JP2008150259A - Oxygen pump - Google Patents

Oxygen pump Download PDF

Info

Publication number
JP2008150259A
JP2008150259A JP2006341753A JP2006341753A JP2008150259A JP 2008150259 A JP2008150259 A JP 2008150259A JP 2006341753 A JP2006341753 A JP 2006341753A JP 2006341753 A JP2006341753 A JP 2006341753A JP 2008150259 A JP2008150259 A JP 2008150259A
Authority
JP
Japan
Prior art keywords
solid electrolyte
cylindrical body
electrolyte cylindrical
oxygen pump
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006341753A
Other languages
Japanese (ja)
Other versions
JP5329036B2 (en
Inventor
Hiroshi Nishimura
博 西村
Toru Nagasawa
亨 長澤
Haruhiko Matsushita
晴彦 松下
Ryusuke Iwasaki
隆祐 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Machinery Inc
Original Assignee
Canon Machinery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Machinery Inc filed Critical Canon Machinery Inc
Priority to JP2006341753A priority Critical patent/JP5329036B2/en
Publication of JP2008150259A publication Critical patent/JP2008150259A/en
Application granted granted Critical
Publication of JP5329036B2 publication Critical patent/JP5329036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oxygen pump in which stress is not imposed on a solid electrolyte cylindrical body arranged along the vertical direction and which has excellent durability. <P>SOLUTION: The oxygen pump is provided with: the solid electrolyte cylindrical body 30 having oxygen ion conductivity; electrodes to be arranged on the inside and outside surfaces of the solid electrolyte cylindrical body 30; and a heating means 31 for heating the solid electrolyte cylindrical body. Each of both ends of the solid electrolyte cylindrical body 30 is attached to a fixing side via flexible connectors 55 and 56. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、酸素ポンプに関するものである。   The present invention relates to an oxygen pump.

従来から、固体電解質を含む電気化学的な酸素ポンプを有する酸素分圧制御装置により、酸素分圧を制御した雰囲気ガスを用いて、単結晶試料等を作成する方法が知られている(特許文献1)。   Conventionally, a method for producing a single crystal sample or the like using an atmospheric gas whose oxygen partial pressure is controlled by an oxygen partial pressure control device having an electrochemical oxygen pump containing a solid electrolyte is known (Patent Document). 1).

図3に示す酸素分圧制御装置は、バルブ2を通った不活性ガスの流量を設定値に制御するマスフローコントローラ(MFC)3と、このマスフローコントローラ3を通った不活性ガスを目的の酸素分圧に制御可能な電気化学的な酸素ポンプ4と、酸素ポンプ4で制御された不活性ガスの酸素分圧をモニタして試料育成装置などの次工程(装置)に供給する供給ガス用の酸素センサ5を有する。   The oxygen partial pressure control apparatus shown in FIG. 3 includes a mass flow controller (MFC) 3 that controls the flow rate of the inert gas that has passed through the valve 2 to a set value, and the inert gas that has passed through the mass flow controller 3 as a target oxygen component. The oxygen oxygen for supply gas supplied to the next process (apparatus) such as a sample growing apparatus by monitoring the oxygen partial pressure of the inert gas controlled by the oxygen pump 4 and the inert gas controlled by the oxygen pump 4 It has a sensor 5.

さらにこの装置は、所望の酸素分圧値を設定する酸素分圧設定部6と、酸素センサ5によるモニタ値を酸素分圧設定部6による設定値と比較して酸素ポンプ4から送り出される不活性ガスの酸素分圧を所定値に制御する酸素分圧制御部7と、酸素センサ5によるモニタ値を表示する酸素分圧表示部8を備える。なお、通常、不活性ガス中の酸素分圧は10-4atm程度である。 Further, this apparatus compares the monitored value by the oxygen sensor 5 with the set value by the oxygen partial pressure setting unit 6 and the inertness sent out from the oxygen pump 4 to set a desired oxygen partial pressure value. An oxygen partial pressure control unit 7 that controls the oxygen partial pressure of the gas to a predetermined value and an oxygen partial pressure display unit 8 that displays a monitor value by the oxygen sensor 5 are provided. Normally, the oxygen partial pressure in the inert gas is about 10 −4 atm.

電気化学的な酸素ポンプ4は、図4に示すように、酸素イオン伝導性を有する固体電解質筒状体4aの内外両面に白金よりなる電極4b、4cを形成している。固体電解質筒状体4aは、例えばジルコニア系の固体電解質で、図示しないヒータで600℃程度に加熱される。固体電解質筒状体4aの一方の開口から他方の開口に向けて軸方向に不活性ガスを供給する。不活性ガスは、例えばAr+O(10−4atm)である。内外両面の電極4b、4c間に直流電源Eの直流電圧を印加する。外面の電極4cに+極を印加し、内面の電極4bに−極を印加して電流Iを流すと、固体電解質筒状体4a内を流れる不活性ガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの外部に放出される。固体電解質筒状体4aの外部に放出された酸素分子は、空気等の補助ガスと共に排気される。固体電解質筒状体4aに供給されたAr+O(10−4atm)の不活性ガスは、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、次工程(装置)に給送される。 As shown in FIG. 4, the electrochemical oxygen pump 4 has electrodes 4b and 4c made of platinum formed on both inner and outer surfaces of a solid electrolyte cylindrical body 4a having oxygen ion conductivity. The solid electrolyte cylindrical body 4a is, for example, a zirconia solid electrolyte, and is heated to about 600 ° C. by a heater (not shown). An inert gas is supplied in the axial direction from one opening of the solid electrolyte cylindrical body 4a toward the other opening. The inert gas is, for example, Ar + O 2 (10 −4 atm). A DC voltage of a DC power source E is applied between the inner and outer electrodes 4b and 4c. When a positive electrode is applied to the outer electrode 4c and a negative electrode is applied to the inner electrode 4b to flow a current I, oxygen molecules (O 2 ) in the inert gas flowing through the solid electrolyte cylindrical body 4a are electrically charged. It is reduced to ions (O 2− ) and released again as oxygen molecules (O 2 ) through the solid electrolyte to the outside of the solid electrolyte cylindrical body 4a. Oxygen molecules released to the outside of the solid electrolyte cylindrical body 4a are exhausted together with an auxiliary gas such as air. The inert gas of Ar + O 2 (10 −4 atm) supplied to the solid electrolyte cylindrical body 4a becomes a processed gas (purified gas) that is controlled to a target oxygen partial pressure by reducing oxygen molecules, and is the next step. (Device).

