JP2012153972A - Fuel using oxygen hydrogen coexistence gas and method of using the same - Google Patents

Fuel using oxygen hydrogen coexistence gas and method of using the same Download PDF

Info

Publication number
JP2012153972A
JP2012153972A JP2011175918A JP2011175918A JP2012153972A JP 2012153972 A JP2012153972 A JP 2012153972A JP 2011175918 A JP2011175918 A JP 2011175918A JP 2011175918 A JP2011175918 A JP 2011175918A JP 2012153972 A JP2012153972 A JP 2012153972A
Authority
JP
Japan
Prior art keywords
gas
oxygen
gas body
hydrogen
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011175918A
Other languages
Japanese (ja)
Other versions
JP6310172B2 (en
Inventor
Ryushin Omasa
龍晋 大政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Techno KK
Original Assignee
Nihon Techno KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Techno KK filed Critical Nihon Techno KK
Priority to JP2011175918A priority Critical patent/JP6310172B2/en
Publication of JP2012153972A publication Critical patent/JP2012153972A/en
Application granted granted Critical
Publication of JP6310172B2 publication Critical patent/JP6310172B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an improved fuel of which output can be improved and safety is high even for usage in general burning appliance when an oxygen hydrogen coexistence gas is applied for fuel and which can reduce the discharge volume of carbon dioxide, carbon monoxide or hydrocarbon.SOLUTION: The fuel includes a mixed gas of an oxygen hydrogen coexistence gas and a combustible gas other than the oxygen hydrogen coexistence gas. The oxygen hydrogen coexistence gas is obtained by transmitting vibration produced by a vibration generating means to a vibration blade attached to a vibration rod by means of the vibration rod, vibrating the vibration blade and processing electrolytically water to be treated while generating vibration flow stirring in the water.

Description

本発明は、酸素水素共存ガス体の燃料用途に関するものであり、特に、特定の酸素水素共存ガス体を用いた燃料及びその使用方法に関するものである。   The present invention relates to a fuel application of an oxygen-hydrogen coexisting gas body, and particularly to a fuel using a specific oxygen-hydrogen coexisting gas body and a method for using the same.

近年、地球温暖化の抑制及びそれによる地球環境保護の観点から、二酸化炭素(CO)の排出量の削減が要請されている。このような要請に応えるために、燃料の分野においても、化石燃料のような炭化水素系のものではない非炭化水素系のものが注目されている。 In recent years, reduction of carbon dioxide (CO 2 ) emissions has been demanded from the viewpoint of suppressing global warming and thereby protecting the global environment. In order to meet such demands, non-hydrocarbon-based materials that are not hydrocarbon-based materials such as fossil fuels are also attracting attention in the field of fuels.

非炭化水素系の燃料の1つとして水の電気分解により得られる所謂ブラウンガスを利用することが考えられる。ブラウンガスを燃料用途に実用化する場合には圧縮保存することが極めて好ましいのであるが、ブラウンガスは、とくに加圧すると爆発しやすく取り扱いの極めて難しいものであるという難点があり、燃料としての実用において安全性の点で充分とはいえない。たとえば日本においては、水素に2%以上の酸素を混合したガス体を1MPa以上に圧縮することを禁止する法令がある。   It is conceivable to use a so-called Brown gas obtained by electrolysis of water as one of non-hydrocarbon fuels. When brown gas is put to practical use as a fuel, it is highly preferable to store it under compression. However, brown gas has a drawback that it is easy to explode when pressed and is extremely difficult to handle. However, it is not sufficient in terms of safety. For example, in Japan, there is a law that prohibits the compression of a gas body in which 2% or more of oxygen is mixed with hydrogen to 1 MPa or more.

また、非炭化水素系の燃料の他の1つとして、特許第3975467号公報(特許文献1)、特許第4076953号公報(特許文献2)及び特許第4599387号公報(特許文献3)に記載されているような、振動攪拌(振動流動攪拌)を併用した水の電気分解により得られる水素−酸素ガスからなるものが挙げられる。この水素−酸素ガスは、本発明者の発明に係るものであり、OHMASA−GASとして知られている。OHMASA−GASは、通常の一般的なブラウンガスとは異なり、特徴的で多様な結合形態にて水素および酸素が共存する酸素水素共存ガス体であり、高圧縮下でも爆発しにくく、安全性が高い。   As another non-hydrocarbon fuel, it is described in Japanese Patent No. 3975467 (Patent Document 1), Japanese Patent No. 4076953 (Patent Document 2) and Japanese Patent No. 4599387 (Patent Document 3). As shown in FIG. 1, there are those composed of hydrogen-oxygen gas obtained by electrolysis of water in combination with vibration agitation (vibration flow agitation). This hydrogen-oxygen gas is related to the inventors' invention and is known as OHMASA-GAS. OHMASA-GAS is an oxygen-hydrogen coexisting gas body in which hydrogen and oxygen coexist in characteristic and various bonding forms, unlike ordinary brown gas, and it is difficult to explode even under high compression and has safety. high.

一方、現在、自動車の内燃エンジンにおいてガソリンや軽油などの炭化水素系燃料を燃焼させることで発生する一酸化炭素(CO)や炭化水素(HC)の排出量を低減するために、自動車には触媒を用いた排ガス処理装置が搭載されている。この排ガス処理装置に使用される触媒は、パラジウム、ロジウム及び白金などの高価な材料を含むものであり、これらの高価な材料が年間200トン以上も使用されている。このような排ガス処理装置の価格は自動車価格の10%程度といわれている。そこで、自動車価格を低減させる観点から及び省資源の観点から、一酸化炭素や炭化水素の排出量が少なく、排ガス処理装置が不要となるような燃料の出現が望まれる。   On the other hand, in order to reduce emissions of carbon monoxide (CO) and hydrocarbons (HC) generated by burning hydrocarbon fuels such as gasoline and light oil in an internal combustion engine of automobiles, automobiles are currently equipped with a catalyst. An exhaust gas treatment device using is installed. The catalyst used in this exhaust gas treatment apparatus contains expensive materials such as palladium, rhodium and platinum, and these expensive materials are used in an amount of 200 tons or more per year. The price of such an exhaust gas treatment device is said to be about 10% of the automobile price. Therefore, from the viewpoint of reducing the price of automobiles and from the viewpoint of resource saving, the appearance of fuel that emits less carbon monoxide and hydrocarbons and does not require an exhaust gas treatment device is desired.

特許第3975467号公報Japanese Patent No. 3975467 特許第4076953号公報Japanese Patent No. 4076953 特許第4599387号公報Japanese Patent No. 4599387

ところで、以上のようなOHMASA−GASを燃料として使用する場合において、現在市販されている一般的な燃焼機器をそのまま用いることが、経済性の観点から極めて好ましい。   By the way, when using the above-mentioned OHMASA-GAS as a fuel, it is very preferable from the viewpoint of economy to use a general combustion device currently on the market as it is.

しかしながら、一般的な燃焼機器、たとえば乗物用内燃エンジン、発電機用内燃エンジン、燃料電池、ボイラー用バーナー、溶接機用バーナー及び調理器用バーナーなどにおいて、燃料としてOHMASA−GASを使用した場合に、得られる出力または安全性において未だ改善の余地のあることが分かった。   However, in general combustion equipment such as a vehicle internal combustion engine, a generator internal combustion engine, a fuel cell, a boiler burner, a welder burner, and a cooker burner, etc., it is obtained when OHMAS-GAS is used as a fuel. It has been found that there is still room for improvement in output and safety.

そこで、本発明は、特定の酸素水素共存ガス体であるOHMASA−GASを燃料に適用するに際して、一般的な燃焼機器での使用に際しても、出力向上が可能で、安全性が高く、二酸化炭素、一酸化炭素や炭化水素の排出量の削減が可能な、改良された燃料を提供することを目的とするものである。   Therefore, the present invention is able to improve the output and use high safety, when using OHMASA-GAS, which is a specific oxygen-hydrogen coexisting gas body, as a fuel, even when used in general combustion equipment. An object of the present invention is to provide an improved fuel capable of reducing carbon monoxide and hydrocarbon emissions.

また、本発明の他の目的は、そのような燃料の使用方法即ち燃焼方法を提供することにある。   Another object of the present invention is to provide a method for using such fuel, that is, a combustion method.

本発明によれば、以上の如き目的のいずれかを達成するものとして、
酸素水素共存ガス体と該酸素水素共存ガス体以外の可燃性ガス体とを含んでなる混合ガスからなり、
前記酸素水素共存ガス体は、振動発生手段で発生した振動を、振動棒を介して、該振動棒に取り付けられた振動羽根へと伝達し、該振動羽根を振動させることにより、被処理水に振動流動攪拌を生じさせながら、前記被処理水を電気分解処理に付することで得られたものである、
ことを特徴とする燃料、
が提供される。
According to the present invention, to achieve any of the above objects,
An oxygen-hydrogen coexisting gas body and a mixed gas comprising a combustible gas body other than the oxygen-hydrogen coexisting gas body,
The oxygen-hydrogen coexisting gas body transmits the vibration generated by the vibration generating means to the vibration blade attached to the vibration rod via the vibration rod, and vibrates the vibration blade to the water to be treated. It is obtained by subjecting the water to be treated to electrolysis while causing vibration flow stirring.
Fuel, characterized by
Is provided.

