JP2008150421A - Emulsion fuel, and manufacturing method and manufacturing apparatus thereof - Google Patents

Emulsion fuel, and manufacturing method and manufacturing apparatus thereof Download PDF

Info

Publication number
JP2008150421A
JP2008150421A JP2006336939A JP2006336939A JP2008150421A JP 2008150421 A JP2008150421 A JP 2008150421A JP 2006336939 A JP2006336939 A JP 2006336939A JP 2006336939 A JP2006336939 A JP 2006336939A JP 2008150421 A JP2008150421 A JP 2008150421A
Authority
JP
Japan
Prior art keywords
emulsion
fuel
water
reduced water
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006336939A
Other languages
Japanese (ja)
Other versions
JP5174344B2 (en
Inventor
Kenji Suzuki
健二 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIT KK
Original Assignee
AIT KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIT KK filed Critical AIT KK
Priority to JP2006336939A priority Critical patent/JP5174344B2/en
Priority to US12/518,999 priority patent/US20100095580A1/en
Priority to EP07745386A priority patent/EP2107104A1/en
Priority to PCT/JP2007/062131 priority patent/WO2008072391A1/en
Priority to TW096123611A priority patent/TW200825163A/en
Publication of JP2008150421A publication Critical patent/JP2008150421A/en
Application granted granted Critical
Publication of JP5174344B2 publication Critical patent/JP5174344B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an emulsion fuel of high quality that can be handled and used in the same manner as an ordinary fuel oil and maintains a very good emulsion state over a long period of time. <P>SOLUTION: The emulsion fuel comprises a mixture liquid of 40-95 vol% of a fuel oil, 60-5 vol% of reduced water with a redox potential of at most +100 mV and 0.1-10 wt.%, based on the fuel oil, of an emulsifier. Preferably, the reduced water is electrolytically reduced water obtained by electrolysis of water. Preferably, the emulsion fuel is obtained by using, as the electrolytically reduced water, one produced by electrolysis of water using a membrane electrolytic cell with a positive electrode and a negative electrode disposed apart while applying ultrasonic waves by means of an ultrasonic wave-generating means. Preferably, an electrode formed of a hydrogen-storing metal or alloy is used as the negative electrode in the electrolysis. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ガソリン、軽油、灯油、重油、植物油、廃油等の燃料油と水をエマルジョン化して得られる環境適用型のエマルジョン燃料、その製造方法、並びにそれに用いる装置に関するものである。 The present invention relates to an environment-applicable emulsion fuel obtained by emulsifying fuel oil such as gasoline, light oil, kerosene, heavy oil, vegetable oil, and waste oil and water, a method for producing the same, and an apparatus used therefor.

水とガソリン、軽油、灯油、重油、植物油、廃油等の燃料油を混合して得られるエマルジョン燃料は、燃焼時に窒素酸化物(NO)や煤塵の発生が少ないため、大気汚染防止に有効な燃料であることが知られている。例えば、車両、船舶、発電、土木建築等の多くの分野で有効に利用されているディーゼルエンジンは主として軽油を燃料としているが、近年、その排気ガスに含まれる窒素酸化物やPM(Particulate Matter)等の未燃焼生成物、煤塵等が大気汚染の原因となっている。このため、ディーゼルエンジンの排気ガス浄化を目的として、種々の技術開発が進められているが、その一つとして、排気ガス中の窒素酸化物を低減するために、軽油と水とからなるエマルジョン燃料を供給して、噴射、燃焼させるエマルジョン燃料供給装置も色々と提案されている。そしてまた、安定なエマルジョン燃料を得るための乳化剤についても、色々な種類のものが提案されている。
特開平6−346071号公報 特開平11−263991号公報 特開2004−10765号公報 特開2002−226000号公報 特開2003−27074号公報 特開2004−123947号公報
Water and gasoline, diesel oil, kerosene, heavy oil, vegetable oil, emulsion fuel obtained by mixing fuel oil such as waste oil, for nitrogen oxides (NO X) and the occurrence of dust is small at the time of combustion, effective in preventing air pollution It is known to be a fuel. For example, diesel engines that are effectively used in many fields such as vehicles, ships, power generation, civil engineering and construction mainly use light oil as fuel, but recently, nitrogen oxides and PM (Particulate Matter) contained in the exhaust gas. Unburned products such as dust, dust, etc. cause air pollution. For this reason, various technological developments have been promoted for the purpose of purifying exhaust gas from diesel engines. As one example, in order to reduce nitrogen oxides in exhaust gas, an emulsion fuel composed of light oil and water is used. Various emulsion fuel supply devices that supply, inject, and burn are proposed. Various types of emulsifiers for obtaining a stable emulsion fuel have also been proposed.
JP-A-6-346071 JP-A-11-263991 JP 2004-10765 A JP 2002-226000 A JP 2003-27074 A JP 2004-123947 A

また、特開2004−76608号公報には、ディーゼルエンジンに連結された燃料改質装置が提案されており、この改質装置は、液体燃料と水との混合液に高周波振動を与えて超微粒化・高混合密度のエマルジョン燃料を生成させ、これを燃料噴射ポンプによりエンジン本体に供給するものであることが示されている。そして、かかる燃料を運転状態の制御システム下でディーゼルエンジンに用いると、燃焼温度が低く抑えられと共に、燃料中の水分が水蒸気となり、その一部が分離して小爆発の現象を起こし、その爆発力で燃料と空気との混合を助け燃焼反応が助長されるので、窒素酸化物やPM(Particulate Matter)等の未燃焼生成物、煤塵等の発生が殆どなくなるということが述べられている。しかしながら、特開2004−76608号公報の発明は、あくまでも車両積載型の燃料改質装置に関するものであり、運転状態の制御システムと組合わせて初めて目的が達成されるものである。
特開2004−76608号公報
Japanese Patent Application Laid-Open No. 2004-76608 proposes a fuel reformer connected to a diesel engine. This reformer imparts high-frequency vibration to a liquid mixture of liquid fuel and water to produce ultrafine particles. It has been shown that an emulsion fuel having a high mixing density is produced and supplied to the engine body by a fuel injection pump. When such fuel is used in a diesel engine under a control system in an operating state, the combustion temperature is kept low, the water in the fuel becomes water vapor, a part of it separates, causing a small explosion phenomenon, and the explosion It is stated that the generation of unburned products such as nitrogen oxides and PM (Particulate Matter), dust, etc. is almost eliminated because the combustion reaction is promoted by mixing the fuel and air with force. However, the invention disclosed in Japanese Patent Application Laid-Open No. 2004-76608 relates only to a vehicle-mounted fuel reformer, and the object is achieved only in combination with a control system for operating conditions.
JP 2004-76608 A

また、実際に、軽油と水から、その時々の燃焼条件に最適なエマルジョン燃料を作る装置と、後処理フィルターを組み合わせて、電子制御により統合処理する車両積載型のシステムが、NO・PX法認定装置として公にも認定されている。これによると、燃料中の水分により燃焼時のピーク温度が下がるため、窒素酸化物の発生が大幅に低減し、またその時、水の微爆によって燃料と酸素の混合が促進され、より完全な燃焼が起こるため、黒煙・煤塵の発生も抑えられるという効果があることが知られている。 In fact, a vehicle-mounted system that integrates a device that produces emulsion fuel that is optimal for the current combustion conditions from light oil and water, and a post-processing filter, integrated by electronic control, is the NO X / PX method. It is also officially certified as a certified device. According to this, since the peak temperature during combustion is lowered due to moisture in the fuel, the generation of nitrogen oxides is greatly reduced, and at that time, the mixing of fuel and oxygen is promoted by the slight explosion of water, and more complete combustion This is known to have the effect of suppressing the generation of black smoke and dust.

以上の様に、従来は、主として、ディーゼルエンジンと直結した燃料供給システムとしての改良・改善が色々と検討されてきた。しかし、より適用・応用範囲の広い、長期間にわたって燃料と水との良好なエマルジョン状態を保持した、実用的なエマルジョン燃料自体の開発も望まれていた。 As described above, conventionally, various improvements and improvements as a fuel supply system directly connected to a diesel engine have been studied. However, there has been a demand for the development of a practical emulsion fuel itself that can maintain a good emulsion state of fuel and water over a long period of time with a wider range of applications and applications.

本発明者は、既に、燃料50体積%以上と乳化剤水溶液50体積%以下の混合液を、超音波を付与しながら攪拌・混合して得られる環境適用型エマルジョン燃料とその製造方法、並びに製造装置について提案を行った(特許文献8)。かかる提案によって得られたエマルジョン燃料は高品質のものであるが、長期間にわたるエマルジョン安定性について、より改善が望まれていた。
特開2006−28215号公報
The present inventor has already made an environment-applicable emulsion fuel obtained by stirring and mixing a mixed solution of 50% by volume or more of fuel and 50% by volume or less of an aqueous emulsifier solution while applying ultrasonic waves, a method for manufacturing the same, and a manufacturing apparatus (Patent Document 8). Although the emulsion fuel obtained by such a proposal is of a high quality, further improvement in emulsion stability over a long period of time has been desired.
JP 2006-28215 A

本発明は、通常の燃料油と同じように取り扱いそして使用できる、長期間にわたって非常に良好なエマルジョン状態を保持した、高品質のエマルジョン燃料を開発することを目的・課題とするものである。 The object of the present invention is to develop a high-quality emulsion fuel that can be handled and used in the same manner as a normal fuel oil and that maintains a very good emulsion state for a long period of time.