なお、図4の酸素ポンプ4は、固体電解質筒状体4aの内外両面の電極4b、4c間に上記と逆極性の直流電圧を印加してポンプ動作を行わせることも可能である。すなわち、外面の電極4cに−極を印加し、内面の電極4bに+極を印加すると、固体電解質筒状体4aの外面に沿って流れる空気などのガス中の酸素分子(O)が電気的に還元されてイオン(O2−)化され、固体電解質を通して再び酸素分子(O)として固体電解質筒状体4aの内部に放出される。この場合、固体電解質筒状体4aの内部を流れる不活性ガスの酸素分圧が上昇して、外部に給送される。 In addition, the oxygen pump 4 of FIG. 4 can also perform a pump operation by applying a DC voltage having the opposite polarity between the electrodes 4b and 4c on the inner and outer surfaces of the solid electrolyte cylindrical body 4a. That is, when a negative electrode is applied to the outer electrode 4c and a positive electrode is applied to the inner electrode 4b, oxygen molecules (O 2 ) in a gas such as air flowing along the outer surface of the solid electrolyte cylindrical body 4a are electrically It is reduced to ions (O 2− ) and is released again as oxygen molecules (O 2 ) through the solid electrolyte into the solid electrolyte cylindrical body 4a. In this case, the oxygen partial pressure of the inert gas flowing inside the solid electrolyte cylindrical body 4a is increased and fed to the outside.

このような酸素ポンプにより酸素分圧を制御したガスを供給すれば、結晶育成、合金化、熱処理、半導体製造工程などが酸素分圧を制御した不活性ガスなどの雰囲気下で行うことができる。
特開2002−326887号公報
If a gas whose oxygen partial pressure is controlled by such an oxygen pump is supplied, crystal growth, alloying, heat treatment, semiconductor manufacturing process, etc. can be performed in an atmosphere such as an inert gas whose oxygen partial pressure is controlled.
JP 2002-326887 A

図4に示す酸素ポンプでは、1本の円形パイプ状の固体電解質筒状体を使用している。すなわち、この1本の固体電解質筒状体の内部空間に軸方向に被処理ガスを流し、固体電解質筒状体内を流れる間に固体電解質隔壁内外でイオン導電のポンプ作用を行う。   In the oxygen pump shown in FIG. 4, one circular pipe-shaped solid electrolyte cylindrical body is used. That is, the gas to be treated is caused to flow in the axial direction in the internal space of the single solid electrolyte cylindrical body, and the ionic conductivity is pumped inside and outside the solid electrolyte partition wall while flowing through the solid electrolyte cylindrical body.

固体電解質筒状体は酸素イオン伝導を適切な値に保つため500℃以上に加熱して使用する。固体電解質材料の熱膨張係数は、例えばジルコニアで概略10×10−6程度と一般的なセラミック材料に比して大きい。このため、ガス精製の性能を得るために500mm長の固体電解質筒状体を加熱すると、端部は計算上で0.2mmを超える変位が発生することになる。ところが、実際には管端部は分岐管等に対し気密構造で固定されており、熱応力が発生する。このようなストレスが生じれば、固体電解質筒状体の破損を招き、固体電解質筒状体の寿命を短くする。このストレスの大きさは固体電解質筒状体の加熱温度と熱膨張率及び長さの影響を受ける。しかし、加熱温度と熱膨張率は固体電解質筒状体の材質によって決まり、長さは長いほどストレスは大きくなるが、固体電解質筒状体の効率的な利用を考えると長い方が有利であるので通常長い物が使用される。したがって、ストレスを開放するためには固体電解質筒状体を軸方向の自由度を持って保持することが考えられる。 The solid electrolyte cylindrical body is used after being heated to 500 ° C. or higher in order to keep oxygen ion conduction at an appropriate value. The thermal expansion coefficient of the solid electrolyte material is, for example, about 10 × 10 −6 in zirconia, which is larger than that of a general ceramic material. For this reason, when a solid electrolyte cylindrical body having a length of 500 mm is heated in order to obtain gas purification performance, the end portion is displaced by more than 0.2 mm in calculation. However, the pipe end portion is actually fixed to the branch pipe or the like in an airtight structure, and thermal stress is generated. If such stress occurs, the solid electrolyte cylindrical body is damaged, and the life of the solid electrolyte cylindrical body is shortened. The magnitude of this stress is affected by the heating temperature, thermal expansion coefficient and length of the solid electrolyte cylindrical body. However, the heating temperature and the coefficient of thermal expansion are determined by the material of the solid electrolyte cylindrical body, and the longer the length, the greater the stress. However, the longer one is advantageous in view of efficient use of the solid electrolyte cylindrical body. Usually long ones are used. Therefore, in order to release the stress, it is conceivable to hold the solid electrolyte cylindrical body with a degree of freedom in the axial direction.

一方で、固体電解質筒状体の軸方向への伸縮を許容すれば、固体電解質の一部や電極の一部がはがれるおそれがある。固体電解質等の一部がはがれれば、その剥がれた一部が精製ガス(処理済みガス)に混入したりして、試料作成室等に供給するガスの品質が低下する。さらに、酸素分圧制御装置の循環経路のガスの流れに支障を来す場合もある。   On the other hand, if the solid electrolyte cylindrical body is allowed to expand and contract in the axial direction, a part of the solid electrolyte and a part of the electrode may be peeled off. If a part of the solid electrolyte or the like is peeled off, a part of the peeled off is mixed into the purified gas (treated gas), and the quality of the gas supplied to the sample preparation chamber or the like is lowered. Further, there may be a problem in the gas flow in the circulation path of the oxygen partial pressure control device.

本発明は、上記課題に鑑みて、固体電解質筒状体に対してストレスを与えず、耐久性に優れた酸素ポンプを提供する。   In view of the above problems, the present invention provides an oxygen pump excellent in durability without applying stress to a solid electrolyte cylindrical body.