本発明の一態様においては、前記混合ガスは、前記酸素水素共存ガス体の含有率が40〜95容量%であり、前記酸素水素共存ガス体以外の可燃性ガス体の含有率が5〜60容量%である。但し、本発明は、この割合に限定されるものではない。本発明の一態様においては、前記酸素水素共存ガス体以外の可燃性ガス体は、水素ガス、プロパンガス、天然ガス、又は都市ガスである。但し、本発明は、これに限定されるものではない。   In one aspect of the present invention, the mixed gas has a content of the oxygen-hydrogen coexisting gas body of 40 to 95% by volume, and a content of combustible gas bodies other than the oxygen-hydrogen coexisting gas body of 5 to 60. It is volume%. However, the present invention is not limited to this ratio. In one aspect of the present invention, the combustible gas body other than the oxygen-hydrogen coexisting gas body is hydrogen gas, propane gas, natural gas, or city gas. However, the present invention is not limited to this.

本発明の一態様においては、前記混合ガスは容器内に加圧密封されている。本発明の一態様においては、前記酸素水素共存ガス体以外の可燃性ガス体の少なくとも一部は液化状態にある。   In one aspect of the present invention, the mixed gas is pressurized and sealed in a container. In one aspect of the present invention, at least a part of the combustible gas body other than the oxygen-hydrogen coexisting gas body is in a liquefied state.

本発明の一態様においては、前記混合ガスは、前記酸素水素共存ガス体と前記酸素水素共存ガス体以外の可燃性ガス体とを、燃焼機器内において混合することで得られたものである。本発明の一態様においては、前記混合ガスは、前記酸素水素共存ガス体の含有率が5〜60容量%であり、前記酸素水素共存ガス体以外の可燃性ガス体の含有率が40〜95容量%である。本発明の一態様においては、前記酸素水素共存ガス体以外の可燃性ガス体は、ガソリン、軽油、又は重油からなる。本発明の一態様においては、前記酸素水素共存ガス体以外の可燃性ガス体は、前記酸素水素共存ガス体と共に、気液混合ノズルを用いて前記燃焼機器内へと噴射される。   In one aspect of the present invention, the mixed gas is obtained by mixing the oxygen-hydrogen coexisting gas body and a combustible gas body other than the oxygen-hydrogen coexisting gas body in a combustion device. In one aspect of the present invention, the mixed gas has a content of the oxygen-hydrogen coexisting gas body of 5 to 60% by volume and a content of combustible gas bodies other than the oxygen-hydrogen coexisting gas body of 40 to 95. It is volume%. In one aspect of the present invention, the combustible gas body other than the oxygen-hydrogen coexisting gas body is composed of gasoline, light oil, or heavy oil. In one aspect of the present invention, a combustible gas body other than the oxygen-hydrogen coexisting gas body is injected into the combustion device together with the oxygen-hydrogen coexisting gas body using a gas-liquid mixing nozzle.

また、本発明によれば、以上の如き目的のいずれかを達成するものとして、
上記の燃料を使用する方法であって、
前記混合ガスを密封した容器から取り出された前記混合ガスを燃焼機器に供給し、該燃焼機器により燃焼させることを特徴とする、燃料の使用方法、
が提供される。
In addition, according to the present invention, to achieve any of the above objects,
A method of using the above fuel,
A method of using fuel, characterized in that the mixed gas taken out from a container sealed with the mixed gas is supplied to a combustion device and burned by the combustion device;
Is provided.

更に、本発明によれば、以上の如き目的のいずれかを達成するものとして、
上記の燃料を使用する方法であって、
燃焼機器に別々に供給された前記酸素水素共存ガス体と前記酸素水素共存ガス体以外の可燃性ガス体とを、互いに混合させた後に、前記燃焼機器により燃焼させることを特徴とする、燃料の使用方法、
が提供される。
Furthermore, according to the present invention, as one of the above objects,
A method of using the above fuel,
The oxygen-hydrogen coexisting gas body and the combustible gas body other than the oxygen-hydrogen coexisting gas body separately supplied to a combustion device are mixed with each other and then burned by the combustion device. how to use,
Is provided.

本発明によれば、一般的な燃焼機器での使用に際して、出力向上が可能で又は安全性を高めることが可能で、二酸化炭素、一酸化炭素又は炭化水素の排出量の削減が可能な、改良された燃料が提供される。更に、本発明によれば、そのような燃料に適した使用方法即ち燃焼方法が提供される。   According to the present invention, when used in a general combustion device, the output can be improved or the safety can be increased, and the emission of carbon dioxide, carbon monoxide or hydrocarbons can be reduced. Fuel is provided. Furthermore, the present invention provides a method of use or combustion suitable for such fuels.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明の燃料は、酸素水素共存ガス体(A)と該酸素水素共存ガス体以外の可燃性ガス体(B)とを含んでなる混合ガスからなる。   The fuel of the present invention comprises a mixed gas comprising an oxygen-hydrogen coexisting gas body (A) and a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body.

酸素水素共存ガス体(A)は、振動発生手段で発生した振動を、振動棒を介して、該振動棒に取り付けられた振動羽根へと伝達し、該振動羽根を振動させることにより、被処理水(電解質含有水:電解液ということもある)に振動流動攪拌(単に振動攪拌ということもある)を生じさせながら、前記被処理水を電気分解処理に付することで得られたものである。このような酸素水素共存ガス体(A)は、上記特許文献1〜3、及び本発明者の発明に係る特許文献WO−2010/023997−A1に記載されるようにして製造することができる。以下、酸素水素共存ガス体(A)の製造の実施形態に関し、更に説明する。   The oxygen-hydrogen coexisting gas body (A) transmits the vibration generated by the vibration generating means to the vibrating blade attached to the vibrating rod via the vibrating rod, and vibrates the vibrating blade, thereby to be processed. It is obtained by subjecting the water to be treated to electrolysis treatment while causing vibration flow stirring (sometimes simply vibration stirring) in water (electrolyte-containing water: sometimes electrolytic solution). . Such an oxygen-hydrogen coexisting gas body (A) can be produced as described in Patent Documents 1 to 3 and Patent Document WO-2010 / 023997-A1 relating to the inventors' invention. Hereinafter, the embodiment of producing the oxygen-hydrogen coexisting gas body (A) will be further described.

即ち、被処理水を電解槽中で振動攪拌を与えながら電気分解処理し、これにより酸素水素共存ガス体(A)を生成する。このような酸素水素共存ガス体(A)の生成に際しては、本発明者の発明に係る日本国特許第1941498号、第2707530号、第2762388号、第2767771号、第2852878号、第2911350号、第2911393号、第3035114号、第3142417号、第3196890号、第3320984号、第3854006号、第4599387号、特開平10−309453号公報、特開平11−253782号公報、特開2000−317295号公報、特開2001−288591号公報、特開2002−53999号公報、特開2002−121699号公報、特開2002−146597号公報、特開2005−232512号公報、WO−2004/092059−A1などの特許文献に記載の技術を用いることができる。   That is, the water to be treated is electrolyzed while being vibrated and stirred in the electrolytic cell, thereby producing the oxygen-hydrogen coexisting gas body (A). In the production of such an oxygen-hydrogen coexisting gas body (A), Japanese Patent Nos. 1941498, 2707530, 2762388, 27677771, 2852878, 2911350 according to the inventor's invention, No. 2911393, No. 3035114, No. 3142417, No. 3196890, No. 3320984, No. 3854006, No. 4599387, JP-A-10-309453, JP-A-11-253787, JP-A-2000-317295 Gazette, JP-A-2001-28891, JP-A-2002-53999, JP-A-2002-121699, JP-A-2002-146597, JP-A-2005-232512, WO-2004 / 092059-A1, etc. Techniques described in the patent literature It can be used.

振動攪拌条件は、前記特許文献に記載されている条件で実施することができる。振動攪拌は、前記特許文献の多くに記載されているような、垂直方向の振動棒に取り付けられた振動羽根を垂直方向に振動させる垂直式の振動攪拌であっても良いし、前記特許文献のうちの日本国特許第3142417号及び日本国特許第4599387号(特許文献3)に記載されているような、水平方向の振動棒に取り付けられた振動羽根を水平方向に振動させる水平式の振動攪拌であっても良い。   The vibration stirring conditions can be carried out under the conditions described in the patent document. The vibration agitation may be vertical vibration agitation in which a vibration blade attached to a vertical vibration rod is vibrated in the vertical direction, as described in many of the patent documents. Horizontal vibration agitation that vibrates the vibration blades attached to the horizontal vibration rod in the horizontal direction as described in Japanese Patent No. 3142417 and Japanese Patent No. 4599387 (Patent Document 3) It may be.

また、電気分解は、前記特許文献に記載されている条件で実施することができるが、たとえば、被処理水として電解質5〜30重量%を含むものを使用し、電極群を3〜10mmの間隔を保って電解槽内に配置し、電流密度5〜20A/dm、浴温20〜70℃、強アルカリの条件を用いることができる。 Electrolysis can be carried out under the conditions described in the above-mentioned patent document. For example, water containing 5 to 30% by weight of electrolyte is used as the water to be treated, and the electrode group is spaced 3 to 10 mm apart. Can be used in an electrolytic cell while maintaining a current density of 5 to 20 A / dm 2 , a bath temperature of 20 to 70 ° C., and a strong alkali.

電解質としてはとくに制限はないが、たとえば、NaOH、KOHなどを挙げることができる。また、これらの電解質を溶解して電解液を作るのに用いる水としては、どのような水でもよいが、たとえば、イオン交換水か蒸留水を用いる。電解液における電解質の濃度については、とくに制限はないが、一般に30重量%以下、好ましくは25重量%以下であり、15〜25重量%程度が最も好ましい。電解質が5重量%より少ないと電流の流れが少なくなり抵抗が増大し、電流効率が低下しさらに温度上昇を引き起こし酸素水素共存ガス体(A)の発生量の低下をさらに招くことがある。又、30重量%より多すぎると極板に電解質が析出し結果として電解効率が低下することがある。   Although there is no restriction | limiting in particular as electrolyte, For example, NaOH, KOH etc. can be mentioned. The water used to dissolve these electrolytes to make an electrolytic solution may be any water, but for example, ion exchange water or distilled water is used. Although there is no restriction | limiting in particular about the density | concentration of the electrolyte in electrolyte solution, Generally it is 30 weight% or less, Preferably it is 25 weight% or less, About 15-25 weight% is the most preferable. If the electrolyte is less than 5% by weight, the current flow is reduced, the resistance is increased, the current efficiency is lowered, the temperature is further increased, and the generation amount of the oxygen-hydrogen coexisting gas body (A) may be further reduced. On the other hand, if it is more than 30% by weight, an electrolyte may be deposited on the electrode plate, resulting in a decrease in electrolysis efficiency.

電流密度を上げれば電解効率が上がり、好ましい面もあるが同時に浴温上昇を招き、逆に酸素水素共存ガス体(A)の発生量が低下することがある。多くの実験結果から、たとえば5〜20A/dmの範囲が総合的にみて好適であると考えられる。 Increasing the current density increases the electrolysis efficiency and has a favorable aspect, but at the same time increases the bath temperature, and conversely, the generation amount of the oxygen-hydrogen coexisting gas body (A) may decrease. From many experimental results, for example, a range of 5 to 20 A / dm 2 is considered to be preferable from a comprehensive viewpoint.

浴温は長時間の運転、発生量、電解効率等を考慮し、多くの実験結果から、たとえば20〜70℃の範囲が好適である。   The bath temperature is preferably in the range of 20 to 70 ° C., for example, from many experimental results in consideration of long-time operation, generation amount, electrolysis efficiency, and the like.

pHは、使用する電解質により左右される。好ましいpH値は電解質、電流密度、浴温と相関関係にある。使用する電解質、電流密度、浴温等を各種条件で実験を重ねた結果、たとえばpH14以上の強アルカリ下において、効率が良い結果が得られている。   The pH depends on the electrolyte used. The preferred pH value correlates with electrolyte, current density and bath temperature. As a result of repeated experiments under various conditions such as the electrolyte to be used, current density, bath temperature, etc., for example, a highly efficient result is obtained under a strong alkali of pH 14 or higher.

好ましくは電極群を構成する電極を一定の間隔に保つが、この間隔は3〜10mm、好ましくは3〜5mmである。なお、電極群を構成する電極の数は、好ましくは4枚以上1000枚以下である。   The electrodes constituting the electrode group are preferably kept at a constant interval, and this interval is 3 to 10 mm, preferably 3 to 5 mm. The number of electrodes constituting the electrode group is preferably 4 or more and 1000 or less.

以上のような酸素水素共存ガス体以外の可燃性ガス体(B)としては、たとえば水素ガス、プロパンガス、天然ガス、又は都市ガスなどの通常の燃料ガスが例示される。可燃性ガス体(B)としてプロパンガス、天然ガス又は都市ガスなどの炭化水素系ガスを用いたものでは、本発明の燃料の燃焼により二酸化炭素、一酸化炭素又は炭化水素が発生するが、その量はこれら炭化水素系ガスのみからなる燃料の場合に比べて、十分に少ない。燃焼による二酸化炭素、一酸化炭素又は炭化水素の発生量を低減させる観点からは、可燃性ガス体(B)として水素ガスなどの非炭化水素系ガスを用いるのが好ましい。   Examples of the combustible gas body (B) other than the oxygen-hydrogen coexisting gas body as described above include normal fuel gas such as hydrogen gas, propane gas, natural gas, or city gas. In the case of using a hydrocarbon gas such as propane gas, natural gas or city gas as the combustible gas body (B), carbon dioxide, carbon monoxide or hydrocarbons are generated by combustion of the fuel of the present invention. The amount is sufficiently small as compared with the case of fuel consisting only of these hydrocarbon gases. From the viewpoint of reducing the amount of carbon dioxide, carbon monoxide or hydrocarbon generated by combustion, it is preferable to use a non-hydrocarbon gas such as hydrogen gas as the combustible gas body (B).

本発明の燃料を構成する混合ガスは、好ましくは、酸素水素共存ガス体(A)の含有率が40〜95容量%であり、酸素水素共存ガス体以外の可燃性ガス体(B)の含有率が5〜60容量%である。但し、本発明は、この割合に限定されるものではない。本発明の燃料を構成する混合ガスは、たとえば、酸素水素共存ガス体(A)の含有率が5〜60容量%であり、酸素水素共存ガス体以外の可燃性ガス体(B)の含有率が40〜95容量%であっても良い。この後者の燃料は、酸素水素共存ガス体以外の可燃性ガス体(B)としてガソリン、軽油あるいは重油などを使用する場合への適用が好ましい。この場合、気液混合ノズルを使用して混合効果を上げるのが好ましい。   The mixed gas constituting the fuel of the present invention preferably has an oxygen-hydrogen coexisting gas body (A) content of 40 to 95% by volume, and contains a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body. The rate is 5-60% by volume. However, the present invention is not limited to this ratio. In the mixed gas constituting the fuel of the present invention, for example, the content of the oxygen-hydrogen coexisting gas body (A) is 5 to 60% by volume, and the content of the combustible gas body (B) other than the oxygen-hydrogen coexisting gas body May be 40 to 95% by volume. This latter fuel is preferably applied when gasoline, light oil, heavy oil or the like is used as the combustible gas body (B) other than the oxygen-hydrogen coexisting gas body. In this case, it is preferable to increase the mixing effect using a gas-liquid mixing nozzle.

酸素水素共存ガス体(A)に可燃性ガス体(B)を加えた混合ガスを燃料とすることで、乗物用内燃エンジン、発電機用内燃エンジン、燃料電池、ボイラー用バーナー、溶接機用バーナー及び調理器用バーナーなどの一般的な燃焼機器での使用に際して、酸素水素共存ガス体(A)のみからなる燃料に比べて、出力向上が可能となり、又は安全性が高められる。その理由は、次のようなものであろうと推測される。   Combustion gas body (B) and flammable gas body (B) are used as fuel to produce an internal combustion engine for vehicles, an internal combustion engine for generators, a fuel cell, a burner for boilers, and a burner for welding machines In addition, when used in a general combustion device such as a burner for a cooker, the output can be improved or the safety can be improved as compared with the fuel composed only of the oxygen-hydrogen coexisting gas body (A). The reason is assumed to be as follows.

すなわち、酸素水素共存ガス体(A)のみからなる燃料の場合には、外部からの空気導入のない特殊な条件下での燃焼により、良好な出力発生及び安全性が得られる。しかし、そのような特殊な条件下での専用の燃焼機器を開発するには、膨大なコスト及び時間がかかるという難点がある。一方、酸素水素共存ガス体(A)のみからなる燃料を一般的な燃焼機器において使用する場合には、機器の排気口その他から空気中の酸素が不可避的に燃焼部に流入する。この空気中の酸素が酸素水素共存ガス体(A)中の水素と反応を起こし、この反応は空気中の酸素の侵入が無い場合に比べて酸素水素共存ガス体(A)に起こる酸素と水素との反応と機序が異なることから、燃焼により発生する出力に影響を与え、また爆発発生の可能性が高まる。これに対して、酸素水素共存ガス体(A)に可燃性ガス体(B)を加えた混合ガスを燃料とすることで、燃焼機器の排気口その他から不可避的に燃焼部に流入する空気中の酸素は可燃性ガス体(B)と反応し、酸素水素共存ガス体(A)の酸素と水素との本来の反応に対する影響が少ないことから、出力向上が可能となり、又は爆発発生の可能性が低下して安全性が高められるものである。   That is, in the case of a fuel consisting only of the oxygen-hydrogen coexisting gas body (A), good output generation and safety can be obtained by combustion under special conditions without introducing air from the outside. However, there is a problem that it takes enormous cost and time to develop a dedicated combustion device under such special conditions. On the other hand, when a fuel consisting only of the oxygen-hydrogen coexisting gas body (A) is used in a general combustion device, oxygen in the air inevitably flows into the combustion section from the exhaust port of the device. The oxygen in the air reacts with hydrogen in the oxygen-hydrogen coexisting gas body (A), and this reaction occurs in the oxygen-hydrogen coexisting gas body (A) as compared with the case where oxygen in the air does not enter. The reaction and mechanism differ from the above, which affects the output generated by combustion and increases the possibility of explosion. On the other hand, by using as a fuel a mixed gas obtained by adding a combustible gas body (B) to an oxygen-hydrogen coexisting gas body (A), in the air that inevitably flows into the combustion section from the exhaust port of the combustion equipment. Oxygen reacts with the combustible gas body (B) and has little influence on the original reaction between oxygen and hydrogen in the oxygen-hydrogen coexistence gas body (A), so output can be improved or explosion may occur. Is lowered and safety is improved.

以上のような酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスは、酸素水素共存ガス体(A)単独の場合と同様に、圧縮することができ、容器内に加圧密封することができる。これにより、可燃性ガス体(B)の少なくとも一部を液化状態にすることができる。   The mixed gas comprising the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) as described above can be compressed as in the case of the oxygen-hydrogen coexisting gas body (A) alone, It can be pressure sealed in the container. Thereby, at least one part of combustible gas body (B) can be made into a liquefied state.

即ち、酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスは、たとえば3〜300kgf/cmに圧縮することができる。酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスの圧力を3〜300kgf/cmに高圧縮することにより少なくとも一部を液化することで貯蔵装置(タンク、ボンベなど)の小型化が可能となり、搬送、搭載が容易に行える。また、この3〜300kgf/cmの圧縮圧力範囲が、酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスの燃料としての実用化に適している。 That is, the mixed gas comprising the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) can be compressed to, for example, 3 to 300 kgf / cm 2 . A storage device (tank) is obtained by liquefying at least partly by highly compressing the pressure of the mixed gas comprising the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) to 3 to 300 kgf / cm 2. , Cylinders, etc.) can be miniaturized and can be easily transported and mounted. Also, the compression pressure range of 3 to 300 kgf / cm 2 is suitable for practical use as a mixed gas fuel containing the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B).

また、通常の電気分解により得られた水素は、金属ボンベ(たとえばステンレススチール製、鋼鉄製、鋳鉄製、アルミニウム合金製などのボンベ)内に貯蔵する際に、水素によりボンベ自体が脆化したり、水素が金属ボンベを透過して離脱するので、長期保管が不可能であるが、可燃性ガス体(B)として水素ガスを用いた上記酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスでは、酸素水素共存ガス体(A)が存在することで、該酸素水素共存ガス体(A)単独の場合と同様に、高圧で圧縮できる(200kgf/cm:20MPaまで爆発せずに圧縮できた)ばかりでなく、ステンレススチール製ボンベに圧縮保管された10MPaの酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスは2年間という長期間保存しても全く何の水素漏洩もなく又、圧力も当初の10MPaを保っていた。 In addition, when hydrogen obtained by normal electrolysis is stored in a metal cylinder (for example, a cylinder made of stainless steel, steel, cast iron, aluminum alloy, etc.), the cylinder itself becomes brittle by hydrogen, Since hydrogen permeates through the metal cylinder and leaves, long-term storage is impossible. However, the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) using hydrogen gas as the combustible gas body (B) (B) ), The presence of the oxygen-hydrogen coexisting gas body (A) enables compression at a high pressure as in the case of the oxygen-hydrogen coexisting gas body (A) alone (200 kgf / cm 2 : Gas mixture containing 10 MPa oxygen-hydrogen coexisting gas body (A) and combustible gas body (B) compressed and stored in a stainless steel cylinder. Also completely without any hydrogen leakage even when stored for a long period of 2 years, pressure was also kept the original of 10MPa.

以上のような酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスは、酸素水素共存ガス体(A)と酸素水素共存ガス体以外の可燃性ガス体(B)とを、燃焼機器内において混合することで得るようにしてもよい。その場合の燃焼においても、上記のような出力向上が可能となり、又は爆発発生の可能性がなくなり安全性が高められる。   The mixed gas comprising the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) as described above is a combustible gas body other than the oxygen-hydrogen coexisting gas body (A) and the oxygen-hydrogen coexisting gas body ( B) may be obtained by mixing in the combustion equipment. Also in the combustion in that case, the output can be improved as described above, or the possibility of explosion is eliminated and the safety is improved.

このような例としては、とくに自動車の内燃エンジンでの燃料の燃焼が挙げられる。この場合、酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスは、酸素水素共存ガス体(A)の含有率が5〜60容量%であり、可燃性ガス体(B)の含有率が40〜95容量%であるものとすることができる。また、可燃性ガス体(B)としてガソリン、軽油、又は重油からなるものを使用することができ、これらの可燃性ガス体(B)を、酸素水素共存ガス体(A)と共に、気液混合ノズルを用いて燃焼機器(内燃エンジンのシリンダ)内へと噴射することができる。   An example of this is the combustion of fuel, particularly in an internal combustion engine of an automobile. In this case, the mixed gas containing the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) has an oxygen-hydrogen coexisting gas body (A) content of 5 to 60% by volume, and is combustible. The content rate of a gas body (B) shall be 40-95 volume%. Moreover, what consists of gasoline, light oil, or heavy oil can be used as a combustible gas body (B), and these flammable gas bodies (B) are gas-liquid mixed with an oxygen hydrogen coexistence gas body (A). It can be injected into the combustion equipment (cylinder of an internal combustion engine) using a nozzle.

本発明の燃料を使用する方法すなわち燃焼方法の第1の実施形態としては、以上のように作製し容器に密封された酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスを容器から取り出し、この酸素水素共存ガス体(A)と可燃性ガス体(B)とを含んでなる混合ガスを燃焼機器に供給し、該燃焼機器により燃焼させることが挙げられる。   The first embodiment of the method of using the fuel of the present invention, that is, the combustion method, includes the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) produced as described above and sealed in a container. The mixed gas consisting of the above is taken out from the container, and the mixed gas containing the oxygen-hydrogen coexisting gas body (A) and the combustible gas body (B) is supplied to the combustion equipment and burned by the combustion equipment. .

また、本発明の燃料を使用する方法すなわち燃焼方法の第2の実施形態としては、別々の容器に密封されている酸素水素共存ガス体(A)と酸素水素共存ガス体以外の可燃性ガス体(B)とを別々に燃焼機器に供給し互いに混合させた後に、前記燃焼機器により燃焼させることが挙げられる。   Further, as a second embodiment of the method of using the fuel of the present invention, that is, the combustion method, a combustible gas body other than the oxygen-hydrogen coexisting gas body (A) and the oxygen-hydrogen coexisting gas body sealed in separate containers is used. (B) may be separately supplied to a combustion device and mixed with each other, and then burned by the combustion device.

以下に実施例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.

[実施例1]
特許文献WO−2004/092059−A1に記載の手法に従って、振動流動攪拌下での電気分解を行って、酸素水素共存ガス体(A)を得た。この酸素水素共存ガス体(A)70容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス30容量部とを混合し、混合ガスを得た。
[Example 1]
According to the method described in Patent Document WO-2004 / 092059-A1, electrolysis was performed under vibration flow stirring to obtain an oxygen-hydrogen coexisting gas body (A). 70 parts by volume of this oxygen-hydrogen coexisting gas body (A) and 30 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body were mixed to obtain a mixed gas.

この混合ガスを、ステンレス(SUS304L)製のボンベ(3.8L)に10MPaの圧力で封入し、2年間貯蔵した。この貯蔵において、一度も水素漏洩及び水素脆性などの異常がなく、この混合ガスは何らの問題もなく長期保存が可能であることが分かった。   This mixed gas was sealed in a stainless steel (SUS304L) cylinder (3.8L) at a pressure of 10 MPa and stored for 2 years. In this storage, it was found that there was no abnormality such as hydrogen leakage and hydrogen embrittlement, and that this mixed gas could be stored for a long time without any problems.

2年間保存の後に、ボンベを5個に切断分割してその切断面を調べたところ、水素脆性は全く認められなかった。   After storage for 2 years, the cylinder was cut into 5 parts and the cut surface was examined. No hydrogen embrittlement was observed.

[実施例2]
実施例1と同様にして得られた混合ガスを、それぞれアルミニウム合金製のボンベ及びプロパンガス用特殊鋼板製のボンベに10MPaの圧力で封入し、2年間貯蔵した。この貯蔵において、一度も水素漏洩及び水素脆性などの異常がなかった。実施例1の結果をも考慮すると、この混合ガスは容器の材質を選ばずに、一般に使用されている容器に密封することができ、取り扱いの容易なガスであることが分かった。
[Example 2]
The mixed gas obtained in the same manner as in Example 1 was sealed in a cylinder made of aluminum alloy and a cylinder made of special steel plate for propane gas at a pressure of 10 MPa, and stored for 2 years. In this storage, there was no abnormality such as hydrogen leakage and hydrogen embrittlement. Considering the result of Example 1 as well, it was found that this mixed gas can be sealed in a generally used container without selecting the material of the container, and is a gas that can be easily handled.

[実施例3]
実施例1と同様にして得られた混合ガスを冷却させて液化を試みたところ、水素の液化温度である−253℃より約70℃も高い約−185℃で液化した。このことから、この混合ガスにおいて、水素および酸素は何らかの結合状態にあることが分かる。
[Example 3]
When the mixed gas obtained in the same manner as in Example 1 was cooled to attempt liquefaction, it was liquefied at about -185 ° C, which is about 70 ° C higher than the hydrogen liquefaction temperature of -253 ° C. This shows that hydrogen and oxygen are in some combined state in this mixed gas.

[実施例4]
実施例1と同様にして得られた酸素水素共存ガス体(A)85容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス15容量部とを混合し、混合ガスを得た。この混合ガスを、鋼板製のボンベ(38L)に封入し、これを燃料として用いてプロパンガス用(仕様)発電機(定格出力850W)で発電を実施した。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 4]
85 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 15 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. This mixed gas was sealed in a steel cylinder (38L), and this was used as fuel to generate power with a propane gas (specification) generator (rated output 850 W). The air mixing conditions were the same as those for propane gas combustion.

事前に、同一のプロパンガス用発電機でプロパンガスを燃料として用いて発電を実施した時の出力は定格の850Wであったが、上記の本実施例の混合ガスを用いることで、定格の850Wを100Wも超える950Wの出力が得られた。また、発電時に機器爆発、発電機の過剰な発熱及び異常音などの発生はなく、発電による二酸化炭素の発生はなかった。   The power output when propane gas was used as fuel in the same propane gas generator in advance was rated 850 W, but by using the mixed gas of the present embodiment, the rated 850 W was used. An output of 950 W exceeding 100 W was obtained. Moreover, there was no equipment explosion, excessive heat generation of the generator, abnormal noise, etc. during power generation, and no carbon dioxide was generated by power generation.

[実施例5]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合し、混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)発電機(定格出力850W)で発電を実施した。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 5]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, power generation was performed with a propane gas (specification) generator (rated output 850 W). The air mixing conditions were the same as those for propane gas combustion.

発電出力は850Wであり、発電時に機器爆発の発生はなく、発電による二酸化炭素の発生はプロパンガス燃焼の時の約半分以下であった。   The power generation output was 850 W, no equipment explosion occurred during power generation, and the generation of carbon dioxide by power generation was less than about half that during propane gas combustion.

[実施例6]
実施例1と同様にして得られた酸素水素共存ガス体(A)と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガスとを、容量比でそれぞれ85:15、80:20、75:25、70:30、65:35、60:40、55:45、及び50:50となるように混合して混合ガスを得た。これらの混合ガスを燃料として用いて、プロパンガス用(仕様)の内燃エンジン(定格出力750W)を作動させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 6]
The oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and a commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body were 85: 15, 80:20, 75:25, 70:30, 65:35, 60:40, 55:45, and 50:50 were mixed to obtain a mixed gas. Using these mixed gases as fuel, an internal combustion engine (rated output 750 W) for propane gas (specification) was operated. The air mixing conditions were the same as those for propane gas combustion.

いずれの混合比の混合ガスを燃料として用いた場合も、順調なエンジン作動が得られた。また、いずれの場合も動作時に機器爆発、エンジンの過剰な発熱及び異常音などの発生はなく、二酸化炭素の発生はなかった。   When the mixed gas of any mixing ratio was used as the fuel, a smooth engine operation was obtained. In all cases, there was no occurrence of equipment explosion, excessive heat generation of the engine and abnormal noise during operation, and no carbon dioxide was generated.

[実施例7]
実施例1と同様にして得られた酸素水素共存ガス体(A)70容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス30容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)の50ccスクーターを走行させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 7]
70 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 30 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a 50 cc scooter for propane gas (specification) was run. The air mixing conditions were the same as those for propane gas combustion.

軽快なスクーター走行が得られ、燃費はプロパンガス燃料の場合と同様に約20km/Lであった。また、走行中の機器爆発の発生はなく、二酸化炭素の発生はなかった。   A light scooter running was obtained, and the fuel consumption was about 20 km / L as in the case of propane gas fuel. In addition, there was no equipment explosion during traveling and no carbon dioxide.

[実施例8]
実施例1と同様にして得られた酸素水素共存ガス体(A)60容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス20容量部及びプロパンガス/天然ガス20容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)の50ccスクーターを走行させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 8]
60 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1, 20 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body, and propane gas / Natural gas 20 volume part was mixed and the mixed gas was obtained. Using this mixed gas as fuel, a 50 cc scooter for propane gas (specification) was run. The air mixing conditions were the same as those for propane gas combustion.

軽快なスクーター走行が得られ、燃費はプロパンガス燃料の場合と同様に約20km/Lであった。また、走行中の機器爆発、エンジンの過剰な発熱及び異常音などの発生はなく、二酸化炭素の発生はプロパンガス燃焼の時の約5分の1以下であった。   A light scooter running was obtained, and the fuel consumption was about 20 km / L as in the case of propane gas fuel. Moreover, there was no occurrence of equipment explosion during running, excessive heat generation of the engine, abnormal noise, etc., and the generation of carbon dioxide was about one-fifth or less than that of propane gas combustion.

[実施例9]
実施例1と同様にして得られた酸素水素共存ガス体(A)60容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス20容量部及びプロパンガス/天然ガス20容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、天然ガス用(仕様)の660cc軽自動車を走行させた。尚、空気混入条件は、天然ガス燃焼の時と同様とした。
[Example 9]
60 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1, 20 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body, and propane gas / Natural gas 20 volume part was mixed and the mixed gas was obtained. Using this mixed gas as fuel, a 660 cc light vehicle for natural gas (specification) was run. The aeration conditions were the same as in natural gas combustion.

軽快な軽自動車走行が得られ、燃費は天然ガス燃料の場合と同様に約10km/Lであった。また、走行中の機器爆発、エンジンの過剰な発熱及び異常音などの発生はなく、二酸化炭素の発生は天然ガス燃焼の時の約5分の1以下であった。   Nimble light vehicle travel was obtained, and the fuel consumption was about 10 km / L as in the case of natural gas fuel. Moreover, there was no occurrence of equipment explosion during running, excessive heat generation of the engine, abnormal noise, etc., and the generation of carbon dioxide was about one-fifth that of natural gas combustion.

[実施例10]
実施例9と同様にして混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)の走行距離約50万Kmのトヨタ製の2000cc自動車を走行させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 10]
A mixed gas was obtained in the same manner as in Example 9. Using this mixed gas as fuel, a 2000cc automobile made by Toyota with a travel distance of about 500,000 km for propane gas (specification) was run. The air mixing conditions were the same as those for propane gas combustion.

軽快な自動車走行が得られ、燃費はプロパンガス燃料の場合と同様に約5km/Lであった。また、走行中の機器爆発、エンジンの過剰な発熱及び異常音などの発生はなく、二酸化炭素の発生はプロパンガス燃焼の時の約5分の1以下であった。   Light car driving was obtained, and the fuel consumption was about 5 km / L as in the case of propane gas fuel. Moreover, there was no occurrence of equipment explosion during running, excessive heat generation of the engine, abnormal noise, etc., and the generation of carbon dioxide was about one-fifth or less than that of propane gas combustion.

[実施例11]
実施例1と同様にして得られた酸素水素共存ガス体(A)70容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス30容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)の卓上コンロ(バーナー)を作動させ、2Lの湯を沸かした。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 11]
70 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 30 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a desktop stove (burner) for propane gas (specification) was operated to boil 2 L of hot water. The air mixing conditions were the same as those for propane gas combustion.

湯が沸くまでの時間は、プロパンガス燃焼の場合は約7分であったが、上記の本実施例の混合ガスの場合には約5分であった。また、湯沸かし中の機器爆発の発生はなく、二酸化炭素の発生はなかった。   The time until boiling of the water was about 7 minutes in the case of propane gas combustion, but was about 5 minutes in the case of the mixed gas of the above-mentioned embodiment. Also, there was no equipment explosion in the water heater and no carbon dioxide.

[実施例12]
実施例1と同様にして得られた酸素水素共存ガス体(A)80容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス20容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、市販の燃料電池(DFC−010−01H)を作動させ発電した(本発明実施例)。
[Example 12]
80 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 20 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a commercially available fuel cell (DFC-010-01H) was operated to generate electric power (Example of the present invention).

比較のために、水素ガスを単独で燃料として用いて、同様の市販の燃料電池を作動させ発電した(比較例)。   For comparison, hydrogen gas was used alone as a fuel, and a similar commercial fuel cell was operated to generate power (comparative example).

燃料電池の作動条件は、
電極面積:10cm
電解質膜:NRE212CS
電極:Pt/C(1.0mg/cm−Pt)
酸化剤:空気
燃料流量:50mL/min
酸化剤流量:50mL/min
燃料加湿温度:70℃
酸化剤加湿温度:dry
設定電流:0A
であった。
The operating conditions of the fuel cell are:
Electrode area: 10 cm 2
Electrolyte membrane: NRE212CS
Electrode: Pt / C (1.0 mg / cm 2 -Pt)
Oxidant: Air Fuel flow rate: 50 mL / min
Oxidant flow rate: 50 mL / min
Fuel humidification temperature: 70 ° C
Oxidizing agent humidification temperature: dry
Setting current: 0A
Met.

起電力は、以下の表1に示す通りであり、本発明実施例の方が、比較例に比べて約6%強も高かった。また、発電動作中の機器爆発の発生はなかった。   The electromotive force is as shown in Table 1 below, and the inventive example was about 6% higher than the comparative example. There was no equipment explosion during power generation.

Figure 2012153972
Figure 2012153972

[実施例13]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合し、混合ガスを得た。この混合ガスを燃料として用いて、自動車整備工場にて、プロパンガス用(仕様)発電機(POWER SYSTEM INC.[USA]製、定格出力6KW)で発電を実施した。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 13]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, power generation was carried out at an automobile maintenance factory with a (specification) generator for propane gas (made by POWER SYSTEM INC. [USA], rated output 6 KW). The air mixing conditions were the same as those for propane gas combustion.

排ガスを自動車車検時の排ガス測定用の公的な測定器(堀場製作所製、AUTOMOTIVE EMISSION ANALYZER MEXA−324G)で測定した。測定結果は以下の表2に示す通りであり、本実施例で得られた混合ガスでは、プロパンガスのみの燃焼時に比べて、一酸化炭素(CO)の発生量が100分の1以下で、炭化水素(HC)の発生量が3分の1であり、極めてクリーンな排ガスであることが確認された。   The exhaust gas was measured with an official measuring instrument (manufactured by Horiba Seisakusho, AUTOMOTIVE EMISION ANALYZER MEXA-324G) for exhaust gas measurement at the time of automobile car inspection. The measurement results are as shown in Table 2 below, and in the mixed gas obtained in this example, the amount of carbon monoxide (CO) generated is 1/100 or less compared to the time of combustion of propane gas alone, The amount of hydrocarbon (HC) generated was 1/3, and it was confirmed that this was an extremely clean exhaust gas.

Figure 2012153972
Figure 2012153972

[実施例14]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合し、混合ガスを得た。この混合ガスを燃料として用いて、自動車整備工場にて、プロパンガス用(仕様)のダイハツ製の660cc軽自動車を走行させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 14]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a 660 cc light vehicle made by Daihatsu (specification) for propane gas was run in an automobile maintenance factory. The air mixing conditions were the same as those for propane gas combustion.

排ガスを自動車車検時の排ガス測定用の公的な測定器(堀場製作所製、AUTOMOTIVE EMISSION ANALYZER MEXA−324L)で測定した。測定結果は以下の表3に示す通りであり、本実施例で得られた混合ガスでは、プロパンガスのみの燃焼時に比べて、一酸化炭素(CO)の発生量が約2分の1で、炭化水素(HC)の発生量が約15分の1であり、極めてクリーンな排ガスであることが確認された。   The exhaust gas was measured with an official measuring instrument (manufactured by Horiba, AUTOMOTIVE EMISION ANALYZER MEXA-324L) for exhaust gas measurement at the time of automobile car inspection. The measurement results are as shown in Table 3 below, and in the mixed gas obtained in this example, the amount of carbon monoxide (CO) generated is about one-half that of combustion with only propane gas, The amount of hydrocarbon (HC) generated was about 1/15, and it was confirmed that this was an extremely clean exhaust gas.

Figure 2012153972
Figure 2012153972

[実施例15]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合し、混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)の走行距離約50万Kmの日産自動車製の2000cc自動車(ニッサンセドリック、車台番号QJY31−153299、型式LA−QJY31、初年度登録平成17年3月)を走行させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 15]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. 2000cc car (Nissan Cedric, chassis number QJY31-153299, model number LA-QJY31, first year registration 2005) made by Nissan Motor with this mixed gas used as fuel for propane gas (specification) travel distance of about 500,000km March). The air mixing conditions were the same as those for propane gas combustion.

軽快な自動車走行が得られ、燃費は、約7km/Lであり、プロパンガス燃料の場合の約5km/L(走行距離約50万Kmのプロパンガス仕様車の平均的燃費)に比べて大幅に向上した。また、走行中の機器爆発、エンジンの過剰な発熱及び異常音などの発生はなかった。   Light vehicle driving is achieved, and fuel consumption is about 7 km / L, which is significantly higher than that of propane gas fuel, which is about 5 km / L (average fuel consumption of propane gas specification vehicles with a mileage of about 500,000 km). Improved. In addition, there was no equipment explosion during running, excessive heat generation of the engine, or abnormal noise.

[実施例16]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを、ステンレス(SUS304L)製のボンベ(3.8L)に2.5MPaの圧力で封入した。プロパンガスは、0.3〜0.5MPa程度の圧力で液化することから、混合ガスは、気体で存在する酸素水素共存ガス体(A)と液化状態のプロパンとの気液混合ガスとして、ボンベ内に封入された状態である。
[Example 16]
50 parts by volume of an oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1, and 50 parts by volume of a commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body, A cylinder (3.8 L) made of stainless steel (SUS304L) was sealed at a pressure of 2.5 MPa. Since the propane gas is liquefied at a pressure of about 0.3 to 0.5 MPa, the mixed gas is a cylinder as a gas-liquid mixed gas of the oxygen-hydrogen coexisting gas body (A) and the liquefied propane. It is the state enclosed in.

このボンベ内に封入された混合ガスを燃料として用いて、バーナーで燃焼させたところ、プロパンが気化し、酸素水素共存ガス体(A)との混合ガスとして、何の問題もなく燃焼した。   When the mixed gas sealed in the cylinder was used as fuel and burned with a burner, propane was vaporized and burned without any problem as a mixed gas with the oxygen-hydrogen coexisting gas body (A).

[実施例17]
実施例1と同様にして得られた酸素水素共存ガス体(A)60容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス40容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、市販の燃料電池(DFC−010−01H)を作動させ発電した(本発明実施例)。
[Example 17]
60 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 40 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a commercially available fuel cell (DFC-010-01H) was operated to generate electric power (Example of the present invention).

比較のために、水素ガスを単独で燃料として用いて、同様の市販の燃料電池を作動させ発電した(比較例)。   For comparison, hydrogen gas was used alone as a fuel, and a similar commercial fuel cell was operated to generate power (comparative example).

燃料電池の作動条件は、実施例12と同様に、
電極面積:10cm
電解質膜:NRE212CS
電極:Pt/C(1.0mg/cm−Pt)
酸化剤:空気
燃料流量:50mL/min
酸化剤流量:50mL/min
燃料加湿温度:70℃
酸化剤加湿温度:dry
設定電流:0A
であった。
The operating conditions of the fuel cell are the same as in Example 12,
Electrode area: 10 cm 2
Electrolyte membrane: NRE212CS
Electrode: Pt / C (1.0 mg / cm 2 -Pt)
Oxidant: Air Fuel flow rate: 50 mL / min
Oxidant flow rate: 50 mL / min
Fuel humidification temperature: 70 ° C
Oxidizing agent humidification temperature: dry
Setting current: 0A
Met.

起電力は、以下の表4に示す通りであり、本発明実施例の方が、比較例に比べて約15%強も高かった。また、発電動作中の機器爆発の発生はなかった。   The electromotive force is as shown in Table 4 below, and the inventive example was about 15% higher than the comparative example. There was no equipment explosion during power generation.

Figure 2012153972
Figure 2012153972

[実施例18]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合し、混合ガスを得た。この混合ガスを燃料として用いてプロパンガス用(仕様)発電機(ヤンマー製の軽油仕様の発電機をプロパンガス仕様に改造したもの、定格出力5KW)で発電を実施した。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 18]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, power generation was carried out with a propane gas (specification) generator (a Yanmar light oil specification generator modified to propane gas specification, rated output 5 kW). The air mixing conditions were the same as those for propane gas combustion.

3時間の連続発電を行った結果、プロパンガスのみを燃料として用いた場合と同等の燃料消費量であった。この間に消費した燃料中の酸素水素共存ガス体(A)を製造するに要した電力は約2KWであった。この結果から、電気的入力の約2.5倍の電気的出力が得られたことが確認された。   As a result of continuous power generation for 3 hours, the amount of fuel consumed was the same as when only propane gas was used as the fuel. The electric power required to produce the oxygen-hydrogen coexisting gas body (A) in the fuel consumed during this period was about 2 kW. From this result, it was confirmed that an electrical output about 2.5 times the electrical input was obtained.

酸素水素共存ガス体(A)40容量部と該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス60容量部とを混合して得られた混合ガスを燃料として用いた場合も、ほぼ同様の結果が得られた。   A mixed gas obtained by mixing 40 parts by volume of oxygen-hydrogen coexisting gas body (A) and 60 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body is used as fuel. Almost the same result was obtained.

[実施例19]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合し、混合ガスを得た。この混合ガスを燃料として用いてプロパンガス用(仕様)発電機(WINCO INC.(USA)製、HPS 12000HE、定格出力12KW)で発電を実施した。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 19]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, power generation was performed with a (specification) generator for propane gas (manufactured by WINCO INC. (USA), HPS 12000HE, rated output 12 kW). The air mixing conditions were the same as those for propane gas combustion.

この実施例では、特に、以下のように運転条件を変えて、燃料消費量および製造コストの比較を行った。   In this example, the operating conditions were changed as follows, and the fuel consumption and the manufacturing cost were compared.

(19A)先ず、無負荷運転を3回行った。3回の運転の平均値として、1時間あたり、燃料消費量が1400Lであった。このときの酸素水素共存ガス体(A)の消費量は、消費混合ガス量の50%であることから、700L(=1400L/2)となる。1KWの電気量で酸素水素共存ガス体(A)300Lを製造することができるので、700Lの酸素水素共存ガス体(A)を製造するに要した電気量は約2.4KW(=700L/300L/KW)である。発電量のうちの酸素水素共存ガス体(A)の寄与分は、燃料中の酸素水素共存ガス体(A)の量比が50%であることから、6KW(12KW/2)である。     (19A) First, no-load operation was performed three times. As an average value of the three operations, the fuel consumption was 1400 L per hour. Since the consumption amount of the oxygen-hydrogen coexisting gas body (A) at this time is 50% of the consumed mixed gas amount, it becomes 700 L (= 1400 L / 2). Since 300 L of the oxygen-hydrogen coexisting gas body (A) can be produced with a quantity of electricity of 1 KW, the quantity of electricity required to produce 700 L of the oxygen-hydrogen coexisting gas body (A) is about 2.4 KW (= 700 L / 300 L). / KW). The contribution of the oxygen-hydrogen coexisting gas body (A) in the power generation amount is 6 KW (12 KW / 2) since the amount ratio of the oxygen-hydrogen coexisting gas body (A) in the fuel is 50%.

従って、約2.4KWの電気量で製造された量の酸素水素共存ガス体(A)により、6KWの発電すなわち入力電気量の約2.5倍(=6KW/2.4KW)の量のエネルギーが得られたことになる。   Therefore, by the amount of oxygen-hydrogen coexisting gas body (A) produced with the electricity quantity of about 2.4 KW, the energy of 6 KW power generation, that is, about 2.5 times the input electricity quantity (= 6 KW / 2.4 KW). Is obtained.

(19B)次に、負荷6KWで運転を3回行った。3回の運転の平均値として、1時間あたり、燃料消費量が1900Lであった。このときの酸素水素共存ガス体(A)の消費量は、消費混合ガス量の50%であることから、950L(=1900L/2)となる。1KWの電気量で酸素水素共存ガス体(A)300Lを製造することができるので、950Lの酸素水素共存ガス体(A)を製造するに要した電気量は約3.2KW(=950L/300L/KW)である。発電量のうちの酸素水素共存ガス体(A)の寄与分は、燃料中の酸素水素共存ガス体(A)の量比が50%であることから、6KW(12KW/2)である。     (19B) Next, operation was performed three times with a load of 6 KW. As an average value of three operations, the fuel consumption per hour was 1900L. Since the consumption amount of the oxygen-hydrogen coexisting gas body (A) at this time is 50% of the consumed mixed gas amount, it becomes 950 L (= 1900 L / 2). Since 300 L of the oxygen-hydrogen coexisting gas body (A) can be produced with a quantity of electricity of 1 KW, the quantity of electricity required to produce a 950 L oxygen-hydrogen coexisting gas body (A) is about 3.2 KW (= 950 L / 300 L). / KW). The contribution of the oxygen-hydrogen coexisting gas body (A) in the power generation amount is 6 KW (12 KW / 2) since the amount ratio of the oxygen-hydrogen coexisting gas body (A) in the fuel is 50%.

従って、約3.2KWの電気量で製造された量の酸素水素共存ガス体(A)により、6KWの発電すなわち入力電気量の約1.9倍(=6KW/3.2KW)の量のエネルギーが得られたことになる。   Therefore, by the amount of oxygen-hydrogen coexisting gas body (A) produced with the amount of electricity of about 3.2 KW, the energy of about 1.9 times (= 6 KW / 3.2 KW) of power generation of 6 KW, that is, the amount of input electricity. Is obtained.

(19C)更に、負荷12KWで運転を3回行った。3回の運転の平均値として、1時間あたり、燃料消費量が2100Lであった。このときの酸素水素共存ガス体(A)の消費量は、消費混合ガス量の50%であることから、1050L(=2100L/2)となる。1KWの電気量で酸素水素共存ガス体(A)300Lを製造することができるので、1050Lの酸素水素共存ガス体(A)を製造するに要した電気量は約3.5KW(=1050L/300L/KW)である。発電量のうちの酸素水素共存ガス体(A)の寄与分は、燃料中の酸素水素共存ガス体(A)の量比が50%であることから、6KW(12KW/2)である。     (19C) Further, the operation was performed three times with a load of 12 KW. As an average value of the three operations, the fuel consumption was 2100 L per hour. Since the consumption amount of the oxygen-hydrogen coexisting gas body (A) at this time is 50% of the consumption mixed gas amount, it is 1050 L (= 2100 L / 2). Since 300 L of oxygen-hydrogen coexisting gas body (A) can be produced with an electric quantity of 1 KW, the quantity of electricity required to produce 1050 L of oxygen-hydrogen coexisting gas body (A) is about 3.5 kW (= 1050 L / 300 L). / KW). The contribution of the oxygen-hydrogen coexisting gas body (A) in the power generation amount is 6 KW (12 KW / 2) since the amount ratio of the oxygen-hydrogen coexisting gas body (A) in the fuel is 50%.

従って、約3.5KWの電気量で製造された量の酸素水素共存ガス体(A)により、6KWの発電すなわち入力電気量の約1.7倍(=6KW/3.5KW)の量のエネルギーが得られたことになる。   Therefore, by the amount of oxygen-hydrogen coexisting gas body (A) produced with the amount of electricity of about 3.5 KW, the energy of 6 KW power generation, that is, about 1.7 times the amount of input electricity (= 6 KW / 3.5 KW) Is obtained.

酸素水素共存ガス体(A)40容量部と該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス60容量部とを混合して得られた混合ガスを燃料として用いた場合も、ほぼ同様の結果が得られた。   A mixed gas obtained by mixing 40 parts by volume of oxygen-hydrogen coexisting gas body (A) and 60 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body is used as fuel. Almost the same result was obtained.

[実施例20]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス50容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、プロパンガス用(仕様)の35ccスクーターを走行させた。尚、空気混入条件は、プロパンガス燃焼の時と同様とした。
[Example 20]
50 parts by volume of oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a 35 cc scooter for propane gas (specification) was run. The air mixing conditions were the same as those for propane gas combustion.

軽快な走行が得られ、走行中の機器爆発や、エンジンの過剰な発熱及び異常音などの発生はなく、排ガスは全くクリーンであることが確認された。   It was confirmed that the vehicle was light and that there was no explosion of equipment during operation, excessive heat generation from the engine, or abnormal noise, and that the exhaust gas was completely clean.

酸素水素共存ガス体(A)40容量部と該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス60容量部とを混合して得られた混合ガスを燃料として用いた場合も、ほぼ同様の結果が得られた。   A mixed gas obtained by mixing 40 parts by volume of an oxygen-hydrogen coexisting gas body (A) and 60 parts by volume of a commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body is used as fuel. Almost the same result was obtained.

[実施例21]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス50容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、天然ガス用(仕様)のダイハツ製の660cc軽自動車を走行させた。尚、空気混入条件は、天然ガス燃焼の時と同様とした。
[Example 21]
50 parts by volume of oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. Using this mixed gas as fuel, a 660 cc light vehicle made by Daihatsu for natural gas (specification) was run. The aeration conditions were the same as in natural gas combustion.

軽快な走行が得られ、燃費は天然ガス燃料の場合同等であった。また、走行中の機器爆発や、エンジンの過剰な発熱及び異常音などの発生はなく、排ガスは全くクリーンであることが確認された。   Light driving was achieved, and fuel consumption was comparable to natural gas fuel. In addition, there was no equipment explosion during running, excessive heat generation and abnormal noise of the engine, and it was confirmed that the exhaust gas was completely clean.

酸素水素共存ガス体(A)40容量部と該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の水素ガス60容量部とを混合して得られた混合ガスを燃料として用いた場合も、ほぼ同様の結果が得られた。   A mixed gas obtained by mixing 40 parts by volume of an oxygen-hydrogen coexisting gas body (A) and 60 parts by volume of a commercially available hydrogen gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body is used as fuel. Almost the same result was obtained.

[実施例22]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス50容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、市販の燃料電池標準セルを作動させ発電したところ、水素ガスのみを燃料として用いた場合と同等の起電力を得ることができた。
[Example 22]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. When this mixed gas was used as fuel and a commercially available fuel cell standard cell was operated to generate electric power, an electromotive force equivalent to that obtained when only hydrogen gas was used as fuel could be obtained.

酸素水素共存ガス体(A)40容量部と該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販のプロパンガス60容量部とを混合して得られた混合ガスを燃料として用いた場合も、ほぼ同様の結果が得られた。   A mixed gas obtained by mixing 40 parts by volume of oxygen-hydrogen coexisting gas body (A) and 60 parts by volume of commercially available propane gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body is used as fuel. Almost the same result was obtained.

[実施例23]
実施例1と同様にして得られた酸素水素共存ガス体(A)50容量部と、該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の天然ガス50容量部とを混合して混合ガスを得た。この混合ガスを燃料として用いて、市販の燃料電池標準セルを作動させ発電したところ、水素ガスのみを燃料として用いた場合と同等の起電力を得ることができた。
[Example 23]
50 parts by volume of the oxygen-hydrogen coexisting gas body (A) obtained in the same manner as in Example 1 and 50 parts by volume of commercially available natural gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body are mixed. As a result, a mixed gas was obtained. When this mixed gas was used as fuel and a commercially available fuel cell standard cell was operated to generate electric power, an electromotive force equivalent to that obtained when only hydrogen gas was used as fuel could be obtained.

酸素水素共存ガス体(A)40容量部と該酸素水素共存ガス体以外の可燃性ガス体(B)としての市販の天然ガス60容量部とを混合して得られた混合ガスを燃料として用いた場合も、ほぼ同様の結果が得られた。   A mixed gas obtained by mixing 40 parts by volume of oxygen-hydrogen coexisting gas body (A) and 60 parts by volume of commercially available natural gas as a combustible gas body (B) other than the oxygen-hydrogen coexisting gas body is used as fuel. Almost the same result was obtained.

Claims (11)

酸素水素共存ガス体と該酸素水素共存ガス体以外の可燃性ガス体とを含んでなる混合ガスからなり、
前記酸素水素共存ガス体は、振動発生手段で発生した振動を、振動棒を介して、該振動棒に取り付けられた振動羽根へと伝達し、該振動羽根を振動させることにより、被処理水に振動流動攪拌を生じさせながら、前記被処理水を電気分解処理に付することで得られたものである、
ことを特徴とする燃料。
An oxygen-hydrogen coexisting gas body and a mixed gas comprising a combustible gas body other than the oxygen-hydrogen coexisting gas body,
The oxygen-hydrogen coexisting gas body transmits the vibration generated by the vibration generating means to the vibration blade attached to the vibration rod via the vibration rod, and vibrates the vibration blade to the water to be treated. It is obtained by subjecting the water to be treated to electrolysis while causing vibration flow stirring.
A fuel characterized by that.
前記混合ガスは、前記酸素水素共存ガス体の含有率が40〜95容量%であり、前記酸素水素共存ガス体以外の可燃性ガス体の含有率が5〜60容量%であることを特徴とする、請求項1に記載の燃料。   The mixed gas has a content of the oxygen-hydrogen coexisting gas body of 40 to 95% by volume, and a content of combustible gas other than the oxygen-hydrogen coexisting gas body is 5 to 60% by volume. The fuel according to claim 1. 前記酸素水素共存ガス体以外の可燃性ガス体は、水素ガス、プロパンガス、天然ガス、又は都市ガスであることを特徴とする、請求項1又は2に記載の燃料。   The fuel according to claim 1, wherein the combustible gas body other than the oxygen-hydrogen coexisting gas body is hydrogen gas, propane gas, natural gas, or city gas. 前記混合ガスは容器内に加圧密封されていることを特徴とする、請求項1乃至3のいずれか一項に記載の燃料。   The fuel according to any one of claims 1 to 3, wherein the mixed gas is pressurized and sealed in a container. 前記酸素水素共存ガス体以外の可燃性ガス体の少なくとも一部は液化状態にあることを特徴とする、請求項4に記載の燃料。   The fuel according to claim 4, wherein at least a part of the combustible gas body other than the oxygen-hydrogen coexisting gas body is in a liquefied state. 前記混合ガスは、前記酸素水素共存ガス体と前記酸素水素共存ガス体以外の可燃性ガス体とを、燃焼機器内において混合することで得られたものであることを特徴とする、請求項1乃至3のいずれか一項に記載の燃料。   The mixed gas is obtained by mixing the oxygen-hydrogen coexisting gas body and a combustible gas body other than the oxygen-hydrogen coexisting gas body in a combustion device. The fuel as described in any one of thru | or 3. 前記混合ガスは、前記酸素水素共存ガス体の含有率が5〜60容量%であり、前記酸素水素共存ガス体以外の可燃性ガス体の含有率が40〜95容量%であることを特徴とする、請求項1に記載の燃料。   The mixed gas is characterized in that the content of the oxygen-hydrogen coexisting gas body is 5 to 60% by volume, and the content of the combustible gas body other than the oxygen-hydrogen coexisting gas body is 40 to 95% by volume. The fuel according to claim 1. 前記酸素水素共存ガス体以外の可燃性ガス体は、ガソリン、軽油、又は重油からなることを特徴とする、請求項6又は7に記載の燃料。   The fuel according to claim 6 or 7, wherein the combustible gas body other than the oxygen-hydrogen coexisting gas body is composed of gasoline, light oil, or heavy oil. 前記酸素水素共存ガス体以外の可燃性ガス体は、前記酸素水素共存ガス体と共に、気液混合ノズルを用いて前記燃焼機器内へと噴射されることを特徴とする、請求項6乃至8のいずれか一項に記載の燃料。   The combustible gas body other than the oxygen-hydrogen coexisting gas body is injected into the combustion device together with the oxygen-hydrogen coexisting gas body using a gas-liquid mixing nozzle. The fuel according to any one of the above. 請求項1乃至5のいずれか一項に記載の燃料を使用する方法であって、
前記混合ガスを密封した容器から取り出された前記混合ガスを燃焼機器に供給し、該燃焼機器により燃焼させることを特徴とする、燃料の使用方法。
A method of using the fuel according to any one of claims 1 to 5,
A method of using fuel, wherein the mixed gas taken out from a container in which the mixed gas is sealed is supplied to a combustion device and burned by the combustion device.
請求項1乃至3及び6乃至9のいずれか一項に記載の燃料を使用する方法であって、
燃焼機器に別々に供給された前記酸素水素共存ガス体と前記酸素水素共存ガス体以外の可燃性ガス体とを、互いに混合させた後に、前記燃焼機器により燃焼させることを特徴とする、燃料の使用方法。
A method of using the fuel according to any one of claims 1 to 3 and 6 to 9,
The oxygen-hydrogen coexisting gas body and the combustible gas body other than the oxygen-hydrogen coexisting gas body separately supplied to a combustion device are mixed with each other and then burned by the combustion device. how to use.
JP2011175918A 2011-01-07 2011-08-11 Fuel using oxygen-hydrogen coexisting gas body and method of using the same Active JP6310172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175918A JP6310172B2 (en) 2011-01-07 2011-08-11 Fuel using oxygen-hydrogen coexisting gas body and method of using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011001843 2011-01-07
JP2011001843 2011-01-07
JP2011175918A JP6310172B2 (en) 2011-01-07 2011-08-11 Fuel using oxygen-hydrogen coexisting gas body and method of using the same

Publications (2)

Publication Number Publication Date
JP2012153972A true JP2012153972A (en) 2012-08-16
JP6310172B2 JP6310172B2 (en) 2018-04-11

Family

ID=46836006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175918A Active JP6310172B2 (en) 2011-01-07 2011-08-11 Fuel using oxygen-hydrogen coexisting gas body and method of using the same

Country Status (1)

Country Link
JP (1) JP6310172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204011A1 (en) * 2013-06-21 2014-12-24 日本テクノ株式会社 Method for producing combustible gas from carbon dioxide and hydroxygen gas
JP2018109148A (en) * 2017-11-22 2018-07-12 日本テクノ株式会社 Method for producing combustible gas body from carbon dioxide gas and oxyhydrogen gas

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007054821A (en) * 2005-04-18 2007-03-08 Air Products & Chemicals Inc Dual-flow valve and internal processing vessel isolation system
JP2008063669A (en) * 2001-12-03 2008-03-21 Japan Techno Co Ltd Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method using the same
JP3151672U (en) * 2009-04-17 2009-07-02 有限会社T&K Water electrolyzer and fuel supply device equipped with the water electrolyzer
JP2009275282A (en) * 2008-05-14 2009-11-26 Elson Kk Electrolysis apparatus, electrolytic solution therefor, and combustion promoting system for internal combustion engine utilizing electrolysis apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063669A (en) * 2001-12-03 2008-03-21 Japan Techno Co Ltd Hydrogen-oxygen gas generator and hydrogen-oxygen gas generating method using the same
JP2007054821A (en) * 2005-04-18 2007-03-08 Air Products & Chemicals Inc Dual-flow valve and internal processing vessel isolation system
JP2009275282A (en) * 2008-05-14 2009-11-26 Elson Kk Electrolysis apparatus, electrolytic solution therefor, and combustion promoting system for internal combustion engine utilizing electrolysis apparatus
JP3151672U (en) * 2009-04-17 2009-07-02 有限会社T&K Water electrolyzer and fuel supply device equipped with the water electrolyzer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014204011A1 (en) * 2013-06-21 2014-12-24 日本テクノ株式会社 Method for producing combustible gas from carbon dioxide and hydroxygen gas
JP2015004013A (en) * 2013-06-21 2015-01-08 日本テクノ株式会社 Method of producing combustible gas body from carbon dioxide and oxyhydrogen gas
JP2018109148A (en) * 2017-11-22 2018-07-12 日本テクノ株式会社 Method for producing combustible gas body from carbon dioxide gas and oxyhydrogen gas

Also Published As

Publication number Publication date
JP6310172B2 (en) 2018-04-11

Similar Documents

Publication Publication Date Title
Subramanian et al. Production and use of HHO gas in IC engines
Naqvi et al. Hydrogen production through alkaline electrolyzers: A techno‐economic and enviro‐economic analysis
Ravi et al. Clean hydrogen for mobility–Quo vadis?
Manu et al. Experimental investigation using an on-board dry cell electrolyzer in a CI engine working on dual fuel mode
WO2013036266A1 (en) Electrolyzed hydrogen gas enhancement of hydrocarbon fuel combustion
Yadav Milind et al. Investigations on generation methods for oxy-hydrogen gas, its blending with conventional fuels and effect on the performance of internal combustion engine
Falahat et al. Engine performance powered by a mixture of hydrogen and oxygen fuel obtained from water electrolysis
Ridhuan et al. A review of comparative study on the effect of hydroxyl gas in internal combustion engine (ICE) on engine performance and exhaust emission
JP6310172B2 (en) Fuel using oxygen-hydrogen coexisting gas body and method of using the same
Pielecha et al. Use of hydrogen fuel in drive systems of rail vehicles
WO2011136291A1 (en) Engine system with electrolysis tank
WO2011004344A1 (en) Device for hydrogen enrichment of the fuel of internal combustion engine fed by ammonia, during the start-up and during the steady state
Sherman et al. Fuel efficiency and emissions reduction of hydroxy added gasoline fuel using HydroBoost technology
Gohar et al. Comparative Analysis of Performance Chacateristicts of CI Engine with and without HHO gas (Brown Gas)
WO2008118088A1 (en) A gas reactor system
Karthik Better performance of vehicles using hho gas
IE20150359A1 (en) A hydrogen reformer electrolysis device to improve combustion efficiency, fuel efficiency and emisions reduction on internal combustion engines.
Jannah et al. Design of HHO generators as producers of water fuel (HHO generator product analysis based on electric current and catalyst)
CN110621812B (en) Hydrogen production method
CN106118769A (en) A kind of gas reformation device and gas preparation method
Naderi et al. Catalyst: ammonia as an energy carrier
Nithyanandhan et al. A Study on the Design and Fabrication of Dry Cell Electrolysis Setup for Hydrogen Generation
Yusof et al. Oxyhydrogen Gas Production by Alkaline Water Electrolysis and the Effectiveness on the Engine Performance and Gas Emissions in an ICEs: A Mini-Review
Brayek et al. Effect of different hydrogen-oxygen flow rates on the performance and emissions of SI engine
Sharif et al. Experimental Investigation of the Hydroxy Gas Generation as a Clean Energy Source for Spark Ignition Engine Operation Using Different Electrolytes

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160406

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160525

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160708

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20171030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171031

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180316

R150 Certificate of patent or registration of utility model

Ref document number: 6310172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250