本発明は、燃料油40〜95体積%と、+100mV以下の酸化還元電位(ORP)を有する60〜5体積%の還元水と、燃料油に対して0.1〜10重量%の乳化剤の混合液からなるエマルジョン燃料(請求項1の発明)である。そして、燃料油と還元水の混合割合は、燃料油が50〜90体積%で、還元水が50〜10体積%のものが好ましい(請求項2の発明)。 The present invention is a mixture of 40 to 95% by volume of fuel oil, 60 to 5% by volume of reduced water having an oxidation-reduction potential (ORP) of +100 mV or less, and 0.1 to 10% by weight of an emulsifier with respect to the fuel oil. An emulsion fuel comprising the liquid (the invention of claim 1). The mixing ratio of the fuel oil and the reduced water is preferably 50 to 90% by volume for the fuel oil and 50 to 10% by volume for the reduced water (the invention of claim 2).

一般に、酸素の酸化還元電位は約+850mV、水素の酸化還元電位は約−420mVであり、酸化力と還元力が平衡になる点は、約+200mVであるとされている。従って、還元水とは酸化還元電位が約+200mVより低い水を意味し、この酸化還元電位が低くなるほど、還元力が強いことが知られている。本明細書においても還元水とは、酸化還元電位が約+200mVより低い水を意味する。そして、本発明において用いられるのは、酸化還元電位が約+100mV以下のものである。そして、更に好ましい還元水は、水の電気分解によって得られる電解還元水(請求項3の発明)であり、電解還元水のなかで好ましいのは、+50mV以下の酸化還元電位を有する電解還元水である(請求項4の発明)。 In general, the oxidation-reduction potential of oxygen is about +850 mV, the oxidation-reduction potential of hydrogen is about -420 mV, and the point at which the oxidizing power and the reducing power are in equilibrium is about +200 mV. Therefore, reduced water means water having a redox potential lower than about +200 mV, and it is known that the reducing power is higher as the redox potential is lower. In this specification, reduced water means water having a redox potential lower than about +200 mV. What is used in the present invention is one having an oxidation-reduction potential of about +100 mV or less. Further, more preferable reduced water is electrolytic reduced water obtained by electrolysis of water (the invention of claim 3). Among the electrolytic reduced water, preferable is electrolytic reduced water having an oxidation-reduction potential of +50 mV or less. (Invention of claim 4)

本発明において用いられる電解還元水としては、陽極と陰極が隔てられた隔膜電解槽を用い、且つ、超音波発生手段で超音波を与えながら、水の電気分解を行うことによって得られた電化還元水を用いるのが好ましい(請求項5の発明)。そして、水の電気分解を行うに際しては、陰極として水素吸蔵金属又は合金を用いて、水の電気分解を行うのが適当である(請求項6の発明)。 As electrolytically reduced water used in the present invention, an electroreduction obtained by electrolyzing water using a diaphragm electrolytic cell in which an anode and a cathode are separated and applying ultrasonic waves by an ultrasonic wave generating means. Water is preferably used (invention of claim 5). When electrolyzing water, it is appropriate to electrolyze water using a hydrogen storage metal or alloy as a cathode (invention of claim 6).

本発明の他の態様は、前記のごとき本発明のエマルジョン燃料を製造するための装置に関するものであり、それは、隔膜によって隔てられた陽極と陰極、超音波発生手段及び攪拌手段を備えてなる電解槽と、攪拌手段を備えたエマルジョン形成槽と、該エマルジョン形成槽に連結された燃料油タンクとエマルジョン燃料タンクとからなるエマルジョン燃料製造装置である(請求項7の発明)。かかる本発明の装置においては、通常用いられる公知の配管、ボンプ類、計量装置、制御装置等を適当に配置あるいは組み込むことができることはいうまでもない。また、本発明においは、乳化剤の貯蔵手段、秤量手段、添加・混合手段は、特別なものである必要はなく、公知のものを任意の位置に配置又は設置すれば良い。 Another aspect of the present invention relates to an apparatus for producing the emulsion fuel of the present invention as described above, which is an electrolysis comprising an anode and a cathode separated by a diaphragm, an ultrasonic generator and an agitator. An emulsion fuel production apparatus comprising a tank, an emulsion formation tank provided with a stirring means, a fuel oil tank connected to the emulsion formation tank, and an emulsion fuel tank (invention of claim 7). In the apparatus of the present invention, it goes without saying that known pipes, bombs, metering devices, control devices and the like that are usually used can be appropriately arranged or incorporated. In the present invention, the storage means, weighing means, and addition / mixing means of the emulsifier need not be special ones, and known ones may be arranged or installed at arbitrary positions.

前記製造装置において、電解槽の陰極は、水素吸蔵金属又は合金から形成された電極であるのが好ましい(請求項8の発明)。また、エマルジョン形成槽にも、水素吸蔵金属又は合金から形成された電極を配置するのが好ましい(請求項9の発明)。そして、この場合に、
共に水素吸蔵金属又は合金から形成された、電解槽の電極とエマルジョン形成槽の電極は、交互に交換可能なように配置しておくのが便利である(請求項10の発明)。
In the manufacturing apparatus, the cathode of the electrolytic cell is preferably an electrode formed of a hydrogen storage metal or an alloy (invention of claim 8). Further, it is preferable that an electrode formed of a hydrogen storage metal or alloy is also disposed in the emulsion forming tank (the invention of claim 9). And in this case,
It is convenient that the electrode of the electrolytic cell and the electrode of the emulsion forming cell, both of which are made of a hydrogen storage metal or alloy, are arranged so as to be interchangeable (invention of claim 10).

前記製造装置においては、エマルジョン形成槽に、陽極と、水素吸蔵金属又は合金から形成された陰極を配置しても良い(請求項11の発明)。また、エマルジョン形成槽に、超音波発生手段を設置することもできる(請求項12の発明)。 In the manufacturing apparatus, an anode and a cathode formed of a hydrogen storage metal or alloy may be disposed in the emulsion forming tank (invention of claim 11). Moreover, an ultrasonic wave generation means can be installed in the emulsion forming tank (invention of claim 12).

本発明のもう一つの態様は、前記のごとき本発明のエマルジョン燃料の製造方法に関するものであり、それは、燃料油(A)の40〜95体積%と、陽極と陰極が隔てられた隔膜電解槽を用い、且つ、超音波発生手段で超音波を与えながら、水の電気分解を行うことによって得られた電解還元水(B)の60〜5体積%と、燃料油に対して0.1〜10重量%の乳化剤(C)を、エマルジョン形成槽で攪拌混合することを特徴とするエマルジョン燃料の製造方法である(請求項13の発明)。 Another aspect of the present invention relates to a method for producing the emulsion fuel of the present invention as described above, which is a diaphragm electrolytic cell in which 40 to 95% by volume of the fuel oil (A) is separated from an anode and a cathode. In addition, 60 to 5% by volume of electrolytically reduced water (B) obtained by electrolyzing water while applying ultrasonic waves with ultrasonic generation means, and 0.1 to 0.1% with respect to fuel oil A method for producing an emulsion fuel, wherein 10% by weight of emulsifier (C) is stirred and mixed in an emulsion forming tank (the invention of claim 13).

前記方法においては、水の電気分解を、陰極として水素吸蔵金属又は合金から形成された電極を用いて行うのが好ましい(請求項14の発明)。そして、燃料油(A)と電解還元水(B)と乳化剤(C)の攪拌混合を、前記の水の電気分解に用いた水素吸蔵金属又は合金から形成された電極の存在下で行うのが好ましい(請求項15の発明)。 In the method, the electrolysis of water is preferably performed using an electrode formed of a hydrogen storage metal or alloy as a cathode (the invention of claim 14). The stirring and mixing of the fuel oil (A), the electrolytically reduced water (B), and the emulsifier (C) is performed in the presence of an electrode formed from the hydrogen storage metal or alloy used for the electrolysis of the water. Preferred (Invention of Claim 15)

更に、前記方法においては、燃料油(A)と電解還元水(B)と乳化剤(C)の攪拌混合を、エマルジョン形成槽に設けられた陽極と、水素吸蔵金属又は合金から形成された陰極(電極)の間に通電しながら行うようにしても良い(請求項16の発明)。また、攪拌混合を、超音波発生手段で超音波を与えながら行うようにしても良い(請求項17の発明)。 Further, in the above method, stirring and mixing of the fuel oil (A), the electrolytically reduced water (B) and the emulsifier (C) are carried out, and an anode provided in the emulsion forming tank and a cathode formed from a hydrogen storage metal or alloy ( It may be performed while energizing between the electrodes). Further, the stirring and mixing may be performed while applying ultrasonic waves by an ultrasonic wave generating means (invention of claim 17).

本発明によって得られるマルジョン燃料は、公害が少ない環境に優しい燃料であり、長期間にわたって非常に良好なエマルジョン状態を保持しているので、通常の燃料油と同じように取り扱い、使用することができる。また、本発明のエマルジョン燃料は、既存のエンジンや燃焼装置・設備にそのまま使用できるので、特別に新たなものを備える必要もない。その上、燃費も高く品質にも優れている。そして、例えば、軽油と乳化剤を含む水とからなる本発明のエマルジョン燃料をディーゼルエンジンに使用した場合には、黒煙を含むPM及び窒素酸化物の発生が非常に少なくなる。また、車両の燃費が向上すると共に、エンジンオイルの寿命も長くなるというメリツトが得られる。 The Marujon fuel obtained by the present invention is an environmentally friendly fuel with less pollution and maintains a very good emulsion state for a long period of time, so it can be handled and used in the same way as ordinary fuel oil. . Moreover, since the emulsion fuel of the present invention can be used as it is in an existing engine or combustion apparatus / equipment, it is not necessary to provide a new one. In addition, it has high fuel efficiency and excellent quality. For example, when the emulsion fuel of the present invention consisting of light oil and water containing an emulsifier is used for a diesel engine, the generation of PM and nitrogen oxides containing black smoke is extremely reduced. In addition, the fuel efficiency of the vehicle is improved, and the merit of extending the life of the engine oil is obtained.