本発明の酸素ポンプは、酸素イオン伝導性を有する固体電解質筒状体と、この固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、固体電解質筒状体の両端をそれぞれフレキシブル連結体を介して固定側に取付けたものである。   The oxygen pump of the present invention includes a solid electrolyte cylindrical body having oxygen ion conductivity, electrodes disposed on the inner surface and the outer surface of the solid electrolyte cylindrical body, and heating means for heating the solid electrolyte cylindrical body. In the oxygen pump, both ends of the solid electrolyte cylindrical body are respectively attached to the fixed side via flexible coupling bodies.

本発明の酸素ポンプによれば、固体電解質筒状体の両端をそれぞれフレキシブル連結体を介して固定側に取付けたので、固体電解質筒状体は軸方向の伸縮が許容され、固体電解質筒状体に対して軸心方向のストレスが発生しない。   According to the oxygen pump of the present invention, since both ends of the solid electrolyte cylindrical body are respectively attached to the fixed side via the flexible coupling body, the solid electrolyte cylindrical body is allowed to expand and contract in the axial direction, and the solid electrolyte cylindrical body In contrast, no axial stress occurs.

複数の固体電解質筒状体を一鉛直面上に所定ピッチで配設したり、複数の固体電解質筒状体にて柱状の固体電解質筒状体束を構成したりてもよい。また、加熱手段を平面状のヒータにて構成して、固体電解質筒状体をサンドイッチ状に挟んだり、加熱手段を、固体電解質筒状体を包囲状に巻設する電熱線にて構成したりすることができる。なお、複数の固体電解質筒状体にて柱状の固体電解質筒状体束を構成する場合、複数の固体電解質筒状体を円周方向に沿って配設すればよい。   A plurality of solid electrolyte cylinders may be arranged at a predetermined pitch on one vertical plane, or a columnar solid electrolyte cylinder bundle may be constituted by a plurality of solid electrolyte cylinders. In addition, the heating means is constituted by a flat heater, and the solid electrolyte cylindrical body is sandwiched between the heating means, and the heating means is constituted by a heating wire wound around the solid electrolyte cylindrical body. can do. In addition, when a columnar solid electrolyte cylinder bundle is constituted by a plurality of solid electrolyte cylinders, the plurality of solid electrolyte cylinders may be arranged along the circumferential direction.

ところで、固体電解質筒状体の軸方向への伸縮が許容されれば、熱膨張等で、固体電解質の一部や電極の一部がはがれるおそれがある。そこで、固体電解質筒状体に下方からガスが流入するようにすれば、上方から処理済みガスが流出することになるので、固体電解質等の剥がれたものは下方に留まって、処理済みのガス供給側へ流出させない。   By the way, if the solid electrolyte cylindrical body is allowed to expand and contract in the axial direction, a part of the solid electrolyte or a part of the electrode may be peeled off due to thermal expansion or the like. Therefore, if the gas flows into the solid electrolyte cylindrical body from below, the treated gas will flow out from above, so that the peeled off solid electrolyte etc. stays below and the treated gas supply Do not let out.

本発明では、固体電解質筒状体には軸心方向のストレスが発生しない。このため、主として破損原因となる要因を削除しているので、固体電解質筒状体の寿命は長くなる。   In the present invention, axial stress is not generated in the solid electrolyte cylindrical body. For this reason, since the factor which causes damage mainly is deleted, the lifetime of the solid electrolyte cylindrical body is extended.

平面状のヒータにて、固体電解質筒状体をサンドイッチ状に挟むことができ、コンパクトな酸素ポンプを構成することができる。特に、サンドイッチ状に挟む場合、複数の固体電解質筒状体を一鉛直面上に所定ピッチで配設するようにすれば、コンパクト化を一層図ることができ、この酸素ポンプを使用する酸素分圧制御装置への組み込み性が向上する。しかも、複数の固体電解質筒状体を備えるので、精製能力の向上を図ることができる。   The solid electrolyte cylindrical body can be sandwiched by a flat heater, and a compact oxygen pump can be configured. In particular, when sandwiched between sandwiches, if a plurality of solid electrolyte cylindrical bodies are arranged at a predetermined pitch on one vertical plane, the size can be further reduced, and the oxygen partial pressure using this oxygen pump can be increased. Incorporation into the control device is improved. In addition, since a plurality of solid electrolyte cylindrical bodies are provided, the purification capacity can be improved.

複数の固体電解質筒状体にて柱状の固体電解質筒状体束を構成すれば、加熱手段としてこの固体電解質筒状体束の外周側に配置されて外周を包囲状とする電熱線(ヒータ)、内周側に配置されて内周を包囲状とする電熱線(ヒータ)、又は外周側と内周側の両者を包囲状とする電熱線(ヒータ)を使用することができる。このため、固体電解質筒状体束の各固体電解質筒状体30をより効率よく加熱することができ、しかも、複数の固体電解質筒状体を備えるので、精製能力の向上を図ることができる。   When a columnar solid electrolyte cylindrical bundle is constituted by a plurality of solid electrolyte cylindrical bodies, a heating wire (heater) is arranged on the outer peripheral side of the solid electrolyte cylindrical bundle as a heating means so as to surround the outer periphery. It is possible to use a heating wire (heater) arranged on the inner peripheral side and surrounding the inner periphery, or a heating wire (heater) surrounding both the outer peripheral side and the inner peripheral side. For this reason, each solid electrolyte cylindrical body 30 of the solid electrolyte cylindrical body bundle can be heated more efficiently, and moreover, since a plurality of solid electrolyte cylindrical bodies are provided, the purification ability can be improved.

固体電解質筒状体に下方からガスを供給することによって、剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。このため、純粋な精製ガスを供給することができ、ガス供給側の試料作成室等での作業が安定する。   By supplying gas to the solid electrolyte cylindrical body from below, the peeled material stays below and does not flow out to the treated gas supply side. For this reason, pure purified gas can be supplied, and the operation in the sample preparation chamber or the like on the gas supply side is stabilized.

以下本発明の実施の形態を図1と図2に基づいて説明する。本発明に係る酸素ポンプは、酸素イオン伝導性を有する固体電解質筒状体30と、この固体電解質筒状体30の内面及び外面に配置される電極(図示省略)と、固体電解質筒状体30を加熱する加熱手段31を備える。この場合、固体電解質筒状体30の内面及び外面に白金めっき等を施して、電極を構成する。この酸素ポンプは、複数本(図例では5本)の固体電解質筒状体30を有し、各固体電解質筒状体30は断熱構造体35に包囲されている。なお、各固体電解質筒状体30と断熱構造体35とは図示省略のケーシング内に収容されている。   Hereinafter, an embodiment of the present invention will be described with reference to FIGS. The oxygen pump according to the present invention includes a solid electrolyte cylindrical body 30 having oxygen ion conductivity, electrodes (not shown) disposed on the inner and outer surfaces of the solid electrolyte cylindrical body 30, and the solid electrolyte cylindrical body 30. The heating means 31 which heats is provided. In this case, platinum plating etc. are given to the inner surface and outer surface of the solid electrolyte cylindrical body 30, and an electrode is comprised. This oxygen pump has a plurality (five in the illustrated example) of solid electrolyte cylinders 30, and each solid electrolyte cylinder 30 is surrounded by a heat insulating structure 35. Each solid electrolyte cylindrical body 30 and the heat insulating structure 35 are accommodated in a casing (not shown).

断熱構造体35は、断熱材からなる半割体37、37を備え、半割体37、37の合わせ面37a、37a間に所定寸の隙間40が形成される。すなわち、この隙間40を、固体電解質筒状体30の外径寸法よりも僅かに大きく設定し、隙間40に固体電解質筒状体30を半割体37に接触しないように配置する。   The heat insulating structure 35 includes halves 37 and 37 made of a heat insulating material, and a gap 40 having a predetermined size is formed between the mating surfaces 37 a and 37 a of the halves 37 and 37. That is, the gap 40 is set to be slightly larger than the outer diameter dimension of the solid electrolyte cylindrical body 30, and the solid electrolyte cylindrical body 30 is disposed in the gap 40 so as not to contact the halved body 37.

ここで、断熱材とは、熱エネルギーの移動を遮断する材料であり、無機質のものと有機質のものがある。一般に温度の高い場合には無機質材料が,温度の低い場合には有機質材料が使用される。無機質断熱材としては,セラミック繊維・ガラス繊維・アスベストなどを用いる繊維質断熱材,ケイ酸カルシウム・炭酸マグネシウムなどを用いる粉末質断熱材,パーライト・泡ガラスなどによる多孔質断熱材がある。このため、固体電解質筒状体30は600℃程度に加熱手段31にて加熱されるので、この温度に対応できるものから選択できる。   Here, the heat insulating material is a material that blocks the transfer of thermal energy, and includes an inorganic material and an organic material. In general, an inorganic material is used when the temperature is high, and an organic material is used when the temperature is low. Examples of inorganic heat insulating materials include fiber heat insulating materials using ceramic fibers, glass fibers, asbestos, etc., powder heat insulating materials using calcium silicate, magnesium carbonate, etc., and porous heat insulating materials such as perlite / foam glass. For this reason, since the solid electrolyte cylindrical body 30 is heated by the heating means 31 to about 600 degreeC, it can select from what can respond to this temperature.

また、各合わせ面37a、37aに、矩形状の凹所41,41が設けられ、凹所41,41にて形成される空間42に、加熱手段31を構成する一対のヒータ43、43が配置されている。なお、凹所41、41にはカバー材39が装着される。このように、本酸素ポンプは、複数の固体電解質筒状体30を一鉛直面上に所定ピッチで配設するとともに、加熱手段31を構成する平面状のヒータ43,43にて、複数の固体電解質筒状体30にて構成された筒状体群29をサンドイッチ状に挟むことになる。   Moreover, rectangular recesses 41 and 41 are provided in the mating surfaces 37a and 37a, and a pair of heaters 43 and 43 constituting the heating means 31 are arranged in a space 42 formed by the recesses 41 and 41. Has been. A cover material 39 is attached to the recesses 41 and 41. As described above, the present oxygen pump arranges the plurality of solid electrolyte cylindrical bodies 30 at a predetermined pitch on one vertical plane, and uses the planar heaters 43 and 43 constituting the heating means 31 to form a plurality of solids. A cylindrical body group 29 composed of the electrolyte cylindrical body 30 is sandwiched.

各々のヒータ43は、図示省略の温度検出器(例えば熱電温度計)が付設され、ヒータ43の温度が監視される。ここで、熱電温度計とは熱電対を使った温度計である。すなわち、測温接点をヒータ側(ヒータ自体又はヒータを支持している図示省略の支持体)に接続し、この測温接点と基準接点との間の起電力を測ることになる。   Each heater 43 is provided with a temperature detector (not shown) (for example, a thermoelectric thermometer), and the temperature of the heater 43 is monitored. Here, the thermoelectric thermometer is a thermometer using a thermocouple. That is, the temperature measuring contact is connected to the heater side (the heater itself or a support body (not shown) supporting the heater), and the electromotive force between the temperature measuring contact and the reference contact is measured.

各固体電解質筒状体30は、その上端側及び下端側がフレキシブル連結体55,56を介して前記図示省略のケーシングに取付けられている。すなわち、ケーシングには、その上部と下部に空間部が設けられ、この空間部に突出した固体電解質筒状体30の上下端にはそれぞれ連結用管継手59、60が付設されている。また、上方の空間部にはガス合流管61が配置され、下方の空間部にはガス分岐管62が配置され、このガス合流管61及びガス分岐管62に、フレキシブル連結体55,56を介して連結用管継手59、60が連結される。   Each solid electrolyte cylindrical body 30 has an upper end side and a lower end side attached to a casing (not shown) via flexible coupling bodies 55 and 56. That is, the casing is provided with space portions at the upper and lower portions thereof, and connecting pipe joints 59 and 60 are respectively attached to the upper and lower ends of the solid electrolyte cylindrical body 30 protruding into the space portion. A gas junction pipe 61 is disposed in the upper space, and a gas branch pipe 62 is disposed in the lower space. The gas junction pipe 61 and the gas branch pipe 62 are connected to the gas junction pipe 61 and the flexible branch bodies 55 and 56, respectively. Thus, the connecting pipe joints 59 and 60 are connected.

フレキシブル連結体55,56はフレキシブル管であって、フレキシブル本体55a、56aと、連結用管継手59、60に接続される接続部55b、56bと、ガス合流管61又はガス分岐管62に接続される接続部55c、56cとからなる。また、図2に示すように、フレキシブル本体55a、56aはループ状に形成される。   The flexible coupling bodies 55 and 56 are flexible pipes, and are connected to the flexible main bodies 55a and 56a, the connection portions 55b and 56b connected to the coupling pipe joints 59 and 60, and the gas junction pipe 61 or the gas branch pipe 62. Connecting portions 55c and 56c. Moreover, as shown in FIG. 2, the flexible main bodies 55a and 56a are formed in a loop shape.

ガス合流管61及びガス分岐管62は、それぞれ、その長手方向に延びる軸心孔66と、この軸心孔66に連通される複数(この場合、固体電解質筒状体30に対応して5個)の連結部67とが形成されている。なお、連結部67は軸心孔66に沿って所定ピッチ(一定ピッチ)に配置される。そして、各連結部67にフレキシブル連結体55,56が接続される。   Each of the gas junction pipe 61 and the gas branch pipe 62 has an axial hole 66 extending in the longitudinal direction and a plurality of (in this case, five corresponding to the solid electrolyte cylindrical body 30) communicating with the axial hole 66. ) Connecting portion 67. The connecting portions 67 are arranged at a predetermined pitch (constant pitch) along the axial hole 66. And the flexible connection bodies 55 and 56 are connected to each connection part 67.

ガス合流管61はケーシングの上壁に固着されるとともに、その軸心孔66に連通される連結管68が接続される。この場合、合流管61の軸心孔66はケーシングの一方の側壁側(図1における右側)に開口し、この開口部がケーシングの一方の側壁に固定される前記連結管68に連結される。   The gas junction pipe 61 is fixed to the upper wall of the casing, and a connecting pipe 68 connected to the axial hole 66 is connected. In this case, the axial hole 66 of the merging pipe 61 opens to one side wall side (right side in FIG. 1) of the casing, and this opening is connected to the connecting pipe 68 fixed to one side wall of the casing.

ガス分岐管62はケーシングの下壁に固着されるとともに、その軸心孔66に連通される連結管69が接続される。この場合、分岐管62の軸心孔66はケーシングの他方の側壁側(図1における左側)に開口し、この開口部がケーシングの一方の側壁に固定される前記連結管69に連結される。このため、連結管69は、分岐管62から他方の側壁側へ突出した後、一方の側壁側へUターンすることになる。   The gas branch pipe 62 is fixed to the lower wall of the casing, and a connecting pipe 69 connected to the axial hole 66 is connected. In this case, the axial hole 66 of the branch pipe 62 opens on the other side wall side (left side in FIG. 1) of the casing, and this opening is connected to the connecting pipe 69 fixed to one side wall of the casing. For this reason, after the connecting pipe 69 protrudes from the branch pipe 62 to the other side wall side, it makes a U-turn to the one side wall side.

この場合、下方の連結管69から分岐管62及びフレキシブル連結体56を介して、下方から固体電解質筒状体30にガスが流入し、酸素分子が低減されて目的の酸素分圧に制御された処理済みガス(精製ガス)となり、この処理済みガスがこの固体電解質筒状体30の上方から、フレキシブル連結体55及び合流管61を介して上方の連結管68へ流出する。   In this case, gas flows into the solid electrolyte cylindrical body 30 from below through the branch pipe 62 and the flexible connection body 56 from the lower connection pipe 69, and oxygen molecules are reduced to control the target oxygen partial pressure. This gas is treated gas (purified gas), and the treated gas flows out from above the solid electrolyte cylindrical body 30 to the upper connecting pipe 68 through the flexible connecting body 55 and the junction pipe 61.

ところで、本発明の酸素ポンプは、一方の側壁側の固体電解質筒状体30Aへ流入するガスは、他方の側壁側の開口部から分岐管62に入って、この分岐管62の軸心孔66を一方の側壁側へ流れた後、流入することになる。そして、この固体電解質筒状体30Aを流れた精製されたガスは、フレキシブル連結体55を介して合流管61の軸心孔66の開口側へ流入して、連結管68を介して酸素センサ側に流出する。また、他方の側壁側の固体電解質筒状体30Eへ流入するガスは、他方の側壁側の開口部から分岐管62に入って、他方の側壁側の連結部67からフレキシブル連結体56を介して流入し、この固体電解質筒状体30Eで精製されたガスが合流管61の軸心孔66の他方の側壁側の連結部67に流入して、この軸心孔66を開口側へ流れ、連結管68を介して酸素センサ側に流出する。   By the way, in the oxygen pump of the present invention, the gas flowing into the solid electrolyte cylindrical body 30A on one side wall side enters the branch pipe 62 from the opening on the other side wall side, and the axial hole 66 of this branch pipe 62 Will flow into one side wall and then flow in. The purified gas flowing through the solid electrolyte cylindrical body 30A flows into the opening side of the axial center hole 66 of the merging pipe 61 through the flexible connecting body 55, and passes through the connecting pipe 68 to the oxygen sensor side. To leak. The gas flowing into the solid electrolyte cylindrical body 30E on the other side wall side enters the branch pipe 62 from the opening on the other side wall side, and passes through the flexible coupling body 56 from the coupling portion 67 on the other side wall side. Gas that has flowed in and purified by the solid electrolyte cylindrical body 30E flows into the connecting portion 67 on the other side wall side of the axial hole 66 of the merging pipe 61, flows through the axial hole 66 to the opening side, and is connected. It flows out to the oxygen sensor side through the pipe 68.

このように、各固体電解質筒状体30の上下動は許容しているが、上下のフレキシブル連結体55、56にて上下位置を所定の高さ位置に対応させている。すなわち、フレキシブル連結体55、56はヒータ43に対応する位置に保持でき、しかも固体電解質筒状体30の上下動を許容する剛性を具備する必要がある。なお、断熱構造体35に固体電解質筒状体30の水平方向の移動を規制する規制部材を配置するのも好ましい。   Thus, although the vertical movement of each solid electrolyte cylindrical body 30 is allowed, the vertical positions are made to correspond to the predetermined height positions by the upper and lower flexible coupling bodies 55 and 56. In other words, the flexible connectors 55 and 56 need to be able to be held at positions corresponding to the heaters 43 and have rigidity to allow the solid electrolyte cylindrical body 30 to move up and down. It is also preferable to arrange a regulating member that regulates the horizontal movement of the solid electrolyte cylindrical body 30 in the heat insulating structure 35.

本発明によれば、固体電解質筒状体30の上端及び下端をそれぞれフレキシブル連結体55、56を介して固定側に取付けているので、固体電解質筒状体30は軸方向の伸縮が許容され、固体電解質筒状体30に対して軸心方向のストレスが発生しない。このため、主として破損原因となる要因を削除しているので、固体電解質筒状体の寿命は長くなる。   According to the present invention, since the upper end and the lower end of the solid electrolyte cylindrical body 30 are attached to the fixed side via the flexible coupling bodies 55 and 56, respectively, the solid electrolyte cylindrical body 30 is allowed to expand and contract in the axial direction, No axial stress is generated on the solid electrolyte cylindrical body 30. For this reason, since the factor which causes damage mainly is deleted, the lifetime of the solid electrolyte cylindrical body is extended.

ところで、固体電解質筒状体30の軸方向への伸縮が許容されれば、熱膨張等で、固体電解質の一部や電極の一部がはがれるおそれがある。しかしながら、このような場合でも、本発明では、固体電解質筒状体30に下方からガスが流入するので、上方から処理済みガスが流出することになって、固体電解質等の剥がれたものはこの下方に留まって、処理済みのガス供給側へ流出させない。このため、純粋な精製ガスを供給することができ、ガス供給側の試料作成室等での作業が安定する。   By the way, if the solid electrolyte cylindrical body 30 is allowed to expand and contract in the axial direction, a part of the solid electrolyte or a part of the electrode may be peeled off due to thermal expansion or the like. However, even in such a case, in the present invention, the gas flows into the solid electrolyte cylindrical body 30 from below, so that the treated gas flows out from above, and the solid electrolyte or the like peeled off is below this Stay on the gas supply side after treatment. For this reason, pure purified gas can be supplied, and the operation in the sample preparation chamber or the like on the gas supply side is stabilized.

さらに、複数の固体電解質筒状体30を一鉛直面上に所定ピッチで配設するとともに、加熱手段31を構成する平面状のヒータ43にて、固体電解質筒状体30をサンドイッチ状に挟む。これによって、コンパクトな酸素ポンプを構成することができ、この酸素ポンプを使用する酸素分圧制御装置への組み込み性が向上する。しかも、複数本の固体電解質筒状体30を備えるので、精製能力の向上を図ることができる。   Further, a plurality of solid electrolyte cylindrical bodies 30 are arranged at a predetermined pitch on one vertical plane, and the solid electrolyte cylindrical bodies 30 are sandwiched between flat heaters 43 constituting the heating means 31. As a result, a compact oxygen pump can be formed, and the incorporation into an oxygen partial pressure control apparatus using this oxygen pump is improved. In addition, since a plurality of solid electrolyte cylindrical bodies 30 are provided, the purification capacity can be improved.

なお、この実施形態の酸素ポンプでは、ガス分岐管62から各固体電解質筒状体30にガスを供給する分フレキシブル連結体56と、ガス流入用管69が接続されるガス分岐管62と、ガス流出用管68が接続されるガス合流管61と、各固体電解質筒状体30からガス合流管61に供給するフレキシブル連結体55とを備えた流量制御機構が構成される。この流量制御機構によって、ガス流入用管69から固体電解質筒状体30までの上流側流路と、固体電解質筒状体30からガス流出用管68までの下流側流路とにおいて、流路長さを相違させるとともに、固体電解質筒状体毎の上流側流路と下流側流路との合計長さを一定にした。   In the oxygen pump of this embodiment, the flexible coupling body 56 for supplying gas from the gas branch pipe 62 to each solid electrolyte cylindrical body 30, the gas branch pipe 62 to which the gas inflow pipe 69 is connected, the gas A flow rate control mechanism including a gas junction pipe 61 to which the outflow pipe 68 is connected and a flexible coupling body 55 that supplies the gas junction pipe 61 from each solid electrolyte cylindrical body 30 is configured. By this flow rate control mechanism, the flow path length in the upstream flow path from the gas inflow tube 69 to the solid electrolyte cylindrical body 30 and the downstream flow path from the solid electrolyte cylindrical body 30 to the gas outflow pipe 68 is reduced. In addition, the total length of the upstream channel and the downstream channel for each solid electrolyte cylindrical body was made constant.

したがって、流量制御機構によって、酸素ポンプでは、並設される固体電解質筒状体30毎に、上流側と下流側とで流路の長さを相違させ、この酸素ポンプ内を流れ込んで、分岐した後、合流するガスの流路の長さを一致させている。このため、各固体電解質筒状体30を流れるガスの流量が同一となって、各固体電解質筒状体30の処理能力が同一となっている。   Therefore, in the oxygen pump, the flow rate control mechanism makes the flow path lengths different between the upstream side and the downstream side for each of the solid electrolyte cylindrical bodies 30 arranged side by side, and flows into the oxygen pump and branches. Thereafter, the lengths of the flow paths of the gas to be merged are matched. For this reason, the flow rate of the gas flowing through each solid electrolyte cylindrical body 30 is the same, and the processing capability of each solid electrolyte cylindrical body 30 is the same.

ところで、前記実施形態では、加熱手段31として平面状のヒータ43を使用したが、平面状のヒータ43を使用せずに、固体電解質筒状体30を包囲状とする電熱線(ヒータを用いてもよい。この場合、複数のリング状の電熱線を軸方向に沿って所定のピッチで配置したものであっても、1本の電熱線を固体電解質筒状体30の周り螺旋状(コイル状)に巻設したものであってもよい。このように、包囲状とする電熱線を用いれば、固体電解質筒状体30を全周方向から加熱することができ、効率のよい加熱が可能となる。   By the way, in the said embodiment, although the planar heater 43 was used as the heating means 31, instead of using the planar heater 43, the heating wire (using a heater) which makes the solid electrolyte cylindrical body 30 a surrounding shape is used. In this case, even if a plurality of ring-shaped heating wires are arranged at a predetermined pitch along the axial direction, one heating wire is spirally wound around the solid electrolyte cylindrical body 30 (coiled). In this way, by using a surrounding heating wire, the solid electrolyte cylindrical body 30 can be heated from the entire circumferential direction, and efficient heating is possible. Become.

また、前記実施形態では、各固体電解質筒状体30を一鉛直面上に配設しているが、他の実施形態として、複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成してもよい。この場合、複数の固体電解質筒状体30を円周方向に沿って配設したり、複数本を束ねるように配設したりすることができる。また、円周方向に沿って配設する場合、複数の同心円上に配設したものであってもよい。   Moreover, in the said embodiment, although each solid electrolyte cylindrical body 30 is arrange | positioned on one vertical surface, as another embodiment, a column-shaped solid electrolyte cylindrical body in the some solid electrolyte cylindrical body 30 is provided. You may comprise a bundle. In this case, a plurality of solid electrolyte cylindrical bodies 30 can be disposed along the circumferential direction, or a plurality of solid electrolyte cylindrical bodies 30 can be disposed so as to be bundled. Moreover, when arrange | positioning along the circumferential direction, you may arrange | position on the some concentric circle.

複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成すれば、加熱手段31としてこの固体電解質筒状体束の外周側に配置されて外周を包囲状とする電熱線(ヒータ)、内周側に配置されて内周を包囲状とする電熱線(ヒータ)、又は外周側と内周側の両者を包囲状とする電熱線(ヒータ)を使用することができる。このため、固体電解質筒状体束の各固体電解質筒状体30をより効率よく加熱することができ、しかも、複数の固体電解質筒状体を備えるので、精製能力の向上を図ることができる。   If a plurality of solid electrolyte cylindrical bodies 30 constitutes a columnar solid electrolyte cylindrical bundle, a heating wire 31 is disposed on the outer peripheral side of the solid electrolyte cylindrical bundle as a heating means 31 and surrounds the outer periphery ( Heater), a heating wire (heater) disposed on the inner peripheral side and surrounding the inner periphery, or a heating wire (heater) surrounding both the outer peripheral side and the inner peripheral side can be used. For this reason, each solid electrolyte cylindrical body 30 of the solid electrolyte cylindrical body bundle can be heated more efficiently, and moreover, since a plurality of solid electrolyte cylindrical bodies are provided, the purification ability can be improved.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、固体電解質筒状体30の上端と下端とのいずれか一方をフレキシブル連結体にて連結するようなものでもよい。また、固体電解質筒状体30の数の増減は任意であり、少なくとも1本あればよい。鉛直面上に配設する場合でも、定ピッチでなく、不等ピッチでもよい。さらには、各固体電解質筒状体30を上下方向に沿って配設することなく、水平方向等に沿って配設してもよい。   As mentioned above, although it demonstrated per embodiment of this invention, this invention is not limited to the said embodiment, A various deformation | transformation is possible, for example, either one of the upper end of the solid electrolyte cylindrical body 30, and a lower end May be connected by a flexible connector. The number of solid electrolyte cylindrical bodies 30 can be increased or decreased, and at least one solid electrolyte cylindrical body 30 is sufficient. Even when it is arranged on a vertical plane, it may be an unequal pitch instead of a constant pitch. Further, each solid electrolyte cylindrical body 30 may be disposed along the horizontal direction or the like without being disposed along the vertical direction.

実施形態では、下方の分岐管62に接続される連結管69側を長くしているが、上方の合流管61に接続される連結管68側を長くしてもよい。さらに実施形態では、ガスが下方の連結管69から流入して各固体電解質筒状体30にて処理された後、上方の連結管68から流出するものであるが、逆に、ガスが上方の連結管68から流入して各固体電解質筒状体30にて処理された後、下方の連結管69から流出するものであってもよい。   In the embodiment, the connecting pipe 69 connected to the lower branch pipe 62 is elongated, but the connecting pipe 68 connected to the upper junction pipe 61 may be elongated. Further, in the embodiment, the gas flows in from the lower connecting pipe 69 and is processed in each solid electrolyte cylindrical body 30, and then flows out from the upper connecting pipe 68. It may flow out from the connecting pipe 68 and then flow out from the lower connecting pipe 69 after being treated by each solid electrolyte cylindrical body 30.

加熱手段31のヒータ43として、前記実施形態では固体電解質筒状体30をサンドイッチ状に挟んだものであったが、前面側と後面側とのいずれか一方に配置するものであってもよい。また、複数の固体電解質筒状体30にて柱状の固体電解質筒状体束を構成したものに対する加熱手段31に、平面状のヒータ43を使用してもよく、この場合であっても、2枚の平面状のヒータ43でサンドイッチ状に挟んでも、一枚の平面状のヒータ43を前面側と後面側とのいずれか一方に配置するものであってもよく、さらには、4枚の平面状のヒータ43で、固体電解質筒状体束を前後左右の4方向を包囲するように配置してもよい。   As the heater 43 of the heating means 31, the solid electrolyte cylindrical body 30 is sandwiched in the embodiment, but may be disposed on either the front side or the rear side. In addition, a planar heater 43 may be used as the heating means 31 for a column-shaped solid electrolyte cylindrical body bundle constituted by a plurality of solid electrolyte cylindrical bodies 30. Even when sandwiched between two flat heaters 43, one flat heater 43 may be disposed on either the front side or the rear side, and further, four flat planes may be provided. The solid electrolyte cylindrical bundle may be arranged so as to surround the four directions of the front, rear, left and right with the heater 43 having a shape.

本発明の実施形態を示す酸素ポンプの内部の要部正面図である。It is a principal part front view inside the oxygen pump which shows embodiment of this invention. 前記酸素ポンプの断面側面図である。It is a cross-sectional side view of the oxygen pump. 。 従来の酸素分圧制御装置の簡略図である。. It is a simplified diagram of a conventional oxygen partial pressure control device. 酸素ポンプの原理の説明図である。It is explanatory drawing of the principle of an oxygen pump.

符号の説明Explanation of symbols

30 固体電解質筒状体
31 加熱手段
43 ヒータ
55 フレキシブル連結体
56 フレキシブル連結体
30 Solid electrolyte cylindrical body 31 Heating means 43 Heater 55 Flexible connector 56 Flexible connector

Claims (6)

酸素イオン伝導性を有する固体電解質筒状体と、この固体電解質筒状体の内面及び外面に配置される電極と、固体電解質筒状体を加熱する加熱手段を備えた酸素ポンプにおいて、
固体電解質筒状体の両端をそれぞれフレキシブル連結体を介して固定側に取付けたことを特徴とする酸素ポンプ。
In an oxygen pump comprising a solid electrolyte cylindrical body having oxygen ion conductivity, electrodes disposed on the inner and outer surfaces of the solid electrolyte cylindrical body, and heating means for heating the solid electrolyte cylindrical body,
An oxygen pump characterized in that both ends of a solid electrolyte cylindrical body are respectively attached to a fixed side via a flexible connector.
複数の固体電解質筒状体を一鉛直面上に所定ピッチで配設したことを特徴とする請求項1の酸素ポンプ。   2. The oxygen pump according to claim 1, wherein a plurality of solid electrolyte cylindrical bodies are arranged at a predetermined pitch on one vertical plane. 複数の固体電解質筒状体にて柱状の固体電解質筒状体束を構成したことを特徴とする請求項1の酸素ポンプ。   2. The oxygen pump according to claim 1, wherein a columnar solid electrolyte cylindrical bundle is constituted by a plurality of solid electrolyte cylindrical bodies. 加熱手段を平面状のヒータにて構成するとともに、この平面状のヒータにて固体電解質筒状体をサンドイッチ状に挟んだことを特徴とする請求項2又は請求項3の酸素ポンプ。   4. The oxygen pump according to claim 2, wherein the heating means is constituted by a planar heater, and the solid electrolyte cylindrical body is sandwiched between the planar heaters. 前記加熱手段は固体電解質筒状体を包囲状に巻設する電熱線からなることを特徴とする請求項2又は請求項3の酸素ポンプ。   4. The oxygen pump according to claim 2, wherein the heating means comprises a heating wire that winds the solid electrolyte cylindrical body in a surrounding shape. 固体電解質筒状体を上下方向に沿って配設して、下方からガスが流入することを特徴とする請求項1〜請求項5のいずれかの酸素ポンプ。   The oxygen pump according to any one of claims 1 to 5, wherein the solid electrolyte cylindrical body is disposed along the vertical direction, and gas flows from below.
JP2006341753A 2006-12-19 2006-12-19 Oxygen pump Active JP5329036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006341753A JP5329036B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006341753A JP5329036B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Publications (2)

Publication Number Publication Date
JP2008150259A true JP2008150259A (en) 2008-07-03
JP5329036B2 JP5329036B2 (en) 2013-10-30

Family

ID=39652853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006341753A Active JP5329036B2 (en) 2006-12-19 2006-12-19 Oxygen pump

Country Status (1)

Country Link
JP (1) JP5329036B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899091A (en) * 1972-03-29 1973-12-15
JPH05301016A (en) * 1991-04-22 1993-11-16 Invacare Corp Oxygen concentration apparatus utilizing pressurized air
JPH10500450A (en) * 1994-04-12 1998-01-13 オキシセル Oxygen supply and removal equipment
JPH10160328A (en) * 1996-11-26 1998-06-19 Matsushita Refrig Co Ltd Refrigerator
JP2000070706A (en) * 1998-01-22 2000-03-07 Litton Syst Inc Modular ceramic electrochemical device and its production
JP2001039702A (en) * 1999-06-01 2001-02-13 Litton Systems Inc Electrochemical oxygen generating system
JP2005089233A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Oxygen pump
JP2006137638A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Oxygen pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899091A (en) * 1972-03-29 1973-12-15
JPH05301016A (en) * 1991-04-22 1993-11-16 Invacare Corp Oxygen concentration apparatus utilizing pressurized air
JPH10500450A (en) * 1994-04-12 1998-01-13 オキシセル Oxygen supply and removal equipment
JPH10160328A (en) * 1996-11-26 1998-06-19 Matsushita Refrig Co Ltd Refrigerator
JP2000070706A (en) * 1998-01-22 2000-03-07 Litton Syst Inc Modular ceramic electrochemical device and its production
JP2001039702A (en) * 1999-06-01 2001-02-13 Litton Systems Inc Electrochemical oxygen generating system
JP2005089233A (en) * 2003-09-17 2005-04-07 Matsushita Electric Ind Co Ltd Oxygen pump
JP2006137638A (en) * 2004-11-12 2006-06-01 Matsushita Electric Ind Co Ltd Oxygen pump

Also Published As

Publication number Publication date
JP5329036B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
JP5620957B2 (en) Electrochemical oxygen generation system
US7396442B2 (en) Electrochemical oxygen generator module assembly
CN103388904A (en) Fluid heating-cooling cylinder device
JP4344682B2 (en) Fluid heating device and test device
JP5329036B2 (en) Oxygen pump
JP5329037B2 (en) Oxygen pump
JP2009252561A (en) Testing device
JP5348447B2 (en) Cell characterization device
JP5138211B2 (en) Oxygen pump
JP2008151709A (en) Oxygen sensor
JP4870343B2 (en) Cell characterization device
JP4412560B2 (en) Gas pump
JP5000572B2 (en) Oxygen pump and oxygen pump recovery method
US6685235B1 (en) System and method for attaching tubing
JP2008185341A (en) Oxygen sensor
JPH06221677A (en) Gas heater
JPH09229779A (en) Thermocuple for semiconductor element manufacturing apparatus
JP4438246B2 (en) Heat treatment equipment
JP4304333B2 (en) Hot air heater
KR0165331B1 (en) Diffusion furnace tube
JP5022663B2 (en) Hydrogen production apparatus and assembly method thereof
KR20160083971A (en) High temperature heater comprising electrically insulated ceramic liner and the method for manufacturing thereof
KR100880966B1 (en) Heat-treating apparatus and method for assembling heat-treating apparatus
EP1472022A2 (en) Method for attaching tubing
JP2007178073A (en) Heating furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091110

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20091110

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130724

R150 Certificate of patent or registration of utility model

Ref document number: 5329036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250