractive index cladding material and electro-optical polymer optical waveguide
KR102014992B1 (en) 2013-03-06 2019-10-21 삼성전자주식회사 Islands-in-sea type photorefractive polymer composite, photorefractive device and optical device including the same
CN104118120B (en) * 2014-07-10 2016-09-14 广州中国科学院先进技术研究所 A kind of optical system printed for 3D and control method thereof
CN106046371A (en) * 2016-05-26 2016-10-26 江苏大学 Polypyrrole derivative covalent functionalized graphene nano-grade hybrid nonlinear optical material and preparation method thereof
CN110054717A (en) * 2019-04-16 2019-07-26 昆明理工大学 A kind of preparation method of photopolymer Materials For Holography
CN115873158B (en) * 2022-10-28 2023-09-15 福建师范大学 Two-dimensional nanomaterial for holographic storage technology and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4569997B2 (en) * 2000-09-07 2010-10-27 凸版印刷株式会社 Polymer charge transport material, method for producing the same, and electroluminescence device using the same
US8363298B2 (en) 2006-02-27 2013-01-29 Nokia Corporation Diffraction gratings with tunable efficiency
JP2008197296A (en) 2007-02-13 2008-08-28 Sony Corp Electrowetting device and its manufacturing method
US9629374B2 (en) 2008-11-07 2017-04-25 Kraft Foods Group Brands Llc Home-style meat product and method of producing same
TWI424192B (en) 2009-12-15 2014-01-21 Au Optronics Corp Electro-wetting display panel
US8355209B2 (en) 2009-12-25 2013-01-15 Canon Kabushiki Kaisha Liquid lens
EP2601556A4 (en) * 2010-08-05 2014-06-25 Nitto Denko Corp Photorefractive composition responsive to multiple laser wavelengths across the visible light spectrum
JP5397358B2 (en) 2010-10-25 2014-01-22 ソニー株式会社 Optical element, imaging device, and driving method
KR20130064689A (en) 2011-12-08 2013-06-18 삼성전자주식회사 Photorefractive composite, spatial light modulator and hologram display device using the same
KR20130106661A (en) 2012-03-20 2013-09-30 삼성전자주식회사 Photorefractive polymer composite and method of preparing the same
KR101858575B1 (en) 2012-08-06 2018-05-16 삼성전자주식회사 Photorefractive polymer composites
KR102014992B1 (en) * 2013-03-06 2019-10-21 삼성전자주식회사 Islands-in-sea type photorefractive polymer composite, photorefractive device and optical device including the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
H.-H. Hörhold 외 7인 ‘Synthesis of TPD-containing polymers for use as light emitting materials in electroluminescent and Laser devices’, PROCEEDINGS OF SPIE, Vol.4105, 2001.02., pp.431-442*
Jayan Thomas 외 10인 ‘Bistriarylamine Polymer-Based Composites for Photorefractive Applications’, Adv. Mater. Volume 16, No.22, 2004.11.18., pp.2032-2036*

Also Published As

Publication number Publication date
US20140133000A1 (en) 2014-05-15
US9134550B2 (en) 2015-09-15
KR20140060856A (en) 2014-05-21

Similar Documents

Publication Publication Date Title
KR101858576B1 (en) Photorefractive polymer composite, photorefractive device and hologram display device including the same
KR102049099B1 (en) Photorefractive composite, spatial light modulator and hologram display device using the same
US9097970B2 (en) Photorefractive composite, spatial light modulator, and hologram display device using the same
JP5774104B2 (en) Photorefractive composition responsive to multiple laser wavelengths in the visible light spectrum
US5361148A (en) Apparatus for photorefractive two beam coupling
KR102014992B1 (en) Islands-in-sea type photorefractive polymer composite, photorefractive device and optical device including the same
WO2010047904A1 (en) Method for modulating light of photore-fractive composition without external bias voltage
JP2013543138A (en) Systems and methods for improving the performance of photorefractive devices by utilizing electrolytes
WO2010047903A1 (en) Optical devices for modulating light of photorefractive compositions with thermal control
KR101858575B1 (en) Photorefractive polymer composites
JP5343479B2 (en) Two-photon absorbing organic materials and their applications
KR20180119147A (en) Photorefractive polymer composite and method of preparing the same
KR20130106661A (en) Photorefractive polymer composite and method of preparing the same
JP5505748B2 (en) π-conjugated compounds and their uses, and elements and devices using them
JP4969881B2 (en) Two-photon absorption materials and their applications
KR20210006777A (en) Non-linear chromophore, photorefractive composite comprising the same and photorefractive device
JP6195286B2 (en) Method of heating organic photorefractive material with increased orientation and optical device
Blanche et al. Introduction to the Photorefractive Effect in Polymers
JP4097314B2 (en) Polysilane photorefractive device with improved responsiveness
JP5321941B2 (en) Two-photon absorption materials and their applications
Fang et al. Photorefractive effect in an azobenzene chromophore side groups polymer
WO2013148892A1 (en) Benzylidene derivative chromophores for photorefractive compositions
JP2013139571A (en) π-CONJUGATED COMPOUND AND USE THEREOF, AND ELEMENT AND DEVICE USING THE SAME
Xu et al. Recording Materials and Process
JP2004258604A (en) Organic photorefractive material and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right