本発明のエマルジョン燃料は、燃料油40〜95体積%と、+100mV以下の酸化還元電位(ORP)を有する60〜5体積%の還元水と、燃料油に対して0.1〜10重量%の乳化剤を混合攪拌し、エマルジョン化することによって得られる。混合攪拌又はエマルジョン化の方法・手段は特に限定されるものではない。公知のいかなる方法・手段・装置を用いてもよい。燃料油と還元水の好ましい混合割合は、燃料油が50〜90体積%で、還元水が50〜10体積%のものである。 The emulsion fuel of the present invention comprises 40 to 95% by volume of fuel oil, 60 to 5% by volume of reduced water having an oxidation-reduction potential (ORP) of +100 mV or less, and 0.1 to 10% by weight based on the fuel oil. It is obtained by mixing and stirring the emulsifier and emulsifying. The method and means for mixing and stirring or emulsification are not particularly limited. Any known method / means / equipment may be used. The preferred mixing ratio of the fuel oil and the reduced water is 50 to 90% by volume of the fuel oil and 50 to 10% by volume of the reduced water.

本発明において用いられる乳化剤は液体又は固体のものであるが、燃料油及び/又は還元水への添加・混合のさせ方については何の制限もない。乳化剤を水溶液として添加・混合しても良く、あるいは、直接燃料油及び/又は還元水に直接添加・混合しても良い。結果的に、乳化剤の添加量が、燃料油と還元水の混合液において、燃料油に対して0.1〜10重量%、好ましくは、1〜5重量%の範囲であれば良い。 The emulsifier used in the present invention is liquid or solid, but there is no limitation on how to add and mix with fuel oil and / or reduced water. The emulsifier may be added and mixed as an aqueous solution, or may be directly added and mixed with fuel oil and / or reduced water. As a result, the added amount of the emulsifier may be in the range of 0.1 to 10% by weight, preferably 1 to 5% by weight with respect to the fuel oil in the mixed liquid of fuel oil and reduced water.

本発明において用いられる乳化剤としては、非イオン界面活性剤、アニオン界面活性剤、カチオン界面活性剤、両性界面活性剤のいずれでも用いることができるが、好ましいのは、ソルビトール、ソルビタン及びソルバイド等の多価アルコールの脂肪酸エステルや、アルコールのアルキレンオキサイド付加物等の非イオン界面活性剤である。乳化剤は一種又は二種以上混合して用いることができる。 As the emulsifier used in the present invention, any of a nonionic surfactant, an anionic surfactant, a cationic surfactant, and an amphoteric surfactant can be used, but a plurality of such as sorbitol, sorbitan, and sorbide are preferable. Nonionic surfactants such as fatty acid esters of monohydric alcohols and alkylene oxide adducts of alcohols. One or more emulsifiers can be used in combination.

本発明において用いられる還元水は、+100mV以下の酸化還元電位を有するものである。一般的に還元水とは酸化還元電位が約+200mVより低い水を意味し、この酸化還元電位が低くなるほど、還元力が強いことが知られている。ちなみに、水道水の酸化還元電位は+200〜+700mVであると言われており、井戸水などの天然水は、酸化還元電位が水道水よりも低く、酸化還元電位がマイナスのものも存在している。 The reduced water used in the present invention has a redox potential of +100 mV or less. In general, reduced water means water whose oxidation-reduction potential is lower than about +200 mV, and it is known that the lower the oxidation-reduction potential, the stronger the reducing power. Incidentally, it is said that the redox potential of tap water is +200 to +700 mV, and natural water such as well water has a lower redox potential than tap water and a negative redox potential.

本発明において好ましい還元水は、水の電気分解によって得られる電解還元水であり、電解還元水のなかで好ましいのは、+50mV以下、更に好ましくは−100mV以下の酸化還元電位を有する電解還元水である。電解還元水とは、水を電気分解したときに、陰極側に生成する陰極水をいい、アルカリイオン水と呼ばれる場合もある。製造方法によって酸化還元電位は異なるが、製法によっては約−200mV以下のものも得られる。 Preferred reduced water in the present invention is electrolytic reduced water obtained by electrolysis of water. Among the electrolytic reduced water, preferred is electrolytic reduced water having an oxidation-reduction potential of +50 mV or less, more preferably -100 mV or less. is there. Electrolytically reduced water refers to cathodic water produced on the cathode side when water is electrolyzed, and is sometimes called alkaline ionized water. Depending on the production method, the oxidation-reduction potential varies, but depending on the production method, a potential of about −200 mV or less can be obtained.

本発明において用いられる電解還元水としては、陽極と陰極が隔てられた隔膜電解槽を用い、且つ、超音波発生手段で超音波を与えながら、水の電気分解を行うことによって得られた電化還元水(陰極側の電解水)を用いるのが好ましい。また、水の電気分解を行うに際しては、陰極として水素吸蔵金属又は合金を用いて、水の電気分解を行うのが適当である。かかる方法・装置によると、条件によって−300mV〜−750mVもの酸化還元電位を有する水を得ることができる。通常は、−100mV以下のものが好ましく、特に−300mV前後のものが適当である。水の電気分解の条件は、目的とする電解還元水の酸化還元電位に応じて、適宜容易に決定することができる。 As electrolytically reduced water used in the present invention, an electroreduction obtained by electrolyzing water using a diaphragm electrolytic cell in which an anode and a cathode are separated and applying ultrasonic waves by an ultrasonic wave generating means. It is preferable to use water (electrolyzed water on the cathode side). Further, when electrolyzing water, it is appropriate to electrolyze water using a hydrogen storage metal or alloy as a cathode. According to such a method and apparatus, water having a redox potential of −300 mV to −750 mV can be obtained depending on conditions. Usually, a voltage of −100 mV or less is preferable, and a voltage of around −300 mV is particularly suitable. The conditions for the electrolysis of water can be easily determined as appropriate according to the oxidation-reduction potential of the target electrolytic reduced water.

水の電気分解を行うに際しては、陽極(室)と陰極(室)を分ける隔膜電解槽が用いられる。隔膜としては、イオン交換膜、有機又は無機の微多孔膜等があり、これらの中から耐食性、機械的強度、気孔径・分布、電気抵抗等を勘案して、適当なものを容易に選択することができる。形状は特に限定されるものではなく、陽極と陰極で発生、存在する物質が電解液に溶解し、それが拡散対流によって混合するのを防げるようなものであれば良い。実用的には、電解槽の中の陽極を、円筒状の陰イオン交換膜で覆った形態の隔膜電解槽が便利である。 When electrolyzing water, a diaphragm electrolytic cell that separates an anode (chamber) and a cathode (chamber) is used. Examples of diaphragms include ion exchange membranes, organic or inorganic microporous membranes, etc., and appropriate ones can be easily selected in consideration of corrosion resistance, mechanical strength, pore diameter / distribution, electrical resistance, etc. be able to. The shape is not particularly limited as long as it can prevent substances generated and present at the anode and the cathode from being dissolved in the electrolytic solution and mixed by diffusion convection. Practically, a diaphragm electrolytic cell in which the anode in the electrolytic cell is covered with a cylindrical anion exchange membrane is convenient.

エマルジョン化によって得られたエマルジョン燃料は、燃料油と水の割合によって、O/W(Oil in Water)型かW/O(Water in Oil)型になるが、本発明においては、どちらの型でもかまわない。一般的に、燃料油中に水の微粒子が分散したW/O型の方が安定性には優れていし、また、W/O型の方が、水としての性質は少なく、これに接触する機器類を酸化するというような問題もないので好ましい。燃料油中の水微粒子の大きさは、20μ以下が適当であり、5μ以下にするのがより好ましい。また、本発明のエマルジョン燃料中には、その目的・用途に応じて、必要な公知の添加剤、例えば、防錆剤、流動点降下剤、腐食防止剤を配合することもできる。 The emulsion fuel obtained by emulsification is of O / W (Oil in Water) type or W / O (Water in Oil) type depending on the ratio of fuel oil to water. In the present invention, either type is used. It doesn't matter. In general, the W / O type in which fine particles of water are dispersed in fuel oil is superior in stability, and the W / O type has less water properties and contacts this. This is preferable because there is no problem of oxidizing the equipment. The size of the water fine particles in the fuel oil is appropriately 20 μ or less, and more preferably 5 μ or less. Further, in the emulsion fuel of the present invention, necessary known additives such as a rust inhibitor, a pour point depressant and a corrosion inhibitor can be blended depending on the purpose and application.

本発明においては、前記電解還元水を得るための水の電気分解に際し、超音波発生手段を併用するとより優れた効果が得られる。詳細な、原理・作用機作は不明であるが、電気分解に際し、水に超音波発生手段で超音波を付与することにより、水がミクロバブル化し、同時に常温常圧下でありながら1000気圧5000度の真空状態を作るといわれる超音波のキャビテーション効果により、非常に効率的に電解還元水が得られるものと思われる。この際、陰極として、水素吸蔵金属又は合金を用いると、発生した水素が陰極に吸収・吸着されるが、この水素は、後述のごとく、エマルジョン形成工程で有効に使うことができる。このような水の電気分解によって、約−500mVもの酸化還元電位を有する水を得ることができる。 In the present invention, when the electrolysis of water for obtaining the electrolytically reduced water is used in combination with ultrasonic generation means, a more excellent effect can be obtained. The detailed principle and mechanism of operation are unknown, but upon electrolysis, water is converted into microbubbles by applying ultrasonic waves to the water by means of ultrasonic wave generation, and at the same time, 1000 atmospheres and 5000 degrees under normal temperature and normal pressure. It is considered that electrolytic reduced water can be obtained very efficiently by the ultrasonic cavitation effect, which is said to create a vacuum state. At this time, when a hydrogen storage metal or alloy is used as the cathode, the generated hydrogen is absorbed and adsorbed on the cathode, but this hydrogen can be effectively used in the emulsion forming step as described later. Water having an oxidation-reduction potential of about −500 mV can be obtained by such electrolysis of water.

本発明において超音波発生手段としては、例えば、公知あるいは市販の超音波発生装置を用いることができる。超音波のパワーとしては、水1リットルあたり、あるいは、後述のエマルジョン形成の過程では、燃料油と還元水の混合液1リットル当たり、1〜100W程度、好ましくは5〜40Wである。なお、本発明において超音波発生手段とは、高周波発生手段は含まないが、マイクロ波等のいわゆる超音波以外の、周波数により物体に振動を与える手段も含むものとする。超音波発生手段は、処理液に、キャビテーション効果を促すものであればどのようなものでも良いが、超音波発生機と接続された超音波発振棒を混合液に挿入するタイプのものが適当である。攪拌手段は、公知あるいは市販の攪拌機を利用すれば良い。電気分解、あるいは、後述のエマルジョン形成の過程で攪拌・混合に用いる混合容器としては、特別な容器を用いる必要はなく、実用的にも、例えば、ステンレスやガラス製、あるいは塩化ビニール製の一般的な容器・装置を用いることができる。 In the present invention, for example, a known or commercially available ultrasonic generator can be used as the ultrasonic generator. The power of the ultrasonic wave is about 1 to 100 W, preferably 5 to 40 W per liter of water or per liter of a mixed liquid of fuel oil and reducing water in the emulsion formation process described later. In the present invention, the ultrasonic wave generation means does not include high frequency generation means, but also includes means for applying vibration to an object with a frequency other than so-called ultrasonic waves such as microwaves. The ultrasonic wave generation means may be any treatment liquid that promotes the cavitation effect, but an appropriate type is that in which an ultrasonic oscillation rod connected to an ultrasonic generator is inserted into the liquid mixture. is there. A known or commercially available stirrer may be used as the stirring means. It is not necessary to use a special container as a mixing container used for electrolysis or stirring / mixing in the process of emulsion formation described below. Can be used.

前記のごとき還元水又は電解還元水と燃料油とから形成されたエマルジョンは、水素が添加された新しいエマルジョン燃料になるものと思われる。そして、このエマルジョン燃料は、水と燃料油が長期間分離することなく、燃焼性も良く燃費にも優れた高品質のものである。本発明のエマルジョン燃料は、燃焼に際し先ず燃料油が燃え、それによってエマルジョン中の水が微爆発して燃料油の燃焼面積が飛躍的に増大し、完全燃焼が起こるものと推測される。 Emulsions formed from reduced water or electrolytically reduced water and fuel oil as described above are considered to become new emulsion fuels to which hydrogen has been added. And this emulsion fuel is a high quality thing which is excellent in combustibility and fuel consumption, without separating water and fuel oil for a long period of time. In the emulsion fuel of the present invention, it is presumed that the fuel oil first burns during combustion, whereby the water in the emulsion slightly explodes, the combustion area of the fuel oil increases dramatically, and complete combustion occurs.

本発明のエマルジョン燃料の製造方法及びそれに用いられる装置について、図を用いて説明する。図1は、本発明のエマルジョン燃料製造装置の一例を示す概略図である。図1において、1は水の電気分解を行うために用いられる電解槽であり、電解槽1には、イオン膜等の隔膜4によって隔てられた陽極3と陰極2、超音波発信棒等の超音波発生手段5及び攪拌機等の攪拌手段6が備えられている。11はエマルジョン形成槽であり、エマルジョン形成槽11には、攪拌手段16が備えられており、このエマルジョン形成槽11には、燃料油タンク17とエマルジョン燃料タンク18が連結されている。かかる本発明の装置においては、通常用いられる公知の配管、ボンプ類、計量装置、制御装置等を適当に配置あるいは組み込むことができる(図示せず)。19は乳化剤の貯蔵タンクであり、乳化剤は、ポンプや計量手段(図示せず)を経て、例えば、エマルジョン形成槽11に連結されている。また、電解槽1には、水タンク20が連結されている。 The manufacturing method of the emulsion fuel of this invention and the apparatus used for it are demonstrated using figures. FIG. 1 is a schematic view showing an example of an emulsion fuel production apparatus according to the present invention. In FIG. 1, reference numeral 1 denotes an electrolytic cell used for electrolysis of water. The electrolytic cell 1 includes an anode 3 and a cathode 2 separated by a diaphragm 4 such as an ionic membrane, and an ultrasonic transducer such as an ultrasonic transmission rod. A sound wave generating means 5 and a stirring means 6 such as a stirrer are provided. Reference numeral 11 denotes an emulsion forming tank. The emulsion forming tank 11 is provided with a stirring means 16, and a fuel oil tank 17 and an emulsion fuel tank 18 are connected to the emulsion forming tank 11. In the apparatus of the present invention, known pipes, bombs, metering devices, control devices and the like that are usually used can be appropriately arranged or incorporated (not shown). Reference numeral 19 denotes an emulsifier storage tank. The emulsifier is connected to, for example, the emulsion forming tank 11 via a pump and a metering means (not shown). A water tank 20 is connected to the electrolytic cell 1.

本発明において、陽極としては、例えば、白金、チタンや炭素が用いられる。陰極としては、例えば、パラジウム、チタン等の金属やその合金が用いられる。超音波発生手段は、混合液を、エマルジョン効果やキャビテーション効果により、十分に乳化させ得るものであればどのようなものでも良いが、超音波発生機と接続された超音波発振棒を処理液に挿入するタイプのものが適当である。攪拌手段は、公知あるいは市販の攪拌機を利用すれば良い。前述のごとく、電解槽やエマルジョン形成槽としては、特別な槽を用いる必要はない。 In the present invention, for example, platinum, titanium, or carbon is used as the anode. As the cathode, for example, a metal such as palladium or titanium or an alloy thereof is used. Any ultrasonic generator may be used as long as the mixed liquid can be sufficiently emulsified by the emulsion effect and the cavitation effect. However, an ultrasonic oscillating rod connected to an ultrasonic generator is used as the processing liquid. An insertion type is suitable. A known or commercially available stirrer may be used as the stirring means. As described above, it is not necessary to use a special tank as the electrolytic tank or the emulsion forming tank.

前記製造装置において、電解槽1の陰極2は、水素吸蔵金属又は合金から形成された電極であるのが好ましい。陰極としてパラジウム等の水素吸蔵金属あるいはチタン−鉄合金等の水素吸蔵合金を使用すると、電気分解で発生した水素が陰極に吸蔵され、その後この排出される水素をエマルジョン形成槽で有効に活用することができる。また、エマルジョン形成槽11にも、水素吸蔵金属又は合金から形成された電極12を配置するのが好ましい。そして、この場合に、共に水素吸蔵金属又は合金から形成された、電解槽の電極とエマルジョン形成槽の電極は、交互に交換可能なように配置しておくのが便利である。即ち、陰極はワンバッチごとに電解槽からエマルジョン形成槽へ、エマルジョン形成槽から電解槽に移動できるように構成・配置しておくのが好ましい。電解槽で水素を吸着・吸蔵した水素吸蔵金属又は合金からなる陰極は、エマルジョン形成槽に移動して、エマルジョンに水素を添加するという作用効果を発揮する。水の電気分解に際しては、電解槽1に、電解質、例えば、アルカリ金属又はアルカリ土類金属の水酸化物や塩化物等の塩を入れておいても良い。 In the manufacturing apparatus, the cathode 2 of the electrolytic cell 1 is preferably an electrode formed of a hydrogen storage metal or an alloy. When a hydrogen storage metal such as palladium or a hydrogen storage alloy such as titanium-iron alloy is used as the cathode, hydrogen generated by electrolysis is stored in the cathode, and then the discharged hydrogen is effectively utilized in the emulsion formation tank. Can do. Moreover, it is preferable to arrange | position the electrode 12 formed from the hydrogen storage metal or the alloy also in the emulsion formation tank 11. FIG. In this case, it is convenient that the electrode of the electrolytic cell and the electrode of the emulsion forming cell, both of which are formed of a hydrogen storage metal or alloy, are arranged so as to be interchangeable. That is, the cathode is preferably constructed and arranged so that it can be moved from the electrolytic tank to the emulsion forming tank and from the emulsion forming tank to the electrolytic tank for each batch. The cathode made of a hydrogen storage metal or alloy that has adsorbed and occluded hydrogen in the electrolytic bath moves to the emulsion forming bath and exhibits the effect of adding hydrogen to the emulsion. When electrolyzing water, the electrolytic cell 1 may contain an electrolyte, for example, a salt such as an alkali metal or alkaline earth metal hydroxide or chloride.

図2は、本発明のエマルジョン燃料製造装置の他の例を示す概略図である。図2において、11はエマルジョン形成槽、12は水素吸蔵金属又は合金から形成された陰極(環状陰極)、13は陽極、15は超音波発生手段、16は攪拌手段である。本発明においては、エマルジョン形成に際して、陽極13と陰極12の間に通電しながら行うようにしても良い。また、攪拌混合を、超音波発生手段15で超音波を与えながら行うようにしても良い。かくすることによって、エマルジョンの安定性がより向上する効果が得られる。 FIG. 2 is a schematic view showing another example of the emulsion fuel production apparatus of the present invention. In FIG. 2, 11 is an emulsion forming tank, 12 is a cathode (annular cathode) formed from a hydrogen storage metal or alloy, 13 is an anode, 15 is an ultrasonic wave generating means, and 16 is a stirring means. In the present invention, the emulsion may be formed while energizing between the anode 13 and the cathode 12. Further, stirring and mixing may be performed while applying ultrasonic waves by the ultrasonic wave generation means 15. By doing so, an effect of further improving the stability of the emulsion can be obtained.

図1において、所定量の水、例えば、水道水が、水タンク20から電解槽1に供給され、超音波を付与しながら電気分解が行われる。その後、電解槽1の陰極(室)に生成した電解還元水は、送液パイプ等によってエマルジョン形成槽11に移される。乳化剤は粉末、液体あるいは水溶液の形態で貯蔵されており、貯蔵タンク19から、前記送液パイプの途中で電解還元水に添加・混合しても良く、あらかじめ燃料油と混合しておいても良く、あるいは、直接、エマルジョン形成槽11に供給しても良い。 In FIG. 1, a predetermined amount of water, for example, tap water, is supplied from the water tank 20 to the electrolytic cell 1 and electrolysis is performed while applying ultrasonic waves. Thereafter, the electrolytically reduced water produced in the cathode (chamber) of the electrolytic cell 1 is transferred to the emulsion forming tank 11 by a liquid feed pipe or the like. The emulsifier is stored in the form of powder, liquid or aqueous solution, and may be added to and mixed with electrolytic reduced water from the storage tank 19 in the middle of the liquid feeding pipe, or may be mixed with fuel oil in advance. Alternatively, it may be directly supplied to the emulsion forming tank 11.

次いで、エマルジョン形成槽11に、電解槽1で電気分解の陰極2として用いた水素吸蔵金属又は合金からなる電極を移動し、エマルジョン形成槽中の還元電解水と燃料油と乳化剤の混合液に、この電極(図2の16)から水素を放出させつつ、必要な場合には、混合液に超音波発生手段(図2の15)から超音波を付与しながら、混合液を攪拌しエマルジョン化する。エマルジョン化のための時間、温度、雰囲気等は特に限定されるものではない。エマルジョン形成が終了したら、水素吸蔵金属又は合金からなる電極(図2の16)は電解槽1に移動させ、再び、水の電気分解の陰極2として用いられる。 Next, the electrode made of a hydrogen storage metal or alloy used as the electrolysis cathode 2 in the electrolytic cell 1 is moved to the emulsion formation tank 11, and the mixture of reduced electrolyzed water, fuel oil, and emulsifier in the emulsion formation tank is obtained. While releasing hydrogen from this electrode (16 in FIG. 2), if necessary, the mixture is stirred and emulsified while applying ultrasonic waves from the ultrasonic wave generation means (15 in FIG. 2) to the mixture. . The time, temperature, atmosphere, etc. for emulsification are not particularly limited. When the emulsion formation is completed, the electrode (16 in FIG. 2) made of a hydrogen storage metal or alloy is moved to the electrolytic cell 1 and again used as the cathode 2 for water electrolysis.

そして、乳化剤でエマルジョン化された燃料油40〜95体積%と電解還元水60〜5体積%のエマルジョン燃料は、エマルジョン燃料タンク18に移送され貯蔵される。なお、例えば、工場等で一定の箇所に設置型の燃焼装置に本発明を適用する場合には、適当な制御手段を組合わせて、エマルジョン燃料タンク18から直接、燃焼装置にエマルジョン燃料を供給できるようにすることもできる。また、水タンク20は、いわゆる一時的に水を貯蔵するタンクではなく、水道等の水供給源に直接連結されているものでも良く、本発明においては、このようなものも水タンクの概念に含むものである。 And the emulsion fuel of 40-95 volume% of fuel oil emulsified with the emulsifier and 60-5 volume% of electroreduction water is transferred to the emulsion fuel tank 18 and stored. For example, in the case where the present invention is applied to a combustion apparatus installed at a certain place in a factory or the like, emulsion fuel can be supplied directly from the emulsion fuel tank 18 to the combustion apparatus by combining appropriate control means. It can also be done. Moreover, the water tank 20 may not be a tank that temporarily stores water but may be directly connected to a water supply source such as water supply. In the present invention, such a water tank 20 is also a concept of a water tank. Is included.

以下、実施例により本発明を説明するが、本発明はこれに限定されるものではない。なお、エマルジョンの経時安定性の評価は、エマルジョン燃料250mlを250mlのメスシリンダーに入れ、密封系で25℃で1〜3ケ月放置した後の外観を観察して、次の基準で評価した。○:外観変化せず、△:若干の変化あり、×:エマルジョンが分離。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to this. The stability of the emulsion over time was evaluated based on the following criteria by observing the appearance after putting 250 ml of emulsion fuel into a 250 ml graduated cylinder and leaving it in a sealed system at 25 ° C. for 1 to 3 months. ○: No change in appearance, Δ: slight change, ×: emulsion separated.

図1の電解槽(処理槽はステンレス製)の陰極室に水道水(酸化還元電位が約+200mV)20Lを入れ、一方、陽極室には、水酸化ナトリウム100gを含む水溶液20Lを入れ、電源として三相電源の直流を用い、超音波を与えながら、常温常圧で30分間電気分解を行った。陰極としては、パラジウム(水素吸蔵金属)からなる電極を用いた。電気分解の平均電圧は20V、平均電流は50Aであった。超音波発生手段である電波棒は、直径45mm、長さ35cmの金属棒を用い、これに20KHzの超音波を印加した。超音波のバワーは、平均255Wであった。なお、電気分解における印加電圧は、30分間ほぼ一定であったが、電流と超音波のバワーは、徐々に増加した。陰極室の水は、市販のミキサーを用いて1400回/mの攪拌を行った。陰極室で得られた電解還元水の酸化還元電位は、約−300mVであった。 20 L of tap water (oxidation-reduction potential is about +200 mV) 20 L is put in the cathode chamber of the electrolytic cell (the processing tank is made of stainless steel), while 20 L of an aqueous solution containing 100 g of sodium hydroxide is put in the anode chamber. Using direct current of a three-phase power source, electrolysis was performed at room temperature and normal pressure for 30 minutes while applying ultrasonic waves. As the cathode, an electrode made of palladium (hydrogen storage metal) was used. The average voltage of electrolysis was 20V, and the average current was 50A. As a radio wave bar as an ultrasonic wave generating means, a metal bar having a diameter of 45 mm and a length of 35 cm was used, and an ultrasonic wave of 20 KHz was applied thereto. The ultrasonic power was 255 W on average. The applied voltage in electrolysis was almost constant for 30 minutes, but the current and ultrasonic power gradually increased. The water in the cathode chamber was stirred 1400 times / m using a commercially available mixer. The redox potential of the electrolytically reduced water obtained in the cathode chamber was about −300 mV.

図1のエマルジョン形成槽(ステンレス製)に軽油12リットル(比重0.85)と、ポリオキシエチレンアルキルエーテル系を主成分とする非イオン性界面活性剤(乳化剤)204g(軽油に対して2重量%)と、前記のごとくして得られた電解還元水8リットルを入れ混合液を調整した(燃料油60体積%、還元水40体積%)。そして、前記電解槽での電解に用いた陰極(電極)をエマルジョン形成槽に移動して混合液中に浸漬した後、常温常圧で30分間、混合液の攪拌を行った。攪拌は、市販のミキサーを用いて1400回/mの攪拌を行った。得られたエマルジョン燃料は、均一なエマルジョン状態のものであった。このエマルジョンの経時安定性の評価を行ったところ、25℃で1ケ月、更に3ケ月間放置した後もエマルジョンの状態の外観に変化はなかった(○:外観変化せず)。 In the emulsion formation tank (made of stainless steel) in FIG. 1, 12 liters of light oil (specific gravity 0.85) and 204 g of a nonionic surfactant (emulsifier) mainly composed of polyoxyethylene alkyl ether are used (2 weight per light oil). %) And 8 liters of the electrolytically reduced water obtained as described above were added to prepare a mixed solution (60% by volume of fuel oil, 40% by volume of reduced water). And after moving the cathode (electrode) used for the electrolysis in the said electrolytic cell to an emulsion formation tank and immersing in a liquid mixture, the liquid mixture was stirred for 30 minutes at normal temperature normal pressure. Stirring was performed 1400 times / m using a commercially available mixer. The obtained emulsion fuel was in a uniform emulsion state. Evaluation of the stability of the emulsion over time revealed no change in the appearance of the emulsion even after standing at 25 ° C. for 1 month and further 3 months (◯: no change in appearance).

[比較例1]
通常の水道水(酸化還元電位が約+200mV)を用いて、陰極(電極)をエマルジョン形成槽の混合液中に浸漬すること以外は、前記実施例1の場合と同様にして、エルジョン形成槽で軽油と乳化剤と水道水との混合液の攪拌・混合を行ってエマルジョン燃料を得た。このものは、25℃で1日放置しておくとエマルジョンの状態に変化が現れ(△:若干の変化あり)、一週間後には、エマルジョンが殆ど分離した(×:エマルジョンが分離)。
[Comparative Example 1]
Using an ordinary tap water (oxidation-reduction potential is about +200 mV), except that the cathode (electrode) is immersed in the mixture of the emulsion formation tank, the same as in Example 1 above, An emulsion fuel was obtained by stirring and mixing a mixture of light oil, emulsifier and tap water. When this product was allowed to stand at 25 ° C. for 1 day, a change in the state of the emulsion appeared (Δ: slight change), and after one week, the emulsion was almost separated (×: the emulsion was separated).

灯油12リットルと、ポリオキシエチレンアルキルエーテル系を主成分とする非イオン系界面活性剤200gと、天然の地下水(酸化還元電位が約+80mV)8リットル又は市販の装置で作製したアルカリイオン水(酸化還元電位が約−50mV)8リットルをエマルジョン形成槽に入れ、混合液を調整した。そして、以後は、それぞれの混合液に20KHZの超音波を印加しながら攪拌機により攪拌した。攪拌は、市販のミキサーを用いて1400回/mのスピードで20分間行った。 12 liters of kerosene, 200 g of a nonionic surfactant mainly composed of polyoxyethylene alkyl ether, 8 liters of natural ground water (oxidation-reduction potential is about +80 mV) or alkaline ionized water (oxidized) produced by a commercially available device 8 liters) (reduction potential was about −50 mV) was put in an emulsion formation tank to prepare a mixed solution. Thereafter, the mixture was stirred with a stirrer while applying an ultrasonic wave of 20 KHZ to each mixed solution. Stirring was performed for 20 minutes at a speed of 1400 times / m using a commercially available mixer.

天然の地下水を用いた場合も、市販の装置で作製したアルカリイオン水を用いた場合も、均一なエマルジョン状態の本発明のエマルジョン燃料が得られた。いずれも1ヶ月間放置したが、灯油と水の乖離現象は起こらず、完全にエマルジョン状態が保持されていた(○:外観変化せず)。但し、3ケ月経過後は、エマルジョンに若干の分離が見られた(△:若干の変化あり)。 The emulsion fuel of the present invention in a uniform emulsion state was obtained both when natural groundwater was used and when alkaline ionized water produced by a commercially available apparatus was used. All were left for 1 month, but the phenomenon of kerosene and water separation did not occur, and the emulsion state was completely maintained (O: no change in appearance). However, after 3 months, some separation was observed in the emulsion (Δ: slight change).

[比較例2]
通常の水道水(酸化還元電位が約+200mV)を用い、実施例2と同様にしてエマルジョン燃料を得た。このものは、比較例1のものよりも格段に安定であったが、実施例2のものよりも安定性に劣っていた。
[Comparative Example 2]
Emulsion fuel was obtained in the same manner as in Example 2 using normal tap water (oxidation-reduction potential was about +200 mV). This product was much more stable than that of Comparative Example 1, but was less stable than that of Example 2.

本発明のエマルジョン燃料のボイラーによる燃焼実験を行い、熱エネルギー効率について検討した。エマルジョン燃料としては、実施例1の方法に準じて得られた、酸化還元電位が約−300mVの電解還元水(40体積%)とA重油(60体積%)と非イオン性界面活性剤(乳化剤:重油に対して2重量%)の混合液からなるものを用いた。比較用にはA重油100%の燃料油を用いた。 A combustion experiment using the boiler of the emulsion fuel of the present invention was conducted and the thermal energy efficiency was examined. As the emulsion fuel, electrolytically reduced water (40% by volume), heavy oil A (60% by volume) having a redox potential of about −300 mV, nonionic surfactant (emulsifier) obtained according to the method of Example 1 was used. : 2% by weight based on heavy oil). For comparison, fuel oil of 100% A heavy oil was used.

市販の通常のボイラーによって、燃焼実験を行った。その結果は以下のとおりであった。
本発明のエマルジョン燃料:1時間200リットルの燃焼で排ガス温度:410℃。
A重油(比較用) :1時間200リットルの燃焼で排ガス温度:450℃。
Combustion experiments were conducted with a commercially available ordinary boiler. The results were as follows.
Emulsion fuel of the present invention: Combustion of 200 liters for 1 hour, exhaust gas temperature: 410 ° C.
A heavy oil (for comparison): Combustion of 200 liters for 1 hour, exhaust gas temperature: 450 ° C.

本発明のエマルジョン燃料の場合には、水を40%含んでいるにも関わらず、A重油100%のものに比べて、91%((410/450)×100)の熱効率が得られており、A重油の60%分と比べると、約50%も燃費が向上したことになる(410/(450×0.6))。なお、実験に用いたボイラーは、A重油100%での完全燃焼率99.7%の装置であり、A重油のみでの燃焼も完全燃焼である。よってA重油燃料のみとエマルジョン燃料は、双方が完全燃焼したものの比較と考えられる。 In the case of the emulsion fuel of the present invention, although it contains 40% of water, a thermal efficiency of 91% ((410/450) × 100) is obtained as compared with that of A heavy oil 100%. Compared with 60% of heavy oil A, the fuel efficiency is improved by about 50% (410 / (450 × 0.6)). Note that the boiler used in the experiment is a device having a complete combustion rate of 99.7% with A heavy oil 100%, and combustion with only A heavy oil is also complete combustion. Therefore, it is considered that only the A heavy oil fuel and the emulsion fuel are completely combusted.

前記のごとく、燃料油60%で水40%のエマルジョン燃料を製造した場合に、4割増しのエマルジョン燃料を使用して熱カロリーを維持するのでは、燃料コスト削減の見地からは全く意味がない。単に環境適応型の燃料が得られたメリットだけに過ぎない。水を使用しても燃料油のみの場合と比べて、熱効率が上がることが重要である。本発明のエマルジョン燃料は、上記のごとく、かかる要求を実現していることが分かる。 As described above, in the case of producing an emulsion fuel of 60% fuel oil and 40% water, it is completely meaningless from the viewpoint of fuel cost reduction to maintain thermal calories using 40% more emulsion fuel. It is just a merit that environmentally friendly fuel is obtained. Even if water is used, it is important that the thermal efficiency is improved as compared with the case of using only fuel oil. As described above, it can be seen that the emulsion fuel of the present invention fulfills such a requirement.

ボイラー内に噴霧されたエマルジョン燃料の中の水は、約700℃に急熱されて、次々に微爆発を起こし、約3200倍に急膨張すると考えられる。エマルジョン中の燃料油は、下記のごとく水蒸気との水性ガス反応により、燃料油中の炭素が水蒸気と反応しCOとHを生成する。そして、水性ガス反応により生成したCO、CO、Hは、空気との接触面積が増えるため、理論上の空気で完全燃焼するので燃焼効率が向上するものと考えられる。単なる水蒸気の噴霧では得られない現象である。 It is considered that the water in the emulsion fuel sprayed in the boiler is rapidly heated to about 700 ° C., causes micro explosions one after another, and rapidly expands about 3200 times. The fuel oil in the emulsion reacts with water vapor to cause carbon in the fuel oil to react with water vapor to produce CO and H 2 as described below. Then, CO, CO 2, H 2 produced by the water gas reaction, the contact area with air is increased, presumably to improve the combustion efficiency because complete combustion in air of theoretical. This is a phenomenon that cannot be obtained by mere steam spraying.

約700℃で水性ガス反応が開始する(C+HO=CO+H)。そして、約700℃以上で、C2n+2+nHO+n/2O → nCO+(2n+1)Hの反応が起こるものと考えられる。 The water gas reaction starts at about 700 ° C. (C + H 2 O═CO + H 2 ). Then, at about 700 ° C. or higher, it is considered that the reaction of C n H 2n + 2 + nH 2 O + n / 2O 2 → nCO 2 + (2n + 1) H 2 takes place.

実施例3で用いた本発明のエマルジョン燃料の、燃焼状態確認テストを行った。その結果、
空気量が、理論空気量に対して30%以下では不完全燃焼となり、70%以上の場合は過剰空気領域となることが分かった。このエマルジョン燃料の場合は、空気量が35%〜65%の範囲が良いこと、特に50%付近で酸素濃度が均一化することが分かった。
A combustion state confirmation test of the emulsion fuel of the present invention used in Example 3 was performed. as a result,
It was found that incomplete combustion occurs when the air amount is 30% or less of the theoretical air amount, and an excess air region occurs when the air amount is 70% or more. In the case of this emulsion fuel, it has been found that the air amount is preferably in the range of 35% to 65%, and in particular, the oxygen concentration becomes uniform around 50%.

通常、ボイラーでの完全燃焼のためには、理論空気量の1.2〜1.5倍の過剰空気(燃焼ガスよりはるかに低温)を送入しており、煙突排気による排気熱損失が、燃料油の持つエネルギーの15〜40%%に達し、これが燃費ロスとなっている。 Normally, for complete combustion in a boiler, excess air 1.2 to 1.5 times the theoretical air volume (much lower than combustion gas) is fed, and exhaust heat loss due to chimney exhaust is It reaches 15 to 40% of the energy of fuel oil, which is a fuel efficiency loss.

本発明のエマルジョン燃料は、非常に少ない空気で完全燃焼させることが出来るので、排気熱損失を防ぐことが出来る。これは、エマルジョン燃料油中に分散する水の微粒子が、ボイラーの燃焼室内で瞬時に爆発気化し、燃料油粒子を更に微細化分割、飛散させ、酸素との接触を助けるからであると考えられる。本発明のエマルジョン燃料においては、過剰空気を、通常の一般燃焼の場合の2分の1以下に抑えることができる。 Since the emulsion fuel of the present invention can be completely burned with very little air, exhaust heat loss can be prevented. This is thought to be because the fine water particles dispersed in the emulsion fuel oil instantly explode and vaporize in the combustion chamber of the boiler, further dividing and scattering the fuel oil particles to help contact with oxygen. . In the emulsion fuel of the present invention, excess air can be suppressed to half or less than that in the case of ordinary general combustion.

本発明によって得られるエマルジョン燃料は、長期間にわたって非常に良好なエマルジョン状態を保持しているので、通常の燃料油と同じように取り扱い、使用することができる。そして、高品質で燃費が向上するので、環境に優しい上に燃料経費が大幅に節約できる。更に、水と軽油、灯油、重油、ガソリン等の燃料油を用いて得られるエマルジョン燃料は、燃焼時に窒素酸化物(NO)や煤塵の発生が少ないため、大気汚染防止に有効な燃料として、例えば、工場用の燃料、農機具の燃料、漁船や船舶の燃料、車両用燃料に利用できる。また、特に、軽油と乳化剤を含む水とからなるエマルジョン燃料は、ディーゼルエンジンの燃料として有効に使用できる。 Since the emulsion fuel obtained by the present invention maintains a very good emulsion state for a long period of time, it can be handled and used in the same manner as ordinary fuel oil. And because it is high quality and fuel efficiency is improved, it is environmentally friendly and fuel costs can be saved significantly. Further, since water and light oil, kerosene, heavy oil, emulsion fuel obtained with the fuel oil such as gasoline, nitrogen oxides (NO X) and the occurrence of dust is small at the time of combustion, as an effective fuel to air pollution, For example, it can be used as fuel for factories, fuel for agricultural machinery, fuel for fishing boats and ships, and fuel for vehicles. In particular, an emulsion fuel composed of light oil and water containing an emulsifier can be effectively used as a fuel for a diesel engine.

本発明のエマルジョン燃料製造装置の一例の概略図である。It is the schematic of an example of the emulsion fuel manufacturing apparatus of this invention. 本発明のエマルジョン燃料製造装置の他の例の概略図である。It is the schematic of the other example of the emulsion fuel manufacturing apparatus of this invention.

符号の説明Explanation of symbols

1 電解槽
2、12 陰極(棒状又は環状)
3、13 陽極(棒状)
4 イオン隔膜
5、15 超音波発信棒
6、16 攪拌機
11 エマルジョン形成槽
17 燃料油タンク
18 エマルジョン燃料ンク
19 乳化剤タンク
20 水タンク
1 Electrolysis cell 2, 12 Cathode (rod or ring)
3, 13 Anode (bar-shaped)
4 Ion diaphragm 5, 15 Ultrasonic transmission rod 6, 16 Stirrer 11 Emulsion formation tank 17 Fuel oil tank 18 Emulsion fuel tank 19 Emulsifier tank 20 Water tank

Claims (17)

燃料油40〜95体積%と、+100mV以下の酸化還元電位(ORP)を有する60〜5体積%の還元水と、燃料油に対して0.1〜10重量%の乳化剤の混合液からなるエマルジョン燃料。 An emulsion comprising 40 to 95% by volume of fuel oil, 60 to 5% by volume of reduced water having an oxidation-reduction potential (ORP) of +100 mV or less, and 0.1 to 10% by weight of an emulsifier based on the fuel oil. fuel. 燃料油が50〜90体積%で、還元水が50〜10体積%である請求項1記載のエマルジョン燃料。 The emulsion fuel according to claim 1, wherein the fuel oil is 50 to 90% by volume and the reduced water is 50 to 10% by volume. 還元水が、電解還元水である請求項1又は2記載のエマルジョン燃料。 The emulsion fuel according to claim 1 or 2, wherein the reduced water is electrolytic reduced water. 電解還元水が、+50mV以下の酸化還元電位(ORP)のものである請求項1〜3のいずれか1項記載のエマルジョン燃料。 The emulsion fuel according to any one of claims 1 to 3, wherein the electrolytically reduced water has an oxidation-reduction potential (ORP) of +50 mV or less. 電解還元水が、陽極と陰極が隔てられた隔膜電解槽を用い、且つ、超音波発生手段で超音波を与えながら、水の電気分解を行うことによって得られたものである請求項3又は4記載のエマルジョン燃料。 5. The electrolytically reduced water is obtained by electrolyzing water using a diaphragm electrolytic cell in which an anode and a cathode are separated and applying ultrasonic waves by an ultrasonic wave generating means. The emulsion fuel as described. 電解還元水が、陰極として水素吸蔵金属又は合金を用いて、水の電気分解を行うことによって得られたものである請求項3〜5のいずれか1項記載のエマルジョン燃料。 The emulsion fuel according to any one of claims 3 to 5, wherein the electrolytically reduced water is obtained by electrolyzing water using a hydrogen storage metal or alloy as a cathode. 隔膜によって隔てられた陽極と陰極、超音波発生手段及び攪拌手段を備えてなる電解槽と、
攪拌手段を備えたエマルジョン形成槽と、該エマルジョン形成槽に連結された燃料油タンクとエマルジョン燃料タンクとからなるエマルジョン燃料製造装置。
An electrolytic cell comprising an anode and a cathode separated by a diaphragm, an ultrasonic generator and an agitator;
An emulsion fuel production apparatus comprising an emulsion forming tank provided with a stirring means, a fuel oil tank connected to the emulsion forming tank, and an emulsion fuel tank.
電解槽の陰極が、水素吸蔵金属又は合金から形成された電極である請求項7記載のエマルジョン燃料製造装置。 8. The emulsion fuel production apparatus according to claim 7, wherein the cathode of the electrolytic cell is an electrode formed from a hydrogen storage metal or an alloy. エマルジョン形成槽に、水素吸蔵金属又は合金から形成された電極が配置されている請求項7又は8記載のエマルジョン燃料製造装置。 The emulsion fuel production apparatus according to claim 7 or 8, wherein an electrode formed of a hydrogen storage metal or alloy is disposed in the emulsion forming tank. 共に水素吸蔵金属又は合金から形成された、電解槽の電極とエマルジョン形成槽の電極が、交互に交換可能なように配置されている請求項8又は9記載のエマルジョン燃料製造装置。 The emulsion fuel production apparatus according to claim 8 or 9, wherein the electrode of the electrolytic cell and the electrode of the emulsion formation vessel, both of which are made of a hydrogen storage metal or alloy, are arranged so as to be interchangeable. エマルジョン形成槽に、陽極と、水素吸蔵金属又は合金から形成された陰極が配置されている請求項7〜10のいずれか1項記載のエマルジョン燃料製造装置。 The emulsion fuel production apparatus according to any one of claims 7 to 10, wherein an anode and a cathode formed of a hydrogen storage metal or alloy are disposed in the emulsion forming tank. エマルジョン形成槽に、超音波発生手段が設置されている請求項7〜11のいずれか1項記載のエマルジョン燃料製造装置。 The emulsion fuel production apparatus according to any one of claims 7 to 11, wherein ultrasonic generation means is installed in the emulsion forming tank. 燃料油(A)の40〜95体積%と、陽極と陰極が隔てられた隔膜電解槽を用い、且つ、超音波発生手段で超音波を与えながら、水の電気分解を行うことによって得られた電解還元水(B)の60〜5体積%と、燃料油に対して0.1〜10重量%の乳化剤(C)を、エマルジョン形成槽で攪拌混合することを特徴とするエマルジョン燃料の製造方法。 The fuel oil (A) was obtained by electrolyzing water using a diaphragm electrolytic cell in which the anode and the cathode were separated by 40 to 95% by volume of the fuel oil (A) and applying ultrasonic waves by the ultrasonic wave generation means. A method for producing an emulsion fuel, comprising mixing 60 to 5% by volume of electrolytically reduced water (B) and 0.1 to 10% by weight of an emulsifier (C) with respect to fuel oil in an emulsion forming tank. . 水の電気分解を、陰極として水素吸蔵金属又は合金から形成された電極を用いて行うことを特徴とする請求項13記載のエマルジョン燃料の製造方法。 The method for producing an emulsion fuel according to claim 13, wherein the electrolysis of water is performed using an electrode formed of a hydrogen storage metal or alloy as a cathode. 燃料油(A)と電解還元水(B)と乳化剤(C)の攪拌混合を、水の電気分解に用いた水素吸蔵金属又は合金から形成された電極の存在下で行うことを特徴とする請求項13又は14記載のエマルジョン燃料の製造方法。 The fuel oil (A), electrolytically reduced water (B), and emulsifier (C) are mixed by stirring in the presence of an electrode formed from a hydrogen storage metal or alloy used for electrolysis of water. Item 15. A method for producing an emulsion fuel according to Item 13 or 14. 燃料油(A)と電解還元水(B)と乳化剤(C)の攪拌混合を、エマルジョン形成槽に設けられた陽極と、水素吸蔵金属又は合金から形成された陰極(電極)の間に通電しながら行うことを特徴とする請求項15項記載のエマルジョン燃料の製造方法。 The fuel oil (A), electrolytically reduced water (B), and emulsifier (C) are stirred and mixed between an anode provided in the emulsion formation tank and a cathode (electrode) formed from a hydrogen storage metal or alloy. 16. The method for producing an emulsion fuel according to claim 15, wherein the method is carried out. 燃料油(A)と電解還元水(B)と乳化剤(C)の攪拌混合を、超音波発生手段で超音波を与えながら行うことを特徴とする請求項13〜16のいずれか1項記載のエマルジョン燃料の製造方法。



The fuel oil (A), electrolytically reduced water (B), and emulsifier (C) are stirred and mixed while applying ultrasonic waves by an ultrasonic wave generating means. Method for producing emulsion fuel.



JP2006336939A 2006-12-14 2006-12-14 Emulsion fuel and method and apparatus for producing the same Expired - Fee Related JP5174344B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006336939A JP5174344B2 (en) 2006-12-14 2006-12-14 Emulsion fuel and method and apparatus for producing the same
US12/518,999 US20100095580A1 (en) 2006-12-14 2007-06-15 Emulsion fuel, and process and apparatus for production thereof
EP07745386A EP2107104A1 (en) 2006-12-14 2007-06-15 Emulsion fuel, and process and apparatus for production thereof
PCT/JP2007/062131 WO2008072391A1 (en) 2006-12-14 2007-06-15 Emulsion fuel, and process and apparatus for production thereof
TW096123611A TW200825163A (en) 2006-12-14 2007-06-29 Emulsion fuel, and process and apparatus for production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006336939A JP5174344B2 (en) 2006-12-14 2006-12-14 Emulsion fuel and method and apparatus for producing the same

Publications (2)

Publication Number Publication Date
JP2008150421A true JP2008150421A (en) 2008-07-03
JP5174344B2 JP5174344B2 (en) 2013-04-03

Family

ID=39511423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006336939A Expired - Fee Related JP5174344B2 (en) 2006-12-14 2006-12-14 Emulsion fuel and method and apparatus for producing the same

Country Status (5)

Country Link
US (1) US20100095580A1 (en)
EP (1) EP2107104A1 (en)
JP (1) JP5174344B2 (en)
TW (1) TW200825163A (en)
WO (1) WO2008072391A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256501A (en) * 2008-04-18 2009-11-05 Yoshimitsu Kawasaki Liquid fuel and manufacturing method thereof
JP2010025522A (en) * 2008-07-24 2010-02-04 Deguchi Tetsuro Emulsion fuel supply system
JP4476348B1 (en) * 2009-05-27 2010-06-09 亮一 大坪 Emulsion fuel
WO2011037077A1 (en) * 2009-09-24 2011-03-31 Horikoshi Kuniaki Combustion apparatus and combustion method using emulsion fuel, and apparatus and method for producing emulsion fuel
JP2016216697A (en) * 2015-05-18 2016-12-22 株式会社京浜プランテック Production method of water-added fuel oil, and water-added fuel oil
KR20210101293A (en) * 2019-01-25 2021-08-18 전경훈 Water-Based Metal Colloidal Burning Additives
US11718804B2 (en) 2018-09-28 2023-08-08 Kyung Hoon Jun Aqueous metal colloid combustion additive

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4933630B2 (en) * 2007-11-02 2012-05-16 優章 荒井 Fuel fluid manufacturing apparatus and manufacturing method thereof
JP2010248354A (en) * 2009-04-15 2010-11-04 Kenji Suzuki Emulsion fuel for boiler, and method for producing the same
EP3354711A1 (en) 2011-03-29 2018-08-01 Fuelina Technologies, LLC Hybrid fuel
JP5362138B1 (en) * 2012-12-06 2013-12-11 満治 服部 Method for producing compatible transparent water-containing oil and apparatus for producing compatible transparent water-containing oil
WO2014087679A1 (en) * 2012-12-06 2014-06-12 Hattori Mitsuharu Method for producing compatible, transparent water-containing oil, and device for producing compatible, transparent water-containing oil
WO2015037109A1 (en) * 2013-09-12 2015-03-19 Hattori Mitsuharu Production method for compatible transparent water-containing oil and production device for compatible transparent water-containing oil
MX2017007234A (en) 2014-12-03 2018-04-10 Univ Drexel Direct incorporation of natural gas into hydrocarbon liquid fuels.
RU2594153C2 (en) * 2014-12-24 2016-08-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Device for oil wastes processing
US10125332B2 (en) * 2016-09-23 2018-11-13 Karl Jens Steiro Hydro-fuel, method of manufacture and method of operating a diesel engine
WO2018198008A1 (en) * 2017-04-24 2018-11-01 Abdolahad Mohammad In-situ microbubbles generation for ultrasonic biomedical applications
RU185967U1 (en) * 2018-09-27 2018-12-25 Общество С Ограниченной Ответственностью "Татнефть-Азс-Запад" INSTALLATION FOR PUMPING DIESEL FUEL IN WINTER

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889967A (en) * 1994-09-19 1996-04-09 Tokico Ltd Electrolytic water producer
JP2000084562A (en) * 1998-09-11 2000-03-28 Shigemi Sawada Production of reducing water and production device of reducing water
JP2000117256A (en) * 1998-10-09 2000-04-25 Toto Ltd Device for production of electrolytic water
JP2000329308A (en) * 1999-05-19 2000-11-30 Nippon Kankyo Hozen Kk Fuel combustion method, burner and ash treating device
JP2003313693A (en) * 2002-04-25 2003-11-06 Toomu:Kk Electrolysis device and electrolysis method
JP2005024169A (en) * 2003-07-02 2005-01-27 Matsushita Electric Ind Co Ltd Hot-water supply device with water reduction function
JP2005111037A (en) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd Rice cooker
JP2006028215A (en) * 2004-07-12 2006-02-02 Kenji Suzuki Environmental adaptation type emulsion fuel and its production method and production installation
JP2006167528A (en) * 2004-12-14 2006-06-29 Techno Bank:Kk Apparatus for maintaining and circulating functional water

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06346071A (en) 1993-06-03 1994-12-20 Kao Corp Emulsion fuel
JPH11263991A (en) 1998-03-17 1999-09-28 Eihou Kogyo:Kk Emulsion fuel
JP4420570B2 (en) 2001-01-26 2010-02-24 レンツ・エンバイアメンタル・リソーシーズ株式会社 Fuel supply device
JP2003027074A (en) 2001-07-13 2003-01-29 Sanyo Chem Ind Ltd Emulsifier for emulsion fuel
JP2004010765A (en) 2002-06-07 2004-01-15 Shigemi Sawada W/o-type emulsion fuel
JP4095861B2 (en) 2002-08-12 2008-06-04 東芝プラントシステム株式会社 Diesel engine for reformed fuel
JP3839385B2 (en) 2002-10-03 2006-11-01 三洋化成工業株式会社 Emulsifier for emulsion fuel

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889967A (en) * 1994-09-19 1996-04-09 Tokico Ltd Electrolytic water producer
JP2000084562A (en) * 1998-09-11 2000-03-28 Shigemi Sawada Production of reducing water and production device of reducing water
JP2000117256A (en) * 1998-10-09 2000-04-25 Toto Ltd Device for production of electrolytic water
JP2000329308A (en) * 1999-05-19 2000-11-30 Nippon Kankyo Hozen Kk Fuel combustion method, burner and ash treating device
JP2003313693A (en) * 2002-04-25 2003-11-06 Toomu:Kk Electrolysis device and electrolysis method
JP2005024169A (en) * 2003-07-02 2005-01-27 Matsushita Electric Ind Co Ltd Hot-water supply device with water reduction function
JP2005111037A (en) * 2003-10-09 2005-04-28 Matsushita Electric Ind Co Ltd Rice cooker
JP2006028215A (en) * 2004-07-12 2006-02-02 Kenji Suzuki Environmental adaptation type emulsion fuel and its production method and production installation
JP2006167528A (en) * 2004-12-14 2006-06-29 Techno Bank:Kk Apparatus for maintaining and circulating functional water

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256501A (en) * 2008-04-18 2009-11-05 Yoshimitsu Kawasaki Liquid fuel and manufacturing method thereof
JP2010025522A (en) * 2008-07-24 2010-02-04 Deguchi Tetsuro Emulsion fuel supply system
JP4544480B2 (en) * 2008-07-24 2010-09-15 出口 哲郎 Emulsion fuel supply system
JP4476348B1 (en) * 2009-05-27 2010-06-09 亮一 大坪 Emulsion fuel
JP2011006497A (en) * 2009-05-27 2011-01-13 Ryoichi Otsubo Emulsion fuel
WO2011037077A1 (en) * 2009-09-24 2011-03-31 Horikoshi Kuniaki Combustion apparatus and combustion method using emulsion fuel, and apparatus and method for producing emulsion fuel
CN102597622A (en) * 2009-09-24 2012-07-18 堀越邦昭 Combustion apparatus and combustion method using emulsion fuel, and apparatus and method for producing emulsion fuel
JP5442743B2 (en) * 2009-09-24 2014-03-12 邦昭 堀越 Combustion method using emulsion fuel
JP2016216697A (en) * 2015-05-18 2016-12-22 株式会社京浜プランテック Production method of water-added fuel oil, and water-added fuel oil
US11718804B2 (en) 2018-09-28 2023-08-08 Kyung Hoon Jun Aqueous metal colloid combustion additive
KR20210101293A (en) * 2019-01-25 2021-08-18 전경훈 Water-Based Metal Colloidal Burning Additives
KR102587214B1 (en) * 2019-01-25 2023-10-11 전경훈 Water-based metal colloidal combustion additive

Also Published As

Publication number Publication date
EP2107104A1 (en) 2009-10-07
WO2008072391A1 (en) 2008-06-19
TW200825163A (en) 2008-06-16
JP5174344B2 (en) 2013-04-03
US20100095580A1 (en) 2010-04-22

Similar Documents

Publication Publication Date Title
JP5174344B2 (en) Emulsion fuel and method and apparatus for producing the same
AU2003281717B2 (en) Suspensions for use as fuel for electrochemical fuel cells
JP2000512538A (en) Apparatus and method for oxidizing organic substances
CN1921910B (en) Method and apparatus for dehalogenating organic halide through electrolysis
US20080260632A1 (en) Production of hydrogen from aluminum and water
KR20160145836A (en) Device for supplying emulsified fuel and method for supplying said fuel
JP6146789B2 (en) Hydrolyzed fuel production method and production apparatus
US20030066750A1 (en) Electrolytic combustion
JP2010007038A (en) Reforming method and reforming device of emulsion fuel oil
JP2010248354A (en) Emulsion fuel for boiler, and method for producing the same
JP2009248059A (en) Simultaneously manufacturing apparatus for ozone water and hydrogen peroxide water
JP4476348B1 (en) Emulsion fuel
JP2010138362A (en) Method of producing emulsion fuel oil
JP2008174669A (en) Method and apparatus for producing mixture of oil and water, production plant and incineration plant for mixture of oil and water using the same
JP2020176231A (en) Water-mixed fuel manufacturing method and water-mixed fuel manufacturing apparatus
JP2009138145A (en) Apparatus and method for preparing emulsion fuel
US3663300A (en) Foam electrolyte, fuel cell, and method for increasing effectiveness of fuel cells
JP6588329B2 (en) Fuel supply apparatus and method for supplying fuel to internal combustion engine
TWI297334B (en)
JP2012153972A (en) Fuel using oxygen hydrogen coexistence gas and method of using the same
JP2004239562A (en) Refuse incinerating device, and method of incinerating refuse using the same
WO2002094382A1 (en) Pcb treating device and pcb treating method by electrolysis
JP2009184886A (en) Composition, hydrogen production apparatus and fuel cell system
JP2017025133A (en) Compound fuel production system
JP2012224830A (en) Ultrafine particle emulsion fuel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R150 Certificate of patent or registration of utility model

Ref document number: 5174344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees