JP2008149341A - Flux cored wire for gas-shielded arc welding - Google Patents

Flux cored wire for gas-shielded arc welding Download PDF

Info

Publication number
JP2008149341A
JP2008149341A JP2006338941A JP2006338941A JP2008149341A JP 2008149341 A JP2008149341 A JP 2008149341A JP 2006338941 A JP2006338941 A JP 2006338941A JP 2006338941 A JP2006338941 A JP 2006338941A JP 2008149341 A JP2008149341 A JP 2008149341A
Authority
JP
Japan
Prior art keywords
flux
tio
mgo
content
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006338941A
Other languages
Japanese (ja)
Other versions
JP4209913B2 (en
Inventor
Hitoshi Ishida
斉 石田
Takeshi Hidaka
武史 日▲高▼
Kazuyuki Suenaga
和之 末永
Yoshiomi Okazaki
喜臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006338941A priority Critical patent/JP4209913B2/en
Priority to CN200710185054XA priority patent/CN101204763B/en
Priority to SG200718275-1A priority patent/SG144044A1/en
Priority to SE0702712A priority patent/SE531320C2/en
Priority to NO20076432A priority patent/NO20076432L/en
Priority to KR1020070130559A priority patent/KR100925321B1/en
Priority to NL1034833A priority patent/NL1034833C/en
Publication of JP2008149341A publication Critical patent/JP2008149341A/en
Application granted granted Critical
Publication of JP4209913B2 publication Critical patent/JP4209913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/406Filled tubular wire or rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flux cored wire for gas-shielded arc welding, a flux cored wire that can obtain a weld metal which secures a strength of ≥620 MPa at 0.2% proof stress (σ<SB>0.2</SB>) and a V Charpy impact value vE<SB>-60</SB>of ≥50J at -60°C and that is most suitable as a welding material of high tensile steel. <P>SOLUTION: The flux cored wire for gas-shielded arc welding contains, by mass% to the total mass of the wire, 0.02-0.15% C, 0.3-1.4% Si, 1.2-3.5% Mn, 0.2-3.4% Ni, 0.02-2.0% Cr, 2.0-6.0% Ti, 0.1-2.2% Mo, and 0.01-1.0% Mg. The TiO<SB>2</SB>content [TiO<SB>2</SB>] and MgO content [MgO] in the flux satisfies the relation of expression (1): [TiO<SB>2</SB>]/[MgO]≥4.7, provided that [TiO<SB>2</SB>] and [MgO] are each the content (mass% to the total mass of the wire) of TiO<SB>2</SB>and MgO contained in the flux. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼製外皮の中にTiO2を主体とするTiO2系(チタニア系)フラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤに関するものであり、特に溶接作業性が良好であると共に、良好な靭性を発揮する溶接金属を得ることができ、高張力鋼の溶接に最適なガスシールドアーク溶接用フラックス入りワイヤに関するものである。 The present invention relates to TiO 2 based flux cored wire for gas shielded arc welding formed by filling a (titania-based) flux mainly composed of TiO 2 in the steel sheath, it is favorable especially weldability In addition, the present invention relates to a flux-cored wire for gas shielded arc welding that can obtain a weld metal exhibiting good toughness and is optimal for welding high-strength steel.

船舶や海洋構造物などは、高張力鋼を溶接することによって構築されるが、こうした構造物を構築するには、高強度でしかも良好な靭性(特に低温靭性)を発揮する溶接材料の実現が望まれている。   Ships and offshore structures are constructed by welding high-tensile steel. To build such structures, it is necessary to realize a welding material that exhibits high strength and good toughness (especially low-temperature toughness). It is desired.

被覆アーク溶接やサブマージアーク溶接の分野では、低温靭性に優れた溶接材料が開発されているが、作業能率や溶接姿勢の点で問題がある。   In the fields of covered arc welding and submerged arc welding, welding materials having excellent low-temperature toughness have been developed, but there are problems in terms of work efficiency and welding posture.

一方、フラックス入りワイヤを用いたガスシールドアーク溶接は、ビード外観が良好であることや優れた溶接作業性が得られることが知られている。こうしたガスシールドアーク溶接で用いられるフラックス入りワイヤに関しては、チタニア(TiO2)を主成分とするフラックスを鋼製外皮中に充填したチタニア系フラックス入りワイヤが広く使用されている。 On the other hand, gas shielded arc welding using a flux-cored wire is known to have a good bead appearance and excellent welding workability. As the flux cored wire used in such gas shielded arc welding, a titania flux cored wire in which a steel outer sheath is filled with a flux mainly composed of titania (TiO 2 ) is widely used.

しかしながら、チタニア系フラックスを充填したフラックス入りワイヤを用いてガスシールドアーク溶接を実施した場合には、溶接金属中の酸素濃度が500〜600ppm程度と高くなりやすく、溶接金属の低温靭性が低下しやすいという問題がある。   However, when gas shielded arc welding is performed using a flux-cored wire filled with a titania-based flux, the oxygen concentration in the weld metal tends to be as high as about 500 to 600 ppm, and the low-temperature toughness of the weld metal tends to decrease. There is a problem.

こうしたことから、フラックス入りワイヤに関して、これまでにも溶接金属の機械的特性(特に、低温靭性)と溶接作業性の両立を目指して様々な溶接材料の開発が行われている。   For these reasons, various welding materials have been developed for flux-cored wires with the aim of achieving both the mechanical properties (particularly, low temperature toughness) of the weld metal and welding workability.

こうした技術として、例えば特許文献1には、TiO2,MgO,MnOを主成分とし、TiO2/MgOが1.7以上であるチタニア系フラックスを用いると共に、Co,Cr,C,Mn,Ni,Mo等の合金成分を適切な範囲に調整することによって、良好な溶接作業性と機械的特性(引張強度TS:約790MPa以上、−30℃でのVシャルピー衝撃値vE-30が約100J以上)を確保できることが提案されている。 As such a technique, for example, Patent Document 1 uses a titania-based flux mainly composed of TiO 2 , MgO, and MnO and TiO 2 / MgO of 1.7 or more, and Co, Cr, C, Mn, Ni, By adjusting the alloy components such as Mo to an appropriate range, good workability and mechanical properties (tensile strength TS: about 790 MPa or more, V Charpy impact value vE- 30 at −30 ° C. is about 100 J or more) It has been proposed that this can be secured.

また特許文献2には、ガスシールドアーク溶接用フラックス入りワイヤにおいて、TiO2,MgO,金属フッ化物および合金成分(Si,Mn,Mg,Ni,Cu,Mo等)の適正範囲を規定し、良好な溶接作業性と機械的特性(引張強度TS:約830MPa以上、−40℃でのVシャルピー衝撃値vE-40が約108J以上)を確保できることが提案されている。 Patent Document 2 defines an appropriate range of TiO 2 , MgO, metal fluoride, and alloy components (Si, Mn, Mg, Ni, Cu, Mo, etc.) in a flux-cored wire for gas shielded arc welding. It has been proposed that a satisfactory welding workability and mechanical properties (tensile strength TS: about 830 MPa or more, V Charpy impact value vE- 40 at −40 ° C. of about 108 J or more) can be secured.

更に、特許文献3には、塩基性フラックス入りワイヤにおいて、スラグをTiO2−CaF2系とし、Mg,Si,Mnその他の金属の酸化物を添加することによって、溶接作業性と機械的特性でKS(韓国国家規格)およびAWS(米国溶接協会)の規格を満足し得ることが示されている。 Further, in Patent Document 3, in a wire with a basic flux, slag is made of TiO 2 —CaF 2 , and Mg, Si, Mn and other metal oxides are added, so that welding workability and mechanical characteristics are improved. It has been shown that KS (Korean National Standard) and AWS (American Welding Association) standards can be satisfied.

一方、特許文献4には、引張強度TSが490MPa級の鋼材を溶接する際に用いるチタニア系フラックス入りワイヤとして、フラックス中にSiO2やAl23を添加することによって、溶接部(溶接金属)の残留応力を低減し、疲労強度を向上させ得ることが示されている。 On the other hand, in Patent Document 4, as a titania-based flux-cored wire used when welding a steel material having a tensile strength TS of 490 MPa, a welded portion (welded metal) is added by adding SiO 2 or Al 2 O 3 into the flux. It is shown that the residual stress can be reduced and the fatigue strength can be improved.

また特許文献5には、ガスシールドアーク溶接に適用するチタニア系フラックス入りワイヤにおいて、TiO2と共に、MgOとFeOのうちの1種以上、およびSiO2、MnOを併用してフラックス中に添加することによって、溶接作業性と機械的特性(抗張力:約580MPa以上、0℃でのVシャルピー衝撃値vE0が約150J以上)のいずれも良好な溶接金属が得られることが示されている。
特開平3−47695号公報 特開平3−294093号公報 特開2003−154487号公報 特開2002−307189号公報 特開平7−314182号公報
Further, in Patent Document 5, in a titania-based flux-cored wire applied to gas shielded arc welding, one or more of MgO and FeO, and SiO 2 and MnO are used in combination with TiO 2 and added to the flux. Shows that a weld metal with good welding workability and mechanical properties (tensile strength: about 580 MPa or more, V Charpy impact value vE 0 at 0 ° C. of about 150 J or more) can be obtained.
Japanese Patent Laid-Open No. 3-47695 JP-A-3-294093 JP 2003-154487 A JP 2002-307189 A JP-A-7-314182

上記各種技術の開発によって、溶接金属の靭性が比較的良好な溶接構造物が得られたのであるが、溶接構造物には更に高強度および高靭性の溶接金属が得られるようなフラックス入りワイヤが望まれているのが実情である。即ち、溶接母材(被溶接材)として用いられる高張力鋼との強度バランス上、強度として0.2%耐力(σ0.2)で620MPa以上、−60℃の低温でのVシャルピー衝撃値vE-60が50J以上を確保できるような溶接金属の実現が望まれている。しかしながら、これまで提案されている技術では、そのような高強度・高靭性の溶接金属が得られるようなガスシールドアーク溶接用フラックス入りワイヤが実現できていないのが実情である。 The development of various technologies described above has yielded a welded structure with relatively good toughness of the weld metal, but the welded structure has a flux-cored wire that can provide a weld metal with higher strength and toughness. The reality is what is desired. That is, on the strength balance with the high strength steel used as a welding base material (material to be welded), the strength is 0.2% proof stress (σ 0.2 ) and the V Charpy impact value vE at a low temperature of −60 ° C. at 620 MPa or more. Realization of a weld metal such that 60 can secure 50J or more is desired. However, with the techniques proposed so far, it is a fact that a flux-cored wire for gas shielded arc welding that can obtain such a high strength and high toughness weld metal cannot be realized.

本発明は上記の様な事情に着目してなされたものであって、その目的は、強度として0.2%耐力(σ0.2)で620MPa以上、−60℃でのVシャルピー衝撃値vE-60が50J以上を確保できるような溶接金属が実現でき、高張力鋼の溶接材料として最適なガスシールドアーク溶接用フラックス入りワイヤを提供することにある。 The present invention has been made by paying attention to the above-described circumstances, and the object thereof is to obtain a V Charpy impact value vE −60 at −620 ° C. at a strength of 0.2% proof stress (σ 0.2 ) of 620 MPa or more. Is to provide a flux-cored wire for gas shielded arc welding that is optimal as a welding material for high-strength steel.

上記目的を達成することのできた、本発明に係るガスシールドアーク溶接用フラックス入りワイヤとは、鋼製外皮の中にTiO2系フラックスを主体とするフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、C:0.02〜0.15%、Si:0.3〜1.4%、Mn:1.2〜3.5%、Ni:0.2〜3.4%、Cr:0.02〜2.0%、Ti:2.0〜6.0%、Mo:0.1〜2.2%およびMg:0.01〜1.0%を夫々含有すると共に、フラックス中のTiO2含有量[TiO2]とMgO含有量[MgO]が下記(1)式の関係を満足するものである点に要旨を有するものである。
[TiO2]/[MgO]≧4.7 …(1)
但し、[TiO2]および[MgO]は、フラックス中に含まれるTiO2およびMgOの含有量(ワイヤ全質量に対する質量%)
The flux-cored wire for gas shielded arc welding according to the present invention capable of achieving the above object is a flux for gas shielded arc welding formed by filling a steel outer sheath with a flux mainly composed of TiO 2 flux. In the cored wire, in mass% with respect to the total mass of the wire, C: 0.02 to 0.15%, Si: 0.3 to 1.4%, Mn: 1.2 to 3.5%, Ni: 0.2 -3.4%, Cr: 0.02-2.0%, Ti: 2.0-6.0%, Mo: 0.1-2.2% and Mg: 0.01-1.0% In addition to the content, the TiO 2 content [TiO 2 ] and the MgO content [MgO] in the flux satisfy the following formula (1).
[TiO 2 ] / [MgO] ≧ 4.7 (1)
However, [TiO 2 ] and [MgO] are the contents of TiO 2 and MgO contained in the flux (mass% with respect to the total mass of the wire).

本発明のガスシールドアーク溶接用フラックス入りワイヤにおいては、前記TiO2含有量[TiO2]が4.5〜6.1%であり、MgO含有量[MgO]が0.2〜1.5%であることが好ましい。またフラックスの充填率は、10〜30%程度が適切である。 In the flux-cored wire for gas shielded arc welding of the present invention, the TiO 2 content [TiO 2 ] is 4.5 to 6.1%, and the MgO content [MgO] is 0.2 to 1.5%. It is preferable that Moreover, about 10 to 30% is appropriate for the filling rate of the flux.

本発明のフラックス入りワイヤでは、フラックス入りワイヤの全体としての化学成分組成を適切に調整すると共に、フラックス中のTiO2とMgOの比を適正な範囲内とすることによって、溶着金属に移行する酸素濃度を低減して溶着金属中の介在物(酸化物)を低減することができ、その結果として、良好な特性を有する溶着金属を主構成部分とする溶接金属の靭性を著しく改善できた。 In the flux-cored wire of the present invention, the chemical component composition of the flux-cored wire as a whole is appropriately adjusted, and the oxygen transferred to the weld metal by setting the ratio of TiO 2 and MgO in the flux within an appropriate range. The inclusion (oxide) in the weld metal can be reduced by reducing the concentration, and as a result, the toughness of the weld metal having the weld metal having good characteristics as the main constituent part can be remarkably improved.

本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、フラックス入りワイヤの全体としての化学成分組成を適切に調整すると共に、フラックスへ所定量のMgOを添加することによって、TiO2の酸素に対する活量を低下させることができることを見出した。これによってワイヤ全体としてのTi含有量を増加させても、最終的に溶着金属に移行する酸素濃度を低減することができて溶着金属中の介在物(酸化物)を低減することができ、その結果として良好な特性の溶着金属を主構成部分とする溶接金属の靭性を著しく改善できることを見出し、本発明を完成した。 The inventors of the present invention have made extensive studies to solve the above problems. As a result, it was found that the activity of TiO 2 with respect to oxygen can be reduced by appropriately adjusting the chemical composition of the flux-cored wire as a whole and adding a predetermined amount of MgO to the flux. As a result, even if the Ti content of the entire wire is increased, the oxygen concentration finally transferred to the weld metal can be reduced, and inclusions (oxides) in the weld metal can be reduced. As a result, it has been found that the toughness of a weld metal having a weld metal having good characteristics as a main constituent part can be remarkably improved, and the present invention has been completed.

本発明に係るガスシールドアーク溶接用フラックス入りワイヤにおいては、C,Si,Mn,Ni,Cr,TiおよびMgの基本成分の含有量(ワイヤ全質量に対する質量%)を適切に規定することも重要な要件であるが、これらの成分の含有量の範囲限定理由は下記の通りである。尚、これらの成分は、ワイヤ全体としての含有量が溶着金属の特性に影響を与えるものであり、同一の成分はその形態(金属もしくは酸化物)を問わずその合計量を意味する。例えば、TiやMgについては、酸化物の形態としても含有するものであるが、下記含有量は酸化物を形成する金属元素量をも含めた値である。   In the flux-cored wire for gas shielded arc welding according to the present invention, it is also important to appropriately specify the content of basic components of C, Si, Mn, Ni, Cr, Ti and Mg (mass% with respect to the total mass of the wire). The reason for limiting the range of the content of these components is as follows. In addition, these components are those in which the content of the entire wire affects the characteristics of the deposited metal, and the same component means the total amount regardless of the form (metal or oxide). For example, Ti and Mg are contained in the form of oxides, but the following contents are values including the amount of metal elements forming oxides.

[C:0.02〜0.15%]
Cは、溶接金属(上記溶着金属と母材の一部が融合して「溶接金属」を形成する)の強度を確保する上で重要な元素である。0.2%耐力(σ0.2)で620MPa以上を確保するためには、C含有量は0.02%以上とする必要がある。しかしながら、C含有量が過剰となると、強度過多となって低温割れ感受性が高くなるので、0.15%以下とすべきである。尚、C含有量の好ましい下限は0.04%であり、好ましい上限は0.08%である。
[C: 0.02 to 0.15%]
C is an important element for ensuring the strength of the weld metal (the weld metal and a part of the base material are fused to form a “weld metal”). In order to secure 620 MPa or more with 0.2% proof stress (σ 0.2 ), the C content needs to be 0.02% or more. However, if the C content is excessive, the strength is excessive and the cold cracking sensitivity is increased, so it should be 0.15% or less. In addition, the minimum with preferable C content is 0.04%, and a preferable upper limit is 0.08%.

[Si:0.3〜1.4%]
Siは、脱酸剤として機能し、溶接金属の強度確保と酸素低減に有効な元素である。こうした効果を発揮させるためには、Si含有量は0.3%以上とする必要がある。しかしながら、Si含有量が過剰になって1.4%を超えると、溶着金属の粘性が高くなって溶接作業性が低下することになる。尚、Si含有量の好ましい下限は0.4%であり、好ましい上限は0.9%である。
[Si: 0.3-1.4%]
Si functions as a deoxidizer and is an effective element for securing the strength of the weld metal and reducing oxygen. In order to exert such effects, the Si content needs to be 0.3% or more. However, if the Si content is excessive and exceeds 1.4%, the viscosity of the deposited metal becomes high and welding workability is lowered. In addition, the minimum with preferable Si content is 0.4%, and a preferable upper limit is 0.9%.

[Mn:1.2〜3.5%]
Mnは、溶接金属の強度確保と酸素低減に有効な元素である。Mn含有量が1.2%未満では、脱酸不足となって溶接金属の強度・靭性が確保できなくなる。一方、Mn含有量が3.5%を超えて過剰になると、強度が高くなって低温割れ感受性が高くなる。尚、Mn含有量の好ましい下限は1.7%であり、好ましい上限は2.9%である。
[Mn: 1.2 to 3.5%]
Mn is an element effective for ensuring the strength of the weld metal and reducing oxygen. If the Mn content is less than 1.2%, deoxidation is insufficient and the strength and toughness of the weld metal cannot be secured. On the other hand, when the Mn content exceeds 3.5% and becomes excessive, the strength becomes high and the cold cracking sensitivity becomes high. In addition, the minimum with preferable Mn content is 1.7%, and a preferable upper limit is 2.9%.

[Ni:0.2〜3.4%]
Niは、溶接金属の強度と靭性を確保する上で重要な元素である。Ni含有量が0.2%未満では、十分な靭性改善効果が発揮されず、3.4%を超える高温割れ感受性が高くなる。尚、Ni含有量の好ましい下限は1.7%であり、好ましい上限は2.4%である。
[Ni: 0.2 to 3.4%]
Ni is an important element in securing the strength and toughness of the weld metal. When the Ni content is less than 0.2%, sufficient effect of improving toughness is not exhibited, and the hot cracking sensitivity exceeding 3.4% is increased. In addition, the minimum with preferable Ni content is 1.7%, and a preferable upper limit is 2.4%.

[Cr:0.02〜2.0%]
Crは、安定的に溶接金属の強度を確保する上で有用な元素である。Cr含有量が0.02%未満では、十分な強度を確保することができず、2.0%を超えると強度が高くなり過ぎて靭性が劣化することになる。尚、Cr含有量の好ましい下限は0.1%であり、好ましい上限は0.5%である。
[Cr: 0.02 to 2.0%]
Cr is an element useful for ensuring the strength of the weld metal stably. If the Cr content is less than 0.02%, sufficient strength cannot be ensured, and if it exceeds 2.0%, the strength becomes too high and the toughness deteriorates. In addition, the minimum with preferable Cr content is 0.1%, and a preferable upper limit is 0.5%.

[Ti:2.0〜6.0%]
Tiは、脱酸効果を有する元素であり、また結晶粒の微細化に有効な元素である。これらの効果を発揮させるためには、Ti含有量は2.0%以上とする必要がある。しかしながら、Ti含有量が過剰になると強度が高くなり過ぎると共に、スラグ発生量が多くなって溶接作業性が低下することになる。尚、Ti含有量の好ましい下限は3.3%であり、好ましい上限は4.0%である。
[Ti: 2.0 to 6.0%]
Ti is an element having a deoxidizing effect and is an element effective for refining crystal grains. In order to exert these effects, the Ti content needs to be 2.0% or more. However, if the Ti content is excessive, the strength becomes too high, and the amount of slag generated increases, resulting in a decrease in welding workability. In addition, the minimum with preferable Ti content is 3.3%, and a preferable upper limit is 4.0%.

[Mo:0.1〜2.2%]
Moは、溶接金属の強度を確保する上で重要な元素である。Mo含有量が0.1%未満では、十分な強度を確保することができず、2.2%を超えると著しく硬化して靭性が却って低下することになる。尚、Mo含有量の好ましい下限は0.2%であり、好ましい上限は1.0%である。
[Mo: 0.1 to 2.2%]
Mo is an important element in securing the strength of the weld metal. If the Mo content is less than 0.1%, sufficient strength cannot be ensured, and if it exceeds 2.2%, it will be remarkably cured and the toughness will be reduced. In addition, the minimum with preferable Mo content is 0.2%, and a preferable upper limit is 1.0%.

[Mg:0.01〜1.0%]
Mgには脱酸効果があり、Mg含有量が0.01%未満では、脱酸効果が不足して溶接金属の靭性が低下することになる。しかしながら、Mg含有量が過剰になって1.0%を超えると溶接時のヒューム量が増加して溶接作業性が低下することになる。尚、Mg含有量の好ましい下限は0.1%であり、好ましい上限は0.8%である。
[Mg: 0.01 to 1.0%]
Mg has a deoxidation effect, and if the Mg content is less than 0.01%, the deoxidation effect is insufficient and the toughness of the weld metal is lowered. However, if the Mg content becomes excessive and exceeds 1.0%, the amount of fume during welding increases and the welding workability deteriorates. In addition, the minimum with preferable Mg content is 0.1%, and a preferable upper limit is 0.8%.

本発明のフラックス入りワイヤでは、フラックス中のTiO2含有量[TiO2]とMgO含有量[MgO]が下記(1)式の関係を満足することも重要である。こうした関係を規定した理由は下記の通りである。
TiO2/MgO≧4.7 …(1)
但し、[TiO2]および[MgO]は、フラックス中に含まれるTiO2およびMgOの含有量(ワイヤ全質量に対する質量%)
In the flux-cored wire of the present invention, it is also important that the TiO 2 content [TiO 2 ] and the MgO content [MgO] in the flux satisfy the relationship of the following formula (1). The reasons for defining these relationships are as follows.
TiO 2 /MgO≧4.7 (1)
However, [TiO 2 ] and [MgO] are the contents of TiO 2 and MgO contained in the flux (mass% with respect to the total mass of the wire).

本発明のフラックス入りワイヤでは、フラックスへMgOを添加することによって、フラックス中のTiO2活量を低下させ、これによって溶着金属中の酸素濃度を低下させることができるものである。こうした現象を進行させることによって、溶着金属中の介在物(酸化物系介在物)を低減させ、特に低温靭性の良好な(具体的には、−60℃でのVシャルピー衝撃値vE-60が50J以上)の溶接金属が実現できることになる。 In the flux-cored wire of the present invention, by adding MgO to the flux, the TiO 2 activity in the flux can be reduced, thereby reducing the oxygen concentration in the weld metal. By proceeding with such a phenomenon, inclusions (oxide inclusions) in the weld metal are reduced, and particularly, the low-temperature toughness is good (specifically, the V Charpy impact value vE- 60 at −60 ° C. is 50J or more) can be realized.

上記した作用(酸素濃度低減効果)は、MgO含有量が多いほど有効に発揮されるが、溶接作業性の観点からすれば、酸素低減効果に相反して悪化することになる。少なくとも溶接作業性を確保するという観点からして、本発明ではTiO2/MgOを4.7以上とする必要がある。しかしながら、TiO2に対するMgO含有量の割合が少なくなると、溶接作業性は良好であるが、酸素低減効果が却って低下して溶接金属の靭性が劣化するので、TiO2/MgOは16.9となる程度までとすること好ましい。またTiO2/MgOの好ましい下限は8.0程度である。 The above-described action (oxygen concentration reduction effect) is more effectively exhibited as the MgO content is increased. However, from the viewpoint of welding workability, the effect is worsened against the oxygen reduction effect. From the viewpoint of ensuring at least welding workability, in the present invention, TiO 2 / MgO needs to be 4.7 or more. However, when the ratio of the content of MgO to TiO 2 is reduced, the welding workability is good, but the oxygen reduction effect is decreased and the toughness of the weld metal is deteriorated, so that TiO 2 / MgO is 16.9. It is preferable to make it to the extent. The preferable lower limit of TiO 2 / MgO is about 8.0.

本発明のフラックッス入りワイヤにおけるフラックス成分は、少なくともTiO2を主成分として含むものであるが、このTiO2の含有量([TiO2])も適切な範囲にすることが好ましい。即ち、TiO2含有量([TiO2])が少なくなれば、TiO2系フラックス入りワイヤとしての作用(主に溶接作業性)が発揮されにくくなり、逆にその量が多くなると、溶着金属中(結果的に溶接金属中)の酸素濃度が高くなる傾向を示す。こうした観点からして、TiO2含有量([TiO2])は、4.5〜6.1%程度(ワイヤ全体に対する割合)にすることが好ましい。尚、MgOの好ましい含有量については、TiO2の添加量の適切な範囲内で且つ上記[TiO2]/[MgO]が規定する範囲内になるように調整することになるが、0.2〜1.5%程度が好ましい。 Flux component in Furakkussu cored wire of the present invention, at least it is intended to include TiO 2 as a main component, the content of the TiO 2 ([TiO 2]) also preferably be in an appropriate range. That is, if the TiO 2 content ([TiO 2 ]) decreases, the function as a TiO 2 flux-cored wire (mainly welding workability) becomes difficult to be exhibited, and conversely, if the amount increases, As a result, the oxygen concentration in the weld metal tends to increase. From this point of view, the TiO 2 content ([TiO 2 ]) is preferably about 4.5 to 6.1% (ratio to the whole wire). Note that the preferable content of MgO, but will be adjusted to be within the range and above the appropriate range of the addition amount of TiO 2 [TiO 2] / [ MgO] is defined, 0.2 About 1.5% is preferable.

本発明のフラックッス入りワイヤでは、上記各元素が上記規定範囲内にあり、且つ[TiO2]/[MgO]が上記の範囲内に設定されていれば、その目的を発生することができるのであるが、フラックス成分としてはTiO2およびMgO以外に他の酸化物(例えば、Al23,SiO2,ZrO2等の造滓剤やアーク安定剤)も含み得るものである。 In the flux-cored wire of the present invention, if each of the above elements is within the specified range and [TiO 2 ] / [MgO] is set within the above range, the purpose can be generated. However, in addition to TiO 2 and MgO, the flux component may also contain other oxides (for example, a fossilizing agent such as Al 2 O 3 , SiO 2 , ZrO 2 or an arc stabilizer).

上記各成分からなるフラックスは、鋼製外皮内に充填されてフラックス入りワイヤが構成されるのであるが、フラックスの充填率(以下、「フラックス充填率」と呼ぶ)も適切な範囲にすることが好ましい。フラックス充填率は10〜30%程度が適切である。フラックス充填率が10%未満では、必要な合金元素の添加がフラックスのみから添加することが困難になり、それら元素を外皮から添加することは原材料のコストアップとなり、また合金元素の添加による外皮強度の増加で伸線性の劣化を招くことになる。またフラックス充填率が30%を超えると、外皮が薄くなり、断線しやすくなって伸線性の劣化を招くことになる。フラックス充填率の好ましい下限は12%程度であり、好ましい上限は20%程度である。   The flux composed of each of the above components is filled in a steel outer shell to constitute a flux-cored wire, but the flux filling rate (hereinafter referred to as “flux filling rate”) should also be in an appropriate range. preferable. The flux filling rate is suitably about 10 to 30%. If the flux filling rate is less than 10%, it becomes difficult to add the necessary alloy elements from the flux alone, and adding these elements from the outer shell increases the cost of the raw materials, and the outer shell strength by adding the alloy elements As a result of this increase, the drawability is degraded. On the other hand, when the flux filling rate exceeds 30%, the outer skin becomes thin, the wire is easily broken, and the drawability is deteriorated. The preferable lower limit of the flux filling rate is about 12%, and the preferable upper limit is about 20%.

尚、上記フラックス充填率は、下記の式によって定義される値である。
フラックス充填率(質量%)={(フラックスの質量)/(フラックス入りワイヤ全体の質量)}×100
The flux filling rate is a value defined by the following formula.
Flux filling rate (% by mass) = {(mass of flux) / (mass of the entire flux-cored wire)} × 100

本発明のフラックス入りワイヤにおいて、ワイヤ全体に対する元素含有量は、基本的にフラックス中の酸化物に含まれる金属元素量、および鋼製外皮中に含まれる含有量等に影響されることになるのであるが、フラックス中に含み得る酸化物量や充填率、および鋼製外皮中に含み得る元素量などの制約からして、フラックス中の酸化物中の金属元素量や鋼製外皮中に含まれる含有量だけではワイヤ全体の元素含有量を調整しにくい場合がある。特に、本発明のフラックス入りワイヤにおけるTi含有量は、酸化物中の元素含有量や鋼製外皮中の含有量だけでは調整しにくいことがある。このような場合には、フラックス中にTiの金属粉末を添加することによって、ワイヤ全体としてのTi含有量を調整することができる。   In the flux-cored wire of the present invention, the element content with respect to the entire wire is basically affected by the amount of metal elements contained in the oxide in the flux, the content contained in the steel outer shell, and the like. However, due to restrictions such as the amount of oxide and filling rate that can be contained in the flux, and the amount of element that can be contained in the steel outer shell, the amount of metal elements contained in the oxide in the flux and the content contained in the steel outer shell It may be difficult to adjust the element content of the entire wire by the amount alone. In particular, the Ti content in the flux-cored wire of the present invention may be difficult to adjust only by the element content in the oxide or the content in the steel outer shell. In such a case, the Ti content of the entire wire can be adjusted by adding a Ti metal powder to the flux.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実施例1]
まず、C:0.05%、Si:0.05%、Mn:0.50%、Ti:0.02%を夫々含み、残部:鉄および不可避不純物からなる軟鋼製フープ(鋼製外皮:HT80相当鋼)を円筒状に曲げながら、各種酸化物(TiO2,MgO,Al23,SiO2,ZrO等)を配合したフラックスを充填し、次に伸線加工を行い、フラックス充填率:13.5%、ワイヤ径:1.2mmのフラックス入りワイヤを作製した。こうした構成を基本とし、鋼製外皮の化学成分を調整したものを用いたり、フラックス中に金属粉末を混合したものを用いることによって、ワイヤ全体としての各元素含有量を調整した各種フラックス入りワイヤを作製した。作製した各フラックス入りワイヤの化学成分組成を下記表1に、フラックス中の酸化物の配合割合(ワイヤ全体に対する質量%)を下記表2に示す。
[Example 1]
First, a soft steel hoop (steel hull: HT80 containing C: 0.05%, Si: 0.05%, Mn: 0.50%, Ti: 0.02%, the balance: iron and inevitable impurities) Equivalent steel) is bent into a cylindrical shape, filled with a flux containing various oxides (TiO 2 , MgO, Al 2 O 3 , SiO 2 , ZrO, etc.), then drawn, and the flux filling rate: A flux-cored wire with 13.5% and wire diameter: 1.2 mm was produced. Based on such a configuration, various types of flux-cored wires in which the content of each element as a whole wire is adjusted by using a steel shell with a chemical component adjusted or a metal powder mixed in the flux. Produced. The chemical component composition of each flux-cored wire produced is shown in Table 1 below, and the compounding ratio of the oxide in the flux (mass% with respect to the whole wire) is shown in Table 2 below.

Figure 2008149341
Figure 2008149341

Figure 2008149341
Figure 2008149341

作製した各フラックス入りワイヤを用い、下記の条件にて溶接を行い、溶着金属を作製した。この溶着金属から引張試験片(JIS Z3111 A1号)およびシャルピー衝撃試験片(JIS Z3111 A4号)を採取し、各試験を行って0.2%耐力(σ0.2)および−60℃の低温でのVシャルピー衝撃値(vE-60)を測定した。 Welding was performed using the prepared flux-cored wires under the following conditions to prepare a weld metal. Tensile test pieces (JIS Z3111 A1) and Charpy impact test pieces (JIS Z3111 A4) were taken from this weld metal, and each test was performed to obtain 0.2% proof stress (σ 0.2 ) and a low temperature of −60 ° C. V Charpy impact value (vE- 60 ) was measured.

[溶接条件]
姿勢:下向き
シールドガス:80%Ar+20%CO2
溶接電流:280A
溶接電圧:31V
溶接速度:300mm/min
予熱・パス間温度:150℃
入熱量:1.7kJ/mm
供試鋼板(溶接母材):JIS G 3128 SHY865(板厚:20mm)
開先形状:開先角度45°(V開先)、ギャップ12mm
[Welding conditions]
Attitude: Downward Shielding gas: 80% Ar + 20% CO 2
Welding current: 280A
Welding voltage: 31V
Welding speed: 300mm / min
Preheating and interpass temperature: 150 ° C
Heat input: 1.7 kJ / mm
Test steel plate (welding base metal): JIS G 3128 SHY865 (plate thickness: 20 mm)
Groove shape: groove angle 45 ° (V groove), gap 12mm

また下記に示す溶接条件にて溶接(立向上進溶接)を行い、溶接作業性を評価した。溶接作業性の評価は、立向上進が可能で溶接後の溶着金属表面が滑らかな場合を良好(○印で示す)、立向上進が可能であるが溶接後の溶着金属表面に大きな凹凸が発生する場合をやや不良(△印で示す)、スラグおよび溶融金属(溶滴)が垂れ落ちて溶接ができない場合を不良(×印で示す)と評価した。   In addition, welding (stand-up improvement welding) was performed under the following welding conditions to evaluate welding workability. Evaluation of welding workability is good when standing welding progress is possible and the weld metal surface after welding is smooth (indicated by a circle). Standing improvement can be promoted, but there are large irregularities on the welding metal surface after welding. The case where it occurred was slightly bad (indicated by Δ), and the case where slag and molten metal (droplet) dropped and welding could not be performed was evaluated as bad (indicated by x).

[溶接作業性評価の溶接条件]
姿勢:立向上進行
シールドガス:80%Ar+20%CO2
溶接電流:220A
溶接電圧:22〜24V
溶接速度:14cm/min
開先形状:開先角度90°(V開先)
ウイービング幅:7mm
[Welding conditions for welding workability evaluation]
Posture: Standing progress Shield gas: 80% Ar + 20% CO 2
Welding current: 220A
Welding voltage: 22-24V
Welding speed: 14 cm / min
Groove shape: groove angle 90 ° (V groove)
Weaving width: 7mm

これらの結果(σ0.2、vE-60および溶接作業性)を、下記表3に一括して示す(評価基準:σ0.2≧620MPa、vE-60≧50Jで合格)。尚、表3には、不活性ガス融解法によって求めた溶着金属中の酸素濃度についても示した。 These results (σ 0.2 , vE −60 and welding workability) are collectively shown in the following Table 3 (evaluation criteria: σ 0.2 ≧ 620 MPa, pass with vE −60 ≧ 50 J). Table 3 also shows the oxygen concentration in the deposited metal determined by the inert gas melting method.

Figure 2008149341
Figure 2008149341

この結果から明らかなように、強度と靭性には相反する関係があり、強度を高くすると靭性が低下する傾向があるが、本発明で規定する要件を満足するもの(試験No.1〜5)では、強度および靭性のいずれも良好な溶着金属が得られており、溶接作業性も良好であることが分かる。   As is clear from this result, there is a contradictory relationship between strength and toughness, and when the strength is increased, the toughness tends to decrease, but the requirements specified in the present invention are satisfied (Test Nos. 1 to 5). Then, it turns out that the welding metal with favorable both strength and toughness is obtained, and welding workability | operativity is also favorable.

これに対して本発明で規定する要件にいずれかを欠くもの(試験No.6〜21)では強度的には満足していても、靭性および溶接作業性の少なくともいずれかの性能が劣化していることが分かる。   On the other hand, those lacking any of the requirements defined in the present invention (Test Nos. 6 to 21) are satisfactory in strength, but at least one of toughness and welding workability deteriorates. I understand that.

[実施例2]
フラックス中への各種酸化物の配合割合を変化させること以外は、実施例1と同様にして各種フラックス入りワイヤを作製した。作製した各フラックス入りワイヤの化学成分組成を、下記表4に、フラックス中の酸化物の配合割合(ワイヤ全質量に対する質量%)を下記表5に示す。
[Example 2]
Various flux-cored wires were produced in the same manner as in Example 1 except that the blending ratio of various oxides into the flux was changed. The chemical composition of each prepared flux-cored wire is shown in Table 4 below, and the compounding ratio of the oxide in the flux (% by mass with respect to the total mass of the wire) is shown in Table 5 below.

Figure 2008149341
Figure 2008149341

Figure 2008149341
Figure 2008149341

作製した各フラックス入りワイヤを用い、実施例1示した条件にて溶接を行い、溶着金属を作製し、溶着金属のσ0.2、Vシャルピー衝撃値(vE-60)および酸素濃度を測定した。また、溶接作業性についても実施例1と同様にして評価した。 Using each of the flux-cored wires produced, welding was performed under the conditions shown in Example 1 to produce a weld metal, and σ 0.2 , V Charpy impact value (vE -60 ), and oxygen concentration of the weld metal were measured. The welding workability was also evaluated in the same manner as in Example 1.

これらの結果(σ0.2、vE-60、酸素濃度および溶接作業性)を、下記表6に一括して示す(評価基準:σ0.2≧620MPa、vE-60≧50Jで合格)。 These results (σ 0.2 , vE −60 , oxygen concentration and welding workability) are collectively shown in the following Table 6 (Evaluation criteria: σ 0.2 ≧ 620 MPa, vE −60 ≧ 50 J, passed).

Figure 2008149341
Figure 2008149341

この結果から次のように考察できる。即ち、チタン系フラックス中にMgOを添加することは、溶着金属中の酸素濃度を低減する上で有効であることが分かる。また、MgOの含有量を増加させると(即ち、TiO2/MgOを小さくすると)、溶着金属中の酸素濃度が低下する傾向を示し、特にTiO2/MgOが9.0以下となると、酸素濃度が0.044%以下(440ppm以下)となっていることが分かる。 From this result, it can be considered as follows. That is, it can be seen that adding MgO to the titanium-based flux is effective in reducing the oxygen concentration in the deposited metal. Further, when the content of MgO is increased (that is, when TiO 2 / MgO is decreased), the oxygen concentration in the deposited metal tends to decrease. In particular, when TiO 2 / MgO is 9.0 or less, the oxygen concentration Is 0.044% or less (440 ppm or less).

一方、MgOが多くなり過ぎると(即ち、TiO2/MgO比が小さくなり過ぎると)、溶接作業性が劣化する(試験No.31〜35)。しかしながら、TiO2/MgOが4.7以上では、良好な溶接作業性が確保できることが分かる。 On the other hand, when MgO becomes too much (that is, when the TiO 2 / MgO ratio becomes too small), welding workability deteriorates (Test Nos. 31 to 35). However, it can be seen that when TiO 2 / MgO is 4.7 or more, good welding workability can be secured.

従って、ガスシールドアーク溶接用フラックス入りワイヤにおいて、チタン系フラックス中のTiO2/MgO比を適切な範囲になるように制御すれば、溶着金属中の酸素濃度の低減が図れ、溶接金属の高靭性と良好な溶接作業性の両立ができることが分かる。 Therefore, if the TiO 2 / MgO ratio in the titanium-based flux is controlled to an appropriate range in the flux-cored wire for gas shielded arc welding, the oxygen concentration in the weld metal can be reduced, and the high toughness of the weld metal And good welding workability can be achieved.

Claims (3)

鋼製外皮の中にTiO2系フラックスを主体とするフラックスを充填してなるガスシールドアーク溶接用フラックス入りワイヤにおいて、ワイヤ全質量に対する質量%で、C:0.02〜0.15%、Si:0.3〜1.4%、Mn:1.2〜3.5%、Ni:0.2〜3.4%、Cr:0.02〜2.0%、Ti:2.0〜6.0%、Mo:0.1〜2.2%およびMg:0.01〜1.0%を夫々含有すると共に、フラックス中のTiO2含有量[TiO2]とMgO含有量[MgO]が下記(1)式の関係を満足するものであることを特徴とするガスシールドアーク溶接用フラックス入りワイヤ。
[TiO2]/[MgO]≧4.7 …(1)
但し、[TiO2]および[MgO]は、フラックス中に含まれるTiO2およびMgOの含有量(ワイヤ全質量に対する質量%)
In a flux-cored wire for gas shielded arc welding in which a steel outer sheath is filled with a flux mainly composed of TiO 2 flux, C: 0.02 to 0.15% by mass% with respect to the total mass of the wire, Si : 0.3-1.4%, Mn: 1.2-3.5%, Ni: 0.2-3.4%, Cr: 0.02-2.0%, Ti: 2.0-6 0.0%, Mo: 0.1-2.2% and Mg: 0.01-1.0%, respectively, and the TiO 2 content [TiO 2 ] and MgO content [MgO] in the flux are A flux-cored wire for gas shielded arc welding characterized by satisfying the relationship of the following formula (1).
[TiO 2 ] / [MgO] ≧ 4.7 (1)
However, [TiO 2 ] and [MgO] are the contents of TiO 2 and MgO contained in the flux (mass% with respect to the total mass of the wire).
前記TiO2含有量[TiO2]が4.5〜6.1%であり、MgO含有量[MgO]が0.2〜1.5%である請求項1に記載のガスシールドアーク溶接用フラックス入りワイヤ。 The flux for gas shielded arc welding according to claim 1, wherein the TiO 2 content [TiO 2 ] is 4.5 to 6.1% and the MgO content [MgO] is 0.2 to 1.5%. Cored wire. フラックスの充填率が10〜30%である請求項1または2に記載のガスシールドアーク溶接用フラックス入りワイヤ。
The flux-cored wire for gas shielded arc welding according to claim 1 or 2, wherein a filling rate of the flux is 10 to 30%.
JP2006338941A 2006-12-15 2006-12-15 Flux-cored wire for gas shielded arc welding Expired - Fee Related JP4209913B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006338941A JP4209913B2 (en) 2006-12-15 2006-12-15 Flux-cored wire for gas shielded arc welding
CN200710185054XA CN101204763B (en) 2006-12-15 2007-11-06 Flux-cored wire for gas-shielded arc welding
SG200718275-1A SG144044A1 (en) 2006-12-15 2007-12-03 Flux-cored wire for gas-shielded arc welding
SE0702712A SE531320C2 (en) 2006-12-15 2007-12-06 Welding electrode for arc welding
NO20076432A NO20076432L (en) 2006-12-15 2007-12-13 Core thread for gas shielded arc welding
KR1020070130559A KR100925321B1 (en) 2006-12-15 2007-12-14 Flux-cored wire for gas-shielded arc welding
NL1034833A NL1034833C (en) 2006-12-15 2007-12-17 FLUID CORE THREAD FOR GAS ARCH WELDING.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006338941A JP4209913B2 (en) 2006-12-15 2006-12-15 Flux-cored wire for gas shielded arc welding

Publications (2)

Publication Number Publication Date
JP2008149341A true JP2008149341A (en) 2008-07-03
JP4209913B2 JP4209913B2 (en) 2009-01-14

Family

ID=39565357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006338941A Expired - Fee Related JP4209913B2 (en) 2006-12-15 2006-12-15 Flux-cored wire for gas shielded arc welding

Country Status (7)

Country Link
JP (1) JP4209913B2 (en)
KR (1) KR100925321B1 (en)
CN (1) CN101204763B (en)
NL (1) NL1034833C (en)
NO (1) NO20076432L (en)
SE (1) SE531320C2 (en)
SG (1) SG144044A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125904A (en) * 2009-12-18 2011-06-30 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas shielded arc welding for weather resistant steel
CN107378305A (en) * 2017-07-31 2017-11-24 西安理工大学 Titanium-steel dissimilar metal plate sheet welding flux-cored wire and preparation method thereof
EP3189930A4 (en) * 2014-09-03 2018-02-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux cored wire for gas-shielded arc welding
WO2018087812A1 (en) 2016-11-08 2018-05-17 新日鐵住金株式会社 Flux-cored wire, method of manufacturing welded joint, and welded joint

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5400461B2 (en) * 2009-04-22 2014-01-29 株式会社神戸製鋼所 Flux cored wire
CN102528332B (en) * 2010-12-20 2015-02-04 昆山京群焊材科技有限公司 High-strength low-temperature-resistant TiO2-series CO2 gas-shielded low-hydrogen type flux-cored wire
CN109084121A (en) * 2018-09-20 2018-12-25 张家港市方圆管业制造有限公司 A kind of corrosion-resistant welded still pipe
KR102197132B1 (en) * 2019-11-26 2020-12-31 주식회사 세아에삽 Stainless steel flux cored wire for welding LNG tank
JP2022120717A (en) * 2021-02-05 2022-08-18 株式会社神戸製鋼所 Flux-cored wire, weld metal, gas shielded arc welding method and welded joint manufacturing method
JP2022121317A (en) * 2021-02-08 2022-08-19 株式会社神戸製鋼所 Wire with flux for gas shield arc-welding

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5915756B2 (en) * 1979-09-04 1984-04-11 株式会社神戸製鋼所 Flux-cored wire for gas shield arc welding
JPS61283493A (en) * 1985-06-10 1986-12-13 Daido Steel Co Ltd Flux-cored wire for welding
JP2614969B2 (en) * 1993-03-31 1997-05-28 株式会社神戸製鋼所 Gas shielded arc welding titania-based flux cored wire
KR100294454B1 (en) 1997-03-27 2002-11-18 가부시키 가이샤 고베세이코쇼 Flux-cored wire for electrogas arc welding
KR100436489B1 (en) 2001-05-28 2004-06-22 고려용접봉 주식회사 Flux cored wire for gas shielded arc welding of high tensile strength steel
JP3758040B2 (en) * 2002-07-26 2006-03-22 株式会社神戸製鋼所 Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP4531617B2 (en) 2005-04-07 2010-08-25 日鐵住金溶接工業株式会社 Flux-cored wire for gas shielded arc welding
CN100462182C (en) * 2005-11-24 2009-02-18 武汉铁锚焊接材料股份有限公司 Carbon steel cored solder wire for gas-shielded arc welding
JP5005309B2 (en) * 2006-10-02 2012-08-22 株式会社神戸製鋼所 Gas shielded arc welding flux cored wire for high strength steel

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011125904A (en) * 2009-12-18 2011-06-30 Nippon Steel & Sumikin Welding Co Ltd Flux cored wire for gas shielded arc welding for weather resistant steel
EP3189930A4 (en) * 2014-09-03 2018-02-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Flux cored wire for gas-shielded arc welding
WO2018087812A1 (en) 2016-11-08 2018-05-17 新日鐵住金株式会社 Flux-cored wire, method of manufacturing welded joint, and welded joint
KR20190073457A (en) 2016-11-08 2019-06-26 닛폰세이테츠 가부시키가이샤 Flux cored wire, method of manufacturing weld joint, and weld joint
US11400539B2 (en) 2016-11-08 2022-08-02 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint
CN107378305A (en) * 2017-07-31 2017-11-24 西安理工大学 Titanium-steel dissimilar metal plate sheet welding flux-cored wire and preparation method thereof

Also Published As

Publication number Publication date
NL1034833C (en) 2010-04-26
CN101204763B (en) 2010-06-02
CN101204763A (en) 2008-06-25
NO20076432L (en) 2008-06-16
SG144044A1 (en) 2008-07-29
KR100925321B1 (en) 2009-11-04
KR20080055714A (en) 2008-06-19
SE531320C2 (en) 2009-02-24
NL1034833A1 (en) 2008-06-17
JP4209913B2 (en) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4209913B2 (en) Flux-cored wire for gas shielded arc welding
JP5005309B2 (en) Gas shielded arc welding flux cored wire for high strength steel
CN107921590B (en) Flux-cored wire for gas-shielded arc welding
WO2018051823A1 (en) Wire for electroslag welding, flux for electroslag welding and welded joint
KR102208029B1 (en) Electroslag welding wire, electroslag welding flux and weld joints
JP2008068274A (en) High strength weld metal having excellent low temperature toughness
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP2011020154A (en) Flux-cored wire for gas shielded welding
JP2003019595A (en) Flux cored wire for gas-shielded arc welding for low alloy heat resistant steel
EP0688630B2 (en) Flux-cored wire for gas shielded arc welding
JP2011245519A (en) Weld metal excellent in hot crack resistance
KR101962050B1 (en) Flux-cored wire for gas-shielded arc welding
KR20190037286A (en) Flux cored wire and weld metal for gas shield arc welding
JP3860437B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
JP2009018337A (en) Flux cored wire for gas-shielded arc welding
JPH08257785A (en) Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2010064087A (en) Flux cored wire for gas-shielded arc welding
JP2756084B2 (en) Flux-cored wire for gas shielded arc welding
JP6257489B2 (en) Gas shield arc welding method
JP3860438B2 (en) Iron-based consumable welding materials and welded joints with excellent fatigue strength at welded joints
WO2018047879A1 (en) Flux cored wire for gas shield arc welding and welding metal
JP7252051B2 (en) Solid wire and weld joints for electroslag welding
JPH08174267A (en) Flux cored wire for arc welding
JPH10175094A (en) Low hydrogen covered electrode for low temperature steel, and its welding method
JPH0899193A (en) Flux cored wire for gas shielded arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080627

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees